/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /////////////////////////////////////////////////////////////////////////////// // // // TRD geometry class // // // /////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "AliRunLoader.h" #include "AliTRDgeometry.h" #include "AliTRDpadPlane.h" #include "AliAlignObj.h" #include "AliAlignObjAngles.h" #include "AliRun.h" #include "AliTRD.h" #include "AliTRDcalibDB.h" #include "AliTRDCommonParam.h" ClassImp(AliTRDgeometry) //_____________________________________________________________________________ // // The geometry constants // const Int_t AliTRDgeometry::fgkNsect = kNsect; const Int_t AliTRDgeometry::fgkNplan = kNplan; const Int_t AliTRDgeometry::fgkNcham = kNcham; const Int_t AliTRDgeometry::fgkNdet = kNdet; // // Dimensions of the detector // // Inner and outer radius of the mother volumes const Float_t AliTRDgeometry::fgkRmin = 294.0; const Float_t AliTRDgeometry::fgkRmax = 368.0; // Upper and lower length of the mother volumes const Float_t AliTRDgeometry::fgkZmax1 = 378.35; const Float_t AliTRDgeometry::fgkZmax2 = 302.0; // Parameter of the BTR mother volumes // CBL //const Float_t AliTRDgeometry::fgkSheight = 74.0; const Float_t AliTRDgeometry::fgkSheight = 74.86; const Float_t AliTRDgeometry::fgkSwidth1 = 99.613; // CBL //const Float_t AliTRDgeometry::fgkSwidth2 = 125.707; const Float_t AliTRDgeometry::fgkSwidth2 = 126.012; const Float_t AliTRDgeometry::fgkSlenTR1 = 751.0; const Float_t AliTRDgeometry::fgkSlenTR2 = 313.5; const Float_t AliTRDgeometry::fgkSlenTR3 = 159.5; // The super module side plates const Float_t AliTRDgeometry::fgkSMpltT = 0.2; const Float_t AliTRDgeometry::fgkSMgapT = 0.5; // Height of different chamber parts // Radiator const Float_t AliTRDgeometry::fgkCraH = 4.8; // Drift region const Float_t AliTRDgeometry::fgkCdrH = 3.0; // Amplification region const Float_t AliTRDgeometry::fgkCamH = 0.7; // Readout const Float_t AliTRDgeometry::fgkCroH = 2.316; // Total height const Float_t AliTRDgeometry::fgkCH = AliTRDgeometry::fgkCraH + AliTRDgeometry::fgkCdrH + AliTRDgeometry::fgkCamH + AliTRDgeometry::fgkCroH; // Vertical spacing of the chambers const Float_t AliTRDgeometry::fgkVspace = 1.784; // Horizontal spacing of the chambers const Float_t AliTRDgeometry::fgkHspace = 2.0; // Thicknesses of different parts of the chamber frame // Lower aluminum frame const Float_t AliTRDgeometry::fgkCalT = 0.3; // Lower G10 frame sides const Float_t AliTRDgeometry::fgkCclsT = 0.3; // Lower G10 frame front const Float_t AliTRDgeometry::fgkCclfT = 1.0; // Upper G10 frame const Float_t AliTRDgeometry::fgkCcuT = 0.9; // Upper Al frame const Float_t AliTRDgeometry::fgkCauT = 1.5; // Additional width of the readout chamber frames const Float_t AliTRDgeometry::fgkCroW = 0.9; // Difference of outer chamber width and pad plane width //const Float_t AliTRDgeometry::fgkCpadW = 1.0; const Float_t AliTRDgeometry::fgkCpadW = 0.0; const Float_t AliTRDgeometry::fgkRpadW = 1.0; // // Thickness of the the material layers // const Float_t AliTRDgeometry::fgkRaThick = 0.3646; const Float_t AliTRDgeometry::fgkMyThick = 0.005; const Float_t AliTRDgeometry::fgkDrThick = AliTRDgeometry::fgkCdrH; const Float_t AliTRDgeometry::fgkAmThick = AliTRDgeometry::fgkCamH; const Float_t AliTRDgeometry::fgkXeThick = AliTRDgeometry::fgkDrThick + AliTRDgeometry::fgkAmThick; const Float_t AliTRDgeometry::fgkCuThick = 0.001; const Float_t AliTRDgeometry::fgkSuThick = 0.06; const Float_t AliTRDgeometry::fgkFeThick = 0.0044; const Float_t AliTRDgeometry::fgkCoThick = 0.02; const Float_t AliTRDgeometry::fgkWaThick = 0.02; // // Position of the material layers // const Float_t AliTRDgeometry::fgkRaZpos = -1.50; const Float_t AliTRDgeometry::fgkMyZpos = 0.895; const Float_t AliTRDgeometry::fgkDrZpos = 2.4; const Float_t AliTRDgeometry::fgkAmZpos = 0.0; const Float_t AliTRDgeometry::fgkCuZpos = -0.9995; const Float_t AliTRDgeometry::fgkSuZpos = 0.0000; const Float_t AliTRDgeometry::fgkFeZpos = 0.0322; const Float_t AliTRDgeometry::fgkCoZpos = 0.97; const Float_t AliTRDgeometry::fgkWaZpos = 0.99; const Double_t AliTRDgeometry::fgkTime0Base = Rmin() + CraHght() + CdrHght() + CamHght()/2.; const Float_t AliTRDgeometry::fgkTime0[6] = { fgkTime0Base + 0 * (Cheight() + Cspace()), fgkTime0Base + 1 * (Cheight() + Cspace()), fgkTime0Base + 2 * (Cheight() + Cspace()), fgkTime0Base + 3 * (Cheight() + Cspace()), fgkTime0Base + 4 * (Cheight() + Cspace()), fgkTime0Base + 5 * (Cheight() + Cspace()) }; //_____________________________________________________________________________ AliTRDgeometry::AliTRDgeometry():AliGeometry() { // // AliTRDgeometry default constructor // fMatrixArray = 0; fMatrixCorrectionArray = 0; Init(); } //_____________________________________________________________________________ AliTRDgeometry::~AliTRDgeometry() { // // AliTRDgeometry destructor // delete fMatrixArray; delete fMatrixCorrectionArray; } //_____________________________________________________________________________ void AliTRDgeometry::Init() { // // Initializes the geometry parameter // // The maximum number of pads // and the position of pad 0,0,0 // // chambers seen from the top: // +----------------------------+ // | | // | | ^ // | | rphi| // | | | // |0 | | // +----------------------------+ +------> // z // chambers seen from the side: ^ // +----------------------------+ drift| // |0 | | // | | | // +----------------------------+ +------> // z // // IMPORTANT: time bin 0 is now the first one in the drift region // closest to the readout !!! // Int_t icham; Int_t iplan; Int_t isect; // The outer width of the chambers fCwidth[0] = 90.4; fCwidth[1] = 94.8; fCwidth[2] = 99.3; fCwidth[3] = 103.7; fCwidth[4] = 108.1; fCwidth[5] = 112.6; // The outer lengths of the chambers // Includes the spacings between the chambers! Float_t length[kNplan][kNcham] = { { 124.0, 124.0, 110.0, 124.0, 124.0 } , { 124.0, 124.0, 110.0, 124.0, 124.0 } , { 131.0, 131.0, 110.0, 131.0, 131.0 } , { 138.0, 138.0, 110.0, 138.0, 138.0 } , { 145.0, 145.0, 110.0, 145.0, 145.0 } , { 147.0, 147.0, 110.0, 147.0, 147.0 } }; for (icham = 0; icham < kNcham; icham++) { for (iplan = 0; iplan < kNplan; iplan++) { fClength[iplan][icham] = length[iplan][icham]; } } // The rotation matrix elements Float_t phi = 0; for (isect = 0; isect < fgkNsect; isect++) { phi = -2.0 * TMath::Pi() / (Float_t) fgkNsect * ((Float_t) isect + 0.5); fRotA11[isect] = TMath::Cos(phi); fRotA12[isect] = TMath::Sin(phi); fRotA21[isect] = TMath::Sin(phi); fRotA22[isect] = TMath::Cos(phi); phi = -1.0 * phi; fRotB11[isect] = TMath::Cos(phi); fRotB12[isect] = TMath::Sin(phi); fRotB21[isect] = TMath::Sin(phi); fRotB22[isect] = TMath::Cos(phi); } for (isect = 0; isect < fgkNsect; isect++) { SetSMstatus(isect,1); } } //_____________________________________________________________________________ void AliTRDgeometry::CreateGeometry(Int_t *idtmed) { // // Create the TRD geometry without hole // // // Names of the TRD volumina (xx = detector number): // // Volume (Air) wrapping the readout chamber components // UTxx includes: UAxx, UDxx, UFxx, UUxx // Obs: // UUxx the services volume has been reduced by 7.42 mm // in order to allow shifts in radial direction // // Lower part of the readout chambers (gas volume + radiator) // // UAxx Aluminum frames (Al) // UBxx G10 frames (C) // UCxx Inner volumes (Air) // // Upper part of the readout chambers (readout plane + fee) // // UDxx G10 frames (C) // UExx Inner volumes of the G10 (Air) // UFxx Aluminum frames (Al) // UGxx Inner volumes of the Al (Air) // // Inner material layers // // UHxx Radiator (Rohacell) // UIxx Entrance window (Mylar) // UJxx Drift volume (Xe/CO2) // UKxx Amplification volume (Xe/CO2) // ULxx Pad plane (Cu) // UMxx Support structure (Rohacell) // const Int_t kNparTrd = 4; const Int_t kNparCha = 3; Float_t xpos, ypos, zpos; Float_t parTrd[kNparTrd]; Float_t parCha[kNparCha]; Char_t cTagV[6]; Char_t cTagM[5]; // The TRD mother volume for one sector (Air), full length in z-direction // Provides material for side plates of super module parTrd[0] = fgkSwidth1/2.; parTrd[1] = fgkSwidth2/2.; parTrd[2] = fgkSlenTR1/2.; parTrd[3] = fgkSheight/2.; gMC->Gsvolu("UTR1","TRD1",idtmed[1302-1],parTrd,kNparTrd); // // The side plates of the super module (Al) parTrd[0] = fgkSwidth1/2. - fgkSMgapT; parTrd[1] = fgkSwidth2/2. - fgkSMgapT; parTrd[2] = fgkSlenTR1/2.; parTrd[3] = fgkSheight/2.; gMC->Gsvolu("UTS1","TRD1",idtmed[1301-1],parTrd,kNparTrd); // The inner part of the TRD mother volume for one sector (Air), // full length in z-direction parTrd[0] = fgkSwidth1/2. - fgkSMgapT - fgkSMpltT; parTrd[1] = fgkSwidth2/2. - fgkSMgapT - fgkSMpltT; parTrd[2] = fgkSlenTR1/2.; parTrd[3] = fgkSheight/2.; gMC->Gsvolu("UTI1","TRD1",idtmed[1302-1],parTrd,kNparTrd); for (Int_t icham = 0; icham < kNcham; icham++) { for (Int_t iplan = 0; iplan < kNplan; iplan++) { Int_t iDet = GetDetectorSec(iplan,icham); // The lower part of the readout chambers (gas volume + radiator) // The aluminum frames sprintf(cTagV,"UA%02d",iDet); parCha[0] = fCwidth[iplan]/2.; parCha[1] = fClength[iplan][icham]/2. - fgkHspace/2.; parCha[2] = fgkCraH/2. + fgkCdrH/2.; fChamberUAboxd[iDet][0] = parCha[0]; fChamberUAboxd[iDet][1] = parCha[1]; fChamberUAboxd[iDet][2] = parCha[2]; gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha); // The G10 frames sprintf(cTagV,"UB%02d",iDet); parCha[0] = fCwidth[iplan]/2. - fgkCalT; parCha[1] = -1.; parCha[2] = -1.