/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.12 2003/09/18 09:06:07 cblume Geometry update, Removal of compiler warnings Revision 1.10 2002/11/21 22:38:47 alibrary Removing AliMC and AliMCProcess Revision 1.9 2002/10/31 17:45:35 cblume New chamber geometry Revision 1.8 2002/02/11 14:21:16 cblume Update of the geometry. Get rid of MANY Revision 1.7 2001/05/11 07:56:12 hristov Consistent declarations needed on Alpha Revision 1.6 2001/02/14 18:22:26 cblume Change in the geometry of the padplane Revision 1.5 2000/11/01 14:53:21 cblume Merge with TRD-develop Revision 1.1.4.6 2000/10/15 23:40:01 cblume Remove AliTRDconst Revision 1.1.4.5 2000/10/06 16:49:46 cblume Made Getters const Revision 1.1.4.4 2000/10/04 16:34:58 cblume Replace include files by forward declarations Revision 1.1.4.3 2000/09/22 14:43:41 cblume Allow the pad/timebin-dimensions to be changed after initialization Revision 1.4 2000/10/02 21:28:19 fca Removal of useless dependecies via forward declarations Revision 1.3 2000/06/08 18:32:58 cblume Make code compliant to coding conventions Revision 1.2 2000/05/08 16:17:27 cblume Merge TRD-develop Revision 1.1.4.2 2000/05/08 14:46:44 cblume Include options SetPHOShole() and SetRICHhole() Revision 1.1.4.1 2000/04/27 12:46:04 cblume Corrected bug in full geometry Revision 1.1 2000/02/28 19:01:15 cblume Add new TRD classes */ /////////////////////////////////////////////////////////////////////////////// // // // TRD geometry for the spaceframe without holes // // // /////////////////////////////////////////////////////////////////////////////// #include "TVirtualMC.h" #include "AliTRDgeometryFull.h" #include "AliTRDparameter.h" ClassImp(AliTRDgeometryFull) //_____________________________________________________________________________ AliTRDgeometryFull::AliTRDgeometryFull():AliTRDgeometry() { // // AliTRDgeometryFull default constructor // Init(); } //_____________________________________________________________________________ AliTRDgeometryFull::~AliTRDgeometryFull() { // // AliTRDgeometryFull destructor // } //_____________________________________________________________________________ void AliTRDgeometryFull::Init() { // // Initializes the geometry parameter // Int_t icham; Int_t iplan; fPHOShole = kFALSE; fRICHhole = kFALSE; // The outer lengths of the chambers for the sectors with holes for the PHOS Float_t lengthPH[kNplan][kNcham] = { { 124.0, 117.0, 0.0, 117.0, 124.0 } , { 131.0, 124.0, 0.0, 124.0, 131.0 } , { 138.0, 131.0, 0.0, 131.0, 138.0 } , { 145.0, 138.0, 0.0, 138.0, 145.0 } , { 147.0, 140.0, 0.0, 140.0, 147.0 } , { 147.0, 140.0, 0.0, 140.0, 147.0 } }; // The outer lengths of the chambers for the sectors with holes for the RICH Float_t lengthRH[kNplan][kNcham] = { { 87.5, 0.0, 0.0, 0.0, 87.5 } , { 101.5, 0.0, 0.0, 0.0, 101.5 } , { 115.5, 0.0, 0.0, 0.0, 115.5 } , { 129.5, 0.0, 0.0, 0.0, 129.5 } , { 133.5, 0.0, 0.0, 0.0, 133.5 } , { 133.5, 0.0, 0.0, 0.0, 133.5 } }; for (icham = 0; icham < kNcham; icham++) { for (iplan = 0; iplan < kNplan; iplan++) { fClengthPH[iplan][icham] = lengthPH[iplan][icham]; fClengthRH[iplan][icham] = lengthRH[iplan][icham]; } } } //_____________________________________________________________________________ void AliTRDgeometryFull::CreateGeometry(Int_t *idtmed) { // // Create the TRD geometry without hole // // // Names of the TRD volumina (xx = detector number): // // Lower part of the readout chambers (gas volume + radiator) // // UAxx Aluminum frames (Al) // UBxx G10 frames (C) // UCxx Inner volumes (Air) // // Upper part of the readout chambers (readout plane + fee) // // UDxx G10 frames (C) // UExx Inner volumes of the G10 (Air) // UFxx Aluminum frames (Al) // UGxx Inner volumes of the Al (Air) // // Inner material layers // // UHxx Radiator (Rohacell) // UIxx Entrance window (Mylar) // UJxx Drift volume (Xe/CO2) // UKxx Amplification volume (Xe/CO2) // ULxx Pad plane (Cu) // UMxx Support structure (Rohacell) // const Int_t kNdet = kNplan * kNcham; const Int_t kNparTrd = 4; const Int_t kNparCha = 3; Float_t xpos, ypos, zpos; Float_t parTrd[kNparTrd]; Float_t parCha[kNparCha]; Char_t cTagV[5]; Char_t cTagM[5]; AliTRDgeometry::CreateGeometry(idtmed); // The TRD mother volume for one sector (Air), full length in z-direction // Provides material for side plates of super module parTrd[0] = fgkSwidth1/2.; parTrd[1] = fgkSwidth2/2.; parTrd[2] = fgkSlenTR1/2.; parTrd[3] = fgkSheight/2.; gMC->Gsvolu("UTR1","TRD1",idtmed[1302-1],parTrd,kNparTrd); // The TRD mother volume for one sector (Al), leaving hole for PHOS if (fPHOShole) { gMC->Gsvolu("UTR2","TRD1",idtmed[1302-1],parTrd,kNparTrd); } // The TRD mother volume for one sector (Al), leaving hole for RICH if (fRICHhole) { gMC->Gsvolu("UTR3","TRD1",idtmed[1302-1],parTrd,kNparTrd); } // // The side plates of the super module (Al) parTrd[0] = fgkSwidth1/2. - fgkSMgapT; parTrd[1] = fgkSwidth2/2. - fgkSMgapT; parTrd[2] = fgkSlenTR1/2.; parTrd[3] = fgkSheight/2.; gMC->Gsvolu("UTS1","TRD1",idtmed[1301-1],parTrd,kNparTrd); // The TRD mother volume for one sector (Al), leaving hole for PHOS if (fPHOShole) { gMC->Gsvolu("UTS2","TRD1",idtmed[1301-1],parTrd,kNparTrd); } // The TRD mother