/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /////////////////////////////////////////////////////////////////////////////// // // // TRD raw data conversion class // // // /////////////////////////////////////////////////////////////////////////////// #include #include "TClass.h" #include "AliDAQ.h" #include "AliRawDataHeaderSim.h" #include "AliRawReader.h" #include "AliLog.h" #include "AliFstream.h" #include "AliTRDrawData.h" #include "AliTRDdigitsManager.h" #include "AliTRDgeometry.h" #include "AliTRDarrayDictionary.h" #include "AliTRDarrayADC.h" #include "AliTRDrawStreamBase.h" #include "AliTRDrawOldStream.h" #include "AliTRDcalibDB.h" #include "AliTRDSignalIndex.h" #include "AliTRDfeeParam.h" #include "AliTRDmcmSim.h" ClassImp(AliTRDrawData) Int_t AliTRDrawData::fgRawFormatVersion = AliTRDrawData::kRawNewFormat; Int_t AliTRDrawData::fgDataSuppressionLevel = 1; //_____________________________________________________________________________ AliTRDrawData::AliTRDrawData() :TObject() ,fGeo(NULL) ,fFee(NULL) ,fNumberOfDDLs(0) ,fSMindexPos(0) ,fStackindexPos(0) ,fEventCounter(0) { // // Default constructor // fFee = AliTRDfeeParam::Instance(); fNumberOfDDLs = AliDAQ::NumberOfDdls("TRD"); } //_____________________________________________________________________________ AliTRDrawData::AliTRDrawData(const AliTRDrawData &r) :TObject(r) ,fGeo(NULL) ,fFee(NULL) ,fNumberOfDDLs(0) ,fSMindexPos(0) ,fStackindexPos(0) ,fEventCounter(0) { // // Copy constructor // fFee = AliTRDfeeParam::Instance(); fNumberOfDDLs = AliDAQ::NumberOfDdls("TRD"); } //_____________________________________________________________________________ AliTRDrawData::~AliTRDrawData() { // // Destructor // } //_____________________________________________________________________________ Bool_t AliTRDrawData::Digits2Raw(TTree *digitsTree, TTree *tracks ) { // // Initialize necessary parameters and call one // of the raw data simulator selected by SetRawVersion. // // Currently tracklet output is not spported yet and it // will be supported in higher version simulator. // AliTRDdigitsManager* digitsManager = new AliTRDdigitsManager(); if (!digitsManager->ReadDigits(digitsTree)) { delete digitsManager; return kFALSE; } if (tracks != NULL) { delete digitsManager; AliError("Tracklet input is not supported yet."); return kFALSE; } fGeo = new AliTRDgeometry(); if (!AliTRDcalibDB::Instance()) { AliError("Could not get calibration object"); delete fGeo; delete digitsManager; return kFALSE; } Int_t retval = kTRUE; Int_t rv = fFee->GetRAWversion(); // Call appropriate Raw Simulator if ( rv > 0 && rv <= 3 ) retval = Digits2Raw(digitsManager); else { retval = kFALSE; AliWarning(Form("Unsupported raw version (%d).", rv)); } // Cleanup delete fGeo; delete digitsManager; return retval; } //_____________________________________________________________________________ Bool_t AliTRDrawData::Digits2Raw(AliTRDdigitsManager *digitsManager) { // // Raw data simulator for all versions > 0. This is prepared for real data. // This version simulate only raw data with ADC data and not with tracklet. // const Int_t kMaxHcWords = (fGeo->TBmax()/3) * fGeo->ADCmax() * fGeo->MCMmax() * fGeo->ROBmaxC1()/2 + 100 + 20; // Buffer to temporary store half chamber data UInt_t *hcBuffer = new UInt_t[kMaxHcWords]; Bool_t newEvent = kFALSE; // only for correct readout tree Bool_t newSM = kFALSE; // new SM flag, for writing SM index words Bool_t newStack = kFALSE; // new stack flag, for writing stack index words // sect is same as iDDL, so I use only sect here. for (Int_t sect = 0; sect < fGeo->Nsector(); sect++) { char name[1024]; sprintf(name,"TRD_%d.ddl",sect + AliTRDrawOldStream::kDDLOffset); AliFstream* of = new AliFstream(name); // Write a dummy data header AliRawDataHeaderSim header; // the event header UInt_t hpos = of->Tellp(); of->WriteBuffer((char *) (& header), sizeof(header)); // Reset payload byte size (payload does not include header). Int_t npayloadbyte = 0; if ( fgRawFormatVersion == 0 ){ // GTU common data header (5x4 bytes per super module, shows link mask) for( Int_t stack = 0; stack < fGeo->Nstack(); stack++ ) { UInt_t gtuCdh = (UInt_t)(0xe << 28); for( Int_t layer = 0; layer < fGeo->Nlayer(); layer++) { Int_t iDet = fGeo->GetDetector(layer, stack, sect); // If chamber status is ok, we assume that the optical link is also OK. // This is shown in the GTU link mask. if ( AliTRDcalibDB::Instance()->GetChamberStatus(iDet) ) gtuCdh = gtuCdh | (3 << (2*layer)); } of->WriteBuffer((char *) (& gtuCdh), sizeof(gtuCdh)); npayloadbyte += 