/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /////////////////////////////////////////////////////////////////////////////// // // // TRD raw data conversion class // // // /////////////////////////////////////////////////////////////////////////////// #include #include #include "AliDAQ.h" #include "AliRawDataHeader.h" #include "AliRawReader.h" #include "AliLog.h" #include "AliTRDrawData.h" #include "AliTRDdigitsManager.h" #include "AliTRDgeometry.h" #include "AliTRDdataArrayI.h" #include "AliTRDRawStream.h" #include "AliTRDCommonParam.h" #include "AliTRDcalibDB.h" ClassImp(AliTRDrawData) //_____________________________________________________________________________ AliTRDrawData::AliTRDrawData() :TObject() ,fRawVersion(2) // Default Raw Data version set here ,fCommonParam(0) ,fCalibration(0) ,fGeo(0) ,fNumberOfDDLs(0) { // // Default constructor // } //_____________________________________________________________________________ AliTRDrawData::AliTRDrawData(const AliTRDrawData &r) :TObject(r) ,fRawVersion(2) // Default Raw Data version set here ,fCommonParam(0) ,fCalibration(0) ,fGeo(0) ,fNumberOfDDLs(0) { // // Copy constructor // } //_____________________________________________________________________________ AliTRDrawData::~AliTRDrawData() { // // Destructor // } //_____________________________________________________________________________ Bool_t AliTRDrawData::SetRawVersion(Int_t v) { // // Set the raw data version (Currently only version 0, 1 and 2 are available) // if ( (v >= 0) && (v <= 2) ) { fRawVersion = v; return kTRUE; } return kFALSE; } //_____________________________________________________________________________ Bool_t AliTRDrawData::Digits2Raw(TTree *digitsTree, TTree *tracks ) { // // Initialize necessary parameters and call one // of the raw data simulator selected by SetRawVersion. // // Currently tracklet output is not spported yet and it // will be supported in higher version simulator. // fNumberOfDDLs = AliDAQ::NumberOfDdls("TRD"); AliTRDdigitsManager* digitsManager = new AliTRDdigitsManager(); if (!digitsManager->ReadDigits(digitsTree)) { delete digitsManager; return kFALSE; } if (tracks != NULL) { delete digitsManager; AliError("Tracklet input is not supported yet."); return kFALSE; } fGeo = new AliTRDgeometry(); fCommonParam = AliTRDCommonParam::Instance(); if (!fCommonParam) { AliError("Could not get common params"); delete fGeo; delete digitsManager; return kFALSE; } fCalibration = AliTRDcalibDB::Instance(); if (!fCalibration) { AliError("Could not get calibration object"); delete fGeo; delete digitsManager; return kFALSE; } Int_t retval = kTRUE; // Call appropriate Raw Simulator if ( fRawVersion > 0 && fRawVersion <= 2 ) retval = Digits2Raw(digitsManager); else { retval = kFALSE; AliWarning(Form("Unsupported raw version (fRawVersion=%d).",fRawVersion)); } // Cleanup delete fGeo; delete digitsManager; return retval; } //_____________________________________________________________________________ Bool_t AliTRDrawData::Digits2Raw(AliTRDdigitsManager *digitsManager) { // // Raw data simulator for all versions > 0. This is prepared for real data. // This version simulate only raw data with ADC data and not with tracklet. // const Int_t kMaxHcWords = (fGeo->TBmax()/3)*fGeo->ADCmax()*fGeo->MCMmax()*fGeo->ROBmaxC1()/2 + 100 + 