volume for one sector (Al), leaving hole for RICH if (fRICHhole) { gMC->Gsvolu("UTS3","TRD1",idtmed[1301-1],parTrd,kNparTrd); } // The inner part of the TRD mother volume for one sector (Air), // full length in z-direction parTrd[0] = fgkSwidth1/2. - fgkSMgapT - fgkSMpltT; parTrd[1] = fgkSwidth2/2. - fgkSMgapT - fgkSMpltT; parTrd[2] = fgkSlenTR1/2.; parTrd[3] = fgkSheight/2.; gMC->Gsvolu("UTI1","TRD1",idtmed[1302-1],parTrd,kNparTrd); // The TRD mother volume for one sector (Air), leaving hole for PHOS if (fPHOShole) { gMC->Gsvolu("UTI2","TRD1",idtmed[1302-1],parTrd,kNparTrd); } // The TRD mother volume for one sector (Air), leaving hole for RICH if (fRICHhole) { gMC->Gsvolu("UTI3","TRD1",idtmed[1302-1],parTrd,kNparTrd); } for (Int_t icham = 0; icham < kNcham; icham++) { for (Int_t iplan = 0; iplan < kNplan; iplan++) { Int_t iDet = GetDetectorSec(iplan,icham); // The lower part of the readout chambers (gas volume + radiator) // The aluminum frames sprintf(cTagV,"UA%02d",iDet); parCha[0] = fCwidth[iplan]/2.; parCha[1] = fClength[iplan][icham]/2. - fgkHspace/2.; parCha[2] = fgkCraH/2. + fgkCdrH/2.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha); // The G10 frames sprintf(cTagV,"UB%02d",iDet); parCha[0] = fCwidth[iplan]/2. - fgkCalT; parCha[1] = -1.; parCha[2] = -1.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha); // The inner part (air) sprintf(cTagV,"UC%02d",iDet); parCha[0] = fCwidth[iplan]/2. - fgkCalT - fgkCclsT; parCha[1] = fClength[iplan][icham]/2. - fgkHspace/2.- fgkCclfT; parCha[2] = -1.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha); if (fPHOShole) { if (fClengthPH[iplan][icham] > 0.0) { // The aluminum frames sprintf(cTagV,"UA%02d",iDet+kNdet); parCha[0] = fCwidth[iplan]/2.; parCha[1] = fClengthPH[iplan][icham]/2. - fgkHspace/2.; parCha[2] = fgkCraH/2. + fgkCdrH/2.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha); // The G10 frames sprintf(cTagV,"UB%02d",iDet+kNdet); parCha[0] = fCwidth[iplan]/2. - fgkCalT; parCha[1] = -1.; parCha[2] = -1.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha); // The inner part (air) sprintf(cTagV,"UC%02d",iDet+kNdet); parCha[0] = fCwidth[iplan]/2. - fgkCalT - fgkCclsT; parCha[1] = fClengthPH[iplan][icham]/2. - fgkHspace/2.- fgkCclfT; parCha[2] = -1.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha); } } if (fRICHhole) { if (fClengthRH[iplan][icham] > 0.0) { // The aluminum frames sprintf(cTagV,"UA%02d",iDet+2*kNdet); parCha[0] = fCwidth[iplan]/2.; parCha[1] = fClengthRH[iplan][icham]/2. - fgkHspace/2.; parCha[2] = fgkCraH/2. + fgkCdrH/2.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha); // The G10 frames sprintf(cTagV,"UB%02d",iDet+2*kNdet); parCha[0] = fCwidth[iplan]/2. - fgkCalT; parCha[1] = -1.; parCha[2] = -1.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha); // The inner part (air) sprintf(cTagV,"UC%02d",iDet+2*kNdet); parCha[0] = fCwidth[iplan]/2. - fgkCalT - fgkCclsT; parCha[1] = fClengthRH[iplan][icham]/2. - fgkHspace/2.- fgkCclfT; parCha[2] = -1.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha); } } // The upper part of the readout chambers (readout plane) // The G10 frames sprintf(cTagV,"UD%02d",iDet); parCha[0] = fCwidth[iplan]/2. + fgkCroW; parCha[1] = fClength[iplan][icham]/2. - fgkHspace/2.; parCha[2] = fgkCamH/2.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha); // The inner part of the G10 frame (air) sprintf(cTagV,"UE%02d",iDet); parCha[0] = fCwidth[iplan]/2. + fgkCroW - fgkCcuT; parCha[1] = fClength[iplan][icham]/2. - fgkHspace/2.- fgkCcuT; parCha[2] = -1.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha); // The aluminum frames sprintf(cTagV,"UF%02d",iDet); parCha[0] = fCwidth[iplan]/2. + fgkCroW; parCha[1] = fClength[iplan][icham]/2. - fgkHspace/2.; parCha[2] = fgkCroH/2.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha); // The inner part of the aluminum frames sprintf(cTagV,"UG%02d",iDet); parCha[0] = fCwidth[iplan]/2. + fgkCroW - fgkCauT; parCha[1] = fClength[iplan][icham]/2. - fgkHspace/2.- fgkCauT; parCha[2] = -1.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha); if (fPHOShole) { if (fClengthPH[iplan][icham] > 0.0) { sprintf(cTagV,"UD%02d",iDet+kNdet); parCha[0] = fCwidth[iplan]/2. + fgkCroW; parCha[1] = fClengthPH[iplan][icham]/2. - fgkHspace/2.; parCha[2] = fgkCamH/2.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha); // The inner part of the G10 frame (air) sprintf(cTagV,"UE%02d",iDet+kNdet); parCha[0] = fCwidth[iplan]/2. + fgkCroW - fgkCcuT; parCha[1] = fClengthPH[iplan][icham]/2. - fgkHspace/2.- fgkCcuT; parCha[2] = -1.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha); // The aluminum frames sprintf(cTagV,"UF%02d",iDet+kNdet); parCha[0] = fCwidth[iplan]/2. + fgkCroW; parCha[1] = fClengthPH[iplan][icham]/2. - fgkHspace/2.; parCha[2] = fgkCroH/2.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha); // The inner part of the aluminum frames sprintf(cTagV,"UG%02d",iDet+kNdet); parCha[0] = fCwidth[iplan]/2. + fgkCroW - fgkCauT; parCha[1] = fClengthPH[iplan][icham]/2. - fgkHspace/2.- fgkCauT; parCha[2] = -1.