/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /////////////////////////////////////////////////////////////////////////////// // // // TRD geometry class // // // /////////////////////////////////////////////////////////////////////////////// #include #include #include #include "AliLog.h" #include "AliRunLoader.h" #include "AliAlignObj.h" #include "AliAlignObjAngles.h" #include "AliRun.h" #include "AliTRD.h" #include "AliTRDcalibDB.h" #include "AliTRDCommonParam.h" #include "AliTRDgeometry.h" #include "AliTRDpadPlane.h" ClassImp(AliTRDgeometry) //_____________________________________________________________________________ // // The geometry constants // const Int_t AliTRDgeometry::fgkNsect = kNsect; const Int_t AliTRDgeometry::fgkNplan = kNplan; const Int_t AliTRDgeometry::fgkNcham = kNcham; const Int_t AliTRDgeometry::fgkNdet = kNdet; // // Dimensions of the detector // // Parameter of the BTRD mother volumes const Float_t AliTRDgeometry::fgkSheight = 77.9; const Float_t AliTRDgeometry::fgkSwidth1 = 94.881; const Float_t AliTRDgeometry::fgkSwidth2 = 122.353; const Float_t AliTRDgeometry::fgkSlength = 751.0; // The super module side plates const Float_t AliTRDgeometry::fgkSMpltT = 0.2; // Height of different chamber parts // Radiator const Float_t AliTRDgeometry::fgkCraH = 4.8; // Drift region const Float_t AliTRDgeometry::fgkCdrH = 3.0; // Amplification region const Float_t AliTRDgeometry::fgkCamH = 0.7; // Readout const Float_t AliTRDgeometry::fgkCroH = 2.316; // Total height const Float_t AliTRDgeometry::fgkCH = AliTRDgeometry::fgkCraH + AliTRDgeometry::fgkCdrH + AliTRDgeometry::fgkCamH + AliTRDgeometry::fgkCroH; // Vertical spacing of the chambers const Float_t AliTRDgeometry::fgkVspace = 1.784; // Horizontal spacing of the chambers const Float_t AliTRDgeometry::fgkHspace = 2.0; // Radial distance of the first ROC to the outer plates of the SM const Float_t AliTRDgeometry::fgkVrocsm = 1.2; // Thicknesses of different parts of the chamber frame // Lower aluminum frame const Float_t AliTRDgeometry::fgkCalT = 0.4; // Lower Wacosit frame sides const Float_t AliTRDgeometry::fgkCclsT = 0.21; // Lower Wacosit frame front const Float_t AliTRDgeometry::fgkCclfT = 1.0; // Thickness of glue around radiator const Float_t AliTRDgeometry::fgkCglT = 0.25; // Upper Wacosit frame const Float_t AliTRDgeometry::fgkCcuT = 0.9; // Al frame of back panel const Float_t AliTRDgeometry::fgkCauT = 1.5; // Additional Al of the lower chamber frame const Float_t AliTRDgeometry::fgkCalW = 1.11; // Additional width of the readout chamber frames const Float_t AliTRDgeometry::fgkCroW = 0.9; // Difference of outer chamber width and pad plane width const Float_t AliTRDgeometry::fgkCpadW = 0.0; const Float_t AliTRDgeometry::fgkRpadW = 1.0; // // Thickness of the the material layers // const Float_t AliTRDgeometry::fgkMyThick = 0.005; const Float_t AliTRDgeometry::fgkRaThick = 0.3233; const Float_t AliTRDgeometry::fgkDrThick = AliTRDgeometry::fgkCdrH; const Float_t AliTRDgeometry::fgkAmThick = AliTRDgeometry::fgkCamH; const Float_t AliTRDgeometry::fgkXeThick = AliTRDgeometry::fgkDrThick + AliTRDgeometry::fgkAmThick; const Float_t AliTRDgeometry::fgkWrThick = 0.0002; const Float_t AliTRDgeometry::fgkCuThick = 0.0072; const Float_t AliTRDgeometry::fgkGlThick = 0.05; const Float_t AliTRDgeometry::fgkSuThick = 0.0919; const Float_t AliTRDgeometry::fgkRcThick = 0.0058; const Float_t AliTRDgeometry::fgkRpThick = 0.0632; const Float_t AliTRDgeometry::fgkRoThick = 0.0028; // // Position of the material layers // const Float_t AliTRDgeometry::fgkRaZpos = 0.0; const Float_t AliTRDgeometry::fgkDrZpos = 2.4; const Float_t AliTRDgeometry::fgkAmZpos = 0.0; const Float_t AliTRDgeometry::fgkWrZpos = 0.0; const Float_t AliTRDgeometry::fgkCuZpos = -0.9995; const Float_t AliTRDgeometry::fgkGlZpos = -0.5; const Float_t AliTRDgeometry::fgkSuZpos = 0.0; const Float_t AliTRDgeometry::fgkRcZpos = 1.04; const Float_t AliTRDgeometry::fgkRpZpos = 1.0; const Float_t AliTRDgeometry::fgkRoZpos = 1.05; const Int_t AliTRDgeometry::fgkMCMmax = 16; const Int_t AliTRDgeometry::fgkMCMrow = 4; const Int_t AliTRDgeometry::fgkROBmaxC0 = 6; const Int_t AliTRDgeometry::fgkROBmaxC1 = 8; const Int_t AliTRDgeometry::fgkADCmax = 21; const Int_t AliTRDgeometry::fgkTBmax = 60; const Int_t AliTRDgeometry::fgkPadmax = 18; const Int_t AliTRDgeometry::fgkColmax = 144; const Int_t AliTRDgeometry::fgkRowmaxC0 = 12; const Int_t AliTRDgeometry::fgkRowmaxC1 = 16; const Double_t AliTRDgeometry::fgkTime0Base = 300.65; const Float_t AliTRDgeometry::fgkTime0[6] = { fgkTime0Base + 0 * (Cheight() + Cspace()) , fgkTime0Base + 1 * (Cheight() + Cspace()) , fgkTime0Base + 2 * (Cheight() + Cspace()) , fgkTime0Base + 3 * (Cheight() + Cspace()) , fgkTime0Base + 4 * (Cheight() + Cspace()) , fgkTime0Base + 5 * (Cheight() + Cspace())}; //_____________________________________________________________________________ AliTRDgeometry::AliTRDgeometry() :AliGeometry() ,fMatrixArray(0) ,fMatrixCorrectionArray(0) ,fMatrixGeo(0) { // // AliTRDgeometry default constructor // Init(); } //_____________________________________________________________________________ AliTRDgeometry::AliTRDgeometry(const AliTRDgeometry &g) :AliGeometry(g) ,fMatrixArray(g.fMatrixArray) ,fMatrixCorrectionArray(g.fMatrixCorrectionArray) ,fMatrixGeo(g.fMatrixGeo) { // // AliTRDgeometry copy constructor // Init(); } //_____________________________________________________________________________ AliTRDgeometry::~AliTRDgeometry() { // // AliTRDgeometry destructor // if (fMatrixArray) { delete fMatrixArray; fMatrixArray = 0; } if (fMatrixCorrectionArray) { delete fMatrixCorrectionArray; fMatrixCorrectionArray = 0; } } //_____________________________________________________________________________ AliTRDgeometry &AliTRDgeometry::operator=(const AliTRDgeometry &g) { // // Assignment operator // if (this != &g) { Init(); } return *this; } //_____________________________________________________________________________ void AliTRDgeometry::Init() { // // Initializes the geometry parameter // Int_t icham; Int_t iplan; Int_t isect; // The outer width of the chambers fCwidth[0] = 90.4; fCwidth[1] = 94.8; fCwidth[2] = 99.3; fCwidth[3] = 103.7; fCwidth[4] = 108.1; fCwidth[5] = 112.6; // The outer lengths of the chambers // Includes the spacings between the chambers! Float_t length[kNplan][kNcham] = { { 124.0, 124.0, 110.0, 124.0, 124.0 } , { 124.0, 124.0, 110.0, 124.0, 124.0 } , { 131.0, 131.0, 110.0, 131.0, 131.0 } , { 138.0, 138.0, 110.0, 138.0, 138.0 } , { 145.0, 145.0, 110.0, 145.0, 145.0 } , { 147.0, 147.0, 110.0, 147.0, 147.0 } }; for (icham = 0; icham < kNcham; icham++) { for (iplan = 0; iplan < kNplan; iplan++) { fClength[iplan][icham] = length[iplan][icham]; } } // The rotation matrix elements Float_t phi = 0.0; for (isect = 0; isect < fgkNsect; isect++) { phi = -2.0 * TMath::Pi() / (Float_t) fgkNsect * ((Float_t) isect + 0.5); fRotA11[isect] = TMath::Cos(phi); fRotA12[isect] = TMath::Sin(phi); fRotA21[isect] = TMath::Sin(phi); fRotA22[isect] = TMath::Cos(phi); phi = -1.0 * phi; fRotB11[isect] = TMath::Cos(phi); fRotB12[isect] = TMath::Sin(phi); fRotB21[isect] = TMath::Sin(phi); fRotB22[isect] = TMath::Cos(phi); } for (isect = 0; isect < fgkNsect; isect++) { SetSMstatus(isect,1); } } //_____________________________________________________________________________ void AliTRDgeometry::CreateGeometry(Int_t *idtmed) { // // Create the TRD geometry without hole // // // Names of the TRD volumina (xx = detector number): // // Volume (Air) wrapping the readout chamber components // UTxx includes: UAxx, UDxx, UFxx, UUxx // // Volume (Air) wrapping the services (fee + cooling) // UUxx the services volume has been reduced by 7.42 mm // in order to allow shifts in radial direction // // Lower part of the readout chambers (drift volume + radiator) // // UAxx Aluminum frames (Al) // UBxx Wacosit frames (C) // UXxx Glue around radiator (Epoxy) // UCxx Inner volumes (Air) // UZxx Additional aluminum ledges (Al) // // Upper part of the readout chambers (readout plane + fee) // // UDxx Wacosit frames of amp. region (C) // UExx Inner volumes of the frame (Air) // UFxx Aluminum frame of back panel (Al) // UGxx Inner volumes of the back panel (Air) // // Inner material layers // // UHxx Radiator (Rohacell) // UJxx Drift volume (Xe/CO2) // UKxx Amplification volume (Xe/CO2) // UWxx Wire plane (Cu) // ULxx Pad plane (Cu) // UYxx Glue layer (Epoxy) // UMxx Support structure (Rohacell) // UNxx ROB base material (C) // UOxx ROB copper (Cu) // UVxx ROB other materials (Cu) // const Int_t kNparTrd = 4; const Int_t kNparCha = 3; Float_t xpos; Float_t ypos; Float_t zpos; Float_t parTrd[kNparTrd]; Float_t parCha[kNparCha]; Char_t cTagV[6]; Char_t cTagM[5]; // The TRD mother volume for one sector (Air), full length in z-direction // Provides material for side plates of super module parTrd[0] = fgkSwidth1/2.0; parTrd[1] = fgkSwidth2/2.0; parTrd[2] = fgkSlength/2.0; parTrd[3] = fgkSheight/2.0; gMC->Gsvolu("UTR1","TRD1",idtmed[1302-1],parTrd,kNparTrd); // The outer aluminum plates of the super module (Al) parTrd[0] = fgkSwidth1/2.0; parTrd[1] = fgkSwidth2/2.0; parTrd[2] = fgkSlength/2.0; parTrd[3] = fgkSheight/2.0; gMC->Gsvolu("UTS1","TRD1",idtmed[1301-1],parTrd,kNparTrd); // The inner part of the TRD mother volume for one sector (Air), // full length in z-direction parTrd[0] = fgkSwidth1/2.0 - fgkSMpltT; parTrd[1] = fgkSwidth2/2.0 - fgkSMpltT; parTrd[2] = fgkSlength/2.0; parTrd[3] = fgkSheight/2.0 - fgkSMpltT; gMC->Gsvolu("UTI1","TRD1",idtmed[1302-1],parTrd,kNparTrd); for (Int_t icham = 0; icham < kNcham; icham++) { for (Int_t iplan = 0; iplan < kNplan; iplan++) { Int_t iDet = GetDetectorSec(iplan,icham); // The lower part of the readout chambers (drift volume + radiator) // The aluminum frames sprintf(cTagV,"UA%02d",iDet); parCha[0] = fCwidth[iplan]/2.0; parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0; parCha[2] = fgkCraH/2.0 + fgkCdrH/2.0; fChamberUAboxd[iDet][0] = parCha[0]; fChamberUAboxd[iDet][1] = parCha[1]; fChamberUAboxd[iDet][2] = parCha[2]; gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha); // The additional aluminum on the frames // This part has not the correct postion but is just supposed to // represent the missing material. The correct from of the L-shaped // profile would not fit into the alignable volume. sprintf(cTagV,"UZ%02d",iDet); parCha[0] = fgkCroW/2.0; parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0; parCha[2] = fgkCalW/2.0; fChamberUAboxd[iDet][0] = fChamberUAboxd[iDet][0] + fgkCroW; gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha); // The Wacosit frames sprintf(cTagV,"UB%02d",iDet); parCha[0] = fCwidth[iplan]/2.0 - fgkCalT; parCha[1] = -1.0; parCha[2] = -1.0; gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha); // The glue around the radiator sprintf(cTagV,"UX%02d",iDet); parCha[0] = fCwidth[iplan]/2.0 - fgkCalT - fgkCclsT; parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCclfT; parCha[2] = fgkCraH/2.0; gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha); // The inner part of radiator (air) sprintf(cTagV,"UC%02d",iDet); parCha[0] = fCwidth[iplan]/2.0 - fgkCalT - fgkCclsT - fgkCglT; parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCclfT - fgkCglT; parCha[2] = -1.0; gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha); // The upper part of the readout chambers (amplification volume) // The Wacosit frames sprintf(cTagV,"UD%02d",iDet); parCha[0] = fCwidth[iplan]/2.0 + fgkCroW; parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0; parCha[2] = fgkCamH/2.0; fChamberUDboxd[iDet][0] = parCha[0]; fChamberUDboxd[iDet][1] = parCha[1]; fChamberUDboxd[iDet][2] = parCha[2]; gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha); // The inner part of the Wacosit frame (air) sprintf(cTagV,"UE%02d",iDet); parCha[0] = fCwidth[iplan]/2.0 + fgkCroW - fgkCcuT; parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCcuT; parCha[2] = -1.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha); // The support structure (pad plane, back panel, readout boards) // The aluminum frames sprintf(cTagV,"UF%02d",iDet); parCha[0] = fCwidth[iplan]/2.0 + fgkCroW; parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0; parCha[2] = fgkCroH/2.0; fChamberUFboxd[iDet][0] = parCha[0]; fChamberUFboxd[iDet][1] = parCha[1]; fChamberUFboxd[iDet][2] = parCha[2]; gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha); // The inner part of the aluminum frames sprintf(cTagV,"UG%02d",iDet); parCha[0] = fCwidth[iplan]/2.0 + fgkCroW - fgkCauT; parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCauT; parCha[2] = -1.0; gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha); // The material layers inside the chambers // Rohacell layer (radiator) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkRaThick/2.0; sprintf(cTagV,"UH%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1315-1],parCha,kNparCha); // Xe/Isobutane layer (drift volume) parCha[0] = fCwidth[iplan]/2.0 - fgkCalT - fgkCclsT; parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCclfT; parCha[2] = fgkDrThick/2.0; sprintf(cTagV,"UJ%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha); // Xe/Isobutane layer (amplification volume) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkAmThick/2.0; sprintf(cTagV,"UK%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha); // Cu layer (wire plane) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkWrThick/2.0; sprintf(cTagV,"UW%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1303-1],parCha,kNparCha); // Cu layer (pad plane) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkCuThick/2.0; sprintf(cTagV,"UL%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1305-1],parCha,kNparCha); // Epoxy layer (glue) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkGlThick/2.0; sprintf(cTagV,"UY%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha); // G10 layer (support structure / honeycomb) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkSuThick/2.0; sprintf(cTagV,"UM%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1310-1],parCha,kNparCha); // G10 layer (PCB readout board) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkRpThick/2; sprintf(cTagV,"UN%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha); // Cu layer (traces in readout board) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkRcThick/2.0; sprintf(cTagV,"UO%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1306-1],parCha,kNparCha); // Cu layer (other material on in readout board) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkRoThick/2.0; sprintf(cTagV,"UV%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1304-1],parCha,kNparCha); // Position the layers in the chambers xpos = 0.0; ypos = 0.0; // Lower part // Rohacell layer (radiator) zpos = fgkRaZpos; sprintf(cTagV,"UH%02d",iDet); sprintf(cTagM,"UC%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Xe/Isobutane layer (drift volume) zpos = fgkDrZpos; sprintf(cTagV,"UJ%02d",iDet); sprintf(cTagM,"UB%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Upper part // Xe/Isobutane layer (amplification volume) zpos = fgkAmZpos; sprintf(cTagV,"UK%02d",iDet); sprintf(cTagM,"UE%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Cu layer (wire plane inside amplification volume) zpos = fgkWrZpos; sprintf(cTagV,"UW%02d",iDet); sprintf(cTagM,"UK%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Readout part + support plane // Cu layer (pad plane) zpos = fgkCuZpos; sprintf(cTagV,"UL%02d",iDet); sprintf(cTagM,"UG%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Epoxy layer (glue) zpos = fgkGlZpos; sprintf(cTagV,"UY%02d",iDet); sprintf(cTagM,"UG%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // G10 layer (support structure) zpos = fgkSuZpos; sprintf(cTagV,"UM%02d",iDet); sprintf(cTagM,"UG%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // G10 layer (PCB readout board) zpos = fgkRpZpos; sprintf(cTagV,"UN%02d",iDet); sprintf(cTagM,"UG%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Cu layer (traces in readout board) zpos = fgkRcZpos; sprintf(cTagV,"UO%02d",iDet); sprintf(cTagM,"UG%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Cu layer (other materials on readout board) zpos = fgkRoZpos; sprintf(cTagV,"UV%02d",iDet); sprintf(cTagM,"UG%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Position the inner volumes of the chambers in the frames