20; // Buffer to temporary store half chamber data UInt_t *hc_buffer = new UInt_t[kMaxHcWords]; // sect is same as iDDL, so I use only sect here. for (Int_t sect = 0; sect < fGeo->Nsect(); sect++) { char name[1024]; sprintf(name,"TRD_%d.ddl",sect + AliTRDRawStream::kDDLOffset); #ifndef __DECCXX ofstream *of = new ofstream(name, ios::binary); #else ofstream *of = new ofstream(name); #endif // Write a dummy data header AliRawDataHeader header; // the event header UInt_t hpos = of->tellp(); of->write((char *) (& header), sizeof(header)); // Reset payload byte size (payload does not include header). Int_t npayloadbyte = 0; // GTU common data header (5x4 bytes per super module, shows link mask) for( Int_t cham = 0; cham < fGeo->Ncham(); cham++ ) { UInt_t GtuCdh = (UInt_t)(0xe << 28); for( Int_t plan = 0; plan < fGeo->Nplan(); plan++) { Int_t iDet = fGeo->GetDetector(plan, cham, sect); // If chamber status is ok, we assume that the optical link is also OK. // This is shown in the GTU link mask. if ( fCalibration->GetChamberStatus(iDet) ) GtuCdh = GtuCdh | (3 << (2*plan)); } of->write((char *) (& GtuCdh), sizeof(GtuCdh)); npayloadbyte += 4; } // Prepare chamber data for( Int_t cham = 0; cham < fGeo->Ncham(); cham++) { for( Int_t plan = 0; plan < fGeo->Nplan(); plan++) { Int_t iDet = fGeo->GetDetector(plan,cham,sect); // Get the digits array AliTRDdataArrayI *digits = digitsManager->GetDigits(iDet); digits->Expand(); Int_t hcwords = 0; // Process A side of the chamber if ( fRawVersion >= 1 && fRawVersion <= 2 ) hcwords = ProduceHcDataV1andV2(digits,0,iDet,hc_buffer,kMaxHcWords); of->write((char *) hc_buffer, hcwords*4); npayloadbyte += hcwords*4; // Process B side of the chamber if ( fRawVersion >= 1 && fRawVersion <= 2 ) hcwords = ProduceHcDataV1andV2(digits,1,iDet,hc_buffer,kMaxHcWords); of->write((char *) hc_buffer, hcwords*4); npayloadbyte += hcwords*4; } } // Complete header header.fSize = UInt_t(of->tellp()) - hpos; header.SetAttribute(0); // Valid data of->seekp(hpos); // Rewind to header position of->write((char *) (& header), sizeof(header)); of->close(); delete of; } delete hc_buffer; return kTRUE; } //_____________________________________________________________________________ Int_t AliTRDrawData::ProduceHcDataV1andV2(AliTRDdataArrayI *digits, Int_t side , Int_t det, UInt_t *buf, Int_t maxSize) { // // This function simulates: 1) SM-I commissiong data Oct. 06 (fRawVersion == 1). // 2) Full Raw Production Version (fRawVersion == 2) // // Produce half chamber data (= an ORI data) for the given chamber (det) and side (side) // where // // side=0 means A side with ROB positions 0, 2, 4, 6. // side=1 means B side with ROB positions 1, 3, 5, 7. // // Chamber type (C0 orC1) is determined by "det" automatically. // Appropriate size of buffer (*buf) must be prepared prior to calling this function. // Pointer to the buffer and its size must be given to "buf" and "maxSize". // Return value is the number of valid data filled in the buffer in unit of 32 bits // UInt_t words. // If buffer size if too small, the data is truncated with the buffer size however // the function will finish without crash (this behaviour is similar to the MCM). // Int_t nw = 0; // Number of written words Int_t of = 0; // Number of overflowed words Int_t plan = fGeo->GetPlane( det ); // Plane