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha); } } if (fRICHhole) { if (fClengthRH[iplan][icham] > 0.0) { sprintf(cTagV,"UD%02d",iDet+2*kNdet); parCha[0] = fCwidth[iplan]/2. + fgkCroW; parCha[1] = fClengthRH[iplan][icham]/2. - fgkHspace/2.; parCha[2] = fgkCamH/2.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha); // The inner part of the G10 frame (air) sprintf(cTagV,"UE%02d",iDet+2*kNdet); parCha[0] = fCwidth[iplan]/2. + fgkCroW - fgkCcuT; parCha[1] = fClengthRH[iplan][icham]/2. - fgkHspace/2.- fgkCcuT; parCha[2] = -1.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha); // The aluminum frames sprintf(cTagV,"UF%02d",iDet+2*kNdet); parCha[0] = fCwidth[iplan]/2. + fgkCroW; parCha[1] = fClengthRH[iplan][icham]/2. - fgkHspace/2.; parCha[2] = fgkCroH/2.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha); // The inner part of the aluminum frames sprintf(cTagV,"UG%02d",iDet+2*kNdet); parCha[0] = fCwidth[iplan]/2. + fgkCroW - fgkCauT; parCha[1] = fClengthRH[iplan][icham]/2. - fgkHspace/2.- fgkCauT; parCha[2] = -1.; gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha); } } // The material layers inside the chambers parCha[0] = -1.; parCha[1] = -1.; // Rohacell layer (radiator) parCha[2] = fgkRaThick/2; sprintf(cTagV,"UH%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1315-1],parCha,kNparCha); // Mylar layer (entrance window + HV cathode) parCha[2] = fgkMyThick/2; sprintf(cTagV,"UI%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1308-1],parCha,kNparCha); // Xe/Isobutane layer (drift volume) parCha[2] = fgkDrThick/2.; sprintf(cTagV,"UJ%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha); // Xe/Isobutane layer (amplification volume) parCha[2] = fgkAmThick/2.; sprintf(cTagV,"UK%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha); // Cu layer (pad plane) parCha[2] = fgkCuThick/2; sprintf(cTagV,"UL%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1305-1],parCha,kNparCha); // G10 layer (support structure / honeycomb) parCha[2] = fgkSuThick/2; sprintf(cTagV,"UM%02d",iDet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha); if (fPHOShole) { if (fClengthPH[iplan][icham] > 0.0) { // Rohacell layer (radiator) parCha[2] = fgkRaThick/2; sprintf(cTagV,"UH%02d",iDet+kNdet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1315-1],parCha,kNparCha); // Mylar layer (entrance window + HV cathode) parCha[2] = fgkMyThick/2; sprintf(cTagV,"UI%02d",iDet+kNdet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1308-1],parCha,kNparCha); // Xe/Isobutane layer (drift volume) parCha[2] = fgkDrThick/2.; sprintf(cTagV,"UJ%02d",iDet+kNdet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha); // Xe/Isobutane layer (amplification volume) parCha[2] = fgkAmThick/2.; sprintf(cTagV,"UK%02d",iDet+kNdet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha); // Cu layer (pad plane) parCha[2] = fgkCuThick/2; sprintf(cTagV,"UL%02d",iDet+kNdet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1305-1],parCha,kNparCha); // G10 layer (support structure / honeycomb) parCha[2] = fgkSuThick/2; sprintf(cTagV,"UM%02d",iDet+kNdet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha); } } if (fRICHhole) { if (fClengthRH[iplan][icham] > 0.0) { // Rohacell layer (radiator) parCha[2] = fgkRaThick/2; sprintf(cTagV,"UH%02d",iDet+2*kNdet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1315-1],parCha,kNparCha); // Mylar layer (entrance window + HV cathode) parCha[2] = fgkMyThick/2; sprintf(cTagV,"UI%02d",iDet+2*kNdet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1308-1],parCha,kNparCha); // Xe/Isobutane layer (drift volume) parCha[2] = fgkDrThick/2.; sprintf(cTagV,"UJ%02d",iDet+2*kNdet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha); // Xe/Isobutane layer (amplification volume) parCha[2] = fgkAmThick/2.; sprintf(cTagV,"UK%02d",iDet+2*kNdet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha); // Cu layer (pad plane) parCha[2] = fgkCuThick/2; sprintf(cTagV,"UL%02d",iDet+2*kNdet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1305-1],parCha,kNparCha); // G10 layer (support structure / honeycomb) parCha[2] = fgkSuThick/2; sprintf(cTagV,"UM%02d",iDet+2*kNdet); gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha); } } // Position the layers in the chambers xpos = 0; ypos = 0; // Lower part // Rohacell layer (radiator) zpos = fgkRaZpos; sprintf(cTagV,"UH%02d",iDet); sprintf(cTagM,"UC%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Mylar layer (entrance window + HV cathode) zpos = fgkMyZpos; sprintf(cTagV,"UI%02d",iDet); sprintf(cTagM,"UC%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Xe/Isobutane layer (drift volume) zpos = fgkDrZpos; sprintf(cTagV,"UJ%02d",iDet); sprintf(cTagM,"UC%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Upper part // Xe/Isobutane layer (amplification volume) zpos = fgkAmZpos; sprintf(cTagV,"UK%02d",iDet); sprintf(cTagM,"UE%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Readout part // Cu layer (pad plane) zpos = fgkCuZpos; sprintf(cTagV,"UL%02d",iDet); sprintf(cTagM,"UG%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // G10 layer (support structure) zpos = fgkSuZpos; sprintf(cTagV,"UM%02d",iDet); sprintf(cTagM,"UG%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); if (fPHOShole) { if (fClengthPH[iplan][icham] > 0.0) { // Lower part // Rohacell layer (radiator) zpos = fgkRaZpos; sprintf(cTagV,"UH%02d",iDet+kNdet); sprintf(cTagM,"UC%02d",iDet+kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Mylar layer (entrance window + HV cathode) zpos = fgkMyZpos; sprintf(cTagV,"UI%02d",iDet+kNdet); sprintf(cTagM,"UC%02d",iDet+kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Xe/Isobutane layer (drift volume) zpos = fgkDrZpos; sprintf(cTagV,"UJ%02d",iDet+kNdet); sprintf(cTagM,"UC%02d",iDet+kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Upper part // Xe/Isobutane layer (amplification volume) zpos = fgkAmZpos; sprintf(cTagV,"UK%02d",iDet+kNdet); sprintf(cTagM,"UE%02d",iDet+kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Readout part // Cu layer (pad plane) zpos = fgkCuZpos; sprintf(cTagV,"UL%02d",iDet+kNdet); sprintf(cTagM,"UG%02d",iDet+kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // G10 layer (support structure) zpos = fgkSuZpos; sprintf(cTagV,"UM%02d",iDet+kNdet); sprintf(cTagM,"UG%02d",iDet+kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); } } if (fRICHhole) { if (fClengthRH[iplan][icham] > 0.0) { // Lower part // Rohacell layer (radiator) zpos = fgkRaZpos; sprintf(cTagV,"UH%02d",iDet+2*kNdet); sprintf(cTagM,"UC%02d",iDet+2*kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Mylar layer (entrance window + HV cathode) zpos = fgkMyZpos; sprintf(cTagV,"UI%02d",iDet+2*kNdet); sprintf(cTagM,"UC%02d",iDet+2*kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Xe/Isobutane layer (drift volume) zpos = fgkDrZpos; sprintf(cTagV,"UJ%02d",iDet+2*kNdet); sprintf(cTagM,"UC%02d",iDet+2*kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Upper part // Xe/Isobutane layer (amplification volume) zpos = fgkAmZpos; sprintf(cTagV,"UK%02d",iDet+2*kNdet); sprintf(cTagM,"UE%02d",iDet+2*kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // Readout part // Cu layer (pad plane) zpos = fgkCuZpos; sprintf(cTagV,"UL%02d",iDet+2*kNdet); sprintf(cTagM,"UG%02d",iDet+2*kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // G10 layer (support structure) zpos = fgkSuZpos; sprintf(cTagV,"UM%02d",iDet+2*kNdet); sprintf(cTagM,"UG%02d",iDet+2*kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); } } // Position the inner volumes of the chambers in the frames xpos = 0.0; ypos = 0.0; zpos = 0.0; // The inside of the lower G10 frame sprintf(cTagV,"UC%02d",iDet); sprintf(cTagM,"UB%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The lower G10 frame inside the aluminum frame sprintf(cTagV,"UB%02d",iDet); sprintf(cTagM,"UA%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The inside of the upper G10 frame sprintf(cTagV,"UE%02d",iDet); sprintf(cTagM,"UD%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The inside of the upper aluminum frame sprintf(cTagV,"UG%02d",iDet); sprintf(cTagM,"UF%02d",iDet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); if (fPHOShole) { if (fClengthPH[iplan][icham] > 0.0) { // The inside of the lower G10 frame sprintf(cTagV,"UC%02d",iDet+kNdet); sprintf(cTagM,"UB%02d",iDet+kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The lower G10 frame inside the aluminum frame sprintf(cTagV,"UB%02d",iDet+kNdet); sprintf(cTagM,"UA%02d",iDet+kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The inside of the upper G10 frame sprintf(cTagV,"UE%02d",iDet+kNdet); sprintf(cTagM,"UD%02d",iDet+kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The inside of the upper aluminum frame sprintf(cTagV,"UG%02d",iDet+kNdet); sprintf(cTagM,"UF%02d",iDet+kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); } } if (fRICHhole) { if (fClengthRH[iplan][icham] > 0.0) { // The inside of the lower G10 frame sprintf(cTagV,"UC%02d",iDet+2*kNdet); sprintf(cTagM,"UB%02d",iDet+2*kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The lower G10 frame inside the aluminum frame sprintf(cTagV,"UB%02d",iDet+2*kNdet); sprintf(cTagM,"UA%02d",iDet+2*kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The inside of the upper G10 frame sprintf(cTagV,"UE%02d",iDet+2*kNdet); sprintf(cTagM,"UD%02d",iDet+2*kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); // The inside of the upper aluminum frame sprintf(cTagV,"UG%02d",iDet+2*kNdet); sprintf(cTagM,"UF%02d",iDet+2*kNdet); gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY"); } } // Position the frames of the chambers in the TRD mother volume xpos = 0.; ypos = - fClength[iplan][0] - fClength[iplan][1] - fClength[iplan][2]/2.; for (Int_t ic = 0; ic < icham; ic++) { ypos += fClength[iplan][ic]; } ypos += fClength[iplan][icham]/2.; zpos = fgkCraH/2. + fgkCdrH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); // The lower aluminum frame, radiator + drift region sprintf(cTagV,"UA%02d",iDet); gMC->Gspos(cTagV,1,"UTI1",xpos,ypos,zpos,0,"ONLY"); // The upper G10 frame, amplification region sprintf(cTagV,"UD%02d",iDet); zpos += fgkCamH/2. + fgkCraH/2. + fgkCdrH/2.; gMC->Gspos(cTagV,1,"UTI1",xpos,ypos,zpos,0,"ONLY"); // The upper aluminum frame sprintf(cTagV,"UF%02d",iDet); zpos += fgkCroH/2. + fgkCamH/2.; gMC->Gspos(cTagV,1,"UTI1",xpos,ypos,zpos,0,"ONLY"); if (fPHOShole) { if (fClengthPH[iplan][icham] > 0.0) { xpos = 