/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /////////////////////////////////////////////////////////////////////////////// // // // TRD geometry class // // // /////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "AliLog.h" #include "AliAlignObjParams.h" #include "AliTRDgeometry.h" #include "AliTRDpadPlane.h" ClassImp(AliTRDgeometry) //_____________________________________________________________________________ // // The geometry constants // const Int_t AliTRDgeometry::fgkNsector = kNsector; const Int_t AliTRDgeometry::fgkNlayer = kNlayer; const Int_t AliTRDgeometry::fgkNstack = kNstack; const Int_t AliTRDgeometry::fgkNdet = kNdet; // // Dimensions of the detector // // Total length of the TRD mother volume const Float_t AliTRDgeometry::fgkTlength = 751.0; // Parameter of the super module mother volumes const Float_t AliTRDgeometry::fgkSheight = 77.9; const Float_t AliTRDgeometry::fgkSwidth1 = 94.881; const Float_t AliTRDgeometry::fgkSwidth2 = 122.353; const Float_t AliTRDgeometry::fgkSlength = 702.0; // Length of the additional space in front of the supermodule // used for services const Float_t AliTRDgeometry::fgkFlength = (AliTRDgeometry::fgkTlength - AliTRDgeometry::fgkSlength) / 2.0; // The super module side plates const Float_t AliTRDgeometry::fgkSMpltT = 0.2; // Vertical spacing of the chambers const Float_t AliTRDgeometry::fgkVspace = 1.784; // Horizontal spacing of the chambers const Float_t AliTRDgeometry::fgkHspace = 2.0; // Radial distance of the first ROC to the outer plates of the SM const Float_t AliTRDgeometry::fgkVrocsm = 1.2; // Height of different chamber parts // Radiator const Float_t AliTRDgeometry::fgkCraH = 4.8; // Drift region const Float_t AliTRDgeometry::fgkCdrH = 3.0; // Amplification region const Float_t AliTRDgeometry::fgkCamH = 0.7; // Readout const Float_t AliTRDgeometry::fgkCroH = 2.316; // Additional width of the readout chamber frames const Float_t AliTRDgeometry::fgkCroW = 0.9; // Services on top of ROC const Float_t AliTRDgeometry::fgkCsvH = AliTRDgeometry::fgkVspace - 0.742; // Total height (w/o services) const Float_t AliTRDgeometry::fgkCH = AliTRDgeometry::fgkCraH + AliTRDgeometry::fgkCdrH + AliTRDgeometry::fgkCamH + AliTRDgeometry::fgkCroH; // Total height (with services) const Float_t AliTRDgeometry::fgkCHsv = AliTRDgeometry::fgkCH + AliTRDgeometry::fgkCsvH; // Distance of anode wire plane relative to middle of alignable volume const Float_t AliTRDgeometry::fgkAnodePos = AliTRDgeometry::fgkCraH + AliTRDgeometry::fgkCdrH + AliTRDgeometry::fgkCamH/2.0 - AliTRDgeometry::fgkCHsv/2.0; // Thicknesses of different parts of the chamber frame // Lower aluminum frame const Float_t AliTRDgeometry::fgkCalT = 0.4; // Lower Wacosit frame sides const Float_t AliTRDgeometry::fgkCclsT = 0.21; // Lower Wacosit frame front const Float_t AliTRDgeometry::fgkCclfT = 1.0; // Thickness of glue around radiator const Float_t AliTRDgeometry::fgkCglT = 0.25; // Upper Wacosit frame around amplification region const Float_t AliTRDgeometry::fgkCcuTa = 1.0; const Float_t AliTRDgeometry::fgkCcuTb = 0.8; // Al frame of back panel const Float_t AliTRDgeometry::fgkCauT = 1.5; // Additional Al ledge at the lower chamber frame // Actually the dimensions are not realistic, but // modified in order to allow to mis-alignment. // The amount of material is, however, correct const Float_t AliTRDgeometry::fgkCalW = 2.5; const Float_t AliTRDgeometry::fgkCalH = 0.4; const Float_t AliTRDgeometry::fgkCalWmod = 0.4; const Float_t AliTRDgeometry::fgkCalHmod = 2.5; // Additional Wacosit ledge at the lower chamber frame const Float_t AliTRDgeometry::fgkCwsW = 1.2; const Float_t AliTRDgeometry::fgkCwsH = 0.3; // Difference of outer chamber width and pad plane width const Float_t AliTRDgeometry::fgkCpadW = 0.0; const Float_t AliTRDgeometry::fgkRpadW = 1.0; // // Thickness of the the material layers // const Float_t AliTRDgeometry::fgkDrThick = AliTRDgeometry::fgkCdrH; const Float_t AliTRDgeometry::fgkAmThick = AliTRDgeometry::fgkCamH; const Float_t AliTRDgeometry::fgkXeThick = AliTRDgeometry::fgkDrThick + AliTRDgeometry::fgkAmThick; const Float_t AliTRDgeometry::fgkWrThick = 0.00011; const Float_t AliTRDgeometry::fgkRMyThick = 0.0015; const Float_t AliTRDgeometry::fgkRCbThick = 0.0055; const Float_t AliTRDgeometry::fgkRGlThick = 0.0065; const Float_t AliTRDgeometry::fgkRRhThick = 0.8; const Float_t AliTRDgeometry::fgkRFbThick = fgkCraH - 2.0 * (fgkRMyThick + fgkRCbThick + fgkRRhThick); const Float_t AliTRDgeometry::fgkPPdThick = 0.0025; const Float_t AliTRDgeometry::fgkPPpThick = 0.0356; const Float_t AliTRDgeometry::fgkPGlThick = 0.1428; const Float_t AliTRDgeometry::fgkPCbThick = 0.019; const Float_t AliTRDgeometry::fgkPPcThick = 0.0486; const Float_t AliTRDgeometry::fgkPRbThick = 0.0057; const Float_t AliTRDgeometry::fgkPElThick = 0.0029; const Float_t AliTRDgeometry::fgkPHcThick = fgkCroH - fgkPPdThick - fgkPPpThick - fgkPGlThick - fgkPCbThick * 2.0 - fgkPPcThick - fgkPRbThick - fgkPElThick; // // Position of the material layers // const Float_t AliTRDgeometry::fgkDrZpos = 2.4; const Float_t AliTRDgeometry::fgkAmZpos = 0.0; const Float_t AliTRDgeometry::fgkWrZposA = 0.0; const Float_t AliTRDgeometry::fgkWrZposB = -fgkAmThick/2.0 + 0.001; const Float_t AliTRDgeometry::fgkCalZpos = 0.3; const Int_t AliTRDgeometry::fgkMCMmax = 16; const Int_t AliTRDgeometry::fgkMCMrow = 4; const Int_t AliTRDgeometry::fgkROBmaxC0 = 6; const Int_t AliTRDgeometry::fgkROBmaxC1 = 8; const Int_t AliTRDgeometry::fgkADCmax = 21; const Int_t AliTRDgeometry::fgkTBmax = 60; const Int_t AliTRDgeometry::fgkPadmax = 18; const Int_t AliTRDgeometry::fgkColmax = 144; const Int_t AliTRDgeometry::fgkRowmaxC0 = 12; const Int_t AliTRDgeometry::fgkRowmaxC1 = 16; const Double_t AliTRDgeometry::fgkTime0Base = 300.65; const Float_t AliTRDgeometry::fgkTime0[6] = { fgkTime0Base + 0 * (Cheight() + Cspace()) , fgkTime0Base + 1 * (Cheight() + Cspace()) , fgkTime0Base + 2 * (Cheight() + Cspace()) , fgkTime0Base + 3 * (Cheight() + Cspace()) , fgkTime0Base + 4 * (Cheight() + Cspace()) , fgkTime0Base + 5 * (Cheight() + Cspace())}; const Double_t AliTRDgeometry::fgkXtrdBeg = 288.43; // Values depend on position of TRD const Double_t AliTRDgeometry::fgkXtrdEnd = 366.33; // mother volume inside space frame !!! // The outer width of the chambers const Float_t AliTRDgeometry::fgkCwidth[kNlayer] = { 90.4, 94.8, 99.3, 103.7, 108.1, 112.6 }; // The outer lengths of the chambers // Includes the spacings between the chambers! const Float_t AliTRDgeometry::fgkClength[kNlayer][kNstack] = { { 124.0, 124.0, 110.0, 124.0, 124.0 } , { 124.0, 124.0, 110.0, 124.0, 124.0 } , { 131.0, 131.0, 110.0, 131.0, 131.0 } , { 138.0, 138.0, 110.0, 138.0, 138.0 } , { 145.0, 145.0, 110.0, 145.0, 145.0 } , { 147.0, 147.0, 110.0, 147.0, 147.0 } }; Char_t AliTRDgeometry::fgSMstatus[kNsector] = { 1, 1, 1, 1, 1, 1, 1, 1, 1 , 1, 1, 1, 1, 1, 1, 1, 1, 1 }; TObjArray* AliTRDgeometry::fgClusterMatrixArray = NULL; TObjArray* AliTRDgeometry::fgPadPlaneArray = NULL; //_____________________________________________________________________________ AliTRDgeometry::AliTRDgeometry() { // // AliTRDgeometry default constructor // } //_____________________________________________________________________________ AliTRDgeometry::~AliTRDgeometry() { // // AliTRDgeometry destructor // } //_____________________________________________________________________________ void AliTRDgeometry::CreatePadPlaneArray() { // // Creates the array of AliTRDpadPlane objects // if (fgPadPlaneArray) return; static TObjArray padPlaneArray(fgkNlayer * fgkNstack); padPlaneArray.SetOwner(kTRUE); fgPadPlaneArray = &padPlaneArray; for (Int_t ilayer = 0; ilayer < fgkNlayer; ilayer++) { for (Int_t istack = 0; istack < fgkNstack; istack++) { Int_t ipp = GetDetectorSec(ilayer,istack); fgPadPlaneArray->AddAt(CreatePadPlane(ilayer,istack),ipp); } } } //_____________________________________________________________________________ AliTRDpadPlane *AliTRDgeometry::CreatePadPlane(Int_t ilayer, Int_t istack) { // // Creates an AliTRDpadPlane object // AliTRDpadPlane *padPlane = new AliTRDpadPlane(); padPlane->SetLayer(ilayer); padPlane->SetStack(istack); padPlane->SetRowSpacing(0.0); padPlane->SetColSpacing(0.0); padPlane->SetLengthRim(1.0); padPlane->SetWidthRim(0.5); padPlane->SetNcols(144); padPlane->SetAnodeWireOffset(0.25); // // The pad plane parameter // const Float_t kTiltAngle = 2.0; switch (ilayer) { case 0: if (istack == 2) { // L0C0 type padPlane->SetNrows(12); padPlane->SetLength(108.0); padPlane->SetLengthOPad(8.0); padPlane->SetLengthIPad(9.0); } else { // L0C1 type padPlane->SetNrows(16); padPlane->SetLength(122.0); padPlane->SetLengthOPad(7.5); padPlane->SetLengthIPad(7.5); } padPlane->SetWidth(92.2); padPlane->SetWidthOPad(0.515); padPlane->SetWidthIPad(0.635); padPlane->SetTiltingAngle(-kTiltAngle); break; case 1: if (istack == 2) { // L1C0 type padPlane->SetNrows(12); padPlane->SetLength(108.0); padPlane->SetLengthOPad(8.0); padPlane->SetLengthIPad(9.0); } else { // L1C1 type padPlane->SetNrows(16); padPlane->SetLength(122.0); padPlane->SetLengthOPad(7.5); padPlane->SetLengthIPad(7.5); } padPlane->SetWidth(96.6); padPlane->SetWidthOPad(0.585); padPlane->SetWidthIPad(0.665); padPlane->SetTiltingAngle(kTiltAngle); break; case 2: if (istack == 2) { // L2C0 type padPlane->SetNrows(12); padPlane->SetLength(108.0); padPlane->SetLengthOPad(8.0); padPlane->SetLengthIPad(9.0); } else { // L2C1 type padPlane->SetNrows(16); padPlane->SetLength(129.0); padPlane->SetLengthOPad(7.5); padPlane->SetLengthIPad(8.0); } padPlane->SetWidth(101.1); padPlane->SetWidthOPad(0.705); padPlane->SetWidthIPad(0.695); padPlane->SetTiltingAngle(-kTiltAngle); break; case 3: if (istack == 2) { // L3C0 type padPlane->SetNrows(12); padPlane->SetLength(108.0); padPlane->SetLengthOPad(8.0); padPlane->SetLengthIPad(9.0); } else { // L3C1 type padPlane->SetNrows(16); padPlane->SetLength(136.0); padPlane->SetLengthOPad(7.5); padPlane->SetLengthIPad(8.5); } padPlane->SetWidth(105.5); padPlane->SetWidthOPad(0.775); padPlane->SetWidthIPad(0.725); padPlane->SetTiltingAngle(kTiltAngle); break; case 4: if (istack == 2) { // L4C0 type padPlane->SetNrows(12); padPlane->SetLength(108.0); padPlane->SetLengthOPad(8.0); } else { // L4C1 type padPlane->SetNrows(16); padPlane->SetLength(143.0); padPlane->SetLengthOPad(7.5); } padPlane->SetWidth(109.9); padPlane->SetWidthOPad(0.845); padPlane->SetLengthIPad(9.0); padPlane->SetWidthIPad(0.755); padPlane->SetTiltingAngle(-kTiltAngle); break; case 5: if (istack == 2) { // L5C0 type padPlane->SetNrows(12); padPlane->SetLength(108.0); padPlane->SetLengthOPad(8.0); } else { // L5C1 type padPlane->SetNrows(16); padPlane->SetLength(145.0); padPlane->SetLengthOPad(8.5); } padPlane->SetWidth(114.4); padPlane->SetWidthOPad(0.965); padPlane->SetLengthIPad(9.0); padPlane->SetWidthIPad(0.785); padPlane->SetTiltingAngle(kTiltAngle); break; }; // // The positions of the borders of the pads // // Row direction // Double_t row = fgkClength[ilayer][istack] / 2.0 - fgkRpadW - padPlane->GetLengthRim(); for (Int_t ir = 0; ir < padPlane->GetNrows(); ir++) { padPlane->SetPadRow(ir,row); row -= padPlane->GetRowSpacing(); if (ir == 0) { row -= padPlane->GetLengthOPad(); } else { row -= padPlane->GetLengthIPad(); } } // // Column direction // Double_t col = - fgkCwidth[ilayer] / 2.0 - fgkCroW + padPlane->GetWidthRim(); for (Int_t ic = 0; ic < padPlane->GetNcols(); ic++) { padPlane->SetPadCol(ic,col); col += padPlane->GetColSpacing(); if (ic == 0) { col += padPlane->GetWidthOPad(); } else { col += padPlane->GetWidthIPad(); } } // Calculate the offset to translate from the local ROC system into // the local supermodule system, which is used for clusters Double_t rowTmp = fgkClength[ilayer][0] + fgkClength[ilayer][1] + fgkClength[ilayer][2] / 2.0; for (Int_t jstack = 0; jstack < istack; jstack++) { rowTmp -= fgkClength[ilayer][jstack]; } padPlane->SetPadRowSMOffset(rowTmp - fgkClength[ilayer][istack]/2.0); return padPlane; } //_____________________________________________________________________________ void AliTRDgeometry::CreateGeometry(Int_t *idtmed) { // // Create the TRD geometry // // // Names of the TRD volumina (xx = detector number): // // Volume (Air) wrapping the readout chamber components // UTxx includes: UAxx, UDxx, UFxx, UUxx // // Lower part of the readout chambers (drift volume + radiator) // UAxx Aluminum frames (Al) // // Upper part of the readout chambers (readout plane + fee) // UDxx Wacosit frames of amp. region (Wacosit) // UFxx Aluminum frame of back panel (Al) // // Services on chambers (cooling, cables, MCMs, DCS boards, ...) // UUxx Volume containing the services (Air) // // Material layers inside sensitive area: // Name Description Mat. Thick. Dens. Radl. X/X_0 // // URMYxx Mylar layers (x2) Mylar 0.0015 1.39 28.5464 0.005% // URCBxx Carbon layer (x2) Carbon 0.0055 1.75 24.2824 0.023% // URGLxx Glue on the carbon layers (x2) Araldite 0.0065 1.12 37.0664 0.018% // URRHxx Rohacell layer (x2) Rohacell 0.8 0.075 536.005 0.149% // URFBxx Fiber mat layer PP 3.186 0.068 649.727 0.490% // // UJxx Drift region Xe/CO2 3.0 0.00495 1792.37 0.167% // UKxx Amplification region Xe/CO2 0.7 0.00495 1792.37 0.039% // UWxx Wire planes (x2) Copper 0.00011 8.96 1.43503 0.008% // // UPPDxx Copper of pad plane Copper 0.0025 8.96 1.43503 0.174% // UPPPxx PCB of pad plane G10 0.0356 2.0 14.9013 0.239% // UPGLxx Glue on pad planes Araldite 0.0923 1.12 37.0664 0.249% // + add. glue (ca. 600g) Araldite 0.0505 1.12 37.0663 0.107% // UPCBxx Carbon fiber mats (x2) Carbon 0.019 1.75 24.2824 0.078% // UPHCxx Honeycomb structure Aramide 2.0299 0.032 1198.84 0.169% // UPPCxx PCB of readout board G10 0.0486 2.0 14.9013 0.326% // UPRDxx Copper of readout board Copper 0.0057 8.96 1.43503 0.404% // UPELxx Electronics + cables Copper 0.0029 8.96 1.43503 0.202% // const Int_t kNparTrd = 4; const Int_t kNparCha = 3; Float_t xpos; Float_t ypos; Float_t zpos; Float_t parTrd[kNparTrd]; Float_t parCha[kNparCha]; const Int_t kTag = 100; Char_t cTagV[kTag]; Char_t cTagM[kTag]; // There are three TRD volumes for the supermodules in order to accomodate // the different arrangements in front of PHOS // UTR1: Default supermodule // UTR2: Supermodule in front of PHOS with double carbon cover // UTR3: As UTR2, but w/o middle stack // // The mother volume for one sector (Air), full length in z-direction // Provides material for side plates of super module parTrd[0] = fgkSwidth1/2.0; parTrd[1] = fgkSwidth2/2.0; parTrd[2] = fgkSlength/2.0; parTrd[3] = fgkSheight/2.0; gMC->Gsvolu("UTR1","TRD1",idtmed[1302-1],parTrd,kNparTrd); gMC->Gsvolu("UTR2","TRD1",idtmed[1302-1],parTrd,kNparTrd); gMC->Gsvolu("UTR3","TRD1",idtmed[1302-1],parTrd,kNparTrd); // The outer aluminum plates of the super module (Al) parTrd[0] = fgkSwidth1/2.0; parTrd[1] = fgkSwidth2/2.0; parTrd[2] = fgkSlength/2.0; parTrd[3] = fgkSheight/2.0; gMC->Gsvolu("UTS1","TRD1",idtmed[1301-1],parTrd,kNparTrd); gMC->Gsvolu("UTS2","TRD1",idtmed[1301-1],parTrd,kNparTrd); gMC->Gsvolu("UTS3","TRD1",idtmed[1301-1],parTrd,kNparTrd); // The inner part of the TRD mother volume for one sector (Air), // full length in z-direction parTrd[0] = fgkSwidth1/2.0 - fgkSMpltT; parTrd[1] = fgkSwidth2/2.0 - fgkSMpltT; parTrd[2] = fgkSlength/2.0; parTrd[3] = fgkSheight/2.0 - fgkSMpltT; gMC->Gsvolu("UTI1","TRD1",idtmed[1302-1],parTrd,kNparTrd); gMC->Gsvolu("UTI2","TRD1",idtmed[1302-1],parTrd,kNparTrd); gMC->Gsvolu("UTI3","TRD1",idtmed[1302-1],parTrd,kNparTrd); // The inner part of the TRD mother volume for services in front // of the supermodules (Air), parTrd[0] = fgkSwidth1/2.0; parTrd[1] = fgkSwidth2/2.0; parTrd[2] = fgkFlength/2.0; parTrd[3] = fgkSheight/2.0; gMC->Gsvolu("UTF1","TRD1",idtmed[1302-1],parTrd,kNparTrd); gMC->Gsvolu("UTF2","TRD1",idtmed[1302-1],parTrd,kNparTrd); for (Int_t istack = 0; istack < kNstack; istack++) { for (Int_t ilayer = 0; ilayer < kNlayer; ilayer++) { Int_t iDet = GetDetectorSec(ilayer,istack); // The lower part of the readout chambers (drift volume + radiator) // The aluminum frames snprintf(cTagV,kTag,"UA%02d",iDet); parCha[0] = fgkCwidth[ilayer]/2.0; parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0; parCha[2] = fgkCraH/2.0 + fgkCdrH/2.0; gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha); // The additional aluminum on the frames // This part has not the correct shape but is just supposed to // represent the missing material. The correct form of the L-shaped // profile would not fit into the alignable volume. snprintf(cTagV,kTag,"UZ%02d",iDet); parCha[0] = fgkCalWmod/2.0; parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0; parCha[2] = fgkCalHmod/2.0; gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha); // The additional Wacosit on the frames snprintf(cTagV,kTag,"UP%02d",iDet); parCha[0] = fgkCwsW/2.0; parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0; parCha[2] = fgkCwsH/2.0; gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha); // The Wacosit frames snprintf(cTagV,kTag,"UB%02d",iDet); parCha[0] = fgkCwidth[ilayer]/2.0 - fgkCalT; parCha[1] = -1.0; parCha[2] = -1.0; gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha); // The glue around the radiator snprintf(cTagV,kTag,"UX%02d",iDet); parCha[0] = fgkCwidth[ilayer]/2.0 - fgkCalT - fgkCclsT; parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCclfT; parCha[2] = fgkCraH/2.0; gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha); // The inner part of radiator (air) snprintf(cTagV,kTag,"UC%02d",iDet); parCha[0] = fgkCwidth[ilayer]/2.0 - fgkCalT - fgkCclsT - fgkCglT; parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCclfT - fgkCglT; parCha[2] = -1.0; gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha); // The upper part of the readout chambers (amplification volume) // The Wacosit frames snprintf(cTagV,kTag,"UD%02d",iDet); parCha[0] = fgkCwidth[ilayer]/2.0 + fgkCroW; parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0; parCha[2] = fgkCamH/2.0; gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha); // The inner part of the Wacosit frame (air) snprintf(cTagV,kTag,"UE%02d",iDet); parCha[0] = fgkCwidth[ilayer]/2.0 + fgkCroW - fgkCcuTb; parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCcuTa; parCha[2] = -1.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha); // The back panel, including pad plane and readout boards // The aluminum frames snprintf(cTagV,kTag,"UF%02d",iDet); parCha[0] = fgkCwidth[ilayer]/2.0 + fgkCroW; parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0; parCha[2] = fgkCroH/2.0; gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha); // The inner part of the aluminum frames snprintf(cTagV,kTag,"UG%02d",iDet); parCha[0] = fgkCwidth[ilayer]/2.0 + fgkCroW - fgkCauT; parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCauT; parCha[2] = -1.0; gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha); // // The material layers inside the chambers // // Mylar layer (radiator) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkRMyThick/2.0; snprintf(cTagV,kTag,"URMY%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1327-1],parCha,kNparCha); // Carbon layer (radiator) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkRCbThick/2.0; snprintf(cTagV,kTag,"URCB%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1326-1],parCha,kNparCha); // Araldite layer (radiator) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkRGlThick/2.0; snprintf(cTagV,kTag,"URGL%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha); // Rohacell layer (radiator) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkRRhThick/2.0; snprintf(cTagV,kTag,"URRH%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1315-1],parCha,kNparCha); // Fiber layer (radiator) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkRFbThick/2.0; snprintf(cTagV,kTag,"URFB%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1328-1],parCha,kNparCha); // Xe/Isobutane layer (drift volume) parCha[0] = fgkCwidth[ilayer]/2.0 - fgkCalT - fgkCclsT; parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCclfT; parCha[2] = fgkDrThick/2.0; snprintf(cTagV,kTag,"UJ%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha); // Xe/Isobutane layer (amplification volume) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkAmThick/2.0; snprintf(cTagV,kTag,"UK%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha); // Cu layer (wire plane) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkWrThick/2.0; snprintf(cTagV,kTag,"UW%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1303-1],parCha,kNparCha); // Cu layer (pad plane) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkPPdThick/2.0; snprintf(cTagV,kTag,"UPPD%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1305-1],parCha,kNparCha); // G10 layer (pad plane) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkPPpThick/2.0; snprintf(cTagV,kTag,"UPPP%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha); // Araldite layer (glue) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkPGlThick/2.0; snprintf(cTagV,kTag,"UPGL%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha); // Carbon layer (carbon fiber mats) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkPCbThick/2.0; snprintf(cTagV,kTag,"UPCB%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1326-1],parCha,kNparCha); // Aramide layer (honeycomb) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkPHcThick/2.0; snprintf(cTagV,kTag,"UPHC%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1310-1],parCha,kNparCha); // G10 layer (PCB readout board) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkPPcThick/2; snprintf(cTagV,kTag,"UPPC%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha); // Cu layer (traces in readout board) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkPRbThick/2.0; snprintf(cTagV,kTag,"UPRB%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1306-1],parCha,kNparCha); // Cu layer (other material on in readout board, incl. screws) parCha[0] = -1.0; parCha[1] = -1.0; parCha[2] = fgkPElThick/2.0; snprintf(cTagV,kTag,"UPEL%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1304-1],parCha,kNparCha); // // Position the layers in the chambers // xpos = 0.0; ypos = 0.0; // Lower part // Mylar layers (radiator) zpos = fgkRMyThick/2.0 - fgkCraH/2.0; snprintf(cTagV,kTag,"URMY%02d",iDet); snprintf(cTagM,kTag,"UC%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); zpos = -fgkRMyThick/2.0 + fgkCraH/2.0; snprintf(cTagV,kTag,"URMY%02d",iDet); snprintf(cTagM,kTag,"UC%02d",iDet); gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY"); // Carbon layers (radiator) zpos = fgkRCbThick/2.0 + fgkRMyThick - fgkCraH/2.0; snprintf(cTagV,kTag,"URCB%02d",iDet); snprintf(cTagM,kTag,"UC%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); zpos = -fgkRCbThick/2.0 - fgkRMyThick + fgkCraH/2.0; snprintf(cTagV,kTag,"URCB%02d",iDet); snprintf(cTagM,kTag,"UC%02d",iDet); gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY"); // Carbon layers (radiator) zpos = fgkRGlThick/2.0 + fgkRCbThick + fgkRMyThick - fgkCraH/2.0; snprintf(cTagV,kTag,"URGL%02d",iDet); snprintf(cTagM,kTag,"UC%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); zpos = -fgkRGlThick/2.0 - fgkRCbThick - fgkRMyThick + fgkCraH/2.0; snprintf(cTagV,kTag,"URGL%02d",iDet); snprintf(cTagM,kTag,"UC%02d",iDet); gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY"); // Rohacell layers (radiator) zpos = fgkRRhThick/2.0 + fgkRGlThick + fgkRCbThick + fgkRMyThick - fgkCraH/2.0; snprintf(cTagV,kTag,"URRH%02d",iDet); snprintf(cTagM,kTag,"UC%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); zpos = -fgkRRhThick/2.0 - fgkRGlThick - fgkRCbThick - fgkRMyThick + fgkCraH/2.0; snprintf(cTagV,kTag,"URRH%02d",iDet); snprintf(cTagM,kTag,"UC%02d",iDet); gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY"); // Fiber layers (radiator) zpos = 0.0; snprintf(cTagV,kTag,"URFB%02d",iDet); snprintf(cTagM,kTag,"UC%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Xe/Isobutane layer (drift volume) zpos = fgkDrZpos; snprintf(cTagV,kTag,"UJ%02d",iDet); snprintf(cTagM,kTag,"UB%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Upper part // Xe/Isobutane layer (amplification volume) zpos = fgkAmZpos; snprintf(cTagV,kTag,"UK%02d",iDet); snprintf(cTagM,kTag,"UE%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Cu layer (wire planes inside amplification volume) zpos = fgkWrZposA; snprintf(cTagV,kTag,"UW%02d",iDet); snprintf(cTagM,kTag,"UK%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); zpos = fgkWrZposB; snprintf(cTagV,kTag,"UW%02d",iDet); snprintf(cTagM,kTag,"UK%02d",iDet); gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY"); // Back panel + pad plane + readout part // Cu layer (pad plane) zpos = fgkPPdThick/2.0 - fgkCroH/2.0; snprintf(cTagV,kTag,"UPPD%02d",iDet); snprintf(cTagM,kTag,"UG%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // G10 layer (pad plane) zpos = fgkPPpThick/2.0 + fgkPPdThick - fgkCroH/2.0; snprintf(cTagV,kTag,"UPPP%02d",iDet); snprintf(cTagM,kTag,"UG%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Araldite layer (glue) zpos = fgkPGlThick/2.0 + fgkPPpThick + fgkPPdThick - fgkCroH/2.0; snprintf(cTagV,kTag,"UPGL%02d",iDet); snprintf(cTagM,kTag,"UG%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Carbon layers (carbon fiber mats) zpos = fgkPCbThick/2.0 + fgkPGlThick + fgkPPpThick + fgkPPdThick - fgkCroH/2.0; snprintf(cTagV,kTag,"UPCB%02d",iDet); snprintf(cTagM,kTag,"UG%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); zpos = -fgkPCbThick/2.0 - fgkPPcThick - fgkPRbThick - fgkPElThick + fgkCroH/2.0; snprintf(cTagV,kTag,"UPCB%02d",iDet); snprintf(cTagM,kTag,"UG%02d",iDet); gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY"); // Aramide layer (honeycomb) zpos = fgkPHcThick/2.0 + fgkPCbThick + fgkPGlThick + fgkPPpThick + fgkPPdThick - fgkCroH/2.0; snprintf(cTagV,kTag,"UPHC%02d",iDet); snprintf(cTagM,kTag,"UG%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // G10 layer (PCB readout board) zpos = -fgkPPcThick/2.0 - fgkPRbThick - fgkPElThick + fgkCroH/2.0; snprintf(cTagV,kTag,"UPPC%02d",iDet); snprintf(cTagM,kTag,"UG%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Cu layer (traces in readout board) zpos = -fgkPRbThick/2.0 - fgkPElThick + fgkCroH/2.0; snprintf(cTagV,kTag,"UPRB%02d",iDet); snprintf(cTagM,kTag,"UG%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Cu layer (other materials on readout board, incl. screws) zpos = -fgkPElThick/2.0 + fgkCroH/2.0; snprintf(cTagV,kTag,"UPEL%02d",iDet); snprintf(cTagM,kTag,"UG%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Position the inner volumes of the chambers in the frames xpos = 0.0; ypos = 0.0; // The inner part of the radiator (air) zpos = 0.0; snprintf(cTagV,kTag,"UC%02d",iDet); snprintf(cTagM,kTag,"UX%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The glue around the radiator zpos = fgkCraH/2.0 - fgkCdrH/2.0 - fgkCraH/2.0; snprintf(cTagV,kTag,"UX%02d",iDet); snprintf(cTagM,kTag,"UB%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The lower Wacosit frame inside the aluminum frame zpos = 0.0; snprintf(cTagV,kTag,"UB%02d",iDet); snprintf(cTagM,kTag,"UA%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The inside of the upper Wacosit frame zpos = 0.0; snprintf(cTagV,kTag,"UE%02d",iDet); snprintf(cTagM,kTag,"UD%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The inside of the upper aluminum frame zpos = 0.0; snprintf(cTagV,kTag,"UG%02d",iDet); snprintf(cTagM,kTag,"UF%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); } } // Create the volumes of the super module frame CreateFrame(idtmed); // Create the volumes of the services CreateServices(idtmed); for (Int_t istack = 0; istack < kNstack; istack++) { for (Int_t ilayer = 0; ilayer < kNlayer; ilayer++) { AssembleChamber(ilayer,istack); } } xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTI1",1,"UTS1",xpos,ypos,zpos,0,"ONLY"); gMC->Gspos("UTI2",1,"UTS2",xpos,ypos,zpos,0,"ONLY"); gMC->Gspos("UTI3",1,"UTS3",xpos,ypos,zpos,0,"ONLY"); xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTS1",1,"UTR1",xpos,ypos,zpos,0,"ONLY"); gMC->Gspos("UTS2",1,"UTR2",xpos,ypos,zpos,0,"ONLY"); gMC->Gspos("UTS3",1,"UTR3",xpos,ypos,zpos,0,"ONLY"); // Put the TRD volumes into the space frame mother volumes // if enabled via status flag xpos = 0.0; ypos = 0.0; zpos = 0.0; for (Int_t isector = 0; isector < kNsector; isector++) { if (GetSMstatus(isector)) { snprintf(cTagV,kTag,"BTRD%d",isector); switch (isector) { case 13: case 14: case 15: // Double carbon, w/o middle stack gMC->Gspos("UTR3",1,cTagV,xpos,ypos,zpos,0,"ONLY"); break; case 11: case 12: // Double carbon, all stacks gMC->Gspos("UTR2",1,cTagV,xpos,ypos,zpos,0,"ONLY"); break; default: // Standard supermodule gMC->Gspos("UTR1",1,cTagV,xpos,ypos,zpos,0,"ONLY"); }; } } // Put the TRD volumes into the space frame mother volumes // if enabled via status flag xpos = 0.0; ypos = 0.5*fgkSlength + 0.5*fgkFlength; zpos = 0.0; for (Int_t isector = 0; isector < kNsector; isector++) { if (GetSMstatus(isector)) { snprintf(cTagV,kTag,"BTRD%d",isector); gMC->Gspos("UTF1",1,cTagV,xpos, ypos,zpos,0,"ONLY"); gMC->Gspos("UTF2",1,cTagV,xpos,-ypos,zpos,0,"ONLY"); } } } //_____________________________________________________________________________ void AliTRDgeometry::CreateFrame(Int_t *idtmed) { // // Create the geometry of the frame of the supermodule // // Names of the TRD services volumina // // USRL Support rails for the chambers (Al) // USxx Support cross bars between the chambers (Al) // USHx Horizontal connection between the cross bars (Al) // USLx Long corner ledges (Al) // Int_t ilayer = 0; Float_t xpos = 0.0; Float_t ypos = 0.0; Float_t zpos = 0.0; const Int_t kTag = 100; Char_t cTagV[kTag]; Char_t cTagM[kTag]; const Int_t kNparTRD = 4; Float_t parTRD[kNparTRD]; const Int_t kNparBOX = 3; Float_t parBOX[kNparBOX]; const Int_t kNparTRP = 11; Float_t parTRP[kNparTRP]; // The rotation matrices const Int_t kNmatrix = 7; Int_t matrix[kNmatrix]; gMC->Matrix(matrix[0], 100.0, 0.0, 90.0, 90.0, 10.0, 0.0); gMC->Matrix(matrix[1], 80.0, 0.0, 90.0, 90.0, 10.0, 180.0); gMC->Matrix(matrix[2], 90.0, 0.0, 0.0, 0.0, 90.0, 90.0); gMC->Matrix(matrix[3], 90.0, 180.0, 0.0, 180.0, 90.0, 90.0); gMC->Matrix(matrix[4], 170.0, 0.0, 80.0, 0.0, 90.0, 90.0); gMC->Matrix(matrix[5], 170.0, 180.0, 80.0, 180.0, 90.0, 90.0); gMC->Matrix(matrix[6], 180.0, 180.0, 90.0, 180.0, 90.0, 90.0); // // The carbon inserts in the top/bottom aluminum plates // const Int_t kNparCrb = 3; Float_t parCrb[kNparCrb]; parCrb[0] = 0.0; parCrb[1] = 0.0; parCrb[2] = 0.0; gMC->Gsvolu("USCR","BOX ",idtmed[1326-1],parCrb,0); // Bottom 1 (all sectors) parCrb[0] = 77.49/2.0; parCrb[1] = 104.60/2.0; parCrb[2] = fgkSMpltT/2.0; xpos = 0.0; ypos = 0.0; zpos = fgkSMpltT/2.0 - fgkSheight/2.0; gMC->Gsposp("USCR", 1,"UTS1", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR", 2,"UTS2", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR", 3,"UTS3", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb); // Bottom 2 (all sectors) parCrb[0] = 77.49/2.0; parCrb[1] = 55.80/2.0; parCrb[2] = fgkSMpltT/2.0; xpos = 0.0; ypos = 85.6; zpos = fgkSMpltT/2.0 - fgkSheight/2.0; gMC->Gsposp("USCR", 4,"UTS1", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR", 5,"UTS2", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR", 6,"UTS3", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR", 7,"UTS1", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR", 8,"UTS2", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR", 9,"UTS3", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb); // Bottom 3 (all sectors) parCrb[0] = 77.49/2.0; parCrb[1] = 56.00/2.0; parCrb[2] = fgkSMpltT/2.0; xpos = 0.0; ypos = 148.5; zpos = fgkSMpltT/2.0 - fgkSheight/2.0; gMC->Gsposp("USCR",10,"UTS1", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR",11,"UTS2", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR",12,"UTS3", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR",13,"UTS1", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR",14,"UTS2", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR",15,"UTS3", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb); // Bottom 4 (all sectors) parCrb[0] = 77.49/2.0; parCrb[1] = 118.00/2.0; parCrb[2] = fgkSMpltT/2.0; xpos = 0.0; ypos = 240.5; zpos = fgkSMpltT/2.0 - fgkSheight/2.0; gMC->Gsposp("USCR",16,"UTS1", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR",17,"UTS2", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR",18,"UTS3", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR",19,"UTS1", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR",20,"UTS2", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR",21,"UTS3", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb); // Top 1 (only in front of PHOS) parCrb[0] = 111.48/2.0; parCrb[1] = 105.00/2.0; parCrb[2] = fgkSMpltT/2.0; xpos = 0.0; ypos = 0.0; zpos = fgkSMpltT/2.0 - fgkSheight/2.0; gMC->Gsposp("USCR",22,"UTS2", xpos, ypos,-zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR",23,"UTS3", xpos, ypos,-zpos,0,"ONLY",parCrb,kNparCrb); // Top 2 (only in front of PHOS) parCrb[0] = 111.48/2.0; parCrb[1] = 56.00/2.0; parCrb[2] = fgkSMpltT/2.0; xpos = 0.0; ypos = 85.5; zpos = fgkSMpltT/2.0 - fgkSheight/2.0; gMC->Gsposp("USCR",24,"UTS2", xpos, ypos,-zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR",25,"UTS3", xpos, ypos,-zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR",26,"UTS2", xpos,-ypos,-zpos,0,"ONLY",parCrb,kNparCrb); gMC->Gsposp("USCR",27,"UTS3", xpos,-ypos,-zpos,0,"ONLY",parCrb,kNparCrb); // // The chamber support rails // const Float_t kSRLhgt = 2.00; const Float_t kSRLwidA = 2.3; const Float_t kSRLwidB = 1.947; const Float_t kSRLdst = 1.135; const Int_t kNparSRL = 11; Float_t parSRL[kNparSRL]; // Trapezoidal shape parSRL[ 0] = fgkSlength/2.0; parSRL[ 1] = 0.0; parSRL[ 2] = 0.0; parSRL[ 3] = kSRLhgt /2.0; parSRL[ 4] = kSRLwidB /2.0; parSRL[ 5] = kSRLwidA /2.0; parSRL[ 6] = 5.0; parSRL[ 7] = kSRLhgt /2.0; parSRL[ 8] = kSRLwidB /2.0; parSRL[ 9] = kSRLwidA /2.0; parSRL[10] = 5.0; gMC->Gsvolu("USRL","TRAP",idtmed[1301-1],parSRL,kNparSRL); xpos = 0.0; ypos = 0.0; zpos = 0.0; for (ilayer = 1; ilayer < kNlayer; ilayer++) { xpos = fgkCwidth[ilayer]/2.0 + kSRLwidA/2.0 + kSRLdst; ypos = 0.0; zpos = fgkVrocsm + fgkSMpltT - fgkCalZpos - fgkSheight/2.0 + fgkCraH + fgkCdrH - fgkCalH - kSRLhgt/2.0 + ilayer * (fgkCH + fgkVspace); gMC->Gspos("USRL",ilayer+1 ,"UTI1", xpos,ypos,zpos,matrix[2],"ONLY"); gMC->Gspos("USRL",ilayer+1+ kNlayer,"UTI1",-xpos,ypos,zpos,matrix[3],"ONLY"); gMC->Gspos("USRL",ilayer+1+2*kNlayer,"UTI2", xpos,ypos,zpos,matrix[2],"ONLY"); gMC->Gspos("USRL",ilayer+1+3*kNlayer,"UTI2",-xpos,ypos,zpos,matrix[3],"ONLY"); gMC->Gspos("USRL",ilayer+1+4*kNlayer,"UTI3", xpos,ypos,zpos,matrix[2],"ONLY"); gMC->Gspos("USRL",ilayer+1+5*kNlayer,"UTI3",-xpos,ypos,zpos,matrix[3],"ONLY"); } // // The cross bars between the chambers // const Float_t kSCBwid = 1.0; const Float_t kSCBthk = 2.0; const Float_t kSCHhgt = 0.3; const Int_t kNparSCB = 3; Float_t parSCB[kNparSCB]; parSCB[1] = kSCBwid/2.0; parSCB[2] = fgkCH /2.0 + fgkVspace/2.0 - kSCHhgt; const Int_t kNparSCI = 3; Float_t parSCI[kNparSCI]; parSCI[1] = -1; xpos = 0.0; ypos = 0.0; zpos = 0.0; for (ilayer = 0; ilayer < kNlayer; ilayer++) { // The aluminum of the cross bars parSCB[0] = fgkCwidth[ilayer]/2.0 + kSRLdst/2.0; snprintf(cTagV,kTag,"USF%01d",ilayer); gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB); // The empty regions in the cross bars Float_t thkSCB = kSCBthk; if (ilayer < 2) { thkSCB *= 1.5; } parSCI[2] = parSCB[2] - thkSCB; parSCI[0] = parSCB[0]/4.0 - kSCBthk; snprintf(cTagV,kTag,"USI%01d",ilayer); gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parSCI,kNparSCI); snprintf(cTagV,kTag,"USI%01d",ilayer); snprintf(cTagM,kTag,"USF%01d",ilayer); ypos = 0.0; zpos = 0.0; xpos = parSCI[0] + thkSCB/2.0; gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); xpos = - parSCI[0] - thkSCB/2.0; gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY"); xpos = 3.0 * parSCI[0] + 1.5 * thkSCB; gMC->Gspos(cTagV,3,cTagM,xpos,ypos,zpos,0,"ONLY"); xpos = - 3.0 * parSCI[0] - 1.5 * thkSCB; gMC->Gspos(cTagV,4,cTagM,xpos,ypos,zpos,0,"ONLY"); snprintf(cTagV,kTag,"USF%01d",ilayer); xpos = 0.0; zpos = fgkVrocsm + fgkSMpltT + parSCB[2] - fgkSheight/2.0 + ilayer * (fgkCH + fgkVspace); ypos = fgkClength[ilayer][2]/2.0 + fgkClength[ilayer][1]; gMC->Gspos(cTagV, 1,"UTI1", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos(cTagV, 3,"UTI2", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos(cTagV, 5,"UTI3", xpos,ypos,zpos,0,"ONLY"); ypos = - fgkClength[ilayer][2]/2.0 - fgkClength[ilayer][1]; gMC->Gspos(cTagV, 2,"UTI1", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos(cTagV, 4,"UTI2", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos(cTagV, 6,"UTI3", xpos,ypos,zpos,0,"ONLY"); } // // The horizontal connections between the cross bars // const Int_t kNparSCH = 3; Float_t parSCH[kNparSCH]; for (ilayer = 1; ilayer < kNlayer-1; ilayer++) { parSCH[0] = fgkCwidth[ilayer]/2.0; parSCH[1] = (fgkClength[ilayer+1][2]/2.0 + fgkClength[ilayer+1][1] - fgkClength[ilayer ][2]/2.0 - fgkClength[ilayer ][1])/2.0; parSCH[2] = kSCHhgt/2.0; snprintf(cTagV,kTag,"USH%01d",ilayer); gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCH,kNparSCH); xpos = 0.0; ypos = fgkClength[ilayer][2]/2.0 + fgkClength[ilayer][1] + parSCH[1]; zpos = fgkVrocsm + fgkSMpltT - kSCHhgt/2.0 - fgkSheight/2.0 + (ilayer+1) * (fgkCH + fgkVspace); gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos(cTagV,3,"UTI2", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos(cTagV,5,"UTI3", xpos,ypos,zpos,0,"ONLY"); ypos = -ypos; gMC->Gspos(cTagV,2,"UTI1", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos(cTagV,4,"UTI2", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos(cTagV,6,"UTI3", xpos,ypos,zpos,0,"ONLY"); } // // The aymmetric flat frame in the middle // // The envelope volume (aluminum) parTRD[0] = 87.60/2.0; parTRD[1] = 114.00/2.0; parTRD[2] = 1.20/2.0; parTRD[3] = 71.30/2.0; gMC->Gsvolu("USDB","TRD1",idtmed[1301-1],parTRD,kNparTRD); // Empty spaces (air) parTRP[ 0] = 1.20/2.0; parTRP[ 1] = 0.0; parTRP[ 2] = 0.0; parTRP[ 3] = 27.00/2.0; parTRP[ 4] = 50.60/2.0; parTRP[ 5] = 5.00/2.0; parTRP[ 6] = 3.5; parTRP[ 7] = 27.00/2.0; parTRP[ 8] = 50.60/2.0; parTRP[ 9] = 5.00/2.0; parTRP[10] = 3.5; gMC->Gsvolu("USD1","TRAP",idtmed[1302-1],parTRP,kNparTRP); xpos = 18.0; ypos = 0.0; zpos = 27.00/2.0 - 71.3/2.0; gMC->Gspos("USD1",1,"USDB", xpos, ypos, zpos,matrix[2],"ONLY"); // Empty spaces (air) parTRP[ 0] = 1.20/2.0; parTRP[ 1] = 0.0; parTRP[ 2] = 0.0; parTRP[ 3] = 33.00/2.0; parTRP[ 4] = 5.00/2.0; parTRP[ 5] = 62.10/2.0; parTRP[ 6] = 3.5; parTRP[ 7] = 33.00/2.0; parTRP[ 8] = 5.00/2.0; parTRP[ 9] = 62.10/2.0; parTRP[10] = 3.5; gMC->Gsvolu("USD2","TRAP",idtmed[1302-1],parTRP,kNparTRP); xpos = 21.0; ypos = 0.0; zpos = 71.3/2.0 - 33.0/2.0; gMC->Gspos("USD2",1,"USDB", xpos, ypos, zpos,matrix[2],"ONLY"); // Empty spaces (air) parBOX[ 0] = 22.50/2.0; parBOX[ 1] = 1.20/2.0; parBOX[ 2] = 70.50/2.0; gMC->Gsvolu("USD3","BOX ",idtmed[1302-1],parBOX,kNparBOX); xpos = -25.75; ypos = 0.0; zpos = 0.4; gMC->Gspos("USD3",1,"USDB", xpos, ypos, zpos, 0,"ONLY"); // Empty spaces (air) parTRP[ 0] = 1.20/2.0; parTRP[ 1] = 0.0; parTRP[ 2] = 0.0; parTRP[ 3] = 25.50/2.0; parTRP[ 4] = 5.00/2.0; parTRP[ 5] = 65.00/2.0; parTRP[ 6] = -1.0; parTRP[ 7] = 25.50/2.0; parTRP[ 8] = 5.00/2.0; parTRP[ 9] = 65.00/2.0; parTRP[10] = -1.0; gMC->Gsvolu("USD4","TRAP",idtmed[1302-1],parTRP,kNparTRP); xpos = 2.0; ypos = 0.0; zpos = -1.6; gMC->Gspos("USD4",1,"USDB", xpos, ypos, zpos,matrix[6],"ONLY"); // Empty spaces (air) parTRP[ 0] = 1.20/2.0; parTRP[ 1] = 0.0; parTRP[ 2] = 0.0; parTRP[ 3] = 23.50/2.0; parTRP[ 4] = 63.50/2.0; parTRP[ 5] = 5.00/2.0; parTRP[ 6] = 16.0; parTRP[ 7] = 23.50/2.0; parTRP[ 8] = 63.50/2.0; parTRP[ 9] = 5.00/2.0; parTRP[10] = 16.0; gMC->Gsvolu("USD5","TRAP",idtmed[1302-1],parTRP,kNparTRP); xpos = 36.5; ypos = 0.0; zpos = -1.5; gMC->Gspos("USD5",1,"USDB", xpos, ypos, zpos,matrix[5],"ONLY"); // Empty spaces (air) parTRP[ 0] = 1.20/2.0; parTRP[ 1] = 0.0; parTRP[ 2] = 0.0; parTRP[ 3] = 70.50/2.0; parTRP[ 4] = 4.50/2.0; parTRP[ 5] = 16.50/2.0; parTRP[ 6] = -5.0; parTRP[ 7] = 70.50/2.0; parTRP[ 8] = 4.50/2.0; parTRP[ 9] = 16.50/2.0; parTRP[10] = -5.0; gMC->Gsvolu("USD6","TRAP",idtmed[1302-1],parTRP,kNparTRP); xpos = -43.7; ypos = 0.0; zpos = 0.4; gMC->Gspos("USD6",1,"USDB", xpos, ypos, zpos,matrix[2],"ONLY"); xpos = 0.0; ypos = fgkClength[5][2]/2.0; zpos = 0.04; gMC->Gspos("USDB",1,"UTI1", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USDB",2,"UTI1", xpos,-ypos, zpos, 0,"ONLY"); gMC->Gspos("USDB",3,"UTI2", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USDB",4,"UTI2", xpos,-ypos, zpos, 0,"ONLY"); gMC->Gspos("USDB",5,"UTI3", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USDB",6,"UTI3", xpos,-ypos, zpos, 0,"ONLY"); // Upper bar (aluminum) parBOX[0] = 95.00/2.0; parBOX[1] = 1.20/2.0; parBOX[2] = 3.00/2.0; gMC->Gsvolu("USD7","BOX ",idtmed[1301-1],parBOX,kNparBOX); xpos = 0.0; ypos = fgkClength[5][2]/2.0; zpos = fgkSheight/2.0 - fgkSMpltT - 3.00/2.0; gMC->Gspos("USD7",1,"UTI1", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USD7",2,"UTI1", xpos,-ypos, zpos, 0,"ONLY"); gMC->Gspos("USD7",3,"UTI2", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USD7",4,"UTI2", xpos,-ypos, zpos, 0,"ONLY"); gMC->Gspos("USD7",5,"UTI3", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USD7",6,"UTI3", xpos,-ypos, zpos, 0,"ONLY"); // Lower bar (aluminum) parBOX[0] = 90.22/2.0; parBOX[1] = 1.20/2.0; parBOX[2] = 1.74/2.0; gMC->Gsvolu("USD8","BOX ",idtmed[1301-1],parBOX,kNparBOX); xpos = 0.0; ypos = fgkClength[5][2]/2.0 - 0.1; zpos = -fgkSheight/2.0 + fgkSMpltT + 2.27; gMC->Gspos("USD8",1,"UTI1", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USD8",2,"UTI1", xpos,-ypos, zpos, 0,"ONLY"); gMC->Gspos("USD8",3,"UTI2", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USD8",4,"UTI2", xpos,-ypos, zpos, 0,"ONLY"); gMC->Gspos("USD8",5,"UTI3", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USD8",6,"UTI3", xpos,-ypos, zpos, 0,"ONLY"); // Lower bar (aluminum) parBOX[0] = 82.60/2.0; parBOX[1] = 1.20/2.0; parBOX[2] = 1.40/2.0; gMC->Gsvolu("USD9","BOX ",idtmed[1301-1],parBOX,kNparBOX); xpos = 0.0; ypos = fgkClength[5][2]/2.0; zpos = -fgkSheight/2.0 + fgkSMpltT + 1.40/2.0; gMC->Gspos("USD9",1,"UTI1", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USD9",2,"UTI1", xpos,-ypos, zpos, 0,"ONLY"); gMC->Gspos("USD9",3,"UTI2", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USD9",4,"UTI2", xpos,-ypos, zpos, 0,"ONLY"); gMC->Gspos("USD9",5,"UTI3", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USD9",6,"UTI3", xpos,-ypos, zpos, 0,"ONLY"); // Front sheet (aluminum) parTRP[ 0] = 0.10/2.0; parTRP[ 1] = 0.0; parTRP[ 2] = 0.0; parTRP[ 3] = 74.50/2.0; parTRP[ 4] = 31.70/2.0; parTRP[ 5] = 44.00/2.0; parTRP[ 6] = -5.0; parTRP[ 7] = 74.50/2.0; parTRP[ 8] = 31.70/2.0; parTRP[ 9] = 44.00/2.0; parTRP[10] = -5.0; gMC->Gsvolu("USDF","TRAP",idtmed[1302-1],parTRP,kNparTRP); xpos = -32.0; ypos = fgkClength[5][2]/2.0 + 1.20/2.0 + 0.10/2.0; zpos = 0.0; gMC->Gspos("USDF",1,"UTI1", xpos, ypos, zpos,matrix[2],"ONLY"); gMC->Gspos("USDF",2,"UTI1", xpos,-ypos, zpos,matrix[2],"ONLY"); gMC->Gspos("USDF",3,"UTI2", xpos, ypos, zpos,matrix[2],"ONLY"); gMC->Gspos("USDF",4,"UTI2", xpos,-ypos, zpos,matrix[2],"ONLY"); gMC->Gspos("USDF",5,"UTI3", xpos, ypos, zpos,matrix[2],"ONLY"); gMC->Gspos("USDF",6,"UTI3", xpos,-ypos, zpos,matrix[2],"ONLY"); // // The flat frame in front of the chambers // // The envelope volume (aluminum) parTRD[0] = 90.00/2.0 - 0.1; parTRD[1] = 114.00/2.0 - 0.1; parTRD[2] = 1.50/2.0; parTRD[3] = 70.30/2.0; gMC->Gsvolu("USCB","TRD1",idtmed[1301-1],parTRD,kNparTRD); // Empty spaces (air) parTRD[0] = 87.00/2.0; parTRD[1] = 10.00/2.0; parTRD[2] = 1.50/2.0; parTRD[3] = 26.35/2.0; gMC->Gsvolu("USC1","TRD1",idtmed[1302-1],parTRD,kNparTRD); xpos = 0.0; ypos = 0.0; zpos = 26.35/2.0 - 70.3/2.0; gMC->Gspos("USC1",1,"USCB",xpos,ypos,zpos,0,"ONLY"); // Empty spaces (air) parTRD[0] = 10.00/2.0; parTRD[1] = 111.00/2.0; parTRD[2] = 1.50/2.0; parTRD[3] = 35.05/2.0; gMC->Gsvolu("USC2","TRD1",idtmed[1302-1],parTRD,kNparTRD); xpos = 0.0; ypos = 0.0; zpos = 70.3/2.0 - 35.05/2.0; gMC->Gspos("USC2",1,"USCB",xpos,ypos,zpos,0,"ONLY"); // Empty spaces (air) parTRP[ 0] = 1.50/2.0; parTRP[ 1] = 0.0; parTRP[ 2] = 0.0; parTRP[ 3] = 37.60/2.0; parTRP[ 4] = 63.90/2.0; parTRP[ 5] = 8.86/2.0; parTRP[ 6] = 16.0; parTRP[ 7] = 37.60/2.0; parTRP[ 8] = 63.90/2.0; parTRP[ 9] = 8.86/2.0; parTRP[10] = 16.0; gMC->Gsvolu("USC3","TRAP",idtmed[1302-1],parTRP,kNparTRP); xpos = -30.5; ypos = 0.0; zpos = -2.0; gMC->Gspos("USC3",1,"USCB", xpos, ypos, zpos,matrix[4],"ONLY"); gMC->Gspos("USC3",2,"USCB",-xpos, ypos, zpos,matrix[5],"ONLY"); xpos = 0.0; ypos = fgkClength[5][2]/2.0 + fgkClength[5][1] + fgkClength[5][0]; zpos = 0.0; gMC->Gspos("USCB",1,"UTI1", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USCB",2,"UTI1", xpos,-ypos, zpos, 0,"ONLY"); gMC->Gspos("USCB",3,"UTI2", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USCB",4,"UTI2", xpos,-ypos, zpos, 0,"ONLY"); gMC->Gspos("USCB",5,"UTI3", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USCB",6,"UTI3", xpos,-ypos, zpos, 0,"ONLY"); // Upper bar (aluminum) parBOX[0] = 95.00/2.0; parBOX[1] = 1.50/2.0; parBOX[2] = 3.00/2.0; gMC->Gsvolu("USC4","BOX ",idtmed[1301-1],parBOX,kNparBOX); xpos = 0.0; ypos = fgkClength[5][2]/2.0 + fgkClength[5][1] + fgkClength[5][0]; zpos = fgkSheight/2.0 - fgkSMpltT - 3.00/2.0; gMC->Gspos("USC4",1,"UTI1", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USC4",2,"UTI1", xpos,-ypos, zpos, 0,"ONLY"); gMC->Gspos("USC4",3,"UTI2", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USC4",4,"UTI2", xpos,-ypos, zpos, 0,"ONLY"); gMC->Gspos("USC4",5,"UTI3", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USC4",6,"UTI3", xpos,-ypos, zpos, 0,"ONLY"); // Lower bar (aluminum) parBOX[0] = 90.22/2.0; parBOX[1] = 1.50/2.0; parBOX[2] = 2.00/2.0; gMC->Gsvolu("USC5","BOX ",idtmed[1301-1],parBOX,kNparBOX); xpos = 0.0; ypos = fgkClength[5][2]/2.0 + fgkClength[5][1] + fgkClength[5][0]; zpos = -fgkSheight/2.0 + fgkSMpltT + 2.60; gMC->Gspos("USC5",1,"UTI1", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USC5",2,"UTI1", xpos,-ypos, zpos, 0,"ONLY"); gMC->Gspos("USC5",3,"UTI2", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USC5",4,"UTI2", xpos,-ypos, zpos, 0,"ONLY"); gMC->Gspos("USC5",5,"UTI3", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USC5",6,"UTI3", xpos,-ypos, zpos, 0,"ONLY"); // Lower bar (aluminum) parBOX[0] = 82.60/2.0; parBOX[1] = 1.50/2.0; parBOX[2] = 1.60/2.0; gMC->Gsvolu("USC6","BOX ",idtmed[1301-1],parBOX,kNparBOX); xpos = 0.0; ypos = fgkClength[5][2]/2.0 + fgkClength[5][1] + fgkClength[5][0]; zpos = -fgkSheight/2.0 + fgkSMpltT + 1.60/2.0; gMC->Gspos("USC6",1,"UTI1", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USC6",2,"UTI1", xpos,-ypos, zpos, 0,"ONLY"); gMC->Gspos("USC6",3,"UTI2", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USC6",4,"UTI2", xpos,-ypos, zpos, 0,"ONLY"); gMC->Gspos("USC6",5,"UTI3", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("USC6",6,"UTI3", xpos,-ypos, zpos, 0,"ONLY"); // // The long corner ledges // const Int_t kNparSCL = 3; Float_t parSCL[kNparSCL]; const Int_t kNparSCLb = 11; Float_t parSCLb[kNparSCLb]; // Upper ledges // Thickness of the corner ledges const Float_t kSCLthkUa = 0.6; const Float_t kSCLthkUb = 0.6; // Width