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha); // The inner part (air) sprintf(cTagV,"UC%02d",iDet); parCha[0] = fCwidth[iplan]/2. - fgkCalT - fgkCclsT; parCha[1] = fClength[iplan][icham]/2. - fgkHspace/2.- fgkCclfT; parCha[2] = -1.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha); // The upper part of the readout chambers (readout plane) // The G10 frames sprintf(cTagV,"UD%02d",iDet); parCha[0] = fCwidth[iplan]/2. + fgkCroW; parCha[1] = fClength[iplan][icham]/2. - fgkHspace/2.; parCha[2] = fgkCamH/2.; fChamberUDboxd[iDet][0] = parCha[0]; fChamberUDboxd[iDet][1] = parCha[1]; fChamberUDboxd[iDet][2] = parCha[2]; gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha); // The inner part of the G10 frame (air) sprintf(cTagV,"UE%02d",iDet); parCha[0] = fCwidth[iplan]/2. + fgkCroW - fgkCcuT; parCha[1] = fClength[iplan][icham]/2. - fgkHspace/2.- fgkCcuT; parCha[2] = -1.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha); // The aluminum frames sprintf(cTagV,"UF%02d",iDet); parCha[0] = fCwidth[iplan]/2. + fgkCroW; parCha[1] = fClength[iplan][icham]/2. - fgkHspace/2.; parCha[2] = fgkCroH/2.; fChamberUFboxd[iDet][0] = parCha[0]; fChamberUFboxd[iDet][1] = parCha[1]; fChamberUFboxd[iDet][2] = parCha[2]; gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha); // The inner part of the aluminum frames sprintf(cTagV,"UG%02d",iDet); parCha[0] = fCwidth[iplan]/2. + fgkCroW - fgkCauT; parCha[1] = fClength[iplan][icham]/2. - fgkHspace/2.- fgkCauT; parCha[2] = -1.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha); // The material layers inside the chambers parCha[0] = -1.; parCha[1] = -1.; // Rohacell layer (radiator) parCha[2] = fgkRaThick/2; sprintf(cTagV,"UH%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1315-1],parCha,kNparCha); // Mylar layer (entrance window + HV cathode) parCha[2] = fgkMyThick/2; sprintf(cTagV,"UI%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1308-1],parCha,kNparCha); // Xe/Isobutane layer (drift volume) parCha[2] = fgkDrThick/2.; sprintf(cTagV,"UJ%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha); // Xe/Isobutane layer (amplification volume) parCha[2] = fgkAmThick/2.; sprintf(cTagV,"UK%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha); // Cu layer (pad plane) parCha[2] = fgkCuThick/2; sprintf(cTagV,"UL%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1305-1],parCha,kNparCha); // G10 layer (support structure / honeycomb) parCha[2] = fgkSuThick/2; sprintf(cTagV,"UM%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha); // Position the layers in the chambers xpos = 0; ypos = 0; // Lower part // Rohacell layer (radiator) zpos = fgkRaZpos; sprintf(cTagV,"UH%02d",iDet); sprintf(cTagM,"UC%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Mylar layer (entrance window + HV cathode) zpos = fgkMyZpos; sprintf(cTagV,"UI%02d",iDet); sprintf(cTagM,"UC%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Xe/Isobutane layer (drift volume) zpos = fgkDrZpos; sprintf(cTagV,"UJ%02d",iDet); sprintf(cTagM,"UC%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Upper part // Xe/Isobutane layer (amplification volume) zpos = fgkAmZpos; sprintf(cTagV,"UK%02d",iDet); sprintf(cTagM,"UE%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Readout part // Cu layer (pad plane) zpos = fgkCuZpos; sprintf(cTagV,"UL%02d",iDet); sprintf(cTagM,"UG%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // G10 layer (support structure) zpos = fgkSuZpos; sprintf(cTagV,"UM%02d",iDet); sprintf(cTagM,"UG%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Position the inner volumes of the chambers in the frames xpos = 0.0; ypos = 0.0; zpos = 0.0; // The inside of the lower G10 frame sprintf(cTagV,"UC%02d",iDet); sprintf(cTagM,"UB%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The lower G10 frame inside the aluminum frame sprintf(cTagV,"UB%02d",iDet); sprintf(cTagM,"UA%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The inside of the upper G10 frame sprintf(cTagV,"UE%02d",iDet); sprintf(cTagM,"UD%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The inside of the upper aluminum frame sprintf(cTagV,"UG%02d",iDet); sprintf(cTagM,"UF%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Position the frames