0.; ypos = - fClength[iplan][0] - fClength[iplan][1] - fClength[iplan][2]/2.; for (Int_t ic = 0; ic < icham; ic++) { ypos += fClength[iplan][ic]; } if (icham > 2) { ypos += fClength[iplan][icham]; ypos -= fClengthPH[iplan][icham]/2.; } else { ypos += fClengthPH[iplan][icham]/2.; } zpos = fgkCraH/2. + fgkCdrH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); // The lower aluminum frame, radiator + drift region sprintf(cTagV,"UA%02d",iDet+kNdet); gMC->Gspos(cTagV,1,"UTI2",xpos,ypos,zpos,0,"ONLY"); // The upper G10 frame, amplification region sprintf(cTagV,"UD%02d",iDet+kNdet); zpos += fgkCamH/2. + fgkCraH/2. + fgkCdrH/2.; gMC->Gspos(cTagV,1,"UTI2",xpos,ypos,zpos,0,"ONLY"); // The upper aluminum frame sprintf(cTagV,"UF%02d",iDet+kNdet); zpos += fgkCroH/2. + fgkCamH/2.; gMC->Gspos(cTagV,1,"UTI2",xpos,ypos,zpos,0,"ONLY"); } } if (fRICHhole) { if (fClengthRH[iplan][icham] > 0.0) { xpos = 0.; ypos = - fClength[iplan][0] - fClength[iplan][1] - fClength[iplan][2]/2.; for (Int_t ic = 0; ic < icham; ic++) { ypos += fClength[iplan][ic]; } if (icham > 2) { ypos += fClength[iplan][icham]; ypos -= fClengthRH[iplan][icham]/2.; } else { ypos += fClengthRH[iplan][icham]/2.; } zpos = fgkCraH/2. + fgkCdrH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); // The lower aluminum frame, radiator + drift region sprintf(cTagV,"UA%02d",iDet+2*kNdet); gMC->Gspos(cTagV,1,"UTI3",xpos,ypos,zpos,0,"ONLY"); // The upper G10 frame, amplification region sprintf(cTagV,"UD%02d",iDet+2*kNdet); zpos += fgkCamH/2. + fgkCraH/2. + fgkCdrH/2.; gMC->Gspos(cTagV,1,"UTI3",xpos,ypos,zpos,0,"ONLY"); // The upper aluminum frame sprintf(cTagV,"UF%02d",iDet+2*kNdet); zpos += fgkCroH/2. + fgkCamH/2.; gMC->Gspos(cTagV,1,"UTI3",xpos,ypos,zpos,0,"ONLY"); } } } } xpos = 0.; ypos = 0.; zpos = 0.; gMC->Gspos("UTI1",1,"UTS1",xpos,ypos,zpos,0,"ONLY"); if (fPHOShole) { gMC->Gspos("UTI2",2,"UTS2",xpos,ypos,zpos,0,"ONLY"); } if (fRICHhole) { gMC->Gspos("UTI3",3,"UTS3",xpos,ypos,zpos,0,"ONLY"); } xpos = 0.; ypos = 0.; zpos = 0.; gMC->Gspos("UTS1",1,"UTR1",xpos,ypos,zpos,0,"ONLY"); if (fPHOShole) { gMC->Gspos("UTS2",2,"UTR2",xpos,ypos,zpos,0,"ONLY"); } if (fRICHhole) { gMC->Gspos("UTS3",3,"UTR3",xpos,ypos,zpos,0,"ONLY"); } xpos = 0.; ypos = 0.; zpos = 0.; gMC->Gspos("UTR1",1,"BTR1",xpos,ypos,zpos,0,"ONLY"); if (fPHOShole) { gMC->Gspos("UTR2",2,"BTR2",xpos,ypos,zpos,0,"ONLY"); } else { gMC->Gspos("UTR1",2,"BTR2",xpos,ypos,zpos,0,"ONLY"); } if (fRICHhole) { gMC->Gspos("UTR3",3,"BTR3",xpos,ypos,zpos,0,"ONLY"); } else { gMC->Gspos("UTR1",3,"BTR3",xpos,ypos,zpos,0,"ONLY"); } // Create the volumes of the super module frame CreateFrame(idtmed); // Create the volumes of the services CreateServices(idtmed); } //_____________________________________________________________________________ void AliTRDgeometryFull::CreateFrame(Int_t *idtmed) { // // Create the geometry of the frame of the supermodule // // Names of the TRD services volumina // // USRL Support rails for the chambers (Al) // USxx Support cross bars between the chambers (Al) // Int_t iplan = 0; Float_t xpos = 0.0; Float_t ypos = 0.0; Float_t zpos = 0.0; Char_t cTagV[5]; // // The chamber support rails // const Float_t kSRLwid = 2.0; const Float_t kSRLhgt = 2.3; const Float_t kSRLdst = 0.6; const Int_t kNparSRL = 3; Float_t parSRL[kNparSRL]; parSRL[0] = kSRLwid/2.; parSRL[1] = fgkSlenTR1/2.; parSRL[2] = kSRLhgt/2.; gMC->Gsvolu("USRL","BOX ",idtmed[1301-1],parSRL,kNparSRL); xpos = 0.0; ypos = 0.0; zpos = 0.0; for (iplan = 0; iplan < kNplan; iplan++) { xpos = fCwidth[iplan]/2. + kSRLwid/2. + kSRLdst; ypos = 0.0; zpos = fgkCraH + fgkCdrH - fgkSheight/2. - kSRLhgt/2. + iplan * (fgkCH + fgkVspace); gMC->Gspos("USRL",iplan+1 ,"UTI1", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos("USRL",iplan+1+ kNplan,"UTI1",-xpos,ypos,zpos,0,"ONLY"); if (fPHOShole) { gMC->Gspos("USRL",iplan+1+2*kNplan,"UTI2", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos("USRL",iplan+1+3*kNplan,"UTI2",-xpos,ypos,zpos,0,"ONLY"); } if (fRICHhole) { gMC->Gspos("USRL",iplan+1+4*kNplan,"UTI3", xpos,ypos,zpos,0,"ONLY"); gMC->Gspos("USRL",iplan+1+5*kNplan,"UTI3",-xpos,ypos,zpos,0,"ONLY"); } } // // The cross bars between the chambers // const Float_t kSCBwid = 1.0; const Int_t kNparSCB = 3; Float_t parSCB[kNparSCB]; parSCB[1] = kSCBwid/2.; parSCB[2] = fgkCH/2.; xpos = 0.0; ypos = 0.0; zpos = 0.0; for (iplan = 0; iplan < kNplan; iplan++) { parSCB[0] = fCwidth[iplan]/2. + kSRLdst/2.; sprintf(cTagV,"US0%01d",iplan); gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB); xpos = 0.0; ypos = fgkSlenTR1/2. - kSCBwid/2.; zpos = fgkCH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY"); if (fPHOShole) { gMC->Gspos(cTagV,2,"UTI2", xpos,ypos,zpos,0,"ONLY"); } if (fRICHhole) { gMC->Gspos(cTagV,3,"UTI3", xpos,ypos,zpos,0,"ONLY"); } sprintf(cTagV,"US1%01d",iplan); gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB); xpos = 0.0; ypos = fClength[iplan][2]/2. + fClength[iplan][1]; zpos = fgkCH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY"); if (fPHOShole) { gMC->Gspos(cTagV,2,"UTI2", xpos,ypos,zpos,0,"ONLY"); } if (fRICHhole) { ypos += fClength[iplan][0] - fClengthRH[iplan][0]; gMC->Gspos(cTagV,3,"UTI3", xpos,ypos,zpos,0,"ONLY"); } sprintf(cTagV,"US2%01d",iplan); gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB); xpos = 0.0; ypos = fClength[iplan][2]/2.; zpos = fgkCH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY"); if (fPHOShole) { ypos += fClength[iplan][1] - fClengthPH[iplan][1]; gMC->Gspos(cTagV,2,"UTI2", xpos,ypos,zpos,0,"ONLY"); } sprintf(cTagV,"US3%01d",iplan); gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB); xpos = 0.0; ypos = - fClength[iplan][2]/2.; zpos = fgkCH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY"); if (fPHOShole) { ypos -= fClength[iplan][3] - fClengthPH[iplan][3]; gMC->Gspos(cTagV,2,"UTI2", xpos,ypos,zpos,0,"ONLY"); } sprintf(cTagV,"US4%01d",iplan); gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB); xpos = 0.0; ypos = - fClength[iplan][2]/2. - fClength[iplan][1]; zpos = fgkCH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY"); if (fPHOShole) { gMC->Gspos(cTagV,2,"UTI2", xpos,ypos,zpos,0,"ONLY"); } if (fRICHhole) { ypos -= fClength[iplan][4] - fClengthRH[iplan][4]; gMC->Gspos(cTagV,3,"UTI3", xpos,ypos,zpos,0,"ONLY"); } sprintf(cTagV,"US5%01d",iplan); gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB); xpos = 0.0; ypos = - fgkSlenTR1/2. + kSCBwid/2.; zpos = fgkCH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY"); if (fPHOShole) { gMC->Gspos(cTagV,2,"UTI2", xpos,ypos,zpos,0,"ONLY"); } if (fRICHhole) { gMC->Gspos(cTagV,3,"UTI3", xpos,ypos,zpos,0,"ONLY"); } } } //_____________________________________________________________________________ void AliTRDgeometryFull::CreateServices(Int_t *idtmed) { // // Create the geometry of the services // // Names of the TRD services volumina // // UTCL Cooling arterias (Al) // UTCW Cooling arterias (Water) // UUxx Volumes for the services at the chambers (Air) // UTPW Power bars (Cu) // UTCP Cooling pipes (Al) // UTCH Cooling pipes (Water) // UTPL Power lines (Cu) // UMCM Readout MCMs (G10/Cu/Si) // const Int_t kNdet = kNplan * kNcham; Int_t iplan = 0; Int_t icham = 0; Float_t xpos = 0.0; Float_t ypos = 0.0; Float_t zpos = 0.0; Char_t cTagV[5]; // The rotation matrices const Int_t kNmatrix = 3; Int_t matrix[kNmatrix]; gMC->Matrix(matrix[0],100.0, 0.0, 90.0, 90.0, 10.0, 0.0); gMC->Matrix(matrix[1], 80.0, 0.0, 90.0, 90.0, 10.0,180.0); gMC->Matrix(matrix[2], 0.0, 0.0, 90.0, 90.0, 90.0, 0.0); AliTRDparameter *parameter = new AliTRDparameter("par","TRD parameter"); // // The cooling arterias // // Width of the cooling arterias const Float_t kCOLwid = 0.5; // Height of the cooling arterias const Float_t kCOLhgt = 5.5; // Positioning of the cooling const Float_t kCOLposx = 1.6; const Float_t kCOLposz = -0.2; // Thickness of the walls of the cooling arterias const Float_t kCOLthk = 0.1; const Int_t kNparCOL = 3; Float_t parCOL[kNparCOL]; parCOL[0] = kCOLwid/2.; parCOL[1] = fgkSlenTR1/2.; parCOL[2] = kCOLhgt/2.; gMC->Gsvolu("UTCL","BOX ",idtmed[1324-1],parCOL,kNparCOL); parCOL[0] -= kCOLthk; parCOL[1] = fgkSlenTR1/2.; parCOL[2] -= kCOLthk; gMC->Gsvolu("UTCW","BOX ",idtmed[1314-1],parCOL,kNparCOL); xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTCW",1,"UTCL", xpos,ypos,zpos,0,"ONLY"); for (iplan = 1; iplan < kNplan; iplan++) { xpos = fCwidth[iplan]/2. + kCOLwid/2. + kCOLposx; ypos = 0.0; zpos = kCOLhgt/2. - fgkSheight/2. + kCOLposz + iplan * (fgkCH + fgkVspace); gMC->Gspos("UTCL",iplan+1 ,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY"); gMC->Gspos("UTCL",iplan+1+ kNplan,"UTI1",-xpos,ypos,zpos,matrix[1],"ONLY"); if (fPHOShole) { gMC->Gspos("UTCL",iplan+1+2*kNplan,"UTI2", xpos,ypos,zpos,matrix[0],"ONLY"); gMC->Gspos("UTCL",iplan+1+3*kNplan,"UTI2",-xpos,ypos,zpos,matrix[1],"ONLY"); } if (fRICHhole) { gMC->Gspos("UTCL",iplan+1+4*kNplan,"UTI3", xpos,ypos,zpos,matrix[0],"ONLY"); gMC->Gspos("UTCL",iplan+1+5*kNplan,"UTI3",-xpos,ypos,zpos,matrix[1],"ONLY"); } } // // The power bars // const Float_t kPWRwid = 0.6; const Float_t kPWRhgt = 4.5; const Float_t kPWRposx = 1.05; const Float_t kPWRposz = 0.9; const Int_t kNparPWR = 3; Float_t parPWR[kNparPWR]; parPWR[0] = kPWRwid/2.; parPWR[1] = fgkSlenTR1/2.; parPWR[2] = kPWRhgt/2.; gMC->Gsvolu("UTPW","BOX ",idtmed[1325-1],parPWR,kNparPWR); for (iplan = 1; iplan < kNplan; iplan++) { xpos = fCwidth[iplan]/2. + kPWRwid/2. + kPWRposx; ypos = 0.0; zpos = kPWRhgt/2. - fgkSheight/2. + kPWRposz + iplan * (fgkCH + fgkVspace); gMC->Gspos("UTPW",iplan+1 ,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY"); gMC->Gspos("UTPW",iplan+1+ kNplan,"UTI1",-xpos,ypos,zpos,matrix[1],"ONLY"); if (fPHOShole) { gMC->Gspos("UTPW",iplan+1+2*kNplan,"UTI2", xpos,ypos,zpos,matrix[0],"ONLY"); gMC->Gspos("UTPW",iplan+1+3*kNplan,"UTI2",-xpos,ypos,zpos,matrix[1],"ONLY"); } if (fRICHhole) { gMC->Gspos("UTPW",iplan+1+4*kNplan,"UTI3", xpos,ypos,zpos,matrix[0],"ONLY"); gMC->Gspos("UTPW",iplan+1+5*kNplan,"UTI3",-xpos,ypos,zpos,matrix[1],"ONLY"); } } // // The volumes for the services at the chambers // const Int_t kNparServ = 3; Float_t parServ[kNparServ]; for (icham = 0; icham < kNcham; icham++) { //for (iplan = 0; iplan < kNplan; iplan++) { // Take out upper plane until TRD mothervolume is adjusted for (iplan = 0; iplan < kNplan-1; iplan++) { Int_t iDet = GetDetectorSec(iplan,icham); sprintf(cTagV,"UU%02d",iDet); parServ[0] = fCwidth[iplan]/2.; parServ[1] = fClength[iplan][icham]/2. - fgkHspace/2.; parServ[2] = fgkVspace/2.; gMC->Gsvolu(cTagV,"BOX",idtmed[1302-1],parServ,kNparServ); xpos = 0.; ypos = - fClength[iplan][0] - fClength[iplan][1] - fClength[iplan][2]/2.; for (Int_t ic = 0; ic < icham; ic++) { ypos += fClength[iplan][ic]; } ypos += fClength[iplan][icham]/2.; zpos = fgkCH + fgkVspace/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); gMC->Gspos(cTagV,1,"UTI1",xpos,ypos,zpos,0,"ONLY"); if (fPHOShole) { if (fClengthPH[iplan][icham] > 0.0) { sprintf(cTagV,"UU%02d",iDet+kNdet); parServ[0] = fCwidth[iplan]/2.; parServ[1] = fClengthPH[iplan][icham]/2. - fgkHspace/2.; parServ[2] = fgkVspace/2.; gMC->Gsvolu(cTagV,"BOX",idtmed[1302-1],parServ,kNparServ); xpos = 0.; ypos = - fClength[iplan][0] - fClength[iplan][1] - fClength[iplan][2]/2.; for (Int_t ic = 0; ic < icham; ic++) { ypos += fClength[iplan][ic]; } if (icham > 2) { ypos += fClength[iplan][icham]; ypos -= fClengthPH[iplan][icham]/2.; } else { ypos += fClengthPH[iplan][icham]/2.; } zpos = fgkCH + fgkVspace/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); gMC->Gspos(cTagV,1,"UTI2",xpos,ypos,zpos,0,"ONLY"); } } if (fRICHhole) { if (fClengthRH[iplan][icham] > 0.0) { sprintf(cTagV,"UU%02d",iDet+2*kNdet); parServ[0] = fCwidth[iplan]/2.; parServ[1] = fClengthRH[iplan][icham]/2. - fgkHspace/2.; parServ[2] = fgkVspace/2.; gMC->Gsvolu(cTagV,"BOX",idtmed[1302-1],parServ,kNparServ); xpos = 0.; ypos = - fClength[iplan][0] - fClength[iplan][1] - fClength[iplan][2]/2.; for (Int_t ic = 0; ic < icham; ic++) { ypos += fClength[iplan][ic]; } if (icham > 2) { ypos += fClength[iplan][icham]; ypos -= fClengthRH[iplan][icham]/2.; } else { ypos += fClengthRH[iplan][icham]/2.; } zpos = fgkCH + fgkVspace/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace); gMC->Gspos(cTagV,1,"UTI3",xpos,ypos,zpos,0,"ONLY"); } } } } // // The cooling pipes inside the service volumes // const Int_t kNparTube = 3; Float_t parTube[kNparTube]; // The aluminum pipe for the cooling parTube[0] = 0.0; parTube[1] = 0.0; parTube[2] = 0.0; gMC->Gsvolu("UTCP","TUBE",idtmed[1324-1],parTube,0); // The cooling water parTube[0] = 0.0; parTube[1] = 0.2/2.; parTube[2] = -1.; gMC->Gsvolu("UTCH","TUBE",idtmed[1314-1],parTube,kNparTube); // Water inside the cooling pipe xpos = 0.0; ypos = 0.0; zpos = 0.0; gMC->Gspos("UTCH",1,"UTCP",xpos,ypos,zpos,0,"ONLY"); // Position the cooling pipes in the mother volume const Int_t kNpar = 3; Float_t par[kNpar]; for (icham = 0; icham < kNcham; icham++) { //for (iplan = 0; iplan < kNplan; iplan++) { // Take out upper plane until TRD mothervolume is adjusted for (iplan = 0; iplan < kNplan-1; iplan++) { Int_t iDet = GetDetectorSec(iplan,icham); Int_t iCopy = GetDetector(iplan,icham,0) * 100; Int_t nMCMrow = parameter->GetRowMax(iplan,icham,0); Float_t ySize = (GetChamberLength(iplan,icham) - 2.*fgkRpadW) / ((Float_t) nMCMrow); sprintf(cTagV,"UU%02d",iDet); for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) { xpos = 0.0; ypos = (0.5 + iMCMrow) * ySize - 1.9 - fClength[iplan][icham]/2. + fgkHspace/2.; zpos = 0.0; par[0] = 0.0; par[1] = 0.3/2.; // Thickness of the cooling pipes par[2] = fCwidth[iplan]/2.; gMC->Gsposp("UTCP",iCopy+iMCMrow,cTagV,xpos,ypos,zpos ,matrix[2],"ONLY",par,kNpar); } if (fPHOShole) { sprintf(cTagV,"UU%02d",iDet+kNdet); for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) { xpos = 0.0; ypos = (0.5 + iMCMrow) * ySize - 1.9 - fClengthPH[iplan][icham]/2. + fgkHspace/2.; zpos = 0.0; if (ypos < (fClengthPH[iplan][icham]/2. - fgkHspace/2.)) { par[0] = 0.0; par[1] = 0.3/2.; // Thickness of the cooling pipes par[2] = fCwidth[iplan]/2.; gMC->Gsposp("UTCP",iCopy+iMCMrow+nMCMrow,cTagV,xpos,ypos,zpos ,matrix[2],"ONLY",par,kNpar); } } } if (fRICHhole) { sprintf(cTagV,"UU%02d",iDet+2*kNdet); for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) { xpos = 0.0; ypos = (0.5 + iMCMrow) * ySize - 1.9 - fClengthRH[iplan][icham]/2. + fgkHspace/2.; zpos = 0.0; if (ypos < (fClengthRH[iplan][icham]/2. - fgkHspace/2.)) { par[0] = 0.0; par[1] = 0.3/2.; // Thickness of the cooling pipes par[2] = fCwidth[iplan]/2.; gMC->Gsposp("UTCP",iCopy+iMCMrow+2*nMCMrow,cTagV,xpos,ypos,zpos ,matrix[2],"ONLY",par,kNpar); } } } } } // // The power lines // // The copper power lines parTube[0] = 0.0; parTube[1] = 0.0; parTube[2] = 0.0; gMC->Gsvolu("UTPL","TUBE",idtmed[1305-1],parTube,0); // Position the power lines in the mother volume for (icham = 0; icham < kNcham; icham++) { //for (iplan = 0; iplan < kNplan; iplan++) { // Take out upper plane until TRD mothervolume is adjusted for (iplan = 0; iplan < kNplan-1; iplan++) { Int_t iDet = GetDetectorSec(iplan,icham); Int_t iCopy = GetDetector(iplan,icham,0) * 100; Int_t nMCMrow = parameter->GetRowMax(iplan,icham,0); Float_t ySize = (GetChamberLength(iplan,icham) - 2.