of the corner ledges const Float_t kSCLwidUa = 3.2; const Float_t kSCLwidUb = 4.8; // Position of the corner ledges const Float_t kSCLposxUa = 0.7; const Float_t kSCLposxUb = 3.3; const Float_t kSCLposzUa = 1.65; const Float_t kSCLposzUb = 0.3; // Vertical parSCL[0] = kSCLthkUa /2.0; parSCL[1] = fgkSlength/2.0; parSCL[2] = kSCLwidUa /2.0; gMC->Gsvolu("USL1","BOX ",idtmed[1301-1],parSCL,kNparSCL); xpos = fgkSwidth2/2.0 - fgkSMpltT - kSCLposxUa; ypos = 0.0; zpos = fgkSheight/2.0 - fgkSMpltT - kSCLposzUa; gMC->Gspos("USL1",1,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY"); xpos = -xpos; gMC->Gspos("USL1",2,"UTI1", xpos,ypos,zpos,matrix[1],"ONLY"); // Horizontal parSCL[0] = kSCLwidUb /2.0; parSCL[1] = fgkSlength/2.0; parSCL[2] = kSCLthkUb /2.0; gMC->Gsvolu("USL2","BOX ",idtmed[1301-1],parSCL,kNparSCL); xpos = fgkSwidth2/2.0 - fgkSMpltT - kSCLposxUb; ypos = 0.0; zpos = fgkSheight/2.0 - fgkSMpltT - kSCLposzUb; gMC->Gspos("USL2",1,"UTI1", xpos,ypos,zpos, 0,"ONLY"); gMC->Gspos("USL2",3,"UTI2", xpos,ypos,zpos, 0,"ONLY"); gMC->Gspos("USL2",5,"UTI3", xpos,ypos,zpos, 0,"ONLY"); xpos = -xpos; gMC->Gspos("USL2",2,"UTI1", xpos,ypos,zpos, 0,"ONLY"); gMC->Gspos("USL2",4,"UTI2", xpos,ypos,zpos, 0,"ONLY"); gMC->Gspos("USL2",6,"UTI3", xpos,ypos,zpos, 0,"ONLY"); // Lower ledges // Thickness of the corner ledges const Float_t kSCLthkLa = 2.464; const Float_t kSCLthkLb = 1.0; // Width of the corner ledges const Float_t kSCLwidLa = 8.3; const Float_t kSCLwidLb = 4.0; // Position of the corner ledges const Float_t kSCLposxLa = (3.0 * kSCLthkLb - kSCLthkLa) / 4.0 + 0.05; const Float_t kSCLposxLb = kSCLthkLb + kSCLwidLb/2.0 + 0.05; const Float_t kSCLposzLa = kSCLwidLa/2.0; const Float_t kSCLposzLb = kSCLthkLb/2.0; // Vertical // Trapezoidal shape parSCLb[ 0] = fgkSlength/2.0; parSCLb[ 1] = 0.0; parSCLb[ 2] = 0.0; parSCLb[ 3] = kSCLwidLa /2.0; parSCLb[ 4] = kSCLthkLb /2.0; parSCLb[ 5] = kSCLthkLa /2.0; parSCLb[ 6] = 5.0; parSCLb[ 7] = kSCLwidLa /2.0; parSCLb[ 8] = kSCLthkLb /2.0; parSCLb[ 9] = kSCLthkLa /2.0; parSCLb[10] = 5.0; gMC->Gsvolu("USL3","TRAP",idtmed[1301-1],parSCLb,kNparSCLb); xpos = fgkSwidth1/2.0 - fgkSMpltT - kSCLposxLa; ypos = 0.0; zpos = - fgkSheight/2.0 + fgkSMpltT + kSCLposzLa; gMC->Gspos("USL3",1,"UTI1", xpos,ypos,zpos,matrix[2],"ONLY"); gMC->Gspos("USL3",3,"UTI2", xpos,ypos,zpos,matrix[2],"ONLY"); gMC->Gspos("USL3",5,"UTI3", xpos,ypos,zpos,matrix[2],"ONLY"); xpos = -xpos; gMC->Gspos("USL3",2,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY"); gMC->Gspos("USL3",4,"UTI2", xpos,ypos,zpos,matrix[3],"ONLY"); gMC->Gspos("USL3",6,"UTI3", xpos,ypos,zpos,matrix[3],"ONLY"); // Horizontal part parSCL[0] = kSCLwidLb /2.0; parSCL[1] = fgkSlength/2.0; parSCL[2] = kSCLthkLb /2.0; gMC->Gsvolu("USL4","BOX ",idtmed[1301-1],parSCL,kNparSCL); xpos = fgkSwidth1/2.0 - fgkSMpltT - kSCLposxLb; ypos = 0.0; zpos = - fgkSheight/2.0 + fgkSMpltT + kSCLposzLb; gMC->Gspos("USL4",1,"UTI1", xpos,ypos,zpos, 0,"ONLY"); gMC->Gspos("USL4",3,"UTI2", xpos,ypos,zpos, 0,"ONLY"); gMC->Gspos("USL4",5,"UTI3", xpos,ypos,zpos, 0,"ONLY"); xpos = -xpos; gMC->Gspos("USL4",2,"UTI1", xpos,ypos,zpos, 0,"ONLY"); gMC->Gspos("USL4",4,"UTI2", xpos,ypos,zpos, 0,"ONLY"); gMC->Gspos("USL4",6,"UTI3", xpos,ypos,zpos, 0,"ONLY"); // // Aluminum plates in the front part of the super modules // const Int_t kNparTrd = 4; Float_t parTrd[kNparTrd]; parTrd[0] = fgkSwidth1/2.0 - 2.5; parTrd[1] = fgkSwidth2/2.0 - 2.5; parTrd[2] = fgkSMpltT /2.0; parTrd[3] = fgkSheight/2.0 - 1.0; gMC->Gsvolu("UTA1","TRD1",idtmed[1301-1],parTrd,kNparTrd); xpos = 0.0; ypos = fgkSMpltT/2.0 - fgkFlength/2.0; zpos = -0.5; gMC->Gspos("UTA1",1,"UTF1",xpos, ypos,zpos, 0,"ONLY"); gMC->Gspos("UTA1",2,"UTF2",xpos,-ypos,zpos, 0,"ONLY"); const Int_t kNparPlt = 3; Float_t parPlt[kNparPlt]; parPlt[0] = 0.0; parPlt[1] = 0.0; parPlt[2] = 0.0; gMC->Gsvolu("UTA2","BOX ",idtmed[1301-1],parPlt,0); xpos = 0.0; ypos = 0.0; zpos = fgkSheight/2.0 - fgkSMpltT/2.0; parPlt[0] = fgkSwidth2/2.0 - 0.2; parPlt[1] = fgkFlength/2.0; parPlt[2] = fgkSMpltT /2.0; gMC->Gsposp("UTA2",1,"UTF2",xpos,ypos,zpos , 0,"ONLY",parPlt,kNparPlt); xpos = (fgkSwidth1 + fgkSwidth2)/4.0 - fgkSMpltT/2.0 - 0.0016; ypos = 0.0; zpos = 0.0; parPlt[0] = fgkSMpltT /2.0; parPlt[1] = fgkFlength/2.0; parPlt[2] = fgkSheight/2.0; gMC->Gsposp("UTA2",2,"UTF2", xpos,ypos,zpos ,matrix[0],"ONLY",parPlt,kNparPlt); gMC->Gsposp("UTA2",3,"UTF2",-xpos,ypos,zpos ,matrix[1],"ONLY",parPlt,kNparPlt); // Additional aluminum bar parBOX[0] = 80.0/2.0; parBOX[1] = 1.0/2.0; parBOX[2] = 10.0/2.0; gMC->Gsvolu("UTA3","BOX ",idtmed[1301-1],parBOX,kNparBOX); xpos = 0.0; ypos = 1.0/2.0 + fgkSMpltT - fgkFlength/2.0; zpos = fgkSheight/2.0 - 1.5 - 10.0/2.0; gMC->Gspos("UTA3",1,"UTF1", xpos, ypos, zpos, 0,"ONLY"); gMC->Gspos("UTA3",2,"UTF2", xpos,-ypos, zpos, 0,"ONLY"); } //_____________________________________________________________________________ void AliTRDgeometry::CreateServices(Int_t *idtmed) { // // Create the geometry of the services // // Names of the TRD services volumina // // UTC1 Cooling arterias (Al) // UTC2 Cooling arterias (Water) // UUxx Volumes for the services at the chambers (Air) // UMCM Readout MCMs (G10/Cu/Si) // UDCS DCSs boards (G10/Cu) // UTP1 Power bars (Cu) // UTCP Cooling pipes (Fe) // UTCH Cooling pipes (Water) // UTPL Power lines (Cu) // UTGD Gas distribution box (V2A) // Int_t ilayer = 0; Int_t istack = 0; Float_t xpos = 0.0; Float_t ypos = 0.0; Float_t zpos = 0.0; const Int_t kTag = 100; Char_t cTagV[kTag]; const Int_t kNparBox = 3; Float_t parBox[kNparBox]; const Int_t kNparTube = 3; Float_t parTube[kNparTube]; // Services inside the baby frame const Float_t kBBMdz = 223.0; const Float_t kBBSdz = 8.5; // Services inside the back frame const Float_t kBFMdz = 118.0; const Float_t kBFSdz = 8.5; // The rotation matrices const Int_t kNmatrix = 10; Int_t matrix[kNmatrix]; gMC->Matrix(matrix[0], 100.0, 0.0, 90.0, 90.0, 10.0, 0.0); // rotation around y-axis gMC->Matrix(matrix[1], 80.0, 0.0, 90.0, 90.0, 10.0, 180.0); // rotation around y-axis gMC->Matrix(matrix[2], 0.0, 0.0, 90.0, 90.0, 90.0, 0.0); gMC->Matrix(matrix[3], 180.0, 0.0, 90.0, 90.0, 90.0, 180.0); gMC->Matrix(matrix[4], 90.0, 0.0, 0.0, 0.0, 90.0, 90.0); gMC->Matrix(matrix[5], 100.0, 0.0, 90.0, 270.0, 10.0, 0.0); gMC->Matrix(matrix[6], 80.0, 0.0, 90.0, 270.0, 10.0, 180.0); gMC->Matrix(matrix[7], 90.0, 10.0, 90.0, 100.0, 0.0, 0.0); // rotation around z-axis gMC->Matrix(matrix[8], 90.0, 350.0, 90.0, 80.0, 0.0, 0.0); // rotation around z-axis gMC->Matrix(matrix[9], 90.0, 90.0, 90.0, 180.0, 0.0, 0.0); // rotation around z-axis // // The cooling arterias // // Width of the cooling arterias const Float_t kCOLwid = 0.8; // Height of the cooling arterias const Float_t kCOLhgt = 6.5; // Positioning of the cooling const Float_t kCOLposx = 1.0; const Float_t kCOLposz = -1.2; // Thickness of the walls of the cooling arterias const Float_t kCOLthk = 0.1; const Int_t kNparCOL = 3; Float_t parCOL[kNparCOL]; parCOL[0] = 0.0; parCOL[1] = 0.0; parCOL[2] = 0.0; gMC->Gsvolu("UTC1","BOX ",idtmed[1308-1],parCOL,0); gMC->Gsvolu("UTC3","BOX ",idtmed[1308-1],parCOL,0); parCOL[0] = kCOLwid/2.0 - kCOLthk; parCOL[1] = -1.0; parCOL[2] = kCOLhgt/2.0 - kCOLthk; gMC->Gsvolu("UTC2","BOX ",idtmed[1314-1],parCOL,kNparCOL); gMC->Gsvolu("UTC4","BOX ",idtmed[1314-1],parCOL,kNparCOL); xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTC2",1,"UTC1", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos("UTC4",1,"UTC3", xpos,ypos,zpos,0,"ONLY"); for (ilayer = 1; ilayer < kNlayer; ilayer++) { // Along the chambers xpos = fgkCwidth[ilayer]/2.0 + kCOLwid/2.0 + kCOLposx; ypos = 0.0; zpos = fgkVrocsm + fgkSMpltT - fgkCalZpos + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz + ilayer * (fgkCH + fgkVspace); parCOL[0] = kCOLwid /2.0; parCOL[1] = fgkSlength/2.0; parCOL[2] = kCOLhgt /2.0; gMC->Gsposp("UTC1",ilayer ,"UTI1", xpos,ypos,zpos ,matrix[0],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC1",ilayer+ kNlayer,"UTI1",-xpos,ypos,zpos ,matrix[1],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC1",ilayer+6*kNlayer,"UTI2", xpos,ypos,zpos ,matrix[0],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC1",ilayer+7*kNlayer,"UTI2",-xpos,ypos,zpos ,matrix[1],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC1",ilayer+8*kNlayer ,"UTI3", xpos,ypos,zpos ,matrix[0],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC1",ilayer+9*kNlayer,"UTI3",-xpos,ypos,zpos ,matrix[1],"ONLY",parCOL,kNparCOL); // Front of supermodules xpos = fgkCwidth[ilayer]/2.0 + kCOLwid/2.0 + kCOLposx; ypos = 0.0; zpos = fgkVrocsm + fgkSMpltT - fgkCalZpos + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz + ilayer * (fgkCH + fgkVspace); parCOL[0] = kCOLwid /2.0; parCOL[1] = fgkFlength/2.0; parCOL[2] = kCOLhgt /2.0; gMC->Gsposp("UTC3",ilayer+2*kNlayer,"UTF1", xpos,ypos,zpos ,matrix[0],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC3",ilayer+3*kNlayer,"UTF1",-xpos,ypos,zpos ,matrix[1],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC3",ilayer+4*kNlayer,"UTF2", xpos,ypos,zpos ,matrix[0],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC3",ilayer+5*kNlayer,"UTF2",-xpos,ypos,zpos ,matrix[1],"ONLY",parCOL,kNparCOL); } for (ilayer = 1; ilayer < kNlayer; ilayer++) { // In baby frame xpos = fgkCwidth[ilayer]/2.0 + kCOLwid/2.0 + kCOLposx - 2.5; ypos = kBBSdz/2.0 - kBBMdz/2.0; zpos = fgkVrocsm + fgkSMpltT - fgkCalZpos + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz + ilayer * (fgkCH + fgkVspace); parCOL[0] = kCOLwid/2.0; parCOL[1] = kBBSdz /2.0; parCOL[2] = kCOLhgt/2.0; gMC->Gsposp("UTC3",ilayer+6*kNlayer,"BBTRD", xpos, ypos, zpos ,matrix[0],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC3",ilayer+7*kNlayer,"BBTRD",-xpos, ypos, zpos ,matrix[1],"ONLY",parCOL,kNparCOL); } for (ilayer = 1; ilayer < kNlayer; ilayer++) { // In back frame xpos = fgkCwidth[ilayer]/2.0 + kCOLwid/2.0 + kCOLposx - 0.3; ypos = -kBFSdz/2.0 + kBFMdz/2.0; zpos = fgkVrocsm + fgkSMpltT - fgkCalZpos + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz + ilayer * (fgkCH + fgkVspace); parCOL[0] = kCOLwid/2.0; parCOL[1] = kBFSdz /2.0; parCOL[2] = kCOLhgt/2.0; gMC->Gsposp("UTC3",ilayer+6*kNlayer,"BFTRD", xpos,ypos,zpos ,matrix[0],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC3",ilayer+7*kNlayer,"BFTRD",-xpos,ypos,zpos ,matrix[1],"ONLY",parCOL,kNparCOL); } // The upper most layer // Along the chambers xpos = fgkCwidth[5]/2.0 - kCOLhgt/2.0 - 1.3; ypos = 0.0; zpos = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0; parCOL[0] = kCOLwid /2.0; parCOL[1] = fgkSlength/2.0; parCOL[2] = kCOLhgt /2.0; gMC->Gsposp("UTC1",6 ,"UTI1", xpos,ypos,zpos ,matrix[3],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC1",6+ kNlayer,"UTI1",-xpos,ypos,zpos ,matrix[3],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC1",6+6*kNlayer,"UTI2", xpos,ypos,zpos ,matrix[3],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC1",6+7*kNlayer,"UTI2",-xpos,ypos,zpos ,matrix[3],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC1",6+8*kNlayer,"UTI3", xpos,ypos,zpos ,matrix[3],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC1",6+9*kNlayer,"UTI3",-xpos,ypos,zpos ,matrix[3],"ONLY",parCOL,kNparCOL); // Front of supermodules xpos = fgkCwidth[5]/2.0 - kCOLhgt/2.0 - 1.3; ypos = 0.0; zpos = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0; parCOL[0] = kCOLwid /2.0; parCOL[1] = fgkFlength/2.0; parCOL[2] = kCOLhgt /2.0; gMC->Gsposp("UTC3",6+2*kNlayer,"UTF1", xpos,ypos,zpos ,matrix[3],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC3",6+3*kNlayer,"UTF1",-xpos,ypos,zpos ,matrix[3],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC3",6+4*kNlayer,"UTF2", xpos,ypos,zpos ,matrix[3],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC3",6+5*kNlayer,"UTF2",-xpos,ypos,zpos ,matrix[3],"ONLY",parCOL,kNparCOL); // In baby frame xpos = fgkCwidth[5]/2.0 - kCOLhgt/2.0 - 3.1; ypos = kBBSdz/2.0 - kBBMdz/2.0; zpos = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0; parCOL[0] = kCOLwid/2.0; parCOL[1] = kBBSdz /2.0; parCOL[2] = kCOLhgt/2.0; gMC->Gsposp("UTC3",6+6*kNlayer,"BBTRD", xpos, ypos, zpos ,matrix[3],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC3",6+7*kNlayer,"BBTRD",-xpos, ypos, zpos ,matrix[3],"ONLY",parCOL,kNparCOL); // In back frame xpos = fgkCwidth[5]/2.0 - kCOLhgt/2.0 - 1.3; ypos = -kBFSdz/2.0 + kBFMdz/2.0; zpos = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0; parCOL[0] = kCOLwid/2.0; parCOL[1] = kBFSdz /2.0; parCOL[2] = kCOLhgt/2.0; gMC->Gsposp("UTC3",6+6*kNlayer,"BFTRD", xpos,ypos,zpos ,matrix[3],"ONLY",parCOL,kNparCOL); gMC->Gsposp("UTC3",6+7*kNlayer,"BFTRD",-xpos,ypos,zpos ,matrix[3],"ONLY",parCOL,kNparCOL); // // The power bus bars // const Float_t kPWRwid = 0.6; // Increase the height of the power bus bars to take into // account the material of additional cables, etc. const Float_t kPWRhgtA = 5.0 + 0.2; const Float_t kPWRhgtB = 5.0; const Float_t kPWRposx = 2.0; const Float_t kPWRposz = 0.1; const Int_t kNparPWR = 3; Float_t parPWR[kNparPWR]; parPWR[0] = 0.0; parPWR[1] = 0.0; parPWR[2] = 0.0; gMC->Gsvolu("UTP1","BOX ",idtmed[1325-1],parPWR,0); gMC->Gsvolu("UTP3","BOX ",idtmed[1325-1],parPWR,0); for (ilayer = 1; ilayer < kNlayer; ilayer++) { // Along the chambers xpos = fgkCwidth[ilayer]/2.0 + kPWRwid/2.0 + kPWRposx; ypos = 0.0; zpos = fgkVrocsm + fgkSMpltT - fgkCalZpos + kPWRhgtA/2.0 - fgkSheight/2.0 + kPWRposz + ilayer * (fgkCH + fgkVspace); parPWR[0] = kPWRwid /2.0; parPWR[1] = fgkSlength/2.0; parPWR[2] = kPWRhgtA /2.0; gMC->Gsposp("UTP1",ilayer ,"UTI1", xpos,ypos,zpos ,matrix[0],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP1",ilayer+ kNlayer,"UTI1",-xpos,ypos,zpos ,matrix[1],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP1",ilayer+6*kNlayer,"UTI2", xpos,ypos,zpos ,matrix[0],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP1",ilayer+7*kNlayer,"UTI2",-xpos,ypos,zpos ,matrix[1],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP1",ilayer+8*kNlayer,"UTI3", xpos,ypos,zpos ,matrix[0],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP1",ilayer+9*kNlayer,"UTI3",-xpos,ypos,zpos ,matrix[1],"ONLY",parPWR,kNparPWR); // Front of supermodule xpos = fgkCwidth[ilayer]/2.0 + kPWRwid/2.0 + kPWRposx; ypos = 0.0; zpos = fgkVrocsm + fgkSMpltT - fgkCalZpos + kPWRhgtA/2.0 - fgkSheight/2.0 + kPWRposz + ilayer * (fgkCH + fgkVspace); parPWR[0] = kPWRwid /2.0; parPWR[1] = fgkFlength/2.0; parPWR[2] = kPWRhgtA /2.0; gMC->Gsposp("UTP3",ilayer+2*kNlayer,"UTF1", xpos,ypos,zpos ,matrix[0],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP3",ilayer+3*kNlayer,"UTF1",-xpos,ypos,zpos ,matrix[1],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP3",ilayer+4*kNlayer,"UTF2", xpos,ypos,zpos ,matrix[0],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP3",ilayer+5*kNlayer,"UTF2",-xpos,ypos,zpos ,matrix[1],"ONLY",parPWR,kNparPWR); } for (ilayer = 1; ilayer < kNlayer; ilayer++) { // In baby frame xpos = fgkCwidth[ilayer]/2.0 + kPWRwid/2.0 + kPWRposx - 2.5; ypos = kBBSdz/2.0 - kBBMdz/2.0; zpos = fgkVrocsm + fgkSMpltT - fgkCalZpos + kPWRhgtB/2.0 - fgkSheight/2.0 + kPWRposz + ilayer * (fgkCH + fgkVspace); parPWR[0] = kPWRwid /2.0; parPWR[1] = kBBSdz /2.0; parPWR[2] = kPWRhgtB/2.0; gMC->Gsposp("UTP3",ilayer+6*kNlayer,"BBTRD", xpos, ypos, zpos ,matrix[0],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP3",ilayer+7*kNlayer,"BBTRD",-xpos, ypos, zpos ,matrix[1],"ONLY",parPWR,kNparPWR); } for (ilayer = 1; ilayer < kNlayer; ilayer++) { // In back frame xpos = fgkCwidth[ilayer]/2.0 + kPWRwid/2.0 + kPWRposx - 0.3; ypos = -kBFSdz/2.0 + kBFMdz/2.0; zpos = fgkVrocsm + fgkSMpltT - fgkCalZpos + kPWRhgtB/2.0 - fgkSheight/2.0 + kPWRposz + ilayer * (fgkCH + fgkVspace); parPWR[0] = kPWRwid /2.0; parPWR[1] = kBFSdz /2.0; parPWR[2] = kPWRhgtB/2.0; gMC->Gsposp("UTP3",ilayer+8*kNlayer,"BFTRD", xpos,ypos,zpos ,matrix[0],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP3",ilayer+9*kNlayer,"BFTRD",-xpos,ypos,zpos ,matrix[1],"ONLY",parPWR,kNparPWR); } // The upper most layer // Along the chambers xpos = fgkCwidth[5]/2.0 + kPWRhgtB/2.0 - 1.3; ypos = 0.0; zpos = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0; parPWR[0] = kPWRwid /2.0; parPWR[1] = fgkSlength/2.0; parPWR[2] = kPWRhgtB /2.0 ; gMC->Gsposp("UTP1",6 ,"UTI1", xpos,ypos,zpos ,matrix[3],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP1",6+ kNlayer,"UTI1",-xpos,ypos,zpos ,matrix[3],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP1",6+6*kNlayer,"UTI2", xpos,ypos,zpos ,matrix[3],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP1",6+7*kNlayer,"UTI2",-xpos,ypos,zpos ,matrix[3],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP1",6+8*kNlayer,"UTI3", xpos,ypos,zpos ,matrix[3],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP1",6+9*kNlayer,"UTI3",-xpos,ypos,zpos ,matrix[3],"ONLY",parPWR,kNparPWR); // Front of supermodules xpos = fgkCwidth[5]/2.0 + kPWRhgtB/2.0 - 1.3; ypos = 0.0; zpos = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0; parPWR[0] = kPWRwid /2.0; parPWR[1] = fgkFlength/2.0; parPWR[2] = kPWRhgtB /2.0; gMC->Gsposp("UTP3",6+2*kNlayer,"UTF1", xpos,ypos,zpos ,matrix[3],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP3",6+3*kNlayer,"UTF1",-xpos,ypos,zpos ,matrix[3],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP3",6+4*kNlayer,"UTF2", xpos,ypos,zpos ,matrix[3],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP3",6+5*kNlayer,"UTF2",-xpos,ypos,zpos ,matrix[3],"ONLY",parPWR,kNparPWR); // In baby frame xpos = fgkCwidth[5]/2.0 + kPWRhgtB/2.0 - 3.0; ypos = kBBSdz/2.0 - kBBMdz/2.0; zpos = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0; parPWR[0] = kPWRwid /2.0; parPWR[1] = kBBSdz /2.0; parPWR[2] = kPWRhgtB/2.0; gMC->Gsposp("UTP3",6+6*kNlayer,"BBTRD", xpos, ypos, zpos ,matrix[3],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP3",6+7*kNlayer,"BBTRD",-xpos, ypos, zpos ,matrix[3],"ONLY",parPWR,kNparPWR); // In back frame xpos = fgkCwidth[5]/2.0 + kPWRhgtB/2.0 - 1.3; ypos = -kBFSdz/2.0 + kBFMdz/2.0; zpos = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0; parPWR[0] = kPWRwid /2.0; parPWR[1] = kBFSdz /2.0; parPWR[2] = kPWRhgtB/2.0; gMC->Gsposp("UTP3",6+8*kNlayer,"BFTRD", xpos,ypos,zpos ,matrix[3],"ONLY",parPWR,kNparPWR); gMC->Gsposp("UTP3",6+9*kNlayer,"BFTRD",-xpos,ypos,zpos ,matrix[3],"ONLY",parPWR,kNparPWR); // // The gas tubes connecting the chambers in the super modules with holes // Material: Stainless steel // parTube[0] = 0.0; parTube[1] = 2.2/2.0; parTube[2] = fgkClength[5][2]/2.0 - fgkHspace/2.0; gMC->Gsvolu("UTG1","TUBE",idtmed[1308-1],parTube,kNparTube); parTube[0] = 0.0; parTube[1] = 2.1/2.0; parTube[2] = fgkClength[5][2]/2.0 - fgkHspace/2.0; gMC->Gsvolu("UTG2","TUBE",idtmed[1309-1],parTube,kNparTube); xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTG2",1,"UTG1",xpos,ypos,zpos,0,"ONLY"); for (ilayer = 0; ilayer < kNlayer; ilayer++) { xpos = fgkCwidth[ilayer]/2.0 + kCOLwid/2.0 - 1.5; ypos = 0.0; zpos = fgkVrocsm + fgkSMpltT + kCOLhgt/2.0 - fgkSheight/2.0 + 5.0 + ilayer * (fgkCH + fgkVspace); gMC->Gspos("UTG1",1+ilayer,"UTI3", xpos, ypos, zpos,matrix[4],"ONLY"); gMC->Gspos("UTG1",7+ilayer,"UTI3",-xpos, ypos, zpos,matrix[4],"ONLY"); } // // The volumes for the services at the chambers // const Int_t kNparServ = 3; Float_t parServ[kNparServ]; for (istack = 0; istack < kNstack; istack++) { for (ilayer = 0; ilayer < kNlayer; ilayer++) { Int_t iDet = GetDetectorSec(ilayer,istack); snprintf(cTagV,kTag,"UU%02d",iDet); parServ[0] = fgkCwidth[ilayer] /2.0; parServ[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0; parServ[2] = fgkCsvH /2.0; gMC->Gsvolu(cTagV,"BOX",idtmed[1302-1],parServ,kNparServ); } } // // The cooling pipes inside the service volumes // // The cooling pipes parTube[0] = 0.0; parTube[1] = 0.0; parTube[2] = 0.0; gMC->Gsvolu("UTCP","TUBE",idtmed[1324-1],parTube,0); // The cooling water parTube[0] = 0.0; parTube[1] = 0.2/2.0; parTube[2] = -1.0; gMC->Gsvolu("UTCH","TUBE",idtmed[1314-1],parTube,kNparTube); // Water inside the cooling pipe xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTCH",1,"UTCP",xpos,ypos,zpos,0,"ONLY"); // Position the cooling pipes in the mother volume for (istack = 0; istack < kNstack; istack++) { for (ilayer = 0; ilayer < kNlayer; ilayer++) { Int_t iDet = GetDetectorSec(ilayer,istack); Int_t iCopy = GetDetector(ilayer,istack,0) * 100; Int_t nMCMrow = GetRowMax(ilayer,istack,0); Float_t ySize = (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW) / ((Float_t) nMCMrow); snprintf(cTagV,kTag,"UU%02d",iDet); for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) { xpos = 0.0; ypos = (0.5 + iMCMrow) * ySize - fgkClength[ilayer][istack]/2.0 + fgkHspace/2.0; zpos = 0.0 + 0.742/2.0; // The cooling pipes parTube[0] = 0.0; parTube[1] = 0.3/2.0; // Thickness of the cooling pipes parTube[2] = fgkCwidth[ilayer]/2.0; gMC->Gsposp("UTCP",iCopy+iMCMrow,cTagV,xpos,ypos,zpos ,matrix[2],"ONLY",parTube,kNparTube); } } } // // The power lines // // The copper power lines parTube[0] = 0.0; parTube[1] = 0.0; parTube[2] = 0.0; gMC->Gsvolu("UTPL","TUBE",idtmed[1305-1],parTube,0); // Position the power lines in the mother volume for (istack = 0; istack < kNstack; istack++) { for (ilayer = 0; ilayer < kNlayer; ilayer++) { Int_t iDet = GetDetectorSec(ilayer,istack); Int_t iCopy = GetDetector(ilayer,istack,0) * 100; Int_t nMCMrow = GetRowMax(ilayer,istack,0); Float_t ySize = (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW) / ((Float_t) nMCMrow); snprintf(cTagV,kTag,"UU%02d",iDet); for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) { xpos = 0.0; ypos = (0.5 + iMCMrow) * ySize - 1.0 - fgkClength[ilayer][istack]/2.0 + fgkHspace/2.0; zpos = -0.4 + 0.742/2.0; parTube[0] = 0.0; parTube[1] = 0.2/2.0; // Thickness of the power lines parTube[2] = fgkCwidth[ilayer]/2.0; gMC->Gsposp("UTPL",iCopy+iMCMrow,cTagV,xpos,ypos,zpos ,matrix[2],"ONLY",parTube,kNparTube); } } } // // The MCMs // const Float_t kMCMx = 3.0; const Float_t kMCMy = 3.0; const Float_t kMCMz = 0.3; const Float_t kMCMpcTh = 0.1; const Float_t kMCMcuTh = 0.0025; const Float_t kMCMsiTh = 0.03; const Float_t kMCMcoTh = 0.04; // The mother volume for the MCMs (air) const Int_t kNparMCM = 3; Float_t parMCM[kNparMCM]; parMCM[0] = kMCMx /2.0; parMCM[1] = kMCMy /2.0; parMCM[2] = kMCMz /2.0; gMC->Gsvolu("UMCM","BOX",idtmed[1302-1],parMCM,kNparMCM); // The MCM carrier G10 layer parMCM[0] = kMCMx /2.0; parMCM[1] = kMCMy /2.0; parMCM[2] = kMCMpcTh/2.0; gMC->Gsvolu("UMC1","BOX",idtmed[1319-1],parMCM,kNparMCM); // The MCM carrier Cu layer parMCM[0] = kMCMx /2.0; parMCM[1] = kMCMy /2.0; parMCM[2] = kMCMcuTh/2.0; gMC->Gsvolu("UMC2","BOX",idtmed[1318-1],parMCM,kNparMCM); // The silicon of the chips parMCM[0] = kMCMx /2.0; parMCM[1] = kMCMy /2.0; parMCM[2] = kMCMsiTh/2.0; gMC->Gsvolu("UMC3","BOX",idtmed[1320-1],parMCM,kNparMCM); // The aluminum of the cooling plates parMCM[0] = kMCMx /2.0; parMCM[1] = kMCMy /2.0; parMCM[2] = kMCMcoTh/2.0; gMC->Gsvolu("UMC4","BOX",idtmed[1324-1],parMCM,kNparMCM); // Put the MCM material inside the MCM mother volume xpos = 0.0; ypos = 0.0; zpos = -kMCMz /2.0 + kMCMpcTh/2.0; gMC->Gspos("UMC1",1,"UMCM",xpos,ypos,zpos,0,"ONLY"); zpos += kMCMpcTh/2.0 + kMCMcuTh/2.0; gMC->Gspos("UMC2",1,"UMCM",xpos,ypos,zpos,0,"ONLY"); zpos += kMCMcuTh/2.0 + kMCMsiTh/2.0; gMC->Gspos("UMC3",1,"UMCM",xpos,ypos,zpos,0,"ONLY"); zpos += kMCMsiTh/2.0 + kMCMcoTh/2.0; gMC->Gspos("UMC4",1,"UMCM",xpos,ypos,zpos,0,"ONLY"); // Position the MCMs in the mother volume for (istack = 0; istack < kNstack; istack++) { for (ilayer = 0; ilayer < kNlayer; ilayer++) { Int_t iDet = GetDetectorSec(ilayer,istack); Int_t iCopy = GetDetector(ilayer,istack,0) * 1000; Int_t nMCMrow = GetRowMax(ilayer,istack,0); Float_t ySize = (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW) / ((Float_t) nMCMrow); Int_t nMCMcol = 8; Float_t xSize = (GetChamberWidth(ilayer) - 