4; } } // check the existance of the data // SM index word and Stack index word if ( fgRawFormatVersion == 1 ){ UInt_t *iwbuffer = new UInt_t[42]; // index word buffer; max 42 = 2 SM headers + 5*8 stack headers Int_t nheader = 0; UInt_t StackMask = 0x0; Bool_t StackHasData = kFALSE; Bool_t SMHasData = kFALSE; iwbuffer[nheader++] = 0x0001a020; // SM index words iwbuffer[nheader++] = 0x10404071; // SM header for ( Int_t stack= 0; stack < fGeo->Nstack(); stack++) { UInt_t LinkMask = 0x0; for( Int_t layer = 0; layer < fGeo->Nlayer(); layer++) { Int_t iDet = fGeo->GetDetector(layer,stack,sect); AliTRDarrayADC *digits = (AliTRDarrayADC *) digitsManager->GetDigits(iDet); if ( digits->HasData() ) { StackMask = StackMask | ( 1 << stack ); // active stack mask for new stack LinkMask = LinkMask | ( 3 << (2*layer) ); // 3 = 0011 StackHasData = kTRUE; SMHasData = kTRUE; } // has data } // loop over layer if ( fgDataSuppressionLevel==0 || StackHasData ){ //if ( StackHasData ){ iwbuffer[nheader++] = 0x0007a000 | LinkMask; // stack index word + link masks //if (fgDataSuppressionLevel==0) iwbuffer[nheader-1] = 0x0007afff; // no suppression iwbuffer[nheader++] = 0x04045b01; // stack header for (Int_t i=0;i<6;i++) iwbuffer[nheader++] = 0x00000000; // 6 dummy words StackHasData = kFALSE; } } // loop over stack if ( fgDataSuppressionLevel==0 || SMHasData ){ iwbuffer[0] = iwbuffer[0] | StackMask; // add stack masks to SM index word if (fgDataSuppressionLevel==0) iwbuffer[0] = 0x0001a03f; // no suppression of->WriteBuffer((char *) iwbuffer, nheader*4); AliDebug(11, Form("SM %d index word: %08x", iwbuffer[0])); AliDebug(11, Form("SM %d header: %08x", iwbuffer[1])); } } // end of SM & stack header ------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------- // Prepare chamber data for( Int_t stack = 0; stack < fGeo->Nstack(); stack++) { for( Int_t layer = 0; layer < fGeo->Nlayer(); layer++) { Int_t iDet = fGeo->GetDetector(layer,stack,sect); if (iDet == 0){ newEvent = kTRUE; // it is expected that each event has at least one tracklet; // this is only needed for correct readout tree fEventCounter++; AliDebug(11, Form("New event!! Event counter: %d",fEventCounter)); } if ( stack==0 && layer==0 ) newSM = kTRUE; // new SM flag if ( layer==0 ) newStack = kTRUE; // new stack flag AliDebug(15, Form("stack : %d, layer : %d, iDec : %d\n",stack,layer,iDet)); // Get the digits array AliTRDarrayADC *digits = (AliTRDarrayADC *) digitsManager->GetDigits(iDet); if (fgDataSuppressionLevel==0 || digits->HasData() ) { // second part is new!! and is for indicating a new event if (digits->HasData()) digits->Expand(); Int_t hcwords = 0; Int_t rv = fFee->GetRAWversion(); if ( fgRawFormatVersion == 0 ){ // Process A side of the chamber if ( rv >= 1 && rv <= 2 ) { hcwords = ProduceHcDataV1andV2(digits,0,iDet,hcBuffer,kMaxHcWords); } if ( rv == 3 ) { hcwords = ProduceHcDataV3 (digits,0,iDet,hcBuffer,kMaxHcWords,newEvent); //hcwords = ProduceHcDataV3 (digits,0,iDet,hcBuffer,kMaxHcWords); if(newEvent == kTRUE) newEvent = kFALSE; } of->WriteBuffer((char *) hcBuffer, hcwords*4); npayloadbyte += hcwords*4; // Process B side of the chamber if ( rv >= 1 && rv <= 2 ) { hcwords = ProduceHcDataV1andV2(digits,1,iDet,hcBuffer,kMaxHcWords); } if ( rv >= 3 ) { hcwords = ProduceHcDataV3 (digits,1,iDet,hcBuffer,kMaxHcWords,newEvent); //hcwords = ProduceHcDataV3 (digits,1,iDet,hcBuffer,kMaxHcWords); } of->WriteBuffer((char *) hcBuffer, hcwords*4); npayloadbyte += hcwords*4; } else { // real data format if (digits->HasData()){ // Process A side of the chamber hcwords = ProduceHcData(digits,0,iDet,hcBuffer,kMaxHcWords,newEvent,newSM); //if ( newStack ){ // AssignStackMask(hcBuffer, stack); // active stack mask for this stack // hcwords += AddStackIndexWords(hcBuffer, stack, hcwords); // newStack = kFALSE; //} //if ( newSM ) newSM = kFALSE; if ( newEvent ) newEvent = kFALSE; //AssignLinkMask(hcBuffer, layer); // active link mask for this layer(2*HC) of->WriteBuffer((char *) hcBuffer, hcwords*4); npayloadbyte += hcwords*4; //for ( Int_t i=0; iWriteBuffer((char *) hcBuffer, hcwords*4); npayloadbyte += hcwords*4; } else { hcBuffer[hcwords++] = fgkEndOfTrackletMarker; hcBuffer[hcwords++] = fgkEndOfTrackletMarker; hcBuffer[hcwords++] = (1<<31) | (0<<24) | (0<<17) | (1<<14) | (sect<<9) | (layer<<6) | (stack<<3) | (0<<2) | 1; hcBuffer[hcwords++] = (24<<26) | (99<<10) | (15<<6) | (11<<2) | 1; hcBuffer[hcwords++] = kEndofrawdatamarker; hcBuffer[hcwords++] = kEndofrawdatamarker; hcBuffer[hcwords++] = kEndofrawdatamarker; hcBuffer[hcwords++] = kEndofrawdatamarker; npayloadbyte += hcwords*4; hcBuffer[hcwords++] = fgkEndOfTrackletMarker; hcBuffer[hcwords++] = fgkEndOfTrackletMarker; hcBuffer[hcwords++] = (1<<31) | (0<<24) | (0<<17) | (1<<14) | (sect<<9) | (layer<<6) | (stack<<3) | (1<<2) | 1; hcBuffer[hcwords++] = (24<<26) | (99<<10) | (15<<6) | (11<<2) | 1; hcBuffer[hcwords++] = kEndofrawdatamarker; hcBuffer[hcwords++] = kEndofrawdatamarker; hcBuffer[hcwords++] = kEndofrawdatamarker; hcBuffer[hcwords++] = kEndofrawdatamarker; npayloadbyte += hcwords*4; of->WriteBuffer((char *) hcBuffer, hcwords*4); } } } // has data } // loop over layer } // loop over stack // Complete header header.fSize = UInt_t(of->Tellp()) - hpos; header.SetAttribute(0); // Valid data of->Seekp(hpos); // Rewind to header position of->WriteBuffer((char *) (& header), sizeof(header)); delete of; } delete [] hcBuffer; return kTRUE; } //_____________________________________________________________________________ void AliTRDrawData::ProduceSMIndexData(UInt_t *buf, Int_t& nw){ // // This function generates // 1) SM index words : ssssssss ssssssss vvvv rrrr r d t mmmmm // - s : size of SM header (number of header, default = 0x0001) // - v : SM header version (default = 0xa) // - r : reserved for future use (default = 00000) // - d : track data enabled bit (default = 0) // - t : tracklet data enabled bit (default = 1) // - m : stack mask (each bit corresponds a stack, default = 11111) // // 2) SM header : rrr c vvvv vvvvvvvv vvvv rrrr bbbbbbbb // - r : reserved for future use (default = 000) // - c : clean check out flag (default = 1) // - v : hardware design revision (default = 0x0404) // - r : reserved for future use (default = 0x0) // - b : physical board ID (default = 0x71) // // 3) stack index words : ssssssss ssssssss vvvv mmmm mmmmmmmm // - s : size of stack header (number of header, (default = 0x0007) // - v : header version (default = 0xa) // - m : link mask (default = 0xfff) // // 4) stack header : vvvvvvvv vvvvvvvv bbbbbbbb rrrr rrr c // - v : hardware design revision (default = 0x0404) // - b : physical board ID (default = 0x5b) // - r : reserved for future use (default = 0000 000) // - c : clean checkout flag (default = 1) // // and 6 dummy words(0x00000000) // //buf[nw++] = 0x0001a03f; // SM index words fSMindexPos = nw; // memorize position of the SM index word for re-allocating stack mask buf[nw++] = 0x0001a020; // SM index words buf[nw++] = 0x10404071; // SM header fStackindexPos = nw; // memorize position of the stack index word for future adding /* for (Int_t istack=0; istack<5; istack++){ buf[nw++] = 0x0007afff; // stack index words buf[nw++] = 0x04045b01; // stack header for (Int_t i=0;i<6;i++) buf[nw++] = 0x00000000; // 6 dummy words } // loop over 5 stacks */ } //_____________________________________________________________________________ void AliTRDrawData::AssignStackMask(UInt_t *buf, Int_t nStack){ // // This function re-assign stack mask active(from 0 to 1) in the SM index word // buf[fSMindexPos] = buf[fSMindexPos] | ( 1 << nStack ); } //_____________________________________________________________________________ Int_t AliTRDrawData::AddStackIndexWords(UInt_t *buf, Int_t /*nStack*/, Int_t nMax){ // // This function add stack index words and stack header when there is data for the stack // // 1) stack index words : ssssssss ssssssss vvvv mmmm mmmmmmmm // - s : size of stack header (number of header, (default = 0x0007) // - v : header version (default = 0xa) // - m : link mask (default = 0xfff) // - m : link mask (starting value = 0x000) // // 2) stack header : vvvvvvvv vvvvvvvv bbbbbbbb rrrr rrr c // - v : hardware design revision (default = 0x0404) // - b : physical board ID (default = 0x5b) // - r : reserved for future use (default = 0000 000) // - c : clean checkout flag (default = 1) // // and 6 dummy words(0x00000000) // Int_t nAddedWords = 0; // Number of added words if ( ShiftWords(buf, fStackindexPos, 8, nMax)== kFALSE ){ AliError("Adding stack header failed."); return 0; } buf[fStackindexPos++] = 0x0007a000; // stack index words buf[fStackindexPos++] = 0x04045b01; // stack header for (Int_t i=0;i<6;i++) buf[fStackindexPos++] = 0x00000000; // 6 dummy words nAddedWords += 8; return nAddedWords; } //_____________________________________________________________________________ void AliTRDrawData::AssignLinkMask(UInt_t *buf, Int_t nLayer){ // // This function re-assign link mask active(from 0 to 1) in the stack index word // buf[fStackindexPos-8] = buf[fStackindexPos-8] | ( 3 << (2*nLayer) ); // 3 = 0011 } //_____________________________________________________________________________ Bool_t AliTRDrawData::ShiftWords(UInt_t *buf, Int_t nStart, Int_t nWords, Int_t nMax){ // // This function shifts n words // //if ( nStart+nWords > sizeof(buf)/sizeof(UInt_t) ){ // AliError("Words shift failed. No more buffer space."); // return kFALSE; //} for ( Int_t iw=nMax; iw>nStart-1; iw--){ buf[iw+nWords] = buf[iw]; } return kTRUE; } //_____________________________________________________________________________ Int_t AliTRDrawData::ProduceHcData(AliTRDarrayADC *digits, Int_t side, Int_t det, UInt_t *buf, Int_t maxSize, Bool_t /*newEvent = kFALSE*/, Bool_t /*newSM = kFALSE*/){ // // This function can be used for both ZS and NZS data // Int_t nw = 0; // Number of written words Int_t of = 0; // Number of overflowed words Int_t *tempnw = 0x0; // Number of written words for temp. buffer Int_t *tempof = 0x0; // Number of overflowed words for temp. buffer Int_t layer = fGeo->GetLayer( det ); // Layer Int_t stack = fGeo->GetStack( det ); // Stack Int_t sect = fGeo->GetSector( det ); // Sector (=iDDL) const Int_t kCtype = fGeo->GetStack(det) == 2 ? 0 : 1; // Chamber type (0:C0, 1:C1) Bool_t tracklet_on = fFee->GetTracklet(); // tracklet simulation active? AliDebug(1,Form("Producing raw data for sect=%d layer=%d stack=%d side=%d",sect,layer,stack,side)); AliTRDmcmSim* mcm = new AliTRDmcmSim(); UInt_t *tempBuffer = buf; // tempBuffer used to write ADC data // different in case of tracklet writing if (tracklet_on) { tempBuffer = new UInt_t[maxSize]; tempnw = new Int_t(0); tempof = new Int_t(0); } else { tempnw = &nw; tempof = &of; } WriteIntermediateWordsV2(tempBuffer,*tempnw,*tempof,maxSize,det,side); //??? no tracklet or NZS // scanning direction such, that tracklet-words are sorted in ascending z and then in ascending y order // ROB numbering on chamber and MCM numbering on ROB increase with decreasing z and increasing y for (Int_t iRobRow = 0; iRobRow <= (kCtype + 3)-1; iRobRow++ ) { // ROB number should be increasing Int_t iRob = iRobRow * 2 + side; // MCM on one ROB for (Int_t iMcmRB = 0; iMcmRB < fGeo->MCMmax(); iMcmRB++ ) { Int_t iMcm = 16 - 4*(iMcmRB/4 + 1) + (iMcmRB%4); mcm->Init(det, iRob, iMcm); mcm->SetData(digits); // no filtering done here (already done in digitizer) if (tracklet_on) { mcm->Tracklet(); Int_t tempNw = mcm->ProduceTrackletStream(&buf[nw], maxSize - nw); if( tempNw < 0 ) { of += tempNw; nw += maxSize - nw; AliError(Form("Buffer overflow detected. Please increase the buffer size and recompile.")); } else { nw += tempNw; } } mcm->ZSMapping(); // Calculate zero suppression mapping // at the moment it has to be rerun here // Write MCM data to temp. buffer Int_t tempNw = mcm->ProduceRawStream( &tempBuffer[*tempnw], maxSize - *tempnw, fEventCounter ); if ( tempNw < 0 ) { *tempof += tempNw; *tempnw += maxSize - nw; AliError(Form("Buffer overflow detected. Please increase the buffer size and recompile.")); } else { *tempnw += tempNw; } } } delete mcm; // in case of tracklet writing copy temp data to final buffer if (tracklet_on) { if (nw + *tempnw < maxSize) { memcpy(&buf[nw], tempBuffer, *tempnw * sizeof(UInt_t)); nw += *tempnw; } else { AliError("Buffer overflow detected"); } } // Write end of raw data marker if (nw+3 < maxSize) { buf[nw++] = 0x00000000; // fFee->GetRawDataEndmarker(); buf[nw++] = 0x00000000; // fFee->GetRawDataEndmarker(); buf[nw++] = 0x00000000; // fFee->GetRawDataEndmarker(); buf[nw++] = 0x00000000; // fFee->GetRawDataEndmarker(); } else { of++; } if (tracklet_on) { delete [] tempBuffer; delete tempof; delete tempnw; } if (of != 0) { AliError("Buffer overflow. Data is truncated. Please increase buffer size and recompile."); } return nw; } //_____________________________________________________________________________ Int_t AliTRDrawData::ProduceHcDataV1andV2(AliTRDarrayADC *digits, Int_t side , Int_t det, UInt_t *buf, Int_t maxSize) { // // This function simulates: 1) SM-I commissiong data Oct. 06 (Raw Version == 1). // 2) Full Raw Production Version (Raw Version == 2) // // Produce half chamber data (= an ORI data) for the given chamber (det) and side (side) // where // // side=0 means A side with ROB positions 0, 2, 4, 6. // side=1 means B side with ROB positions 1, 3, 5, 7. // // Chamber type (C0 orC1) is determined by "det" automatically. // Appropriate size of buffer (*buf) must be prepared prior to calling this function. // Pointer to the buffer and its size must be given to "buf" and "maxSize". // Return value is the number of valid data filled in the buffer in unit of 32 bits // UInt_t words. // If buffer size if too small, the data is truncated with the buffer size however // the function will finish without crash (this behaviour is similar to the MCM). // Int_t nw = 0; // Number of written words Int_t of = 0; // Number of overflowed words Int_t layer = fGeo->GetLayer( det ); // Layer Int_t stack = fGeo->GetStack( det ); // Stack Int_t sect = fGeo->GetSector( det ); // Sector (=iDDL) Int_t nRow = fGeo->GetRowMax( layer, stack, sect ); Int_t nCol = fGeo->GetColMax( layer ); const Int_t kNTBin = AliTRDcalibDB::Instance()->GetNumberOfTimeBins(); Int_t kCtype = 0; // Chamber type (0:C0, 1:C1) Int_t iEv = 0xA; // Event ID. Now fixed to 10, how do I get event id? UInt_t x = 0; // General used number Int_t rv = fFee->GetRAWversion(); // Check the nCol and nRow. if ((nCol == 144) && (nRow == 16 || nRow == 12)) { kCtype = (nRow-12) / 4; } else { AliError(Form("This type of chamber is not supported (nRow=%d, nCol=%d)." ,nRow,nCol)); return 0; } AliDebug(1,Form("Producing raw data for sect=%d layer=%d stack=%d side=%d" ,sect,layer,stack,side)); // Tracklet should be processed here but not implemented yet // Write end of tracklet marker if (nw < maxSize) { buf[nw++] = kEndoftrackletmarker; } else { of++; } // Half Chamber header if ( rv == 1 ) { // Now it is the same version as used in SM-I commissioning. Int_t dcs = det+100; // DCS Serial (in simulation, it is meaningless x = (dcs<<20) | (sect<<15) | (layer<<12) | (stack<<9) | (side<<8) | 1; if (nw < maxSize) { buf[nw++] = x; } else { of++; } } else if ( rv == 2 ) { // h[0] (there are 3 HC header) Int_t minorv = 0; // The minor version number Int_t add = 2; // The number of additional header words to follow x = (1<<31) | (rv<<24) | (minorv<<17) | (add<<14) | (sect<<9) | (layer<<6) | (stack<<3) | (side<<2) | 1; if (nw < maxSize) { buf[nw++] = x; } else { of++; } // h[1] Int_t bcCtr = 99; // bunch crossing counter. Here it is set to 99 always for no reason Int_t ptCtr = 15; // pretrigger counter. Here it is set to 15 always for no reason Int_t ptPhase = 11; // pretrigger phase. Here it is set to 11 always for no reason x = (bcCtr<<16) | (ptCtr<<12) | (ptPhase<<8) | ((kNTBin-1)<<2) | 1; if (nw < maxSize) { buf[nw++] = x; } else { of++; } // h[2] Int_t pedSetup = 1; // Pedestal filter setup (0:1). Here it is always 1 for no reason Int_t gainSetup = 1; // Gain filter setup (0:1). Here it is always 1 for no reason Int_t tailSetup = 1; // Tail filter setup (0:1). Here it is always 1 for no reason Int_t xtSetup = 0; // Cross talk filter setup (0:1). Here it is always 0 for no reason Int_t nonlinSetup = 0; // Nonlinearity filter setup (0:1). Here it is always 0 for no reason Int_t bypassSetup = 0; // Filter bypass (for raw data) setup (0:1). Here it is always 0 for no reason Int_t commonAdditive = 10; // Digital filter common additive (0:63). Here it is always 10 for no reason x = (pedSetup<<31) | (gainSetup<<30) | (tailSetup<<29) | (xtSetup<<28) | (nonlinSetup<<27) | (bypassSetup<<26) | (commonAdditive<<20) | 1; if (nw < maxSize) { buf[nw++] = x; } else { of++; } } // Scan for ROB and MCM for (Int_t iRobRow = 0; iRobRow < (kCtype + 3); iRobRow++ ) { Int_t iRob = iRobRow * 2 + side; for (Int_t iMcm = 0; iMcm < fGeo->MCMmax(); iMcm++ ) { Int_t padrow = iRobRow * 4 + iMcm / 4; // MCM header x = ((iRob * fGeo->MCMmax() + iMcm) << 24) | ((iEv % 0x100000) << 4) | 0xC; if (nw < maxSize) { buf[nw++] = x; } else { of++; } // ADC data for (Int_t iAdc = 0; iAdc < 21; iAdc++ ) { Int_t padcol = fFee->GetPadColFromADC(iRob, iMcm, iAdc); UInt_t aa = !(iAdc & 1) + 2; // 3 for the even ADC channel , 2 for the odd ADC channel UInt_t *a = new UInt_t[kNTBin+2]; // 3 timebins are packed into one 32 bits word for (Int_t iT = 0; iT < kNTBin; iT+=3) { if ((padcol >= 0) && (padcol < nCol)) { a[iT ] = ((iT ) < kNTBin ) ? digits->GetData(padrow,padcol,iT ) : 0; a[iT+1] = ((iT + 1) < kNTBin ) ? digits->GetData(padrow,padcol,iT + 1) : 0; a[iT+2] = ((iT + 2) < kNTBin ) ? digits->GetData(padrow,padcol,iT + 2) : 0; } else { a[iT] = a[iT+1] = a[iT+2] = 0; // This happenes at the edge of chamber (should be pedestal! How?) } x = (a[iT+2] << 22) | (a[iT+1] << 12) | (a[iT] << 2) | aa; if (nw < maxSize) { buf[nw++] = x; } else { of++; } } // Diagnostics Float_t avg = 0; Float_t rms = 0; for (Int_t iT = 0; iT < kNTBin; iT++) { avg += (Float_t) (a[iT]); } avg /= (Float_t) kNTBin; for (Int_t iT = 0; iT < kNTBin; iT++) { rms += ((Float_t) (a[iT]) - avg) * ((Float_t) (a[iT]) - avg); } rms = TMath::Sqrt(rms / (Float_t) kNTBin); if (rms > 1.7) { AliDebug(2,Form("Large