of the chambers in the TRD mother volume xpos = 0.; ypos = - fClength[iplan][0] - fClength[iplan][1] - fClength[iplan][2]/2.; for (Int_t ic = 0; ic < icham; ic++) { ypos += fClength[iplan][ic]; } ypos += fClength[iplan][icham]/2.; zpos = fgkCraH/2. + fgkCdrH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); // The lower aluminum frame, radiator + drift region sprintf(cTagV,"UA%02d",iDet); fChamberUAorig[iDet][0] = xpos; fChamberUAorig[iDet][1] = ypos; fChamberUAorig[iDet][2] = zpos; // The upper G10 frame, amplification region sprintf(cTagV,"UD%02d",iDet); zpos += fgkCamH/2. + fgkCraH/2. + fgkCdrH/2.; fChamberUDorig[iDet][0] = xpos; fChamberUDorig[iDet][1] = ypos; fChamberUDorig[iDet][2] = zpos; // The upper aluminum frame sprintf(cTagV,"UF%02d",iDet); zpos += fgkCroH/2. + fgkCamH/2.; fChamberUForig[iDet][0] = xpos; fChamberUForig[iDet][1] = ypos; fChamberUForig[iDet][2] = zpos; } } // Create the volumes of the super module frame CreateFrame(idtmed); // Create the volumes of the services CreateServices(idtmed); for (Int_t icham = 0; icham < kNcham; icham++) { for (Int_t iplan = 0; iplan < kNplan; iplan++) { GroupChamber(iplan,icham,idtmed); } } xpos = 0.; ypos = 0.; zpos = 0.; gMC->Gspos("UTI1",1,"UTS1",xpos,ypos,zpos,0,"ONLY"); xpos = 0.; ypos = 0.; zpos = 0.; gMC->Gspos("UTS1",1,"UTR1",xpos,ypos,zpos,0,"ONLY"); // Put the TRD volumes into the space frame mother volumes // if enabled via status flag xpos = 0.; ypos = 0.; zpos = 0.; for (Int_t isect = 0; isect < kNsect; isect++) { if (fSMstatus[isect]) { sprintf(cTagV,"BTRD%d",isect); gMC->Gspos("UTR1",1,cTagV,xpos,ypos,zpos,0,"ONLY"); } } } //_____________________________________________________________________________ void AliTRDgeometry::CreateFrame(Int_t *idtmed) { // // Create the geometry of the frame of the supermodule // // Names of the TRD services volumina // // USRL Support rails for the chambers (Al) // USxx Support cross bars between the chambers (Al) // Int_t iplan = 0; Float_t xpos = 0.0; Float_t ypos = 0.0; Float_t zpos = 0.0; Char_t cTagV[5]; // // The chamber support rails // const Float_t kSRLwid = 2.0; const Float_t kSRLhgt = 2.3; const Float_t kSRLdst = 0.6; const Int_t kNparSRL = 3; Float_t parSRL[kNparSRL]; parSRL[0] = kSRLwid/2.; parSRL[1] = fgkSlenTR1/2.; parSRL[2] = kSRLhgt/2.; gMC->Gsvolu("USRL","BOX ",idtmed[1301-1],parSRL,kNparSRL); xpos = 0.0; ypos = 0.0; zpos = 0.0; for (iplan = 0; iplan < kNplan; iplan++) { xpos = fCwidth[iplan]/2. + kSRLwid/2. + kSRLdst; ypos = 0.0; zpos = fgkCraH + fgkCdrH - fgkSheight/2. - kSRLhgt/2. + iplan * (fgkCH + fgkVspace); gMC->Gspos("USRL",iplan+1 ,"UTI1", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos("USRL",iplan+1+ kNplan,"UTI1",-xpos,ypos,zpos,0,"ONLY"); } // // The cross bars between the chambers // const Float_t kSCBwid = 1.0; const Int_t kNparSCB = 3; Float_t parSCB[kNparSCB]; parSCB[1] = kSCBwid/2.; parSCB[2] = fgkCH/2.; xpos = 0.0; ypos = 0.0; zpos = 0.0; for (iplan = 0; iplan < kNplan; iplan++) { parSCB[0] = fCwidth[iplan]/2. + kSRLdst/2.; sprintf(cTagV,"US0%01d",iplan); gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB); xpos = 0.0; ypos = fgkSlenTR1/2. - kSCBwid/2.; zpos = fgkCH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY"); sprintf(cTagV,"US1%01d",iplan); gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB); xpos = 0.0; ypos = fClength[iplan][2]/2. + fClength[iplan][1]; zpos = fgkCH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY"); sprintf(cTagV,"US2%01d",iplan); gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB); xpos = 0.0; ypos = fClength[iplan][2]/2.; zpos = fgkCH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY"); sprintf(cTagV,"US3%01d",iplan); gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB); xpos = 0.0; ypos = - fClength[iplan][2]/2.; zpos = fgkCH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY"); sprintf(cTagV,"US4%01d",iplan); gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB); xpos = 0.0; ypos = - fClength[iplan][2]/2. - fClength[iplan][1]; zpos = fgkCH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY"); sprintf(cTagV,"US5%01d",iplan); gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB); xpos = 0.0; ypos = - fgkSlenTR1/2. + kSCBwid/2.; zpos = fgkCH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY"); } } //_____________________________________________________________________________ void AliTRDgeometry::CreateServices(Int_t *idtmed) { // // Create the geometry of the services // // Names of the TRD services volumina // // UTCL Cooling arterias (Al) // UTCW