Int_t cham = fGeo->GetChamber( det ); // Chamber Int_t sect = fGeo->GetSector( det ); // Sector (=iDDL) Int_t nRow = fCommonParam->GetRowMax( plan, cham, sect ); Int_t nCol = fCommonParam->GetColMax( plan ); const Int_t nTBin = fCalibration->GetNumberOfTimeBins(); Int_t kCtype = 0; // Chamber type (0:C0, 1:C1) Int_t iEv = 0xA; // Event ID. Now fixed to 10, how do I get event id? UInt_t x = 0; // General used number // Check the nCol and nRow. if ((nCol == 144) && (nRow == 16 || nRow == 12)) { kCtype = (nRow-12) / 4; } else { AliError(Form("This type of chamber is not supported (nRow=%d, nCol=%d)." ,nRow,nCol)); return 0; } AliDebug(1,Form("Producing raw data for sect=%d plan=%d cham=%d side=%d" ,sect,plan,cham,side)); // Tracklet should be processed here but not implemented yet // Write end of tracklet marker if (nw < maxSize) { buf[nw++] = kEndoftrackletmarker; } else { of++; } // Half Chamber header if ( fRawVersion == 1 ) { // Now it is the same version as used in SM-I commissioning. Int_t dcs = det+100; // DCS Serial (in simulation, it is meaningless x = (dcs<<20) | (sect<<15) | (plan<<12) | (cham<<9) | (side<<8) | 1; if (nw < maxSize) { buf[nw++] = x; } else { of++; } } else if ( fRawVersion == 2 ) { // h[0] (there are 3 HC header) Int_t minorv = 0; // The minor version number Int_t add = 1; // The number of additional header words to follow x = (1<<31) | (fRawVersion<<24) | (minorv<<17) | (add<<14) | (sect<<9) | (plan<<6) | (cham<<3) | (side<<2) | 1; if (nw < maxSize) { buf[nw++] = x; } else { of++; } // h[1] Int_t bc_ctr = 99; // bunch crossing counter. Here it is set to 99 always for no reason Int_t pt_ctr = 15; // pretrigger counter. Here it is set to 15 always for no reason Int_t pt_phase = 11; // pretrigger phase. Here it is set to 11 always for no reason x = (bc_ctr<<16) | (pt_ctr<<12) | (pt_phase<<8) | ((nTBin-1)<<2) | 1; if (nw < maxSize) { buf[nw++] = x; } else { of++; } // h[2] Int_t ped_setup = 1; // Pedestal filter setup (0:1). Here it is always 1 for no reason Int_t gain_setup = 1; // Gain filter setup (0:1). Here it is always 1 for no reason Int_t tail_setup = 1; // Tail filter setup (0:1). Here it is always 1 for no reason Int_t xt_setup = 0; // Cross talk filter setup (0:1). Here it is always 0 for no reason Int_t nonlin_setup = 0; // Nonlinearity filter setup (0:1). Here it is always 0 for no reason Int_t bypass_setup = 0; // Filter bypass (for raw data) setup (0:1). Here it is always 0 for no reason Int_t common_additive = 10; // Digital filter common additive (0:63). Here it is always 10 for no reason x = (ped_setup<<31) | (gain_setup<<30) | (tail_setup<<29) | (xt_setup<<28) | (nonlin_setup<<27) | (bypass_setup<<26) | (common_additive<<20) | 1; if (nw < maxSize) { buf[nw++] = x; } else { of++; } } // Scan for ROB and MCM for (Int_t iRobRow = 0; iRobRow < (kCtype + 3); iRobRow++ ) { Int_t iRob = iRobRow * 2 + side; for (Int_t iMcm = 0; iMcm < fGeo->MCMmax(); iMcm++ ) { Int_t padrow = iRobRow * 4 + iMcm / 4; // MCM header x = ((iRob * fGeo->MCMmax() + iMcm) << 24) | ((iEv % 0x100000) << 4) | 0xC; if (nw < maxSize) { buf[nw++] = x; } else { of++; } // ADC data for (Int_t iAdc = 0; iAdc < 21; iAdc++ ) { Int_t padcol = fGeo->GetPadColFromADC(iRob, iMcm, iAdc); UInt_t aa = !