#ifndef ALITRDGEOMETRY_H #define ALITRDGEOMETRY_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ /////////////////////////////////////////////////////////////////////////////// // // // TRD geometry class // // // /////////////////////////////////////////////////////////////////////////////// #include "AliGeometry.h" #include "TObjArray.h" class AliRunLoader; class TGeoHMatrix; class AliTRDgeometry : public AliGeometry { public: enum { kNplan = 6, kNcham = 5, kNsect = 18, kNdet = 540, kNdets = 30 }; AliTRDgeometry(); AliTRDgeometry(const AliTRDgeometry &g); virtual ~AliTRDgeometry(); AliTRDgeometry &operator=(const AliTRDgeometry &g); virtual void CreateGeometry(Int_t *idtmed); virtual Int_t IsVersion() { return 1; }; virtual void Init(); virtual Bool_t Impact(const TParticle* ) const { return kTRUE; }; virtual Bool_t Local2Global(Int_t d, Double_t *local, Double_t *global) const; virtual Bool_t Local2Global(Int_t p, Int_t c, Int_t s , Double_t *local, Double_t *global) const; virtual Bool_t Global2Local(Int_t mode, Double_t *local, Double_t *global , Int_t* index) const; virtual Bool_t Global2Detector(Double_t global[3], Int_t index[3]); virtual Bool_t Rotate(Int_t d, Double_t *pos, Double_t *rot) const; virtual Bool_t RotateBack(Int_t d, Double_t *rot, Double_t *pos) const; void GroupChamber(Int_t iplan, Int_t icham, Int_t *idtmed); void CreateFrame(Int_t *idtmed); void CreateServices(Int_t *idtmed); Bool_t ReadGeoMatrices(); TGeoHMatrix *GetGeoMatrix(Int_t det) { return (TGeoHMatrix *) fMatrixGeo->At(det); } TGeoHMatrix *GetMatrix(Int_t det) { return (TGeoHMatrix *) fMatrixArray->At(det); } TGeoHMatrix *GetCorrectionMatrix(Int_t det) { return (TGeoHMatrix *) fMatrixCorrectionArray->At(det); } static Int_t Nsect() { return fgkNsect; }; static Int_t Nplan() { return fgkNplan; }; static Int_t Ncham() { return fgkNcham; }; static Int_t Ndet() { return fgkNdet; }; static Float_t Rmin() { return fgkRmin; }; static Float_t Rmax() { return fgkRmax; }; static Float_t Zmax1() { return fgkZmax1; }; static Float_t Zmax2() { return fgkZmax2; }; static Float_t Cwidcha() { return (fgkSwidth2 - fgkSwidth1) / fgkSheight * (fgkCH + fgkVspace); }; static Float_t Cheight() { return fgkCH; }; static Float_t Cspace() { return fgkVspace; }; static Float_t CraHght() { return fgkCraH; }; static Float_t CdrHght() { return fgkCdrH; }; static Float_t CamHght() { return fgkCamH; }; static Float_t CroHght() { return fgkCroH; }; static Float_t CroWid() { return fgkCroW; }; static Float_t MyThick() { return fgkMyThick; }; static Float_t DrThick() { return fgkDrThick; }; static Float_t AmThick() { return fgkAmThick; }; static Float_t DrZpos() { return fgkDrZpos; }; static Float_t RpadW() { return fgkRpadW; }; static Float_t CpadW() { return fgkCpadW; }; void SetSMstatus(Int_t sm, Char_t status) { fSMstatus[sm] = status; }; virtual Bool_t IsHole(Int_t /*iplan*/, Int_t /*icham*/, Int_t /*isect*/) const { return kFALSE; }; static Int_t GetDetectorSec(Int_t p, Int_t c); static Int_t GetDetector(Int_t p, Int_t c, Int_t s); virtual Int_t GetPlane(Int_t d) const; virtual Int_t GetChamber(Int_t d) const; virtual Int_t GetSector(Int_t d) const; Char_t GetSMstatus(Int_t sm) const { return fSMstatus[sm]; }; Float_t GetChamberWidth(Int_t p) const { return fCwidth[p]; }; Float_t GetChamberLength(Int_t p, Int_t c) const { return fClength[p][c]; }; virtual void GetGlobal(const AliRecPoint* , TVector3& , TMatrixF& ) const { }; virtual void GetGlobal(const AliRecPoint* , TVector3& ) const { }; static Double_t GetAlpha() { return 2 * 3.14159265358979323846 / fgkNsect; }; static AliTRDgeometry* GetGeometry(AliRunLoader* runLoader = NULL); static Float_t GetTime0(Int_t p) { return fgkTime0[p]; }; protected: static const Int_t fgkNsect; // Number of sectors in the full detector (18) static const Int_t fgkNplan; // Number of planes of the TRD (6) static const Int_t fgkNcham; // Number of chambers in z-direction (5) static const Int_t fgkNdet; // Total number of detectors (18 * 6 * 5 = 540) static const Float_t fgkRmin; // Minimal radius of the TRD static const Float_t fgkRmax; // Maximal radius of the TRD static const Float_t fgkZmax1; // Half-length of the TRD at outer radius static const Float_t fgkZmax2; // Half-length of the TRD at inner radius static const Float_t fgkSheight; // Height of the TRD-volume in spaceframe (BTR1-3) static const Float_t fgkSwidth1; // Lower width of the TRD-volume in spaceframe (BTR1-3) static const Float_t fgkSwidth2; // Upper width of the TRD-volume in spaceframe (BTR1-3) static const Float_t fgkSlenTR1; // Length of the TRD-volume in