*fgkRpadW) / ((Float_t) nMCMrow); sprintf(cTagV,"UU%02d",iDet); for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) { xpos = 0.0; ypos = (0.5 + iMCMrow) * ySize - 1.0 - fClength[iplan][icham]/2. + fgkHspace/2.; zpos = -0.4; par[0] = 0.0; par[1] = 0.2/2.; // Thickness of the power lines par[2] = fCwidth[iplan]/2.; gMC->Gsposp("UTPL",iCopy+iMCMrow,cTagV,xpos,ypos,zpos ,matrix[2],"ONLY",par,kNpar); } if (fPHOShole) { sprintf(cTagV,"UU%02d",iDet+kNdet); for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) { xpos = 0.0; ypos = (0.5 + iMCMrow) * ySize - 1.0 - fClengthPH[iplan][icham]/2. + fgkHspace/2.; zpos = -0.4; if (ypos < (fClengthPH[iplan][icham]/2. - fgkHspace/2.)) { par[0] = 0.0; par[1] = 0.2/2.; // Thickness of the power lines par[2] = fCwidth[iplan]/2.; gMC->Gsposp("UTPL",iCopy+iMCMrow+nMCMrow,cTagV,xpos,ypos,zpos ,matrix[2],"ONLY",par,kNpar); } } } if (fRICHhole) { sprintf(cTagV,"UU%02d",iDet+2*kNdet); for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) { xpos = 0.0; ypos = (0.5 + iMCMrow) * ySize - 1.0 - fClengthRH[iplan][icham]/2. + fgkHspace/2.; zpos = -0.4; if (ypos < (fClengthRH[iplan][icham]/2. - fgkHspace/2.)) { par[0] = 0.0; par[1] = 0.2/2.; // Thickness of the power lines par[2] = fCwidth[iplan]/2.; gMC->Gsposp("UTPL",iCopy+iMCMrow+2*nMCMrow,cTagV,xpos,ypos,zpos ,matrix[2],"ONLY",par,kNpar); } } } } } // // The MCMs // // The mother volume for the MCMs (air) const Int_t kNparMCM = 3; Float_t parMCM[kNparMCM]; parMCM[0] = 3.0/2.; parMCM[1] = 3.0/2.; parMCM[2] = 0.14/2.; gMC->Gsvolu("UMCM","BOX",idtmed[1302-1],parMCM,kNparMCM); // The MCM carrier G10 layer parMCM[0] = 3.0/2.; parMCM[1] = 3.0/2.; parMCM[2] = 0.1/2.; gMC->Gsvolu("UMC1","BOX",idtmed[1319-1],parMCM,kNparMCM); // The MCM carrier Cu layer parMCM[0] = 3.0/2.; parMCM[1] = 3.0/2.; parMCM[2] = 0.0162/2.; gMC->Gsvolu("UMC2","BOX",idtmed[1318-1],parMCM,kNparMCM); // The silicon of the chips parMCM[0] = 3.0/2.; parMCM[1] = 3.0/2.; parMCM[2] = 0.003/2.; gMC->Gsvolu("UMC3","BOX",idtmed[1320-1],parMCM,kNparMCM); // Put the MCM material inside the MCM mother volume xpos = 0.0; ypos = 0.0; zpos = -0.07 + 0.1/2.; gMC->Gspos("UMC1",1,"UMCM",xpos,ypos,zpos,0,"ONLY"); zpos += 0.1/2. + 0.0162/2.; gMC->Gspos("UMC2",1,"UMCM",xpos,ypos,zpos,0,"ONLY"); zpos += 0.00162/2 + 0.003/2.; gMC->Gspos("UMC3",1,"UMCM",xpos,ypos,zpos,0,"ONLY"); // Position the MCMs in the mother volume for (icham = 0; icham < kNcham; icham++) { //for (iplan = 0; iplan < kNplan; iplan++) { // Take out upper plane until TRD mothervolume is adjusted for (iplan = 0; iplan < kNplan-1; iplan++) { Int_t iDet = GetDetectorSec(iplan,icham); Int_t iCopy = GetDetector(iplan,icham,0) * 1000; Int_t nMCMrow = parameter->GetRowMax(iplan,icham,0); Float_t ySize = (GetChamberLength(iplan,icham) - 2.*fgkRpadW) / ((Float_t) nMCMrow); Int_t nMCMcol = 8; Float_t xSize = (GetChamberWidth(iplan) - 2.* fgkCpadW) / ((Float_t) nMCMcol); sprintf(cTagV,"UU%02d",iDet); for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) { for (Int_t iMCMcol = 0; iMCMcol < nMCMcol; iMCMcol++) { xpos = (0.5 + iMCMcol) * xSize + 1.0 - fCwidth[iplan]/2.; ypos = (0.5 + iMCMrow) * ySize + 1.0 - fClength[iplan][icham]/2. + fgkHspace/2.; zpos = -0.4; par[0] = 0.0; par[1] = 0.2/2.; // Thickness of the power lines par[2] = fCwidth[iplan]/2.; gMC->Gspos("UMCM",iCopy+iMCMrow*10+iMCMcol,cTagV ,xpos,ypos,zpos,0,"ONLY"); } } if (fPHOShole) { sprintf(cTagV,"UU%02d",iDet+kNdet); for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) { for (Int_t iMCMcol = 0; iMCMcol < nMCMcol; iMCMcol++) { xpos = (0.5 + iMCMcol) * xSize + 1.0 - fCwidth[iplan]/2.; ypos = (0.5 + iMCMrow) * ySize + 1.0 - fClengthPH[iplan][icham]/2. + fgkHspace/2.; zpos = -0.4; if (ypos < (fClengthPH[iplan][icham]/2. - fgkHspace/2.)) { par[0] = 0.0; par[1] = 0.2/2.; // Thickness of the power lines par[2] = fCwidth[iplan]/2.; gMC->Gspos("UMCM",iCopy+iMCMrow*10+iMCMcol+10*nMCMrow,cTagV ,xpos,ypos,zpos,0,"ONLY"); } } } } if (fPHOShole) { sprintf(cTagV,"UU%02d",iDet+2*kNdet); for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) { for (Int_t iMCMcol = 0; iMCMcol < nMCMcol; iMCMcol++) { xpos = (0.5 + iMCMcol) * xSize + 1.0 - fCwidth[iplan]/2.; ypos = (0.5 + iMCMrow) * ySize + 1.0 - fClengthRH[iplan][icham]/2. + fgkHspace/2.; zpos = -0.4; if (ypos < (fClengthRH[iplan][icham]/2. - fgkHspace/2.)) { par[0] = 0.0; par[1] = 0.2/2.; // Thickness of the power lines par[2] = fCwidth[iplan]/2.; gMC->Gspos("UMCM",iCopy+iMCMrow*10+iMCMcol+20*nMCMrow,cTagV ,xpos,ypos,zpos,0,"ONLY"); } } } } } } delete parameter; } //_____________________________________________________________________________ void AliTRDgeometryFull::SetOldGeometry() { // // Use the old chamber lengths // Int_t icham; Int_t iplan; AliTRDgeometry::SetOldGeometry(); Float_t lengthPH[kNplan][kNcham] = { { 123.5, 116.5, 0.0, 116.5, 123.5 } , { 131.0, 124.0, 0.0, 124.0, 131.0 } , { 134.5, 131.5, 0.0, 131.5, 134.5 } , { 142.0, 139.0, 0.0, 139.0, 142.0 } , { 142.0, 146.0, 0.0, 146.0, 142.0 } , { 134.5, 153.5, 0.0, 153.5, 134.5 } }; Float_t lengthRH[kNplan][kNcham] = { { 86.5, 0.0, 0.0, 0.0, 86.5 } , { 101.5, 0.0, 0.0, 0.0, 101.5 } , { 112.5, 0.0, 0.0, 0.0, 112.5 } , { 127.5, 0.0, 0.0, 0.0, 127.5 } , { 134.5, 0.0, 0.0, 0.0, 134.5 } , { 134.5, 0.0, 0.0, 0.0, 134.5 } }; for (icham = 0; icham < kNcham; icham++) { for (iplan = 0; iplan < kNplan; iplan++) { fClengthPH[iplan][icham] = lengthPH[iplan][icham]; fClengthRH[iplan][icham] = lengthRH[iplan][icham]; } } }