2.0*fgkCpadW) / ((Float_t) nMCMcol + 6); // Introduce 6 gaps Int_t iMCM[8] = { 1, 2, 3, 5, 8, 9, 10, 12 }; // 0..7 MCM + 6 gap structure snprintf(cTagV,kTag,"UU%02d",iDet); for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) { for (Int_t iMCMcol = 0; iMCMcol < nMCMcol; iMCMcol++) { xpos = (0.5 + iMCM[iMCMcol]) * xSize + 1.0 - fgkCwidth[ilayer]/2.0; ypos = (0.5 + iMCMrow) * ySize + 1.0 - fgkClength[ilayer][istack]/2.0 + fgkHspace/2.0; zpos = -0.4 + 0.742/2.0; gMC->Gspos("UMCM",iCopy+iMCMrow*10+iMCMcol,cTagV ,xpos,ypos,zpos,0,"ONLY"); // Add two additional smaller cooling pipes on top of the MCMs // to mimic the meandering structure xpos = (0.5 + iMCM[iMCMcol]) * xSize + 1.0 - fgkCwidth[ilayer]/2.0; ypos = (0.5 + iMCMrow) * ySize - fgkClength[ilayer][istack]/2.0 + fgkHspace/2.0; zpos = 0.0 + 0.742/2.0; parTube[0] = 0.0; parTube[1] = 0.3/2.0; // Thickness of the cooling pipes parTube[2] = kMCMx/2.0; gMC->Gsposp("UTCP",iCopy+iMCMrow*10+iMCMcol+ 50,cTagV ,xpos,ypos+1.0,zpos ,matrix[2],"ONLY",parTube,kNparTube); gMC->Gsposp("UTCP",iCopy+iMCMrow*10+iMCMcol+500,cTagV ,xpos,ypos+2.0,zpos ,matrix[2],"ONLY",parTube,kNparTube); } } } } // // The DCS boards // const Float_t kDCSx = 9.0; const Float_t kDCSy = 14.5; const Float_t kDCSz = 0.3; const Float_t kDCSpcTh = 0.15; const Float_t kDCScuTh = 0.01; const Float_t kDCScoTh = 0.04; // The mother volume for the DCSs (air) const Int_t kNparDCS = 3; Float_t parDCS[kNparDCS]; parDCS[0] = kDCSx /2.0; parDCS[1] = kDCSy /2.0; parDCS[2] = kDCSz /2.0; gMC->Gsvolu("UDCS","BOX",idtmed[1302-1],parDCS,kNparDCS); // The DCS carrier G10 layer parDCS[0] = kDCSx /2.0; parDCS[1] = kDCSy /2.0; parDCS[2] = kDCSpcTh/2.0; gMC->Gsvolu("UDC1","BOX",idtmed[1319-1],parDCS,kNparDCS); // The DCS carrier Cu layer parDCS[0] = kDCSx /2.0; parDCS[1] = kDCSy /2.0; parDCS[2] = kDCScuTh/2.0; gMC->Gsvolu("UDC2","BOX",idtmed[1318-1],parDCS,kNparDCS); // The aluminum of the cooling plates parDCS[0] = 5.0 /2.0; parDCS[1] = 5.0 /2.0; parDCS[2] = kDCScoTh/2.0; gMC->Gsvolu("UDC3","BOX",idtmed[1324-1],parDCS,kNparDCS); // Put the DCS material inside the DCS mother volume xpos = 0.0; ypos = 0.0; zpos = -kDCSz /2.0 + kDCSpcTh/2.0; gMC->Gspos("UDC1",1,"UDCS",xpos,ypos,zpos,0,"ONLY"); zpos += kDCSpcTh/2.0 + kDCScuTh/2.0; gMC->Gspos("UDC2",1,"UDCS",xpos,ypos,zpos,0,"ONLY"); zpos += kDCScuTh/2.0 + kDCScoTh/2.0; gMC->Gspos("UDC3",1,"UDCS",xpos,ypos,zpos,0,"ONLY"); // Put the DCS board in the chamber services mother volume for (istack = 0; istack < kNstack; istack++) { for (ilayer = 0; ilayer < kNlayer; ilayer++) { Int_t iDet = GetDetectorSec(ilayer,istack); Int_t iCopy = iDet + 1; xpos = fgkCwidth[ilayer]/2.0 - 1.9 * (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW) / ((Float_t) GetRowMax(ilayer,istack,0)); ypos = 0.05 * fgkClength[ilayer][istack]; zpos = kDCSz/2.0 - fgkCsvH/2.0; snprintf(cTagV,kTag,"UU%02d",iDet); gMC->Gspos("UDCS",iCopy,cTagV,xpos,ypos,zpos,0,"ONLY"); } } // // The ORI boards // const Float_t kORIx = 4.2; const Float_t kORIy = 13.5; const Float_t kORIz = 0.3; const Float_t kORIpcTh = 0.15; const Float_t kORIcuTh = 0.01; const Float_t kORIcoTh = 0.04; // The mother volume for the ORIs (air) const Int_t kNparORI = 3; Float_t parORI[kNparORI]; parORI[0] = kORIx /2.0; parORI[1] = kORIy /2.0; parORI[2] = kORIz /2.0; gMC->Gsvolu("UORI","BOX",idtmed[1302-1],parORI,kNparORI); // The ORI carrier G10 layer parORI[0] = kORIx /2.0; parORI[1] = kORIy /2.0; parORI[2] = kORIpcTh/2.0; gMC->Gsvolu("UOR1","BOX",idtmed[1319-1],parORI,kNparORI); // The ORI carrier Cu layer parORI[0] = kORIx /2.0; parORI[1] = kORIy /2.0; parORI[2] = kORIcuTh/2.0; gMC->Gsvolu("UOR2","BOX",idtmed[1318-1],parORI,kNparORI); // The aluminum of the cooling plates parORI[0] = kORIx /2.0; parORI[1] = kORIy /2.0; parORI[2] = kORIcoTh/2.0; gMC->Gsvolu("UOR3","BOX",idtmed[1324-1],parORI,kNparORI); // Put the ORI material inside the ORI mother volume xpos = 0.0; ypos = 0.0; zpos = -kORIz /2.0 + kORIpcTh/2.0; gMC->Gspos("UOR1",1,"UORI",xpos,ypos,zpos,0,"ONLY"); zpos += kORIpcTh/2.0 + kORIcuTh/2.0; gMC->Gspos("UOR2",1,"UORI",xpos,ypos,zpos,0,"ONLY"); zpos += kORIcuTh/2.0 + kORIcoTh/2.0; gMC->Gspos("UOR3",1,"UORI",xpos,ypos,zpos,0,"ONLY"); // Put the ORI board in the chamber services mother volume for (istack = 0; istack < kNstack; istack++) { for (ilayer = 0; ilayer < kNlayer; ilayer++) { Int_t iDet = GetDetectorSec(ilayer,istack); Int_t iCopy = iDet + 1; xpos = fgkCwidth[ilayer]/2.0 - 1.92 * (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW) / ((Float_t) GetRowMax(ilayer,istack,0)); ypos = -16.0; zpos = kORIz/2.0 - fgkCsvH/2.0; snprintf(cTagV,kTag,"UU%02d",iDet); gMC->Gspos("UORI",iCopy ,cTagV,xpos,ypos,zpos,0,"ONLY"); xpos = -fgkCwidth[ilayer]/2.0 + 3.8 * (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW) / ((Float_t) GetRowMax(ilayer,istack,0)); ypos = -16.0; zpos = kORIz/2.0 - fgkCsvH/2.0; snprintf(cTagV,kTag,"UU%02d",iDet); gMC->Gspos("UORI",iCopy+kNdet,cTagV,xpos,ypos,zpos,0,"ONLY"); } } // // Services in front of the super module // // Gas in-/outlet pipes (INOX) parTube[0] = 0.0; parTube[1] = 0.0; parTube[2] = 0.0; gMC->Gsvolu("UTG3","TUBE",idtmed[1308-1],parTube,0); // The gas inside the in-/outlet pipes (Xe) parTube[0] = 0.0; parTube[1] = 1.2/2.0; parTube[2] = -1.0; gMC->Gsvolu("UTG4","TUBE",idtmed[1309-1],parTube,kNparTube); xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTG4",1,"UTG3",xpos,ypos,zpos,0,"ONLY"); for (ilayer = 0; ilayer < kNlayer-1; ilayer++) { xpos = 0.0; ypos = fgkClength[ilayer][2]/2.0 + fgkClength[ilayer][1] + fgkClength[ilayer][0]; zpos = 9.0 - fgkSheight/2.0 + ilayer * (fgkCH + fgkVspace); parTube[0] = 0.0; parTube[1] = 1.5/2.0; parTube[2] = fgkCwidth[ilayer]/2.0 - 2.5; gMC->Gsposp("UTG3",ilayer+1 ,"UTI1", xpos, ypos, zpos ,matrix[2],"ONLY",parTube,kNparTube); gMC->Gsposp("UTG3",ilayer+1+1*kNlayer,"UTI1", xpos,-ypos, zpos ,matrix[2],"ONLY",parTube,kNparTube); gMC->Gsposp("UTG3",ilayer+1+2*kNlayer,"UTI2", xpos, ypos, zpos ,matrix[2],"ONLY",parTube,kNparTube); gMC->Gsposp("UTG3",ilayer+1+3*kNlayer,"UTI2", xpos,-ypos, zpos ,matrix[2],"ONLY",parTube,kNparTube); gMC->Gsposp("UTG3",ilayer+1+4*kNlayer,"UTI3", xpos, ypos, zpos ,matrix[2],"ONLY",parTube,kNparTube); gMC->Gsposp("UTG3",ilayer+1+5*kNlayer,"UTI3", xpos,-ypos, zpos ,matrix[2],"ONLY",parTube,kNparTube); } // Gas distribution box parBox[0] = 14.50/2.0; parBox[1] = 4.52/2.0; parBox[2] = 5.00/2.0; gMC->Gsvolu("UTGD","BOX ",idtmed[1308-1],parBox,kNparBox); parBox[0] = 14.50/2.0; parBox[1] = 4.00/2.0; parBox[2] = 4.40/2.0; gMC->Gsvolu("UTGI","BOX ",idtmed[1309-1],parBox,kNparBox); parTube[0] = 0.0; parTube[1] = 4.0/2.0; parTube[2] = 8.0/2.0; gMC->Gsvolu("UTGT","TUBE",idtmed[1308-1],parTube,kNparTube); parTube[0] = 0.0; parTube[1] = 3.4/2.0; parTube[2] = 8.0/2.0; gMC->Gsvolu("UTGG","TUBE",idtmed[1309-1],parTube,kNparTube); xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTGI",1,"UTGD",xpos,ypos,zpos, 0,"ONLY"); gMC->Gspos("UTGG",1,"UTGT",xpos,ypos,zpos, 0,"ONLY"); xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTGD",1,"UTF1",xpos,ypos,zpos, 0,"ONLY"); xpos = -3.0; ypos = 0.0; zpos = 6.5; gMC->Gspos("UTGT",1,"UTF1",xpos,ypos,zpos, 0,"ONLY"); xpos = -11.25; ypos = 0.0; zpos = 0.5; gMC->Gspos("UTGT",3,"UTF1",xpos,ypos,zpos,matrix[2],"ONLY"); xpos = 11.25; ypos = 0.0; zpos = 0.5; gMC->Gspos("UTGT",5,"UTF1",xpos,ypos,zpos,matrix[2],"ONLY"); // Cooling manifolds parBox[0] = 5.0/2.0; parBox[1] = 23.0/2.0; parBox[2] = 70.0/2.0; gMC->Gsvolu("UTCM","BOX ",idtmed[1302-1],parBox,kNparBox); parBox[0] = 5.0/2.0; parBox[1] = 5.0/2.0; parBox[2] = 70.0/2.0; gMC->Gsvolu("UTCA","BOX ",idtmed[1308-1],parBox,kNparBox); parBox[0] = 5.0/2.0 - 0.3; parBox[1] = 5.0/2.0 - 0.3; parBox[2] = 70.0/2.0 - 0.3; gMC->Gsvolu("UTCW","BOX ",idtmed[1314-1],parBox,kNparBox); xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTCW",1,"UTCA", xpos, ypos, zpos, 0,"ONLY"); xpos = 0.0; ypos = 5.0/2.0 - 23.0/2.0; zpos = 0.0; gMC->Gspos("UTCA",1,"UTCM", xpos, ypos, zpos, 0,"ONLY"); parTube[0] = 0.0; parTube[1] = 3.0/2.0; parTube[2] = 18.0/2.0; gMC->Gsvolu("UTCO","TUBE",idtmed[1308-1],parTube,kNparTube); parTube[0] = 0.0; parTube[1] = 3.0/2.0 - 0.3; parTube[2] = 18.0/2.0; gMC->Gsvolu("UTCL","TUBE",idtmed[1314-1],parTube,kNparTube); xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTCL",1,"UTCO", xpos, ypos, zpos, 0,"ONLY"); xpos = 0.0; ypos = 2.5; zpos = -70.0/2.0 + 7.0; gMC->Gspos("UTCO",1,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY"); zpos += 7.0; gMC->Gspos("UTCO",2,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY"); zpos += 7.0; gMC->Gspos("UTCO",3,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY"); zpos += 7.0; gMC->Gspos("UTCO",4,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY"); zpos += 7.0; gMC->Gspos("UTCO",5,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY"); zpos += 7.0; gMC->Gspos("UTCO",6,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY"); zpos += 7.0; gMC->Gspos("UTCO",7,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY"); zpos += 7.0; gMC->Gspos("UTCO",8,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY"); xpos = 40.0; ypos = fgkFlength/2.0 - 23.0/2.0; zpos = 0.0; gMC->Gspos("UTCM",1,"UTF1", xpos, ypos, zpos,matrix[0],"ONLY"); gMC->Gspos("UTCM",2,"UTF1",-xpos, ypos, zpos,matrix[1],"ONLY"); gMC->Gspos("UTCM",3,"UTF2", xpos,-ypos, zpos,matrix[5],"ONLY"); gMC->Gspos("UTCM",4,"UTF2",-xpos,-ypos, zpos,matrix[6],"ONLY"); // Power connection boards (Cu) parBox[0] = 0.5/2.0; parBox[1] = 15.0/2.0; parBox[2] = 7.0/2.0; gMC->Gsvolu("UTPC","BOX ",idtmed[1325-1],parBox,kNparBox); for (ilayer = 0; ilayer < kNlayer-1; ilayer++) { xpos = fgkCwidth[ilayer]/2.0 + kPWRwid/2.0; ypos = 0.0; zpos = fgkVrocsm + fgkSMpltT + kPWRhgtA/2.0 - fgkSheight/2.0 + kPWRposz + (ilayer+1) * (fgkCH + fgkVspace); gMC->Gspos("UTPC",ilayer ,"UTF1", xpos,ypos,zpos,matrix[0],"ONLY"); gMC->Gspos("UTPC",ilayer+kNlayer,"UTF1",-xpos,ypos,zpos,matrix[1],"ONLY"); } xpos = fgkCwidth[5]/2.0 + kPWRhgtA/2.0 - 2.0; ypos = 0.0; zpos = fgkSheight/2.0 - fgkSMpltT - 2.0; gMC->Gspos("UTPC",5 ,"UTF1", xpos,ypos,zpos,matrix[3],"ONLY"); gMC->Gspos("UTPC",5+kNlayer,"UTF1",-xpos,ypos,zpos,matrix[3],"ONLY"); // Power connection panel (Al) parBox[0] = 60.0/2.0; parBox[1] = 10.0/2.0; parBox[2] = 3.0/2.0; gMC->Gsvolu("UTPP","BOX ",idtmed[1301-1],parBox,kNparBox); xpos = 0.0; ypos = 0.0; zpos = 18.0; gMC->Gspos("UTPP",1,"UTF1", xpos,ypos,zpos,0,"ONLY"); // // Electronics boxes // // Casing (INOX) parBox[0] = 60.0/2.0; parBox[1] = 10.0/2.0; parBox[2] = 6.0/2.0; gMC->Gsvolu("UTE1","BOX ",idtmed[1308-1],parBox,kNparBox); // Interior (air) parBox[0] = parBox[0] - 0.5; parBox[1] = parBox[1] - 0.5; parBox[2] = parBox[2] - 0.5; gMC->Gsvolu("UTE2","BOX ",idtmed[1302-1],parBox,kNparBox); xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTE2",1,"UTE1",xpos,ypos,zpos,0,"ONLY"); xpos = 0.0; ypos = fgkSlength/2.0 - 10.0/2.0 - 3.0; zpos = -fgkSheight/2.0 + 6.0/2.0 + 1.0; gMC->Gspos("UTE1",1,"UTI1", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos("UTE1",2,"UTI2", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos("UTE1",3,"UTI3", xpos,ypos,zpos,0,"ONLY"); // Casing (INOX) parBox[0] = 50.0/2.0; parBox[1] = 15.0/2.0; parBox[2] = 20.0/2.0; gMC->Gsvolu("UTE3","BOX ",idtmed[1308-1],parBox,kNparBox); // Interior (air) parBox[0] = parBox[0] - 0.5; parBox[1] = parBox[1] - 0.5; parBox[2] = parBox[2] - 0.5; gMC->Gsvolu("UTE4","BOX ",idtmed[1302-1],parBox,kNparBox); xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTE4",1,"UTE3",xpos,ypos,zpos,0,"ONLY"); xpos = 0.0; ypos = -fgkSlength/2.0 + 15.0/2.0 + 3.0; zpos = -fgkSheight/2.0 + 20.0/2.0 + 1.0; gMC->Gspos("UTE3",1,"UTI1", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos("UTE3",2,"UTI2", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos("UTE3",3,"UTI3", xpos,ypos,zpos,0,"ONLY"); // Casing (INOX) parBox[0] = 20.0/2.0; parBox[1] = 7.0/2.0; parBox[2] = 20.0/2.0; gMC->Gsvolu("UTE5","BOX ",idtmed[1308-1],parBox,kNparBox); // Interior (air) parBox[0] = parBox[0] - 0.5; parBox[1] = parBox[1] - 0.5; parBox[2] = parBox[2] - 0.5; gMC->Gsvolu("UTE6","BOX ",idtmed[1302-1],parBox,kNparBox); xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTE6",1,"UTE5",xpos,ypos,zpos,0,"ONLY"); xpos = 20.0; ypos = -fgkSlength/2.0 + 7.0/2.0 + 3.0; zpos = 0.0; gMC->Gspos("UTE5",1,"UTI1", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos("UTE5",2,"UTI2", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos("UTE5",3,"UTI3", xpos,ypos,zpos,0,"ONLY"); xpos = -xpos; gMC->Gspos("UTE5",4,"UTI1", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos("UTE5",5,"UTI2", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos("UTE5",6,"UTI3", xpos,ypos,zpos,0,"ONLY"); } //_____________________________________________________________________________ void AliTRDgeometry::AssembleChamber(Int_t ilayer, Int_t istack) { // // Group volumes UA, UD, UF, UU into an assembly that defines the // alignable volume of a single readout chamber // const Int_t kTag = 100; Char_t cTagV[kTag]; Char_t cTagM[kTag]; Double_t xpos = 0.0; Double_t ypos = 0.0; Double_t zpos = 0.0; Int_t idet = GetDetectorSec(ilayer,istack); // Create the assembly for a given ROC snprintf(cTagM,kTag,"UT%02d",idet); TGeoVolume *roc = new TGeoVolumeAssembly(cTagM); // Add the lower part of the chamber (aluminum frame), // including radiator and drift region xpos = 0.0; ypos = 0.0; zpos = fgkCraH/2.0 + fgkCdrH/2.0 - fgkCHsv/2.0; snprintf(cTagV,kTag,"UA%02d",idet); TGeoVolume *rocA = gGeoManager->GetVolume(cTagV); roc->AddNode(rocA,1,new TGeoTranslation(xpos,ypos,zpos)); // Add the additional aluminum ledges xpos = fgkCwidth[ilayer]/2.0 + fgkCalWmod/2.0; ypos = 0.0; zpos = fgkCraH + fgkCdrH - fgkCalZpos - fgkCalHmod/2.0 - fgkCHsv/2.0; snprintf(cTagV,kTag,"UZ%02d",idet); TGeoVolume *rocZ = gGeoManager->GetVolume(cTagV); roc->AddNode(rocZ,1,new TGeoTranslation( xpos,ypos,zpos)); roc->AddNode(rocZ,2,new TGeoTranslation(-xpos,ypos,zpos)); // Add the additional wacosit ledges xpos = fgkCwidth[ilayer]/2.0 + fgkCwsW/2.0; ypos = 0.0; zpos = fgkCraH + fgkCdrH - fgkCwsH/2.0 - fgkCHsv/2.0; snprintf(cTagV,kTag,"UP%02d",idet); TGeoVolume *rocP = gGeoManager->GetVolume(cTagV); roc->AddNode(rocP,1,new TGeoTranslation( xpos,ypos,zpos)); roc->AddNode(rocP,2,new TGeoTranslation(-xpos,ypos,zpos)); // Add the middle part of the chamber (G10 frame), // including amplification region xpos = 0.0; ypos = 0.0; zpos = fgkCamH/2.0 + fgkCraH + fgkCdrH - fgkCHsv/2.0; snprintf(cTagV,kTag,"UD%02d",idet); TGeoVolume *rocD = gGeoManager->GetVolume(cTagV); roc->AddNode(rocD,1,new TGeoTranslation(xpos,ypos,zpos)); // Add the upper part of the chamber (aluminum frame), // including back panel and FEE xpos = 0.0; ypos = 0.0; zpos = fgkCroH/2.0 + fgkCamH + fgkCraH + fgkCdrH - fgkCHsv/2.0; snprintf(cTagV,kTag,"UF%02d",idet); TGeoVolume *rocF = gGeoManager->GetVolume(cTagV); roc->AddNode(rocF,1,new TGeoTranslation(xpos,ypos,zpos)); // Add the volume with services on top of the back panel xpos = 0.0; ypos = 0.0; zpos = fgkCsvH/2.0 + fgkCroH + fgkCamH + fgkCraH + fgkCdrH - fgkCHsv/2.0; snprintf(cTagV,kTag,"UU%02d",idet); TGeoVolume *rocU = gGeoManager->GetVolume(cTagV); roc->AddNode(rocU,1,new TGeoTranslation(xpos,ypos,zpos)); // Place the ROC assembly into the super modules xpos = 0.0; ypos = 0.0; ypos = fgkClength[ilayer][0] + fgkClength[ilayer][1] + fgkClength[ilayer][2]/2.0; for (Int_t ic = 0; ic < istack; ic++) { ypos -= fgkClength[ilayer][ic]; } ypos -= fgkClength[ilayer][istack]/2.0; zpos = fgkVrocsm + fgkSMpltT + fgkCHsv/2.0 - fgkSheight/2.0 + ilayer * (fgkCH + fgkVspace); TGeoVolume *sm1 = gGeoManager->GetVolume("UTI1"); TGeoVolume *sm2 = gGeoManager->GetVolume("UTI2"); TGeoVolume *sm3 = gGeoManager->GetVolume("UTI3"); sm1->AddNode(roc,1,new TGeoTranslation(xpos,ypos,zpos)); sm2->AddNode(roc,1,new TGeoTranslation(xpos,ypos,zpos)); if (istack != 2) { // w/o middle stack sm3->AddNode(roc,1,new TGeoTranslation(xpos,ypos,zpos)); } } //_____________________________________________________________________________ Bool_t AliTRDgeometry::RotateBack(Int_t det , const Double_t * const loc , Double_t *glb) const { // // Rotates a chambers to transform the corresponding local frame // coordinates into the coordinates of the ALICE restframe . // Int_t sector = GetSector(det); Float_t phi = 2.0 * TMath::Pi() / (Float_t) fgkNsector * ((Float_t) sector + 0.5); glb[0] = loc[0] * TMath::Cos(phi) - loc[1] * TMath::Sin(phi); glb[1] = loc[0] * TMath::Sin(phi) + loc[1] * TMath::Cos(phi); glb[2] = loc[2]; return kTRUE; } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetDetectorSec(Int_t layer, Int_t stack) { // // Convert plane / stack into detector number for one single sector // return (layer + stack * fgkNlayer); } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetDetector(Int_t layer, Int_t stack, Int_t sector) { // // Convert layer / stack / sector into detector number // return (layer + stack * fgkNlayer + sector * fgkNlayer * fgkNstack); } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetLayer(Int_t det) { // // Reconstruct the layer number from the detector number // return ((Int_t) (det % fgkNlayer)); } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetStack(Int_t det) { // // Reconstruct the stack number from the detector number // return ((Int_t) (det % (fgkNlayer * fgkNstack)) / fgkNlayer); } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetStack(Double_t z, Int_t layer) { // // Reconstruct the chamber number from the z position and layer number // // The return function has to be protected for positiveness !! // if ((layer < 0) || (layer >= fgkNlayer)) return -1; Int_t istck = fgkNstack; Double_t zmin = 0.0; Double_t zmax = 0.0; do { istck--; if (istck < 0) break; AliTRDpadPlane *pp = GetPadPlane(layer,istck); zmax = pp->GetRow0(); Int_t nrows = pp->GetNrows(); zmin = zmax - 2 * pp->GetLengthOPad() - (nrows-2) * pp->GetLengthIPad() - (nrows-1) * pp->GetRowSpacing(); } while((z < zmin) || (z > zmax)); return istck; } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetSector(Int_t det) { // // Reconstruct the sector number from the detector number // return ((Int_t) (det / (fgkNlayer * fgkNstack))); } //_____________________________________________________________________________ AliTRDpadPlane *AliTRDgeometry::GetPadPlane(Int_t layer, Int_t stack) { // // Returns the pad plane for a given plane and stack number // if (!fgPadPlaneArray) { CreatePadPlaneArray(); } Int_t ipp = GetDetectorSec(layer,stack); return ((AliTRDpadPlane *) fgPadPlaneArray->At(ipp)); } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetRowMax(Int_t layer, Int_t stack, Int_t /*sector*/) { // // Returns the number of rows on the pad plane // return GetPadPlane(layer,stack)->GetNrows(); } //_____________________________________________________________________________ Int_t AliTRDgeometry::GetColMax(Int_t layer) { // // Returns the number of rows on the pad plane // return GetPadPlane(layer,0)->GetNcols(); } //_____________________________________________________________________________ Double_t AliTRDgeometry::GetRow0(Int_t layer, Int_t stack, Int_t /*sector*/) { // // Returns the position of the border of the first pad in a row // return GetPadPlane(layer,stack)->GetRow0(); } //_____________________________________________________________________________ Double_t AliTRDgeometry::GetCol0(Int_t layer) { // // Returns the position of the border of the first pad in a column // return GetPadPlane(layer,0)->GetCol0(); } //_____________________________________________________________________________ Bool_t AliTRDgeometry::CreateClusterMatrixArray() { // // Create the matrices to transform cluster coordinates from the // local chamber system to the tracking coordinate system // if (!gGeoManager) { return kFALSE; } if(fgClusterMatrixArray) return kTRUE; TString volPath; TString vpStr = "ALIC_1/B077_1/BSEGMO"; TString vpApp1 = "_1/BTRD"; TString vpApp2 = "_1"; TString vpApp3a = "/UTR1_1/UTS1_1/UTI1_1"; TString vpApp3b = "/UTR2_1/UTS2_1/UTI2_1"; TString vpApp3c = "/UTR3_1/UTS3_1/UTI3_1"; fgClusterMatrixArray = new TObjArray(kNdet); AliAlignObjParams o; for (Int_t iLayer = AliGeomManager::kTRD1; iLayer <= AliGeomManager::kTRD6; iLayer++) { for (Int_t iModule = 0; iModule < AliGeomManager::LayerSize(iLayer); iModule++) { Int_t isector = iModule/Nstack(); Int_t istack = iModule%Nstack(); Int_t iLayerTRD = iLayer - AliGeomManager::kTRD1; Int_t lid = GetDetector(iLayerTRD,istack,isector); // Check for disabled supermodules volPath = vpStr; volPath += isector; volPath += vpApp1; volPath += isector; volPath += vpApp2; switch (isector) { case 13: case 14: case 15: // Check for holes in from of PHOS if (istack == 2) { continue; } volPath += vpApp3c; break; case 11: case 12: volPath += vpApp3b; break; default: volPath += vpApp3a; }; if (!gGeoManager->CheckPath(volPath)) { continue; } UShort_t volid = AliGeomManager::LayerToVolUID(iLayer,iModule); const char *symname = AliGeomManager::SymName(volid); TGeoPNEntry *pne = gGeoManager->GetAlignableEntry(symname); const char *path = symname; if (pne) { path = pne->GetTitle(); } else { continue; } if (!strstr(path,"ALIC")) { AliDebugClass(1,Form("Not a valid path: %s\n",path)); continue; } if (!gGeoManager->cd(path)) { AliErrorClass(Form("Cannot go to path: %s\n",path)); continue; } TGeoHMatrix *m = gGeoManager->GetCurrentMatrix(); TGeoRotation mchange; mchange.RotateY(90); mchange.RotateX(90); // // Cluster transformation matrix // TGeoHMatrix rotMatrix(mchange.Inverse()); rotMatrix.MultiplyLeft(m); Double_t sectorAngle = 20.0 * (isector % 18) + 10.0; TGeoHMatrix rotSector; rotSector.RotateZ(sectorAngle); rotMatrix.MultiplyLeft(&rotSector.Inverse()); fgClusterMatrixArray->AddAt(new TGeoHMatrix(rotMatrix),lid); } } return kTRUE; } //_____________________________________________________________________________ TGeoHMatrix *AliTRDgeometry::GetClusterMatrix(Int_t det) { // // Returns the cluster transformation matrix for a given detector // if (!fgClusterMatrixArray) { if (!CreateClusterMatrixArray()) { return NULL; } } return (TGeoHMatrix *) fgClusterMatrixArray->At(det); } //_____________________________________________________________________________ Bool_t AliTRDgeometry::ChamberInGeometry(Int_t det) { // // Checks whether the given detector is part of the current geometry // if (!GetClusterMatrix(det)) { return kFALSE; } else { return kTRUE; } } //_____________________________________________________________________________ Bool_t AliTRDgeometry::IsHole(Int_t /*la*/, Int_t st, Int_t se) const { // // Checks for holes in front of PHOS // if (((se == 13) || (se == 14) || (se == 15)) && (st == 2)) { return kTRUE; } return kFALSE; } //_____________________________________________________________________________ Bool_t AliTRDgeometry::IsOnBoundary(Int_t det, Float_t y, Float_t z, Float_t eps) const { // // Checks whether position is at the boundary of the sensitive volume // Int_t ly = GetLayer(det); if ((ly < 0) || (ly >= fgkNlayer)) return kTRUE; Int_t stk = GetStack(det); if ((stk < 0) || (stk >= fgkNstack)) return kTRUE; AliTRDpadPlane *pp = (AliTRDpadPlane*) fgPadPlaneArray->At(GetDetectorSec(ly, stk)); if(!pp) return kTRUE; Double_t max = pp->GetRow0(); Int_t n = pp->GetNrows(); Double_t min = max - 2 * pp->GetLengthOPad() - (n-2) * pp->GetLengthIPad() - (n-1) * pp->GetRowSpacing(); if(z < min+eps || z > max-eps){ //printf("z : min[%7.2f (%7.2f)] %7.2f max[(%7.2f) %7.2f]\n", min, min+eps, z, max-eps, max); return kTRUE; } min = pp->GetCol0(); n = pp->GetNcols(); max = min +2 * pp->GetWidthOPad() + (n-2) * pp->GetWidthIPad() + (n-1) * pp->GetColSpacing(); if(y < min+eps || y > max-eps){ //printf("y : min[%7.2f (%7.2f)] %7.2f max[(%7.2f) %7.2f]\n", min, min+eps, y, max-eps, max); return kTRUE; } return kFALSE; }