#ifndef ALITRDRECOPARAM_H #define ALITRDRECOPARAM_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ //////////////////////////////////////////////////////////////////////////// // // // Parameter class for the TRD reconstruction // // // //////////////////////////////////////////////////////////////////////////// #ifndef ALIDETECTORRECOPARAM_H #include "AliDetectorRecoParam.h" #endif #ifndef ALITRDCALPID_H #include "AliTRDCalPID.h" #endif #ifndef ALITRDPIDRESPONSE_H #include "AliTRDPIDResponse.h" #endif class TString; class AliTRDrecoParam : public AliDetectorRecoParam { public: enum ETRDReconstructionTask{ kClusterizer = 0, kTracker = 1, kPID = 2, kTRDreconstructionTasks = 3 }; enum ETRDflags { kDriftGas ,kVertexConstraint ,kTailCancelation ,kImproveTracklet ,kLUT ,kGAUS ,kClusterSharing ,kSteerPID ,kEightSlices ,kCheckTimeConsistency ,kLQ2D }; AliTRDrecoParam(); AliTRDrecoParam(const AliTRDrecoParam &rec); AliTRDrecoParam& operator=(const AliTRDrecoParam &rec); ~AliTRDrecoParam() { } Double_t GetChi2Y() const { return fkChi2Y; } Double_t GetChi2Z() const { return fkChi2Z; } Double_t GetChi2YSlope() const { return fkChi2YSlope; } Double_t GetChi2ZSlope() const { return fkChi2ZSlope; } Double_t GetChi2YCut() const { return fkChi2YCut; } Double_t GetPhiSlope() const { return fkPhiSlope; } Float_t GetNClusters() const; Double_t GetNMeanClusters() const { return fkNMeanClusters; } Double_t GetNSigmaClusters() const { return fkNSigmaClusters; } Double_t GetFindableClusters() const { return fkFindable; } inline Int_t GetPIDLQslices() const; inline AliTRDPIDResponse::ETRDPIDMethod GetPIDmethod() const; Double_t GetMaxTheta() const { return fkMaxTheta; } Double_t GetMaxPhi() const { return fkMaxPhi; } Double_t GetPlaneQualityThreshold() const { return fkPlaneQualityThreshold; } Double_t GetPIDThreshold(Float_t /*p*/) const { return 0.;} Double_t GetRoad0y() const { return fkRoad0y; } Double_t GetRoad0z() const { return fkRoad0z; } Double_t GetRoad1y() const { return fkRoad1y; } Double_t GetRoad1z() const { return fkRoad1z; } Double_t GetRoad2y() const { return fkRoad2y; } Double_t GetRoad2z() const { return fkRoad2z; } Double_t GetRoadzMultiplicator() const { return fkRoadzMultiplicator; } Double_t GetTrackLikelihood() const { return fkTrackLikelihood; } inline void GetSysCovMatrix(Double_t *sys) const; inline void GetTCParams(Double_t *par) const; inline Int_t GetStreamLevel(ETRDReconstructionTask task) const; const TString *GetRawStreamVersion() const{ return &fRawStreamVersion; }; Double_t GetMinMaxCutSigma() const { return fMinMaxCutSigma; }; Double_t GetMinLeftRightCutSigma() const { return fMinLeftRightCutSigma; }; Double_t GetClusMaxThresh() const { return fClusMaxThresh; }; Double_t GetClusSigThresh() const { return fClusSigThresh; }; Int_t GetTCnexp() const { return fTCnexp; }; Int_t GetNumberOfPresamples() const { return fNumberOfPresamples;} Int_t GetNumberOfPostsamples() const { return fNumberOfPostsamples;} Int_t GetNumberOfSeedConfigs() const { return fNumberOfConfigs;} Int_t GetRecEveryNTB() const { return fRecEveryNTB; } Bool_t IsArgon() const { return TESTBIT(fFlags, kDriftGas); } Bool_t IsCheckTimeConsistency() const { return kCheckTimeConsistency;} Bool_t IsOverPtThreshold(Double_t pt) const {return Bool_t(pt>fkPtThreshold);} Bool_t IsXenon() const { return !TESTBIT(fFlags, kDriftGas); } Bool_t IsPIDNeuralNetwork() const { return TESTBIT(fFlags, kSteerPID);} Bool_t IsVertexConstrained() const { return TESTBIT(fFlags, kVertexConstraint); } Bool_t IsEightSlices() const { return TESTBIT(fFlags, kEightSlices);} Bool_t HasImproveTracklets() const { return TESTBIT(fFlags, kImproveTracklet);} Bool_t UseClusterSharing() const { return TESTBIT(fFlags, kClusterSharing);} Bool_t UseLUT() const { return TESTBIT(fFlags, kLUT);} Bool_t UseGAUS() const { return TESTBIT(fFlags, kGAUS);} Bool_t UseTailCancelation() const { return TESTBIT(fFlags, kTailCancelation); } static AliTRDrecoParam *GetLowFluxParam(); static AliTRDrecoParam *GetLowFluxHLTParam(); static AliTRDrecoParam *GetHighFluxParam(); static