Cooling arterias (Water) // UUxx Volumes for the services at the chambers (Air) // UTPW Power bars (Cu) // UTCP Cooling pipes (Al) // UTCH Cooling pipes (Water) // UTPL Power lines (Cu) // UMCM Readout MCMs (G10/Cu/Si) // Int_t iplan = 0; Int_t icham = 0; Float_t xpos = 0.0; Float_t ypos = 0.0; Float_t zpos = 0.0; Char_t cTagV[5]; // The rotation matrices const Int_t kNmatrix = 3; Int_t matrix[kNmatrix]; gMC->Matrix(matrix[0],100.0, 0.0, 90.0, 90.0, 10.0, 0.0); gMC->Matrix(matrix[1], 80.0, 0.0, 90.0, 90.0, 10.0,180.0); gMC->Matrix(matrix[2], 0.0, 0.0, 90.0, 90.0, 90.0, 0.0); AliTRDCommonParam* commonParam = AliTRDCommonParam::Instance(); if (!commonParam) { AliError("Could not get common params\n"); return; } // // The cooling arterias // // Width of the cooling arterias const Float_t kCOLwid = 0.5; // Height of the cooling arterias const Float_t kCOLhgt = 5.5; // Positioning of the cooling const Float_t kCOLposx = 1.6; const Float_t kCOLposz = -0.2; // Thickness of the walls of the cooling arterias const Float_t kCOLthk = 0.1; const Int_t kNparCOL = 3; Float_t parCOL[kNparCOL]; parCOL[0] = kCOLwid/2.; parCOL[1] = fgkSlenTR1/2.; parCOL[2] = kCOLhgt/2.; gMC->Gsvolu("UTCL","BOX ",idtmed[1324-1],parCOL,kNparCOL); parCOL[0] -= kCOLthk; parCOL[1] = fgkSlenTR1/2.; parCOL[2] -= kCOLthk; gMC->Gsvolu("UTCW","BOX ",idtmed[1314-1],parCOL,kNparCOL); xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTCW",1,"UTCL", xpos,ypos,zpos,0,"ONLY"); for (iplan = 0; iplan < kNplan; iplan++) { // CHECK FOR OVERLAPS !!! //for (iplan = 1; iplan < kNplan; iplan++) { xpos = fCwidth[iplan]/2. + kCOLwid/2. + kCOLposx; ypos = 0.0; zpos = kCOLhgt/2. - fgkSheight/2. + kCOLposz + iplan * (fgkCH + fgkVspace); if (iplan == 0) zpos += 0.25; // To avoid overlaps ! gMC->Gspos("UTCL",iplan+1 ,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY"); gMC->Gspos("UTCL",iplan+1+ kNplan,"UTI1",-xpos,ypos,zpos,matrix[1],"ONLY"); } // // The power bars // const Float_t kPWRwid = 0.6; const Float_t kPWRhgt = 4.5; const Float_t kPWRposx = 1.05; const Float_t kPWRposz = 0.9; const Int_t kNparPWR = 3; Float_t parPWR[kNparPWR]; parPWR[0] = kPWRwid/2.; parPWR[1] = fgkSlenTR1/2.; parPWR[2] = kPWRhgt/2.; gMC->Gsvolu("UTPW","BOX ",idtmed[1325-1],parPWR,kNparPWR); for (iplan = 0; iplan < kNplan; iplan++) { // CHECK FOR OVERLAPS !!! //for (iplan = 1; iplan < kNplan; iplan++) { xpos = fCwidth[iplan]/2. + kPWRwid/2. + kPWRposx; ypos = 0.0; zpos = kPWRhgt/2. - fgkSheight/2. + kPWRposz + iplan * (fgkCH + fgkVspace); gMC->Gspos("UTPW",iplan+1 ,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY"); gMC->Gspos("UTPW",iplan+1+ kNplan,"UTI1",-xpos,ypos,zpos,matrix[1],"ONLY"); } // // The volumes for the services at the chambers // const Int_t kNparServ = 3; Float_t parServ[kNparServ]; for (icham = 0; icham < kNcham; icham++) { for (iplan = 0; iplan < kNplan; iplan++) { // Take out upper plane until TRD mothervolume is adjusted //for (iplan = 0; iplan < kNplan-1; iplan++) { Int_t iDet = GetDetectorSec(iplan,icham); sprintf(cTagV,"UU%02d",iDet); parServ[0] = fCwidth[iplan]/2.; parServ[1] = fClength[iplan][icham]/2. - fgkHspace/2.; parServ[2] = fgkVspace/2. - 0.742/2.; fChamberUUboxd[iDet][0] = parServ[0]; fChamberUUboxd[iDet][1] = parServ[1]; fChamberUUboxd[iDet][2] = parServ[2]; gMC->Gsvolu(cTagV,"BOX",idtmed[1302-1],parServ,kNparServ); xpos = 0.; ypos = - fClength[iplan][0] - fClength[iplan][1] - fClength[iplan][2]/2.; for (Int_t ic = 0; ic < icham; ic++) { ypos += fClength[iplan][ic]; } ypos += fClength[iplan][icham]/2.; zpos = fgkCH + fgkVspace/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); zpos -= 0.742/2.; fChamberUUorig[iDet][0] = xpos; fChamberUUorig[iDet][1] = ypos; fChamberUUorig[iDet][2] = zpos; } } // // The cooling pipes inside the service volumes // const Int_t kNparTube = 3; Float_t parTube[kNparTube]; // The aluminum pipe for the cooling parTube[0] = 0.0; parTube[1] = 0.0; parTube[2] = 0.0; gMC->Gsvolu("UTCP","TUBE",idtmed[1324-1],parTube,0); // The cooling water parTube[0] = 0.0; parTube[1] = 0.2/2.; parTube[2] = -1.; gMC->Gsvolu("UTCH","TUBE",idtmed[1314-1],parTube,kNparTube); // Water inside the cooling pipe xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTCH",1,"UTCP",xpos,ypos,zpos,0,"ONLY"); // Position the cooling pipes in the mother volume const Int_t kNpar = 3; Float_t par[kNpar]; for (icham = 0; icham < kNcham; icham++) { for (iplan = 0; iplan < kNplan; iplan++) { // Take out upper plane until TRD mothervolume is adjusted //for (iplan = 0; iplan < kNplan-1; iplan++) { Int_t iDet = GetDetectorSec(iplan,icham); Int_t iCopy = GetDetector(iplan,icham,0) * 100; Int_t nMCMrow = commonParam->GetRowMax(iplan,icham,0); Float_t ySize = (GetChamberLength(iplan,icham) - 2.