RMS (>1.7) (ROB,MCM,ADC)=(%02d,%02d,%02d), avg=%03.1f, rms=%03.1f" ,iRob,iMcm,iAdc,avg,rms)); } delete [] a; } } } // Write end of raw data marker if (nw < maxSize) { buf[nw++] = kEndofrawdatamarker; } else { of++; } if (of != 0) { AliWarning("Buffer overflow. Data is truncated. Please increase buffer size and recompile."); } return nw; } //_____________________________________________________________________________ //Int_t AliTRDrawData::ProduceHcDataV3(AliTRDarrayADC *digits, Int_t side , Int_t det, UInt_t *buf, Int_t maxSize) Int_t AliTRDrawData::ProduceHcDataV3(AliTRDarrayADC *digits, Int_t side , Int_t det, UInt_t *buf, Int_t maxSize, Bool_t newEvent = kFALSE) { // // This function simulates: Raw Version == 3 (Zero Suppression Prototype) // Int_t nw = 0; // Number of written words Int_t of = 0; // Number of overflowed words Int_t layer = fGeo->GetLayer( det ); // Layer Int_t stack = fGeo->GetStack( det ); // Stack Int_t sect = fGeo->GetSector( det ); // Sector (=iDDL) Int_t nRow = fGeo->GetRowMax( layer, stack, sect ); Int_t nCol = fGeo->GetColMax( layer ); const Int_t kNTBin = AliTRDcalibDB::Instance()->GetNumberOfTimeBins(); Int_t kCtype = 0; // Chamber type (0:C0, 1:C1) //Int_t iEv = 0xA; // Event ID. Now fixed to 10, how do I get event id? Bool_t tracklet_on = fFee->GetTracklet(); // **new** // Check the nCol and nRow. if ((nCol == 144) && (nRow == 16 || nRow == 12)) { kCtype = (nRow-12) / 4; } else { AliError(Form("This type of chamber is not supported (nRow=%d, nCol=%d)." ,nRow,nCol)); return 0; } AliDebug(1,Form("Producing raw data for sect=%d layer=%d stack=%d side=%d" ,sect,layer,stack,side)); AliTRDmcmSim** mcm = new AliTRDmcmSim*[(kCtype + 3)*(fGeo->MCMmax())]; // in case no tracklet-words are processed: write the tracklet-endmarker as well as all additional words immediately and write // raw-data in one go; if tracklet-processing is enabled, first all tracklet-words of a half-chamber have to be processed before the // additional words (tracklet-endmarker,headers,...)are written. Raw-data is written in a second loop; if (!tracklet_on) { WriteIntermediateWords(buf,nw,of,maxSize,det,side); } // Scan for ROB and MCM // scanning direction such, that tracklet-words are sorted in ascending z and then in ascending y order // ROB numbering on chamber and MCM numbering on ROB increase with decreasing z and increasing y for (Int_t iRobRow = (kCtype + 3)-1; iRobRow >= 0; iRobRow-- ) { Int_t iRob = iRobRow * 2 + side; // MCM on one ROB for (Int_t iMcmRB = 0; iMcmRB < fGeo->MCMmax(); iMcmRB++ ) { Int_t iMcm = 16 - 4*(iMcmRB/4 + 1) + (iMcmRB%4); Int_t entry = iRobRow*(fGeo->MCMmax()) + iMcm; mcm[entry] = new AliTRDmcmSim(); mcm[entry]->Init( det, iRob, iMcm , newEvent); //mcm[entry]->Init( det, iRob, iMcm); if (newEvent == kTRUE) newEvent = kFALSE; // only one mcm is concerned with new event Int_t padrow = mcm[entry]->GetRow(); // Copy ADC data to MCM simulator for (Int_t iAdc = 0; iAdc < 21; iAdc++ ) { Int_t padcol = mcm[entry]->GetCol( iAdc ); if ((padcol >= 0) && (padcol < nCol)) { for (Int_t iT = 0; iT < kNTBin; iT++) { mcm[entry]->SetData( iAdc, iT, digits->GetData( padrow, padcol, iT) ); } } else { // this means it is out of chamber, and masked ADC mcm[entry]->SetDataPedestal( iAdc ); } } // Simulate process in MCM mcm[entry]->Filter(); // Apply filter mcm[entry]->ZSMapping(); // Calculate zero suppression mapping //jkl mcm[entry]->CopyArrays(); //jkl mcm[entry]->GeneratefZSM1Dim(); //jkl mcm[entry]->RestoreZeros(); if (tracklet_on) { mcm[entry]->Tracklet(); Int_t tempNw = mcm[entry]->ProduceTrackletStream( &buf[nw], maxSize - nw ); //Int_t tempNw = 0; if( tempNw < 0 ) { of += tempNw; nw += maxSize - nw; AliError(Form("Buffer overflow detected. Please increase the buffer size and recompile.")); } else { nw += tempNw; } } // no tracklets: write raw-data already in this loop else { // Write MCM data to buffer Int_t tempNw = mcm[entry]->ProduceRawStream( &buf[nw], maxSize - nw ); if( tempNw < 0 ) { of += tempNw; nw += maxSize - nw; AliError(Form("Buffer overflow detected. Please increase the buffer size and recompile.")); } else { nw += tempNw; } delete mcm[entry]; } //mcm->DumpData( "trdmcmdata.txt", "RFZS" ); // debugging purpose } } // if tracklets are switched on, raw-data can be written only after all tracklets if (tracklet_on) { WriteIntermediateWords(buf,nw,of,maxSize,det,side); // Scan for ROB and MCM for (Int_t iRobRow = (kCtype + 3)-1; iRobRow >= 0; iRobRow-- ) { //Int_t iRob = iRobRow * 2 + side; // MCM on one ROB for (Int_t iMcmRB = 0; iMcmRB < fGeo->MCMmax(); iMcmRB++ ) { Int_t iMcm = 16 - 4*(iMcmRB/4 + 1) + (iMcmRB%4); Int_t entry = iRobRow*(fGeo->MCMmax()) + iMcm; // Write MCM data to buffer Int_t tempNw = mcm[entry]->ProduceRawStream( &buf[nw], maxSize - nw ); if( tempNw < 0 ) { of += tempNw; nw += maxSize - nw; AliError(Form("Buffer overflow detected. Please increase the buffer size and recompile.")); } else { nw += tempNw; } delete mcm[entry]; } } } delete [] mcm; // Write end of raw data marker if (nw < maxSize) { buf[nw++] = kEndofrawdatamarker; } else { of++; } if (of != 0) { AliError("Buffer overflow. Data is truncated. Please increase buffer size and recompile."); } return nw; } //_____________________________________________________________________________ AliTRDdigitsManager *AliTRDrawData::Raw2Digits(AliRawReader *rawReader) { // // Vx of the raw data reading // AliTRDarrayADC *digits = 0; AliTRDarrayDictionary *track0 = 0; AliTRDarrayDictionary *track1 = 0; AliTRDarrayDictionary *track2 = 0; //AliTRDSignalIndex *indexes = 0; // Create the digits manager AliTRDdigitsManager* digitsManager = new AliTRDdigitsManager(); digitsManager->CreateArrays(); AliTRDrawStreamBase *pinput = AliTRDrawStreamBase::GetRawStream(rawReader); AliTRDrawStreamBase &input = *pinput; input.SetRawVersion( fFee->GetRAWversion() ); //<= ADDED by MinJung AliInfo(Form("Stream version: %s", input.IsA()->GetName())); // Loop through the digits Int_t det = 0; while (det >= 0) { det = input.NextChamber(digitsManager); if (det >= 0) { // get... digits = (AliTRDarrayADC *) digitsManager->GetDigits(det); track0 = (AliTRDarrayDictionary *) digitsManager->GetDictionary(det,0); track1 = (AliTRDarrayDictionary *) digitsManager->GetDictionary(det,1); track2 = (AliTRDarrayDictionary *) digitsManager->GetDictionary(det,2); // and compress if (digits) digits->Compress(); if (track0) track0->Compress(); if (track1) track1->Compress(); if (track2) track2->Compress(); } } delete pinput; pinput = NULL; return digitsManager; } //_____________________________________________________________________________ void AliTRDrawData::WriteIntermediateWords(UInt_t* buf, Int_t& nw, Int_t& of, const Int_t& maxSize, const Int_t& det, const Int_t& side) { Int_t layer = fGeo->GetLayer( det ); // Layer Int_t stack = fGeo->GetStack( det ); // Stack Int_t sect = fGeo->GetSector( det ); // Sector (=iDDL) Int_t rv = fFee->GetRAWversion(); const Int_t kNTBin = AliTRDcalibDB::Instance()->GetNumberOfTimeBins(); UInt_t x = 0; // Write end of tracklet marker if (nw < maxSize) { buf[nw++] = kEndoftrackletmarker; } else { of++; } // Half Chamber header // h[0] (there are 3 HC header) Int_t minorv = 0; // The minor version number Int_t add = 2; // The number of additional header words to follow x = (1<<31) | (rv<<24) | (minorv<<17) | (add<<14) | (sect<<9) | (layer<<6) | (stack<<3) | (side<<2) | 1; if (nw < maxSize) { buf[nw++] = x; } else { of++; } // h[1] Int_t bcCtr = 99; // bunch crossing counter. Here it is set to 99 always for no reason Int_t ptCtr = 15; // pretrigger counter. Here it is set to 15 always for no reason Int_t ptPhase = 11; // pretrigger phase. Here it is set to 11 always for no reason x = (bcCtr<<16) | (ptCtr<<12) | (ptPhase<<8) | ((kNTBin-1)<<2) | 1; if (nw < maxSize) { buf[nw++] = x; } else { of++; } // h[2] Int_t pedSetup = 1; // Pedestal filter setup (0:1). Here it is always 1 for no reason Int_t gainSetup = 1; // Gain filter setup (0:1). Here it is always 1 for no reason Int_t tailSetup = 1; // Tail filter setup (0:1). Here it is always 1 for no reason Int_t xtSetup = 0; // Cross talk filter setup (0:1). Here it is always 0 for no reason Int_t nonlinSetup = 0; // Nonlinearity filter setup (0:1). Here it is always 0 for no reason Int_t bypassSetup = 0; // Filter bypass (for raw data) setup (0:1). Here it is always 0 for no reason Int_t commonAdditive = 10; // Digital filter common additive (0:63). Here it is always 10 for no reason x = (pedSetup<<31) | (gainSetup<<30) | (tailSetup<<29) | (xtSetup<<28) | (nonlinSetup<<27) | (bypassSetup<<26) | (commonAdditive<<20) | 1; if (nw < maxSize) { buf[nw++] = x; } else { of++; } } //_____________________________________________________________________________ void AliTRDrawData::WriteIntermediateWordsV2(UInt_t* buf, Int_t& nw, Int_t& of, const Int_t& maxSize, const Int_t& det, const Int_t& side) { Int_t layer = fGeo->GetLayer( det ); // Layer Int_t stack = fGeo->GetStack( det ); // Stack Int_t sect = fGeo->GetSector( det ); // Sector (=iDDL) Int_t rv = fFee->GetRAWversion(); const Int_t kNTBin = AliTRDcalibDB::Instance()->GetNumberOfTimeBins(); Bool_t tracklet_on = fFee->GetTracklet(); UInt_t x = 0; // Write end of tracklet marker if (nw < maxSize){ buf[nw++] = fgkEndOfTrackletMarker; buf[nw++] = fgkEndOfTrackletMarker; // the number of tracklet end marker should be more than 2 } else { of++; } // Half Chamber header // h[0] (there are 2 HC headers) xmmm mmmm nnnn nnnq qqss sssp ppcc ci01 // , where x : Raw version speacial number (=1) // m : Raw version major number (test pattern, ZS, disable tracklet, 0, options) // n : Raw version minor number // q : number of addtional header words (default = 1) // s : SM sector number (ALICE numbering) // p : plane(layer) number // c : chamber(stack) number // i : side number (0:A, 1:B) Int_t majorv = 0; // The major version number Int_t minorv = 0; // The minor version number Int_t add = 1; // The number of additional header words to follow : now 1, previous 2 Int_t TP = 0; // test pattern (default=0) Int_t ZS = (rv==3) ? 1 : 0; // zero suppression Int_t DT = (tracklet_on) ? 0 : 1; // disable tracklet majorv = (TP<<6) | (ZS<<5) | (DT<<4) | 1; // major version x = (1<<31) | (majorv<<24) | (minorv<<17) | (add<<14) | (sect<<9) | (layer<<6) | (stack<<3) | (side<<2) | 1; if (nw < maxSize) buf[nw++] = x; else of++; // h[1] tttt ttbb bbbb bbbb bbbb bbpp pphh hh01 // , where t : number of time bins // b : bunch crossing number // p : pretrigger counter // h : pretrigger phase Int_t bcCtr = 99; // bunch crossing counter. Here it is set to 99 always for no reason Int_t ptCtr = 15; // pretrigger counter. Here it is set to 15 always for no reason Int_t ptPhase = 11; // pretrigger phase. Here it is set to 11 always for no reason //x = (bcCtr<<16) | (ptCtr<<12) | (ptPhase<<8) | ((kNTBin-1)<<2) | 1; // old format x = ((kNTBin)<<26) | (bcCtr<<10) | (ptCtr<<6) | (ptPhase<<2) | 1; if (nw < maxSize) buf[nw++] = x; else of++; } //_____________________________________________________________________________ AliTRDdigitsManager *AliTRDrawData::Raw2DigitsOLD(AliRawReader *rawReader) { // // Vx of the raw data reading // AliTRDarrayADC *digits = 0; AliTRDarrayDictionary *track0 = 0; AliTRDarrayDictionary *track1 = 0; AliTRDarrayDictionary *track2 = 0; AliTRDSignalIndex *indexes = 0; // Create the digits manager AliTRDdigitsManager* digitsManager = new AliTRDdigitsManager(); digitsManager->CreateArrays(); AliTRDrawOldStream input(rawReader); input.SetRawVersion( fFee->GetRAWversion() ); input.Init(); AliInfo(Form("Stream version: %s", input.IsA()->GetName())); // Loop through the digits Int_t lastdet = -1; Int_t det = 0; Int_t it = 0; while (input.Next()) { det = input.GetDet(); if (det != lastdet) { // If new detector found lastdet = det; if (digits) digits->Compress(); if (track0) track0->Compress(); if (track1) track1->Compress(); if (track2) track2->Compress(); // Add a container for the digits of this detector digits = (AliTRDarrayADC *) digitsManager->GetDigits(det); track0 = (AliTRDarrayDictionary *) digitsManager->GetDictionary(det,0); track1 = (AliTRDarrayDictionary *) digitsManager->GetDictionary(det,1); track2 = (AliTRDarrayDictionary *) digitsManager->GetDictionary(det,2); // Allocate memory space for the digits buffer if (digits->GetNtime() == 0) { digits->Allocate(input.GetMaxRow(),input.GetMaxCol(), input.GetNumberOfTimeBins()); track0->Allocate(input.GetMaxRow(),input.GetMaxCol(), input.GetNumberOfTimeBins()); track1->Allocate(input.GetMaxRow(),input.GetMaxCol(), input.GetNumberOfTimeBins()); track2->Allocate(input.GetMaxRow(),input.GetMaxCol(), input.GetNumberOfTimeBins()); } indexes = digitsManager->GetIndexes(det); indexes->SetSM(input.GetSM()); indexes->SetStack(input.GetStack()); indexes->SetLayer(input.GetLayer()); indexes->SetDetNumber(det); if (indexes->IsAllocated() == kFALSE) indexes->Allocate(input.GetMaxRow(), input.GetMaxCol(), input.GetNumberOfTimeBins()); } // 3 timebin data are stored per word for (it = 0; it < 3; it++) { if ( input.GetTimeBin() + it < input.GetNumberOfTimeBins() ) { if (input.GetSignals()[it] > 0) { digits->SetData(input.GetRow(), input.GetCol(),input.GetTimeBin() + it, input.GetSignals()[it]); indexes->AddIndexRC(input.GetRow(), input.GetCol()); track0->SetData(input.GetRow(), input.GetCol(), input.GetTimeBin() + it, 0); track1->SetData(input.GetRow(), input.GetCol(), input.GetTimeBin() + it, 0); track2->SetData(input.GetRow(), input.GetCol(), input.GetTimeBin() + it, 0); } } } } if (digits) digits->Compress(); if (track0) track0->Compress(); if (track1) track1->Compress(); if (track2) track2->Compress(); return digitsManager; }