xpos = 0.0; ypos = 0.0; // The inner part of the radiator zpos = 0.0; sprintf(cTagV,"UC%02d",iDet); sprintf(cTagM,"UX%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The glue around the radiator zpos = fgkCraH/2.0 - fgkCdrH/2.0 - fgkCraH/2.0; sprintf(cTagV,"UX%02d",iDet); sprintf(cTagM,"UB%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The lower Wacosit frame inside the aluminum frame zpos = 0.0; sprintf(cTagV,"UB%02d",iDet); sprintf(cTagM,"UA%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The inside of the upper Wacosit frame zpos = 0.0; sprintf(cTagV,"UE%02d",iDet); sprintf(cTagM,"UD%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The inside of the upper aluminum frame zpos = 0.0; sprintf(cTagV,"UG%02d",iDet); sprintf(cTagM,"UF%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Position the frames of the chambers in the TRD mother volume xpos = 0.0; ypos = - fClength[iplan][0] - fClength[iplan][1] - fClength[iplan][2]/2.0; for (Int_t ic = 0; ic < icham; ic++) { ypos += fClength[iplan][ic]; } ypos += fClength[iplan][icham]/2.0; zpos = fgkVrocsm + fgkSMpltT + fgkCraH/2.0 + fgkCdrH/2.0 - fgkSheight/2.0 + iplan * (fgkCH + fgkVspace); // The lower aluminum frame, radiator + drift region sprintf(cTagV,"UA%02d",iDet); fChamberUAorig[iDet][0] = xpos; fChamberUAorig[iDet][1] = ypos; fChamberUAorig[iDet][2] = zpos; // The upper G10 frame, amplification region sprintf(cTagV,"UD%02d",iDet); zpos += fgkCamH/2.0 + fgkCraH/2.0 + fgkCdrH/2.0; fChamberUDorig[iDet][0] = xpos; fChamberUDorig[iDet][1] = ypos; fChamberUDorig[iDet][2] = zpos; // The upper aluminum frame sprintf(cTagV,"UF%02d",iDet); zpos += fgkCroH/2.0 + fgkCamH/2.0; fChamberUForig[iDet][0] = xpos; fChamberUForig[iDet][1] = ypos; fChamberUForig[iDet][2] = zpos; } } // Create the volumes of the super module frame CreateFrame(idtmed); // Create the volumes of the services CreateServices(idtmed); for (Int_t icham = 0; icham < kNcham; icham++) { for (Int_t iplan = 0; iplan < kNplan; iplan++) { GroupChamber(iplan,icham,idtmed); } } xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTI1",1,"UTS1",xpos,ypos,zpos,0,"ONLY"); xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTS1",1,"UTR1",xpos,ypos,zpos,0,"ONLY"); // Put the TRD volumes into the space frame mother volumes // if enabled via status flag xpos = 0.0; ypos = 0.0; zpos = 0.0; for (Int_t isect = 0; isect < kNsect; isect++) { if (fSMstatus[isect]) { sprintf(cTagV,"BTRD%d",isect); gMC->Gspos("UTR1",1,cTagV,xpos,ypos,zpos,0,"ONLY"); } } } //_____________________________________________________________________________ void AliTRDgeometry::CreateFrame(Int_t *idtmed) { // // Create the geometry of the frame of the supermodule // // Names of the TRD services volumina // // USRL Support rails for the chambers (Al) // USxx Support cross bars between the chambers (Al) // USHx Horizontal connection between the cross bars (Al) // USLx Long corner ledges (Al) // Int_t iplan = 0; Float_t xpos = 0.0; Float_t ypos = 0.0; Float_t zpos = 0.0; Char_t cTagV[5]; Char_t cTagM[5]; // The rotation matrices const Int_t kNmatrix = 4; Int_t matrix[kNmatrix]; gMC->Matrix(matrix[0], 100.0, 0.0, 90.0, 90.0, 10.0, 0.0); gMC->Matrix(matrix[1], 80.0, 0.0, 90.0, 90.0, 10.0, 180.0); gMC->Matrix(matrix[2], 90.0, 0.0, 0.0, 0.0, 90.0, 90.0); gMC->Matrix(matrix[3], 90.0, 180.0, 0.0, 180.0, 90.0, 90.0); // // The chamber support rails // const Float_t kSRLwid = 2.00; const Float_t kSRLhgt = 2.3; const Float_t kSRLdst = 1.0; const Int_t kNparSRL = 3; Float_t parSRL[kNparSRL]; parSRL[0] = kSRLwid /2.0; parSRL[1] = fgkSlength/2.0; parSRL[2] = kSRLhgt /2.0; gMC->Gsvolu("USRL","BOX ",idtmed[1301-1],parSRL,kNparSRL); xpos = 0.0; ypos = 0.0; zpos = 0.0; for (iplan = 0; iplan < kNplan; iplan++) { xpos = fCwidth[iplan]/2.0 + kSRLwid/2.0 + kSRLdst; ypos = 0.0; zpos = fgkVrocsm + fgkSMpltT + fgkCraH + fgkCdrH + fgkCamH - fgkSheight/2.0 + iplan * (fgkCH + fgkVspace); gMC->Gspos("USRL",iplan+1 ,"UTI1", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos("USRL",iplan+1+ kNplan,"UTI1",-xpos,ypos,zpos,0,"ONLY"); } // // The cross bars between the chambers // const Float_t kSCBwid = 1.0; const Float_t kSCBthk = 2.0; const Float_t kSCHhgt = 0.3; const Int_t kNparSCB = 3; Float_t parSCB[kNparSCB]; parSCB[1] = kSCBwid/2.0; parSCB[2] = fgkCH /2.0 + fgkVspace/2.0 - kSCHhgt; const Int_t kNparSCI = 3; Float_t parSCI[kNparSCI]; parSCI[1] = -1; xpos = 0.0; ypos = 0.0; zpos = 0.0; for (iplan = 0; iplan < kNplan; iplan++) { // The aluminum of the cross bars parSCB[0] = fCwidth[iplan]/2.0 + kSRLdst/2.0; sprintf(cTagV,"USF%01d",iplan); gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB); // The empty regions in the cross bars Float_t thkSCB = kSCBthk; if (iplan < 2) { thkSCB *= 1.5; } parSCI[2] = parSCB[2] - thkSCB; parSCI[0] = parSCB[0]/4.0 - kSCBthk; sprintf(cTagV,"USI%01d",iplan); gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parSCI,kNparSCI); sprintf(cTagV,"USI%01d",iplan); sprintf(cTagM,"USF%01d",iplan); ypos = 0.0; zpos = 0.0; xpos = parSCI[0] + thkSCB/2.0; gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); xpos = - parSCI[0] - thkSCB/2.0; gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY"); xpos = 3.0 * parSCI[0] + 1.5 * thkSCB; gMC->Gspos(cTagV,3,cTagM,xpos,ypos,zpos,0,"ONLY"); xpos = - 3.0 * parSCI[0] - 1.5 * thkSCB; gMC->Gspos(cTagV,4,cTagM,xpos,ypos,zpos,0,"ONLY"); sprintf(cTagV,"USF%01d",iplan); xpos = 0.0; zpos = fgkVrocsm + fgkSMpltT + parSCB[2] - fgkSheight/2.0 + iplan * (fgkCH + fgkVspace); ypos = fgkSlength/2.0 - kSCBwid/2.0; gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY"); ypos = fClength[iplan][2]/2.0 + fClength[iplan][1]; gMC->Gspos(cTagV,2,"UTI1", xpos,ypos,zpos,0,"ONLY"); ypos = fClength[iplan][2]/2.0; gMC->Gspos(cTagV,3,"UTI1", xpos,ypos,zpos,0,"ONLY"); ypos = - fClength[iplan][2]/2.0; gMC->Gspos(cTagV,4,"UTI1", xpos,ypos,zpos,0,"ONLY"); ypos = - fClength[iplan][2]/2.0 - fClength[iplan][1]; gMC->Gspos(cTagV,5,"UTI1", xpos,ypos,zpos,0,"ONLY"); ypos = - fgkSlength/2.0 + kSCBwid/2.0; gMC->Gspos(cTagV,6,"UTI1", xpos,ypos,zpos,0,"ONLY"); } // // The horizontal connections between the cross bars // const Int_t kNparSCH = 3; Float_t parSCH[kNparSCH]; for (iplan = 1; iplan < kNplan-1; iplan++) { parSCH[0] = fCwidth[iplan]/2.0; parSCH[1] = (fClength[iplan+1][2]/2.0 + fClength[iplan+1][1] - fClength[iplan ][2]/2.0 - fClength[iplan ][1])/2.0; parSCH[2] = kSCHhgt/2.0; sprintf(cTagV,"USH%01d",iplan); gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCH,kNparSCH); xpos = 0.0; ypos = fClength[iplan][2]/2.0 + fClength[iplan][1] + parSCH[1]; zpos = fgkVrocsm + fgkSMpltT - kSCHhgt/2.0 - fgkSheight/2.0 + (iplan+1) * (fgkCH + fgkVspace); gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY"); ypos = -ypos; gMC->Gspos(cTagV,2,"UTI1", xpos,ypos,zpos,0,"ONLY"); } // // The long corner ledges // const Int_t kNparSCL = 3; Float_t parSCL[kNparSCL]; const Int_t kNparSCLb = 11; Float_t parSCLb[kNparSCLb]; // Upper ledges // Thickness of the corner ledges const Float_t kSCLthkUa = 0.6; const Float_t kSCLthkUb = 0.6; // Width of the corner ledges const Float_t kSCLwidUa = 3.2; const Float_t kSCLwidUb = 4.8; // Position of the corner ledges const Float_t kSCLposxUa = 0.7; const Float_t kSCLposxUb = 3.3; const Float_t kSCLposzUa = 1.6; const Float_t kSCLposzUb = 0.3; // Vertical parSCL[0] = kSCLthkUa /2.0; parSCL[1] = fgkSlength/2.0; parSCL[2] = kSCLwidUa /2.0; gMC->Gsvolu("USL1","BOX ",idtmed[1301-1],parSCL,kNparSCL); xpos = fgkSwidth2/2.0 - fgkSMpltT - kSCLposxUa; ypos = 0.0; zpos = fgkSheight/2.0 - fgkSMpltT - kSCLposzUa; gMC->Gspos("USL1",1,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY"); xpos = -xpos; gMC->Gspos("USL1",2,"UTI1", xpos,ypos,zpos,matrix[1],"ONLY"); // Horizontal parSCL[0] = kSCLwidUb /2.0; parSCL[1] = fgkSlength/2.0; parSCL[2] = kSCLthkUb /2.0; gMC->Gsvolu("USL2","BOX ",idtmed[1301-1],parSCL,kNparSCL); xpos = fgkSwidth2/2.0 - fgkSMpltT - kSCLposxUb; ypos = 0.0; zpos = fgkSheight/2.0 - fgkSMpltT - kSCLposzUb; gMC->Gspos("USL2",1,"UTI1", xpos,ypos,zpos, 0,"ONLY"); xpos = -xpos; gMC->Gspos("USL2",2,"UTI1", xpos,ypos,zpos, 0,"ONLY"); // Lower ledges // Thickness of the corner ledges const Float_t kSCLthkLa = 2.464; const Float_t kSCLthkLb = 1.0; // Width of the corner ledges const Float_t kSCLwidLa = 8.5; const Float_t kSCLwidLb = 3.3; // Position of the corner ledges const Float_t kSCLposxLa = 0.0; const Float_t kSCLposxLb = 2.6; const Float_t kSCLposzLa = -4.25; const Float_t kSCLposzLb = -0.5; // Vertical // Trapezoidal shape parSCLb[ 0] = fgkSlength/2.0; parSCLb[ 1] = 0.0; parSCLb[ 2] = 0.0; parSCLb[ 3] = kSCLwidLa /2.0; parSCLb[ 4] = kSCLthkLb /2.0; parSCLb[ 5] = kSCLthkLa /2.0; parSCLb[ 6] = 5.0; parSCLb[ 7] = kSCLwidLa /2.0; parSCLb[ 8] = kSCLthkLb /2.0; parSCLb[ 9] = kSCLthkLa /2.0; parSCLb[10] = 5.0; gMC->Gsvolu("USL3","TRAP",idtmed[1301-1],parSCLb,kNparSCLb); xpos = fgkSwidth1/2.0 - fgkSMpltT - kSCLposxLa; ypos = 0.0; zpos = - fgkSheight/2.0 + fgkSMpltT - kSCLposzLa; gMC->Gspos("USL3",1,"UTI1", xpos,ypos,zpos,matrix[2],"ONLY"); xpos = -xpos; gMC->Gspos("USL3",2,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY"); // Horizontal parSCL[0] = kSCLwidLb /2.0; parSCL[1] = fgkSlength/2.0; parSCL[2] = kSCLthkLb /2.0; gMC->Gsvolu("USL4","BOX ",idtmed[1301-1],parSCL,kNparSCL); xpos = fgkSwidth1/2.0 - fgkSMpltT - kSCLposxLb; ypos = 0.0; zpos = - fgkSheight/2.0 + fgkSMpltT - kSCLposzLb; gMC->Gspos("USL4",1,"UTI1", xpos,ypos,zpos, 0,"ONLY"); xpos = -xpos; gMC->Gspos("USL4",2,"UTI1", xpos,ypos,zpos, 0,"ONLY"); } //_____________________________________________________________________________ void AliTRDgeometry::CreateServices(Int_t *idtmed) { // // Create the geometry of the services // // Names of the TRD services volumina // // UTCL Cooling arterias (Al) // UTCW Cooling arterias (Water) // UUxx Volumes for the services at the chambers (Air) // UTPW Power bars (Cu) // UTCP Cooling pipes (Fe) // UTCH Cooling pipes (Water) // UTPL Power lines (Cu) // UMCM Readout MCMs (G10/Cu/Si) // Int_t iplan = 0; Int_t icham = 0; Float_t xpos = 0.0; Float_t ypos = 0.0; Float_t zpos = 0.0; Char_t cTagV[5]; // The rotation matrices const Int_t kNmatrix = 4; Int_t matrix[kNmatrix]; gMC->Matrix(matrix[0], 100.0, 0.0, 90.0, 90.0, 10.0, 0.0); gMC->Matrix(matrix[1], 80.0, 0.0, 90.0, 90.0, 10.0, 180.0); gMC->Matrix(matrix[2], 0.0, 0.0, 90.0, 90.0, 90.0, 0.0); gMC->Matrix(matrix[3], 180.0, 0.0, 90.0, 90.0, 90.0, 180.0); AliTRDCommonParam *commonParam = AliTRDCommonParam::Instance(); if (!commonParam) { AliError("Could not get common parameters\n"); return; } // // The cooling arterias // // Width of the cooling arterias const Float_t kCOLwid = 0.8; // Height of the cooling arterias const Float_t kCOLhgt = 6.5; // Positioning of the cooling const Float_t kCOLposx = 1.8; const Float_t kCOLposz = -0.1; // Thickness of the walls of the cooling arterias const Float_t kCOLthk = 0.1; const Int_t kNparCOL = 3; Float_t parCOL[kNparCOL]; parCOL[0] = kCOLwid /2.0; parCOL[1] = fgkSlength/2.0; parCOL[2] = kCOLhgt /2.0; gMC->Gsvolu("UTCL","BOX ",idtmed[1308-1],parCOL,kNparCOL); parCOL[0] -= kCOLthk; parCOL[1] = fgkSlength/2.0; parCOL[2] -= kCOLthk; gMC->Gsvolu("UTCW","BOX ",idtmed[1314-1],parCOL,kNparCOL); xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTCW",1,"UTCL", xpos,ypos,zpos,0,"ONLY"); for (iplan = 1; iplan < kNplan; iplan++) { xpos = fCwidth[iplan]/2.0 + kCOLwid/2.0 + kCOLposx; ypos = 0.0; zpos = fgkVrocsm + fgkSMpltT + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz + iplan * (fgkCH + fgkVspace); gMC->Gspos("UTCL",iplan ,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY"); gMC->Gspos("UTCL",iplan+kNplan,"UTI1",-xpos,ypos,zpos,matrix[1],"ONLY"); } // The upper most layer (reaching into TOF acceptance) xpos = fCwidth[5]/2.0 - kCOLhgt/2.0 - 1.3; ypos = 0.0; zpos = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0; gMC->Gspos("UTCL",6 ,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY"); gMC->Gspos("UTCL",6+kNplan,"UTI1",-xpos,ypos,zpos,matrix[3],"ONLY"); // // The power bars // const Float_t kPWRwid = 0.6; const Float_t kPWRhgt = 5.0; const Float_t kPWRposx = 1.4; const Float_t kPWRposz = 1.9; const Int_t kNparPWR = 3; Float_t parPWR[kNparPWR]; parPWR[0] = kPWRwid /2.0; parPWR[1] = fgkSlength/2.0; parPWR[2] = kPWRhgt /2.0; gMC->Gsvolu("UTPW","BOX ",idtmed[1325-1],parPWR,kNparPWR); for (iplan = 1; iplan < kNplan; iplan++) { xpos = fCwidth[iplan]/2.0 + kPWRwid/2.0 + kPWRposx; ypos = 0.0; zpos = fgkVrocsm + fgkSMpltT + kPWRhgt/2.0 - fgkSheight/2.0 + kPWRposz + iplan * (fgkCH + fgkVspace); gMC->Gspos("UTPW",iplan ,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY"); gMC->Gspos("UTPW",iplan+kNplan,"UTI1",-xpos,ypos,zpos,matrix[1],"ONLY"); } // The upper most layer (reaching into TOF acceptance) xpos = fCwidth[5]/2.0 + kPWRhgt/2.0 - 1.3; ypos = 0.0; zpos = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0; gMC->Gspos("UTPW",6 ,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY"); gMC->Gspos("UTPW",6+kNplan,"UTI1",-xpos,ypos,zpos,matrix[3],"ONLY"); // // The volumes for the services at the chambers // const Int_t kNparServ = 3; Float_t parServ[kNparServ]; for (icham = 0; icham < kNcham; icham++) { for (iplan = 0; iplan < kNplan; iplan++) { Int_t iDet = GetDetectorSec(iplan,icham); sprintf(cTagV,"UU%02d",iDet); parServ[0] = fCwidth[iplan] /2.0; parServ[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0; parServ[2] = fgkVspace /2.0 - 0.742/2.0; fChamberUUboxd[iDet][0] = parServ[0]; fChamberUUboxd[iDet][1] = parServ[1]; fChamberUUboxd[iDet][2] = parServ[2]; gMC->Gsvolu(cTagV,"BOX",idtmed[1302-1],parServ,kNparServ); xpos = 0.0; ypos = - fClength[iplan][0] - fClength[iplan][1] - fClength[iplan][2]/2.0; for (Int_t ic = 0; ic < icham; ic++) { ypos += fClength[iplan][ic]; } ypos += fClength[iplan][icham]/2.0; zpos = fgkVrocsm + fgkSMpltT + fgkCH + fgkVspace/2.0 - fgkSheight/2.0 + iplan * (fgkCH + fgkVspace); zpos -= 0.742/2.0; fChamberUUorig[iDet][0] = xpos; fChamberUUorig[iDet][1] = ypos; fChamberUUorig[iDet][2] = zpos; } } // // The cooling pipes inside the service volumes // const Int_t kNparTube = 3; Float_t parTube[kNparTube]; // The cooling pipes parTube[0] = 0.0; parTube[1] = 0.0; parTube[2] = 0.0; gMC->Gsvolu("UTCP","TUBE",idtmed[1324-1],parTube,0); // The cooling water parTube[0] = 0.0; parTube[1] = 0.2/2.0; parTube[2] = -1.; gMC->Gsvolu("UTCH","TUBE",idtmed[1314-1],parTube,kNparTube); // Water inside the cooling pipe xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTCH",1,"UTCP",xpos,ypos,zpos,0,"ONLY"); // Position the cooling pipes in the mother volume const Int_t kNpar = 3; Float_t par[kNpar]; for (icham = 0; icham < kNcham; icham++) { for (iplan = 0; iplan < kNplan; iplan++) { Int_t iDet = GetDetectorSec(iplan,icham); Int_t iCopy = GetDetector(iplan,icham,0) * 100; Int_t nMCMrow = commonParam->GetRowMax(iplan,icham,0); Float_t ySize = (GetChamberLength(iplan,icham) - 2.0*fgkRpadW) / ((Float_t) nMCMrow); sprintf(cTagV,"UU%02d",iDet); for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) { xpos = 0.0; ypos = (0.5 + iMCMrow) * ySize - 1.9 - fClength[iplan][icham]/2.0 + fgkHspace/2.0; zpos = 0.0 + 0.742/2.0; par[0] = 0.0; par[1] = 0.3/2.0; // Thickness of the cooling pipes par[2] = fCwidth[iplan]/2.0; gMC->Gsposp("UTCP",iCopy+iMCMrow,cTagV,xpos,ypos,zpos ,matrix[2],"ONLY",par,kNpar); } } } // // The power lines // // The copper power lines parTube[0] = 0.0; parTube[1] = 0.0; parTube[2] = 0.0; gMC->Gsvolu("UTPL","TUBE",idtmed[1305-1],parTube,0); // Position the power lines in the mother volume for (icham = 0; icham < kNcham; icham++) { for (iplan = 0; iplan < kNplan; iplan++) { Int_t iDet = GetDetectorSec(iplan,icham); Int_t iCopy = GetDetector(iplan,icham,0) * 100; Int_t nMCMrow = commonParam->GetRowMax(iplan,icham,0); Float_t ySize = (GetChamberLength(iplan,icham) - 2.0*fgkRpadW) / ((Float_t) nMCMrow); sprintf(cTagV,"UU%02d",iDet); for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) { xpos = 0.0; ypos = (0.5 + iMCMrow) * ySize - 1.0 - fClength[iplan][icham]/2.0 + fgkHspace/2.0; zpos = -0.4 + 0.742/2.0; par[0] = 0.0; par[1] = 0.2/2.0; // Thickness of the power lines par[2] = fCwidth[iplan]/2.0; gMC->Gsposp("UTPL",iCopy+iMCMrow,cTagV,xpos,ypos,zpos ,matrix[2],"ONLY",par,kNpar); } } } // // The MCMs // const Float_t kMCMx = 3.0; const Float_t kMCMy = 3.0; const Float_t kMCMz = 0.3; const Float_t kMCMpcTh = 0.1; const Float_t kMCMcuTh = 0.0215; const Float_t kMCMsiTh = 