spaceframe (BTR1) static const Float_t fgkSlenTR2; // Length of the TRD-volume in spaceframe (BTR2) static const Float_t fgkSlenTR3; // Length of the TRD-volume in spaceframe (BTR3) static const Float_t fgkSMpltT; // Thickness of the super module side plates static const Float_t fgkCraH; // Height of the radiator part of the chambers static const Float_t fgkCdrH; // Height of the drift region of the chambers static const Float_t fgkCamH; // Height of the amplification region of the chambers static const Float_t fgkCroH; // Height of the readout of the chambers static const Float_t fgkCH; // Total height of the chambers static const Float_t fgkVspace; // Vertical spacing of the chambers static const Float_t fgkHspace; // Horizontal spacing of the chambers static const Float_t fgkVrocsm; // Radial distance of the first ROC to the outer plates of the SM static const Float_t fgkCalT; // Thickness of the lower aluminum frame static const Float_t fgkCclsT; // Thickness of the lower G10 frame sides static const Float_t fgkCclfT; // Thickness of the lower G10 frame front static const Float_t fgkCcuT; // Thickness of the upper G10 frame static const Float_t fgkCauT; // Thickness of the upper aluminum frame static const Float_t fgkCroW; // Additional width of the readout chamber frames static const Float_t fgkCpadW; // Difference of outer chamber width and pad plane width static const Float_t fgkRpadW; // Difference of outer chamber width and pad plane width static const Float_t fgkRaThick; // Thickness of the radiator static const Float_t fgkMyThick; // Thickness of the mylar-layer static const Float_t fgkXeThick; // Thickness of the gas volume static const Float_t fgkDrThick; // Thickness of the drift region static const Float_t fgkAmThick; // Thickness of the amplification region static const Float_t fgkCuThick; // Thickness of the pad plane static const Float_t fgkSuThick; // Thickness of the HEXCEL+G10 support structure static const Float_t fgkFeThick; // Thickness of the FEE + signal lines static const Float_t fgkCoThick; // Thickness of the PE of the cooling device static const Float_t fgkWaThick; // Thickness of the cooling water static const Float_t fgkRpThick; // Thickness of the PCB readout boards static const Float_t fgkRcThick; // Thickness of the PCB copper layers static const Float_t fgkRaZpos; // Position of the radiator static const Float_t fgkMyZpos; // Position of the mylar-layer static const Float_t fgkDrZpos; // Position of the drift region static const Float_t fgkAmZpos; // Position of the amplification region static const Float_t fgkCuZpos; // Position of the pad plane static const Float_t fgkSuZpos; // Position of the HEXCEL+G10 support structure static const Float_t fgkFeZpos; // Position of the FEE + signal lines static const Float_t fgkCoZpos; // Position of the PE of the cooling device static const Float_t fgkWaZpos; // Position of the cooling water static const Float_t fgkRpZpos; // Position of the PCB readout boards static const Float_t fgkRcZpos; // Position of the PCB copper layers Char_t fSMstatus[kNsect]; // Super module status byte Float_t fCwidth[kNplan]; // Outer widths of the chambers Float_t fClength[kNplan][kNcham]; // Outer lengths of the chambers Float_t fRotA11[kNsect]; // Matrix elements for the rotation Float_t fRotA12[kNsect]; // Matrix elements for the rotation Float_t fRotA21[kNsect]; // Matrix elements for the rotation Float_t fRotA22[kNsect]; // Matrix elements for the rotation Float_t fRotB11[kNsect]; // Matrix elements for the backward rotation Float_t fRotB12[kNsect]; // Matrix elements for the backward rotation Float_t fRotB21[kNsect]; // Matrix elements for the backward rotation Float_t fRotB22[kNsect]; // Matrix elements for the backward rotation static const Double_t fgkTime0Base; // Base value for calculation of Time-position of pad 0 static const Float_t fgkTime0[kNplan]; // Time-position of pad 0 Float_t fChamberUAorig[3*kNdets][3]; // Volumes origin in Float_t fChamberUDorig[3*kNdets][3]; // the chamber Float_t fChamberUForig[3*kNdets][3]; // [3] = x, y, z Float_t fChamberUUorig[3*kNdets][3]; // Float_t fChamberUAboxd[3*kNdets][3]; // Volumes box Float_t fChamberUDboxd[3*kNdets][3]; // dimensions (half) Float_t fChamberUFboxd[3*kNdets][3]; // [3] = x, y, z Float_t fChamberUUboxd[3*kNdets][3]; // TObjArray * fMatrixArray; //! array of matrix - Transformation Global to Local TObjArray * fMatrixCorrectionArray; //! array of Matrix - Transformation Cluster to Tracking systerm TObjArray * fMatrixGeo; //! geo matrices ClassDef(AliTRDgeometry,10) // TRD geometry class }; #endif