*fgkRpadW) / ((Float_t) nMCMrow); sprintf(cTagV,"UU%02d",iDet); for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) { xpos = 0.0; ypos = (0.5 + iMCMrow) * ySize - 1.9 - fClength[iplan][icham]/2. + fgkHspace/2.; zpos = 0.0 + 0.742/2.; par[0] = 0.0; par[1] = 0.3/2.; // Thickness of the cooling pipes par[2] = fCwidth[iplan]/2.; gMC->Gsposp("UTCP",iCopy+iMCMrow,cTagV,xpos,ypos,zpos ,matrix[2],"ONLY",par,kNpar); } } } // // The power lines // // The copper power lines parTube[0] = 0.0; parTube[1] = 0.0; parTube[2] = 0.0; gMC->Gsvolu("UTPL","TUBE",idtmed[1305-1],parTube,0); // Position the power lines in the mother volume for (icham = 0; icham < kNcham; icham++) { for (iplan = 0; iplan < kNplan; iplan++) { // Take out upper plane until TRD mothervolume is adjusted //for (iplan = 0; iplan < kNplan-1; iplan++) { Int_t iDet = GetDetectorSec(iplan,icham); Int_t iCopy = GetDetector(iplan,icham,0) * 100; Int_t nMCMrow = commonParam->GetRowMax(iplan,icham,0); Float_t ySize = (GetChamberLength(iplan,icham) - 2.*fgkRpadW) / ((Float_t) nMCMrow); sprintf(cTagV,"UU%02d",iDet); for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) { xpos = 0.0; ypos = (0.5 + iMCMrow) * ySize - 1.0 - fClength[iplan][icham]/2. + fgkHspace/2.; zpos = -0.4 + 0.742/2.; par[0] = 0.0; par[1] = 0.2/2.; // Thickness of the power lines par[2] = fCwidth[iplan]/2.; gMC->Gsposp("UTPL",iCopy+iMCMrow,cTagV,xpos,ypos,zpos ,matrix[2],"ONLY",par,kNpar); } } } // // The MCMs // // The mother volume for the MCMs (air) const Int_t kNparMCM = 3; Float_t parMCM[kNparMCM]; parMCM[0] = 3.0/2.; parMCM[1] = 3.0/2.; parMCM[2] = 0.14/2.; gMC->Gsvolu("UMCM","BOX",idtmed[1302-1],parMCM,kNparMCM); // The MCM carrier G10 layer parMCM[0] = 3.0/2.; parMCM[1] = 3.0/2.; parMCM[2] = 0.1/2.; gMC->Gsvolu("UMC1","BOX",idtmed[1319-1],parMCM,kNparMCM); // The MCM carrier Cu layer parMCM[0] = 3.0/2.; parMCM[1] = 3.0/2.; parMCM[2] = 0.0162/2.; gMC->Gsvolu("UMC2","BOX",idtmed[1318-1],parMCM,kNparMCM); // The silicon of the chips parMCM[0] = 3.0/2.; parMCM[1] = 3.0/2.; parMCM[2] = 0.003/2.; gMC->Gsvolu("UMC3","BOX",idtmed[1320-1],parMCM,kNparMCM); // Put the MCM material inside the MCM mother volume xpos = 0.0; ypos = 0.0; zpos = -0.07 + 0.1/2.; gMC->Gspos("UMC1",1,"UMCM",xpos,ypos,zpos,0,"ONLY"); zpos += 0.1/2. + 0.0162/2.; gMC->Gspos("UMC2",1,"UMCM",xpos,ypos,zpos,0,"ONLY"); zpos += 0.00162/2 + 0.003/2.; gMC->Gspos("UMC3",1,"UMCM",xpos,ypos,zpos,0,"ONLY"); // Position the MCMs in the mother volume for (icham = 0; icham < kNcham; icham++) { for (iplan = 0; iplan < kNplan; iplan++) { // Take out upper plane until TRD mothervolume is adjusted //for (iplan = 0; iplan < kNplan-1; iplan++) { Int_t iDet = GetDetectorSec(iplan,icham); Int_t iCopy = GetDetector(iplan,icham,0) * 1000; Int_t nMCMrow = commonParam->GetRowMax(iplan,icham,0); Float_t ySize = (GetChamberLength(iplan,icham) - 2.*fgkRpadW) / ((Float_t) nMCMrow); Int_t nMCMcol = 8; Float_t xSize = (GetChamberWidth(iplan) - 2.* fgkCpadW) / ((Float_t) nMCMcol); sprintf(cTagV,"UU%02d",iDet); for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) { for (Int_t iMCMcol = 0; iMCMcol < nMCMcol; iMCMcol++) { xpos = (0.5 + iMCMcol) * xSize + 1.0 - fCwidth[iplan]/2.; ypos = (0.5 + iMCMrow) * ySize + 1.0 - fClength[iplan][icham]/2. + fgkHspace/2.; zpos = -0.4 + 0.742/2.; par[0] = 0.0; par[1] = 0.2/2.; // Thickness of the power lines par[2] = fCwidth[iplan]/2.; gMC->Gspos("UMCM",iCopy+iMCMrow*10+iMCMcol,cTagV ,xpos,ypos,zpos,0,"ONLY"); } } } } } //_____________________________________________________________________________ void AliTRDgeometry::GroupChamber(Int_t iplan, Int_t icham, Int_t *idtmed) { // // Group volumes UA, UD, UF, UU in a single chamber (Air) // UA, UD, UF, UU are boxes // UT will be a box // // ... for the moment there are no services (UU) for the upper plane ! // const Int_t kNparCha = 3; Int_t iDet = GetDetectorSec(iplan,icham); Float_t xyzMin[3]; Float_t xyzMax[3]; Float_t xyzOrig[3]; Float_t xyzBoxd[3]; Char_t cTagV[5]; Char_t cTagM[5]; for (Int_t i = 0; i < 3; i++) { xyzMin[i] = +9999; xyzMax[i] = -9999; } for (Int_t i = 0; i < 3; i++) { xyzMin[i] = TMath::Min(xyzMin[i],fChamberUAorig[iDet][i]-fChamberUAboxd[iDet][i]); xyzMax[i] = TMath::Max(xyzMax[i],fChamberUAorig[iDet][i]+fChamberUAboxd[iDet][i]); xyzMin[i] = TMath::Min(xyzMin[i],fChamberUDorig[iDet][i]-fChamberUDboxd[iDet][i]); xyzMax[i] = TMath::Max(xyzMax[i],fChamberUDorig[iDet][i]+fChamberUDboxd[iDet][i]); xyzMin[i] = TMath::Min(xyzMin[i],fChamberUForig[iDet][i]-fChamberUFboxd[iDet][i]); xyzMax[i] = TMath::Max(xyzMax[i],fChamberUForig[iDet][i]+fChamberUFboxd[iDet][i]); // CBL //if (iplan < (kNplan-1)) { xyzMin[i] = TMath::Min(xyzMin[i],fChamberUUorig[iDet][i]-fChamberUUboxd[iDet][i]); xyzMax[i] = TMath::Max(xyzMax[i],fChamberUUorig[iDet][i]+fChamberUUboxd[iDet][i]); //} xyzOrig[i] = 0.5*(xyzMax[i]+xyzMin[i]); xyzBoxd[i] = 0.5*(xyzMax[i]-xyzMin[i]); } sprintf(cTagM,"UT%02d",iDet); gMC->Gsvolu(cTagM,"BOX ",idtmed[1302-1],xyzBoxd,kNparCha); sprintf(cTagV,"UA%02d",iDet); gMC->Gspos(cTagV,1,cTagM, fChamberUAorig[iDet][0]-xyzOrig[0], fChamberUAorig[iDet][1]-xyzOrig[1], fChamberUAorig[iDet][2]-xyzOrig[2], 0,"ONLY"); sprintf(cTagV,"UD%02d",iDet); gMC->Gspos(cTagV,1,cTagM, fChamberUDorig[iDet][0]-xyzOrig[0], fChamberUDorig[iDet][1]-xyzOrig[1], fChamberUDorig[iDet][2]-xyzOrig[2], 0,"ONLY"); sprintf(cTagV,"UF%02d",iDet); gMC->Gspos(cTagV,1,cTagM, fChamberUForig[iDet][0]-xyzOrig[0], fChamberUForig[iDet][1]-xyzOrig[1], fChamberUForig[iDet][2]-xyzOrig[2], 0,"ONLY"); // CBL //if (iplan < (kNplan-1)) { sprintf(cTagV,"UU%02d",iDet); gMC->Gspos(cTagV,1,cTagM, fChamberUUorig[iDet][0]-xyzOrig[0], fChamberUUorig[iDet][1]-xyzOrig[1], fChamberUUorig[iDet][2]-xyzOrig[2], 0,"ONLY"); // } sprintf(cTagV,"UT%02d",iDet); gMC->Gspos(cTagV,1,"UTI1",xyzOrig[0],xyzOrig[1],xyzOrig[2],0,"ONLY"); } //_____________________________________________________________________________ Bool_t AliTRDgeometry::Local2Global(Int_t idet, Double_t *local , Double_t *global) const { // // Converts local pad-coordinates (row,col,time) into // global ALICE reference frame coordinates (x,y,z) // Int_t icham = GetChamber(idet); // Chamber info (0-4) Int_t isect = GetSector(idet); // Sector info (0-17) Int_t iplan = GetPlane(idet); // Plane info (0-5) return Local2Global(iplan,icham,isect,local,global); } //_____________________________________________________________________________ Bool_t AliTRDgeometry::Local2Global(Int_t iplan, Int_t icham, Int_t isect , Double_t *local, Double_t *global) const { // // Converts local pad-coordinates (row,col,time) into // global ALICE reference frame coordinates (x,y,z) // AliTRDCommonParam* commonParam = AliTRDCommonParam::Instance(); if (!commonParam) return kFALSE; AliTRDcalibDB* calibration = AliTRDcalibDB::Instance(); if (!calibration) return kFALSE; AliTRDpadPlane *padPlane = commonParam->GetPadPlane(iplan,icham); // calculate (x,y,z) position in rotated chamber Int_t row = ((Int_t) local[0]); Int_t col = ((Int_t) local[1]); Float_t timeSlice = local[2] + 0.5; Float_t time0 = GetTime0(iplan); Int_t idet = GetDetector(iplan, icham, isect); Double_t rot[3]; rot[0] = time0 - (timeSlice - calibration->GetT0(idet, col, row)) * calibration->GetVdrift(idet, col, row)/calibration->GetSamplingFrequency(); rot[1] = padPlane->GetColPos(col) - 0.5 * padPlane->GetColSize(col); rot[2] = padPlane->GetRowPos(row) - 0.5 * padPlane->GetRowSize(row); // Rotate back to original position return RotateBack(idet,rot,global); } //_____________________________________________________________________________ Bool_t AliTRDgeometry::Global2Local(Int_t mode, Double_t *local, Double_t *global , Int_t* index) const { // // Converts local pad-coordinates (row,col,time) into // global ALICE reference frame coordinates (x,y,z) // // index[0] = plane number // index[1] = chamber number // index[2] = sector number // // mode=0 - local coordinate in y, z, x - rotated global // mode=2 - local coordinate in pad, and pad row, x - rotated global // Int_t idet = GetDetector(index[0],index[1],index[2]); // Detector number RotateBack(idet,global,local); if (mode == 0) return kTRUE; return kTRUE; } //_____________________________________________________________________________ Bool_t AliTRDgeometry::Global2Detector(Double_t global[3], Int_t index[3]) { // // Find detector for given global point - Ideal geometry // // // input = global position // output = index // index[0] = plane number // index[1] = chamber number // index[2] = sector number // // // Find sector // Float_t fi = TMath::ATan2(global[1],global[0]); if (fi < 0) { fi += 2*TMath::Pi(); } index[2] = fgkNsect - 1 - TMath::Nint((fi - GetAlpha()/2.)/GetAlpha()); // // Find plane // Float_t locx = global[0] * fRotA11[index[2]] + global[1] * fRotA12[index[2]]; index[0] = 0; Float_t max = locx - GetTime0(0); for (Int_t iplane=1; iplane 0){ localZ -= 0.5*(GetChamberLength(index[0],2)+GetChamberLength(index[0],1)); index[1] = (TMath::Abs(localZ) < 0.5*GetChamberLength(index[0],3)) ? 