AliTRDrecoParam *GetHighFluxHLTParam(); static AliTRDrecoParam *GetCosmicTestParam(); void SetArgon(Bool_t b = kTRUE) {if(b) SETBIT(fFlags, kDriftGas); else CLRBIT(fFlags, kDriftGas);} void SetCheckTimeConsistency(Bool_t b = kTRUE) {if(b) SETBIT(fFlags, kCheckTimeConsistency); else CLRBIT(fFlags, kCheckTimeConsistency);} void SetClusterSharing(Bool_t b = kTRUE) {if(b) SETBIT(fFlags, kClusterSharing); else CLRBIT(fFlags, kClusterSharing);} void SetEightSlices(Bool_t b = kTRUE) {if(b) SETBIT(fFlags, kEightSlices); else CLRBIT(fFlags, kEightSlices);} void SetImproveTracklets(Bool_t b = kTRUE) {if(b) SETBIT(fFlags, kImproveTracklet); else CLRBIT(fFlags, kImproveTracklet);} void SetLUT(Bool_t b=kTRUE) {if(b) SETBIT(fFlags, kLUT); else CLRBIT(fFlags, kLUT);} void SetGAUS(Bool_t b=kTRUE) {if(b) SETBIT(fFlags, kGAUS); else CLRBIT(fFlags, kGAUS);} void SetPIDNeuralNetwork(Bool_t b=kTRUE) {if(b) SETBIT(fFlags, kSteerPID); else CLRBIT(fFlags, kSteerPID);} inline void SetPIDmethod(AliTRDPIDResponse::ETRDPIDMethod method); void SetPIDLQslices(Int_t s); void SetTailCancelation(Bool_t b=kTRUE) {if(b) SETBIT(fFlags, kTailCancelation); else CLRBIT(fFlags, kTailCancelation);} void SetXenon(Bool_t b = kTRUE) {if(b) CLRBIT(fFlags, kDriftGas); else SETBIT(fFlags, kDriftGas);} void SetVertexConstrained() {SETBIT(fFlags, kVertexConstraint);} void SetMaxTheta(Double_t maxTheta) {fkMaxTheta = maxTheta;} void SetMaxPhi(Double_t maxPhi) {fkMaxPhi = maxPhi;} void SetFindableClusters(Double_t r) {fkFindable = r;} void SetChi2Y(Double_t chi2) {fkChi2Y = chi2;} void SetChi2Z(Double_t chi2) {fkChi2Z = chi2;} void SetChi2YSlope(Double_t chi2YSlope) {fkChi2YSlope = chi2YSlope;} void SetChi2ZSlope(Double_t chi2ZSlope) {fkChi2ZSlope = chi2ZSlope;} void SetChi2YCut(Double_t chi2Cut) {fkChi2YCut = chi2Cut; } void SetPhiSlope(Double_t phiSlope) {fkPhiSlope = phiSlope;} void SetNMeanClusters(Double_t meanNclusters) {fkNMeanClusters = meanNclusters;} void SetNSigmaClusters(Double_t sigmaNclusters) {fkNSigmaClusters = sigmaNclusters;} void SetRawStreamVersion(const Char_t *version) {fRawStreamVersion = version; } void SetRoadzMultiplicator(Double_t mult) {fkRoadzMultiplicator = mult; } void SetMinMaxCutSigma(Float_t minMaxCutSigma) { fMinMaxCutSigma = minMaxCutSigma; } void SetMinLeftRightCutSigma(Float_t minLeftRightCutSigma) { fMinLeftRightCutSigma = minLeftRightCutSigma; }; void SetClusMaxThresh(Float_t thresh) { fClusMaxThresh = thresh; }; void SetClusSigThresh(Float_t thresh) { fClusSigThresh = thresh; }; inline void SetPIDThreshold(Double_t *pid); void SetPtThreshold(Double_t pt) {fkPtThreshold = pt;} void SetNexponential(Int_t nexp) { fTCnexp = nexp; }; inline void SetTCParams(Double_t *par); inline void SetStreamLevel(ETRDReconstructionTask task, Int_t level); inline void SetSysCovMatrix(Double_t *sys); void SetNumberOfPresamples(Int_t n) { fNumberOfPresamples = n;} void SetNumberOfPostsamples(Int_t n) { fNumberOfPostsamples = n;} void SetRecEveryTwoTB() { fRecEveryNTB = 2; fkNMeanClusters = 10; } private: // Physics reference values for TRD Double_t fkdNchdy; // dNch/dy Double_t fkMaxTheta; // Maximum theta Double_t fkMaxPhi; // Maximum phi - momentum cut // Tracker params Double_t fkRoad0y; // Road for middle cluster Double_t fkRoad0z; // Road for middle cluster Double_t fkRoad1y; // Road in y for seeded cluster Double_t fkRoad1z; // Road in z for seeded cluster Double_t fkRoad2y; // Road in y for extrapolated cluster Double_t fkRoad2z; // Road in z for extrapolated cluster Double_t fkPtThreshold; // pt threshold for using TRD points for updating Kalaman track Double_t fkPlaneQualityThreshold; // Quality threshold Double_t fkRoadzMultiplicator; // Multiplicator for the Roads in z Double_t fkFindable; // minimum ratio of clusters per tracklet supposed to be attached. Double_t fkChi2Z; // Max chi2 on the z direction for seeding clusters fit Double_t fkChi2Y; // Max chi2 on the y direction for seeding clusters Rieman fit Double_t fkChi2YSlope; // Slope of the chi2-distribution in y-direction Double_t fkChi2ZSlope; // Slope of the chi2-distribution