(iAdc & 1) + 2; UInt_t *a = new UInt_t[nTBin+2]; // 3 timebins are packed into one 32 bits word for (Int_t iT = 0; iT < nTBin; iT+=3) { if ((padcol >= 0) && (padcol < nCol)) { a[iT ] = ((iT ) < nTBin ) ? digits->GetDataUnchecked(padrow,padcol,iT ) : 0; a[iT+1] = ((iT + 1) < nTBin ) ? digits->GetDataUnchecked(padrow,padcol,iT + 1) : 0; a[iT+2] = ((iT + 2) < nTBin ) ? digits->GetDataUnchecked(padrow,padcol,iT + 2) : 0; } else { a[iT] = a[iT+1] = a[iT+2] = 0; // This happenes at the edge of chamber (should be pedestal! How?) } x = (a[iT+2] << 22) | (a[iT+1] << 12) | (a[iT] << 2) | aa; if (nw < maxSize) { buf[nw++] = x; } else { of++; } } // Diagnostics Float_t avg = 0; Float_t rms = 0; for (Int_t iT = 0; iT < nTBin; iT++) { avg += (Float_t) (a[iT]); } avg /= (Float_t) nTBin; for (Int_t iT = 0; iT < nTBin; iT++) { rms += ((Float_t) (a[iT]) - avg) * ((Float_t) (a[iT]) - avg); } rms = TMath::Sqrt(rms / (Float_t) nTBin); if (rms > 1.7) { AliDebug(2,Form("Large RMS (>1.7) (ROB,MCM,ADC)=(%02d,%02d,%02d), avg=%03.1f, rms=%03.1f" ,iRob,iMcm,iAdc,avg,rms)); } delete a; } } } // Write end of raw data marker if (nw < maxSize) { buf[nw++] = kEndofrawdatamarker; } else { of++; } if (of != 0) { AliWarning("Buffer overflow. Data is truncated. Please increase buffer size and recompile."); } return nw; } //_____________________________________________________________________________ AliTRDdigitsManager *AliTRDrawData::Raw2Digits(AliRawReader *rawReader) { // // Vx of the raw data reading // AliTRDdataArrayI *digits = 0; AliTRDdataArrayI *track0 = 0; AliTRDdataArrayI *track1 = 0; AliTRDdataArrayI *track2 = 0; // Create the digits manager AliTRDdigitsManager* digitsManager = new AliTRDdigitsManager(); digitsManager->CreateArrays(); AliTRDRawStream input(rawReader); input.SetRawVersion( fRawVersion ); input.Init(); // Loop through the digits Int_t lastdet = -1; Int_t det = 0; Int_t it = 0; while (input.Next()) { det = input.GetDet(); if (det != lastdet) { lastdet = det; if (digits) digits->Compress(1,0); if (track0) track0->Compress(1,0); if (track1) track1->Compress(1,0); if (track2) track2->Compress(1,0); // Add a container for the digits of this detector digits = digitsManager->GetDigits(det); track0 = digitsManager->GetDictionary(det,0); track1 = digitsManager->GetDictionary(det,1); track2 = digitsManager->GetDictionary(det,2); // Allocate memory space for the digits buffer if (digits->GetNtime() == 0) { digits->Allocate(input.GetMaxRow(),input.GetMaxCol(), input.GetNumberOfTimeBins()); track0->Allocate(input.GetMaxRow(),input.GetMaxCol(), input.GetNumberOfTimeBins()); track1->Allocate(input.GetMaxRow(),input.GetMaxCol(), input.GetNumberOfTimeBins()); track2->Allocate(input.GetMaxRow(),input.GetMaxCol(), input.GetNumberOfTimeBins()); } } for (it = 0; it < 3; it++) { if ( input.GetTimeBin() + it < input.GetNumberOfTimeBins() ) { digits->SetDataUnchecked(input.GetRow(), input.GetCol(), input.GetTimeBin() + it, input.GetSignals()[it]); track0->SetDataUnchecked(input.GetRow(), input.GetCol(), input.GetTimeBin() + it, 0); track1->SetDataUnchecked(input.GetRow(), input.GetCol(), input.GetTimeBin() + it, 0); track2->SetDataUnchecked(input.GetRow(), input.GetCol(), input.GetTimeBin() + it, 0); } } } if (digits) digits->Compress(1,0); if (track0) track0->Compress(1,0); if (track1) track1->Compress(1,0); if (track2) track2->Compress(1,0); return digitsManager; }