1:0; } else{ localZ += 0.5*(GetChamberLength(index[0],2)+GetChamberLength(index[0],3)); index[1] = (TMath::Abs(localZ) < 0.5*GetChamberLength(index[0],1)) ? 3:4; } } return kTRUE; } //_____________________________________________________________________________ Bool_t AliTRDgeometry::Rotate(Int_t d, Double_t *pos, Double_t *rot) const { // // Rotates all chambers in the position of sector 0 and transforms // the coordinates in the ALICE restframe into the // corresponding local frame . // Int_t sector = GetSector(d); rot[0] = pos[0] * fRotA11[sector] + pos[1] * fRotA12[sector]; rot[1] = -pos[0] * fRotA21[sector] + pos[1] * fRotA22[sector]; rot[2] = pos[2]; return kTRUE; } //_____________________________________________________________________________ Bool_t AliTRDgeometry::RotateBack(Int_t d, Double_t *rot, Double_t *pos) const { // // Rotates a chambers from the position of sector 0 into its // original position and transforms the corresponding local frame // coordinates into the coordinates of the ALICE restframe . // Int_t sector = GetSector(d); pos[0] = rot[0] * fRotB11[sector] + rot[1] * fRotB12[sector]; pos[1] = -rot[0] * fRotB21[sector] + rot[1] * fRotB22[sector]; pos[2] = rot[2]; return kTRUE; } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetDetectorSec(Int_t p, Int_t c) { // // Convert plane / chamber into detector number for one single sector // return (p + c * fgkNplan); } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetDetector(Int_t p, Int_t c, Int_t s) { // // Convert plane / chamber / sector into detector number // return (p + c * fgkNplan + s * fgkNplan * fgkNcham); } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetPlane(Int_t d) const { // // Reconstruct the plane number from the detector number // return ((Int_t) (d % fgkNplan)); } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetChamber(Int_t d) const { // // Reconstruct the chamber number from the detector number // return ((Int_t) (d % (fgkNplan * fgkNcham)) / fgkNplan); } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetSector(Int_t d) const { // // Reconstruct the sector number from the detector number // return ((Int_t) (d / (fgkNplan * fgkNcham))); } //_____________________________________________________________________________ AliTRDgeometry* AliTRDgeometry::GetGeometry(AliRunLoader* runLoader) { // // load the geometry from the galice file // if (!runLoader) runLoader = AliRunLoader::GetRunLoader(); if (!runLoader) { ::Error("AliTRDgeometry::GetGeometry", "No run loader"); return NULL; } TDirectory* saveDir = gDirectory; runLoader->CdGAFile(); // Try from the galice.root file AliTRDgeometry* geom = (AliTRDgeometry*) gDirectory->Get("TRDgeometry"); if (!geom) { // It is not in the file, try to get it from gAlice, // which corresponds to the run loader AliTRD * trd = (AliTRD*)runLoader->GetAliRun()->GetDetector("TRD"); geom = trd->GetGeometry(); } if (!geom) ::Error("AliTRDgeometry::GetGeometry", "Geometry not found"); saveDir->cd(); return geom; } //_____________________________________________________________________________ Bool_t AliTRDgeometry::ReadGeoMatrices() { // // Read geo matrices from current gGeoManager for each TRD sector // if (!gGeoManager) return kFALSE; fMatrixArray = new TObjArray(kNdet); fMatrixCorrectionArray = new TObjArray(kNdet); fMatrixGeo = new TObjArray(kNdet); AliAlignObjAngles o; for (Int_t iLayer = AliAlignObj::kTRD1; iLayer <= AliAlignObj::kTRD6; iLayer++) { for (Int_t iModule = 0; iModule < AliAlignObj::LayerSize(iLayer); iModule++) { UShort_t volid = AliAlignObj::LayerToVolUID(iLayer,iModule); const char *path = AliAlignObj::GetVolPath(volid); if (!gGeoManager->cd(path)) return kFALSE; TGeoHMatrix* m = gGeoManager->GetCurrentMatrix(); Int_t iLayerTRD = iLayer-AliAlignObj::kTRD1; Int_t isector = Nsect()-1-(iModule/Ncham()); Int_t ichamber = Ncham()-1-(iModule%Ncham()); Int_t lid = GetDetector(iLayerTRD,ichamber,isector); // // local geo system z-x-y to x-y--z // fMatrixGeo->AddAt(new TGeoHMatrix(*m),lid); TGeoRotation mchange; mchange.RotateY(90); mchange.RotateX(90); TGeoHMatrix gMatrix(mchange.Inverse()); gMatrix.MultiplyLeft(m); fMatrixArray->AddAt(new TGeoHMatrix(gMatrix),lid); // // Cluster transformation matrix // TGeoHMatrix rotMatrix(mchange.Inverse()); rotMatrix.MultiplyLeft(m); Double_t sectorAngle = 20.*(isector%18)+10; TGeoHMatrix rotSector; rotSector.RotateZ(sectorAngle); rotMatrix.MultiplyLeft(&rotSector); fMatrixCorrectionArray->AddAt(new TGeoHMatrix(rotMatrix),lid); } } return kTRUE; }