0.003; const Float_t kMCMcoTh = 0.1549; // The mother volume for the MCMs (air) const Int_t kNparMCM = 3; Float_t parMCM[kNparMCM]; parMCM[0] = kMCMx /2.0; parMCM[1] = kMCMy /2.0; parMCM[2] = kMCMz /2.0; gMC->Gsvolu("UMCM","BOX",idtmed[1302-1],parMCM,kNparMCM); // The MCM carrier G10 layer parMCM[0] = kMCMx /2.0; parMCM[1] = kMCMy /2.0; parMCM[2] = kMCMpcTh/2.0; gMC->Gsvolu("UMC1","BOX",idtmed[1319-1],parMCM,kNparMCM); // The MCM carrier Cu layer parMCM[0] = kMCMx /2.0; parMCM[1] = kMCMy /2.0; parMCM[2] = kMCMcuTh/2.0; gMC->Gsvolu("UMC2","BOX",idtmed[1318-1],parMCM,kNparMCM); // The silicon of the chips parMCM[0] = kMCMx /2.0; parMCM[1] = kMCMy /2.0; parMCM[2] = kMCMsiTh/2.0; gMC->Gsvolu("UMC3","BOX",idtmed[1320-1],parMCM,kNparMCM); // The aluminum of the cooling plates parMCM[0] = kMCMx /2.0; parMCM[1] = kMCMy /2.0; parMCM[2] = kMCMcoTh/2.0; gMC->Gsvolu("UMC4","BOX",idtmed[1324-1],parMCM,kNparMCM); // Put the MCM material inside the MCM mother volume xpos = 0.0; ypos = 0.0; zpos = -kMCMz /2.0 + kMCMpcTh/2.0; gMC->Gspos("UMC1",1,"UMCM",xpos,ypos,zpos,0,"ONLY"); zpos += kMCMpcTh/2.0 + kMCMcuTh/2.0; gMC->Gspos("UMC2",1,"UMCM",xpos,ypos,zpos,0,"ONLY"); zpos += kMCMcuTh/2.0 + kMCMsiTh/2.0; gMC->Gspos("UMC3",1,"UMCM",xpos,ypos,zpos,0,"ONLY"); zpos += kMCMsiTh/2.0 + kMCMcoTh/2.0; gMC->Gspos("UMC4",1,"UMCM",xpos,ypos,zpos,0,"ONLY"); // Position the MCMs in the mother volume for (icham = 0; icham < kNcham; icham++) { for (iplan = 0; iplan < kNplan; iplan++) { Int_t iDet = GetDetectorSec(iplan,icham); Int_t iCopy = GetDetector(iplan,icham,0) * 1000; Int_t nMCMrow = commonParam->GetRowMax(iplan,icham,0); Float_t ySize = (GetChamberLength(iplan,icham) - 2.0*fgkRpadW) / ((Float_t) nMCMrow); Int_t nMCMcol = 8; Float_t xSize = (GetChamberWidth(iplan) - 2.0*fgkCpadW) / ((Float_t) nMCMcol); sprintf(cTagV,"UU%02d",iDet); for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) { for (Int_t iMCMcol = 0; iMCMcol < nMCMcol; iMCMcol++) { xpos = (0.5 + iMCMcol) * xSize + 1.0 - fCwidth[iplan]/2.0; ypos = (0.5 + iMCMrow) * ySize + 1.0 - fClength[iplan][icham]/2.0 + fgkHspace/2.0; zpos = -0.4 + 0.742/2.0; par[0] = 0.0; par[1] = 0.2/2.0; // Thickness of the power lines par[2] = fCwidth[iplan]/2.0; gMC->Gspos("UMCM",iCopy+iMCMrow*10+iMCMcol,cTagV ,xpos,ypos,zpos,0,"ONLY"); } } } } } //_____________________________________________________________________________ void AliTRDgeometry::GroupChamber(Int_t iplan, Int_t icham, Int_t *idtmed) { // // Group volumes UA, UD, UF, UU in a single chamber (Air) // UA, UD, UF, UU are boxes // UT will be a box // const Int_t kNparCha = 3; Int_t iDet = GetDetectorSec(iplan,icham); Float_t xyzMin[3]; Float_t xyzMax[3]; Float_t xyzOrig[3]; Float_t xyzBoxd[3]; Char_t cTagV[5]; Char_t cTagM[5]; for (Int_t i = 0; i < 3; i++) { xyzMin[i] = +9999.0; xyzMax[i] = -9999.0; } for (Int_t i = 0; i < 3; i++) { xyzMin[i] = TMath::Min(xyzMin[i],fChamberUAorig[iDet][i]-fChamberUAboxd[iDet][i]); xyzMax[i] = TMath::Max(xyzMax[i],fChamberUAorig[iDet][i]+fChamberUAboxd[iDet][i]); xyzMin[i] = TMath::Min(xyzMin[i],fChamberUDorig[iDet][i]-fChamberUDboxd[iDet][i]); xyzMax[i] = TMath::Max(xyzMax[i],fChamberUDorig[iDet][i]+fChamberUDboxd[iDet][i]); xyzMin[i] = TMath::Min(xyzMin[i],fChamberUForig[iDet][i]-fChamberUFboxd[iDet][i]); xyzMax[i] = TMath::Max(xyzMax[i],fChamberUForig[iDet][i]+fChamberUFboxd[iDet][i]); xyzMin[i] = TMath::Min(xyzMin[i],fChamberUUorig[iDet][i]-fChamberUUboxd[iDet][i]); xyzMax[i] = TMath::Max(xyzMax[i],fChamberUUorig[iDet][i]+fChamberUUboxd[iDet][i]); xyzOrig[i] = 0.5*(xyzMax[i]+xyzMin[i]); xyzBoxd[i] = 0.5*(xyzMax[i]-xyzMin[i]); } sprintf(cTagM,"UT%02d",iDet); gMC->Gsvolu(cTagM,"BOX ",idtmed[1302-1],xyzBoxd,kNparCha); sprintf(cTagV,"UA%02d",iDet); gMC->Gspos(cTagV,1,cTagM ,fChamberUAorig[iDet][0]-xyzOrig[0] ,fChamberUAorig[iDet][1]-xyzOrig[1] ,fChamberUAorig[iDet][2]-xyzOrig[2] ,0,"ONLY"); sprintf(cTagV,"UZ%02d",iDet); gMC->Gspos(cTagV,1,cTagM ,fChamberUAorig[iDet][0]-xyzOrig[0] + fChamberUAboxd[iDet][0] - fgkCroW/2.0 ,fChamberUAorig[iDet][1]-xyzOrig[1] ,fChamberUAorig[iDet][2]-xyzOrig[2] + fgkCraH/2.0 + fgkCdrH/2.0 - fgkCalW/2.0 ,0,"ONLY"); gMC->Gspos(cTagV,2,cTagM ,fChamberUAorig[iDet][0]-xyzOrig[0] - fChamberUAboxd[iDet][0] + fgkCroW/2.0 ,fChamberUAorig[iDet][1]-xyzOrig[1] ,fChamberUAorig[iDet][2]-xyzOrig[2] + fgkCraH/2.0 + fgkCdrH/2.0 - fgkCalW/2.0 ,0,"ONLY"); sprintf(cTagV,"UD%02d",iDet); gMC->Gspos(cTagV,1,cTagM ,fChamberUDorig[iDet][0]-xyzOrig[0] ,fChamberUDorig[iDet][1]-xyzOrig[1] ,fChamberUDorig[iDet][2]-xyzOrig[2] ,0,"ONLY"); sprintf(cTagV,"UF%02d",iDet); gMC->Gspos(cTagV,1,cTagM ,fChamberUForig[iDet][0]-xyzOrig[0] ,fChamberUForig[iDet][1]-xyzOrig[1] ,fChamberUForig[iDet][2]-xyzOrig[2] ,0,"ONLY"); sprintf(cTagV,"UU%02d",iDet); gMC->Gspos(cTagV,1,cTagM ,fChamberUUorig[iDet][0]-xyzOrig[0] ,fChamberUUorig[iDet][1]-xyzOrig[1] ,fChamberUUorig[iDet][2]-xyzOrig[2] ,0,"ONLY"); sprintf(cTagV,"UT%02d",iDet); gMC->Gspos(cTagV,1,"UTI1" ,xyzOrig[0] ,xyzOrig[1] ,xyzOrig[2] ,0,"ONLY"); } //_____________________________________________________________________________ Bool_t AliTRDgeometry::Rotate(Int_t d, Double_t *pos, Double_t *rot) const { // // Rotates all chambers in the position of sector 0 and transforms // the coordinates in the ALICE restframe into the // corresponding local frame . // Int_t sector = GetSector(d); rot[0] = pos[0] * fRotA11[sector] + pos[1] * fRotA12[sector]; rot[1] = -pos[0] * fRotA21[sector] + pos[1] * fRotA22[sector]; rot[2] = pos[2]; return