in z-direction Double_t fkChi2YCut; // Cut on the Chi2 in y-direction in the likelihood filter Double_t fkPhiSlope; // Slope of the distribution of the deviation between track angle and tracklet angle Double_t fkNMeanClusters; // Mean number of clusters per tracklet Double_t fkNSigmaClusters; // Sigma of the number of clusters per tracklet Double_t fkNClusterNoise; // ratio of noisy clusters to the true one Double_t fkNMeanTracklets; // Mean number of tracklets per track Double_t fkTrackLikelihood; // Track likelihood for tracklets Rieman fit Double_t fSysCovMatrix[5]; // Systematic uncertainty from calibration and alignment for each tracklet Double_t fPIDThreshold[AliTRDCalPID::kNMom]; // PID Thresholds for Electron candidate decision Int_t fNumberOfConfigs; // Used number of seed configurations // Reconstruction Options for TRD reconstruction Int_t fStreamLevel[kTRDreconstructionTasks]; // Stream Level Long64_t fFlags; // option Flags // Raw Reader Params TString fRawStreamVersion; // Raw Reader version // Clusterization parameter Double_t fMinMaxCutSigma; // Threshold sigma noise pad middle Double_t fMinLeftRightCutSigma; // Threshold sigma noise sum pad Double_t fClusMaxThresh; // Threshold value for cluster maximum Double_t fClusSigThresh; // Threshold value for cluster signal Int_t fTCnexp; // Number of exponentials, digital filter Double_t fTCParams[8]; // Tail Cancellation parameters for drift gases Int_t fRecEveryNTB; // Reconstruct each nth timebin // ADC parameter Int_t fNumberOfPresamples; // number of presamples Int_t fNumberOfPostsamples; // number of postsamples ClassDef(AliTRDrecoParam, 12) // Reconstruction parameters for TRD detector }; //___________________________________________________ inline void AliTRDrecoParam::GetSysCovMatrix(Double_t *sys) const { if(!sys) return; memcpy(sys, fSysCovMatrix, 5*sizeof(Double_t)); } //___________________________________________________ inline void AliTRDrecoParam::SetSysCovMatrix(Double_t *sys) { if(!sys) return; memcpy(fSysCovMatrix, sys, 5*sizeof(Double_t)); } //___________________________________________________ inline void AliTRDrecoParam::SetPIDThreshold(Double_t *pid) { if(!pid) return; memcpy(fPIDThreshold, pid, AliTRDCalPID::kNMom*sizeof(Double_t)); } //___________________________________________________ inline void AliTRDrecoParam::SetStreamLevel(ETRDReconstructionTask task, Int_t level){ if(task >= kTRDreconstructionTasks) return; fStreamLevel[static_cast(task)] = level; } //___________________________________________________ inline Int_t AliTRDrecoParam::GetStreamLevel(ETRDReconstructionTask task) const{ if(task >= kTRDreconstructionTasks) return 0; return fStreamLevel[static_cast(task)]; } //___________________________________________________ inline void AliTRDrecoParam::GetTCParams(Double_t *par) const { if(!par) return; if(IsArgon()) memcpy(par, &fTCParams[4], 4*sizeof(Double_t)); else memcpy(par, &fTCParams[0], 4*sizeof(Double_t)); } //___________________________________________________ inline void AliTRDrecoParam::SetTCParams(Double_t *par) { if(!par) return; memcpy(fTCParams, par, 8*sizeof(Double_t)); } //___________________________________________________ inline Int_t AliTRDrecoParam::GetPIDLQslices() const { if(IsPIDNeuralNetwork()) return -1; return TESTBIT(fFlags, kLQ2D) ? 2 : 1; } //___________________________________________________ inline AliTRDPIDResponse::ETRDPIDMethod AliTRDrecoParam::GetPIDmethod() const { AliTRDPIDResponse::ETRDPIDMethod method = AliTRDPIDResponse::kLQ1D; if(IsPIDNeuralNetwork()) method = AliTRDPIDResponse::kNN; else if(TESTBIT(fFlags, kLQ2D)) method = AliTRDPIDResponse::kLQ2D; return method; } //___________________________________________________ inline void AliTRDrecoParam::SetPIDmethod(AliTRDPIDResponse::ETRDPIDMethod method) { switch(method){ case AliTRDPIDResponse::kLQ2D: CLRBIT(fFlags, kSteerPID); SETBIT(fFlags, kLQ2D); break; case AliTRDPIDResponse::kNN: SETBIT(fFlags, kSteerPID); break; case AliTRDPIDResponse::kLQ1D: default: CLRBIT(fFlags, kSteerPID); CLRBIT(fFlags, kLQ2D); break; } } #endif