kTRUE; } //_____________________________________________________________________________ Bool_t AliTRDgeometry::RotateBack(Int_t d, Double_t *rot, Double_t *pos) const { // // Rotates a chambers from the position of sector 0 into its // original position and transforms the corresponding local frame // coordinates into the coordinates of the ALICE restframe . // Int_t sector = GetSector(d); pos[0] = rot[0] * fRotB11[sector] + rot[1] * fRotB12[sector]; pos[1] = -rot[0] * fRotB21[sector] + rot[1] * fRotB22[sector]; pos[2] = rot[2]; return kTRUE; } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetDetectorSec(Int_t p, Int_t c) { // // Convert plane / chamber into detector number for one single sector // return (p + c * fgkNplan); } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetDetector(Int_t p, Int_t c, Int_t s) { // // Convert plane / chamber / sector into detector number // return (p + c * fgkNplan + s * fgkNplan * fgkNcham); } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetPlane(Int_t d) const { // // Reconstruct the plane number from the detector number // return ((Int_t) (d % fgkNplan)); } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetChamber(Int_t d) const { // // Reconstruct the chamber number from the detector number // return ((Int_t) (d % (fgkNplan * fgkNcham)) / fgkNplan); } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetSector(Int_t d) const { // // Reconstruct the sector number from the detector number // return ((Int_t) (d / (fgkNplan * fgkNcham))); } //CL //_____________________________________________________________________________ Int_t AliTRDgeometry::GetPadRow(Int_t irob, Int_t imcm) const { // return on which row this mcm sits return fgkMCMrow*(irob/2) + imcm/fgkMCMrow; ; } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetPadCol(Int_t irob, Int_t imcm, Int_t iadc) const { // // return which pad is connected to this adc channel. return -1 if it // is one of the not directly connected adc channels (0, 1 20) // if (iadc < 2 || iadc > 19 ) return -1; return (iadc-2) + (imcm%fgkMCMrow)*fgkPadmax + GetRobSide(irob)*fgkColmax/2; } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetMCM(Int_t irow, Int_t icol) const { // return on which mcm this pad is if ( irow < 0 || icol < 0 || irow > fgkRowmaxC1 || icol > fgkColmax ) return -1; return (icol%(fgkColmax/2))/fgkPadmax + fgkMCMrow*(irow%fgkMCMrow); } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetROB(Int_t irow, Int_t icol) const { // return on which rob this pad is return (irow/fgkMCMrow)*2 + GetColSide(icol); } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetRobSide(Int_t irob) const { // return on which side this rob sits (A side = 0, B side = 1) if ( irob < 0 || irob >= fgkROBmaxC1 ) return -1; return irob%2; } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetColSide(Int_t icol) const { // return on which side this column sits (A side = 0, B side = 1) if ( icol < 0 || icol >= fgkColmax ) return -1; return icol/(fgkColmax/2); } //_____________________________________________________________________________ AliTRDgeometry *AliTRDgeometry::GetGeometry(AliRunLoader *runLoader) { // // Load the geometry from the galice file // if (!runLoader) { runLoader = AliRunLoader::GetRunLoader(); } if (!runLoader) { AliErrorGeneral("AliTRDgeometry::GetGeometry","No run loader"); return NULL; } TDirectory *saveDir = gDirectory; runLoader->CdGAFile(); // Try from the galice.root file AliTRDgeometry *geom = (AliTRDgeometry *) gDirectory->Get("TRDgeometry"); if (!geom) { // If it is not in the file, try to get it from the run loader AliTRD *trd = (AliTRD *) runLoader->GetAliRun()->GetDetector("TRD"); geom = trd->GetGeometry(); } if (!geom) { AliErrorGeneral("AliTRDgeometry::GetGeometry","Geometry not found"); return NULL; } saveDir->cd(); return geom; } //_____________________________________________________________________________ Bool_t AliTRDgeometry::ReadGeoMatrices() { // // Read geo matrices from current gGeoManager for each TRD sector // if (!gGeoManager) { return kFALSE; } fMatrixArray = new TObjArray(kNdet); fMatrixCorrectionArray = new TObjArray(kNdet); fMatrixGeo = new TObjArray(kNdet); AliAlignObjAngles o; for (Int_t iLayer = AliAlignObj::kTRD1; iLayer <= AliAlignObj::kTRD6; iLayer++) { for (Int_t iModule = 0; iModule < AliAlignObj::LayerSize(iLayer); iModule++) { UShort_t volid = AliAlignObj::LayerToVolUID(iLayer,iModule); const char *symname = AliAlignObj::SymName(volid); TGeoPNEntry *pne = gGeoManager->GetAlignableEntry(symname); const char *path = symname; if (pne) { path = pne->GetTitle(); } if (!gGeoManager->cd(path)) { return kFALSE; } TGeoHMatrix *m = gGeoManager->GetCurrentMatrix(); Int_t iLayerTRD = iLayer - AliAlignObj::kTRD1; Int_t isector = Nsect() - 1 - (iModule/Ncham()); Int_t ichamber = Ncham() - 1 - (iModule%Ncham()); Int_t lid = GetDetector(iLayerTRD,ichamber,isector); // // Local geo system z-x-y to x-y--z // fMatrixGeo->AddAt(new TGeoHMatrix(*m),lid); TGeoRotation mchange; mchange.RotateY(90); mchange.RotateX(90); TGeoHMatrix gMatrix(mchange.Inverse()); gMatrix.MultiplyLeft(m); fMatrixArray->AddAt(new TGeoHMatrix(gMatrix),lid); // // Cluster transformation matrix // TGeoHMatrix rotMatrix(mchange.Inverse()); rotMatrix.MultiplyLeft(m); Double_t sectorAngle = 20.0 * (isector % 18) + 10.0; TGeoHMatrix rotSector; rotSector.RotateZ(sectorAngle); rotMatrix.MultiplyLeft(&rotSector); fMatrixCorrectionArray->AddAt(new TGeoHMatrix(rotMatrix),lid); } } return kTRUE; }