/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //////////////////////////////////////////////////////////////////////////// //// // The TRD offline tracklet // // The running horse of the TRD reconstruction. The following tasks are preformed: // 1. Clusters attachment to tracks based on prior information stored at tracklet level (see AttachClusters) // 2. Clusters position recalculation based on track information (see GetClusterXY and Fit) // 3. Cluster error parametrization recalculation (see Fit) // 4. Linear track approximation (Fit) // 5. Optimal position (including z estimate for pad row cross tracklets) and covariance matrix of the track fit inside one TRD chamber (Fit) // 6. Tilt pad correction and systematic effects (GetCovAt) // 7. dEdx calculation (CookdEdx) // 8. PID probabilities estimation (CookPID) // // Authors: // // Alex Bercuci // // Markus Fasel // // // //////////////////////////////////////////////////////////////////////////// #include "TMath.h" #include "TLinearFitter.h" #include "TClonesArray.h" // tmp #include #include "AliLog.h" #include "AliMathBase.h" #include "AliCDBManager.h" #include "AliTracker.h" #include "AliTRDpadPlane.h" #include "AliTRDcluster.h" #include "AliTRDseedV1.h" #include "AliTRDtrackV1.h" #include "AliTRDcalibDB.h" #include "AliTRDchamberTimeBin.h" #include "AliTRDtrackingChamber.h" #include "AliTRDtrackerV1.h" #include "AliTRDrecoParam.h" #include "AliTRDCommonParam.h" #include "Cal/AliTRDCalPID.h" #include "Cal/AliTRDCalROC.h" #include "Cal/AliTRDCalDet.h" ClassImp(AliTRDseedV1) TLinearFitter *AliTRDseedV1::fgFitterY = NULL; TLinearFitter *AliTRDseedV1::fgFitterZ = NULL; //____________________________________________________________________ AliTRDseedV1::AliTRDseedV1(Int_t det) :AliTRDtrackletBase() ,fkReconstructor(NULL) ,fClusterIter(NULL) ,fExB(0.) ,fVD(0.) ,fT0(0.) ,fS2PRF(0.) ,fDiffL(0.) ,fDiffT(0.) ,fClusterIdx(0) ,fN(0) ,fDet(det) ,fPt(0.) ,fdX(0.) ,fX0(0.) ,fX(0.) ,fY(0.) ,fZ(0.) ,fS2Y(0.) ,fS2Z(0.) ,fC(0.) ,fChi2(0.) { // // Constructor // memset(fIndexes,0xFF,kNclusters*sizeof(fIndexes[0])); memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*)); memset(fPad, 0, 3*sizeof(Float_t)); fYref[0] = 0.; fYref[1] = 0.; fZref[0] = 0.; fZref[1] = 0.; fYfit[0] = 0.; fYfit[1] = 0.; fZfit[0] = 0.; fZfit[1] = 0.; memset(fdEdx, 0, kNslices*sizeof(Float_t)); for(int ispec=0; ispecGetProlongation(fX0, y, z)) return kFALSE; Update(track); return kTRUE; } //_____________________________________________________________________________ void AliTRDseedV1::Reset() { // // Reset seed // fExB=0.;fVD=0.;fT0=0.;fS2PRF=0.; fDiffL=0.;fDiffT=0.; fClusterIdx=0; fN=0; fDet=-1; fPt=0.; fdX=0.;fX0=0.; fX=0.; fY=0.; fZ=0.; fS2Y=0.; fS2Z=0.; fC=0.; fChi2 = 0.; for(Int_t ic=kNclusters; ic--;) fIndexes[ic] = -1; memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*)); memset(fPad, 0, 3*sizeof(Float_t)); fYref[0] = 0.; fYref[1] = 0.; fZref[0] = 0.; fZref[1] = 0.; fYfit[0] = 0.; fYfit[1] = 0.; fZfit[0] = 0.; fZfit[1] = 0.; memset(fdEdx, 0, kNslices*sizeof(Float_t)); for(int ispec=0; ispecGetSnp(); Double_t fTgl = trk->GetTgl(); fPt = trk->Pt(); Double_t norm =1./TMath::Sqrt(1. - fSnp*fSnp); fYref[1] = fSnp*norm; fZref[1] = fTgl*norm; SetCovRef(trk->GetCovariance()); Double_t dx = trk->GetX() - fX0; fYref[0] = trk->GetY() - dx*fYref[1]; fZref[0] = trk->GetZ() - dx*fZref[1]; } //_____________________________________________________________________________ void AliTRDseedV1::UpdateUsed() { // // Calculate number of used clusers in the tracklet // Int_t nused = 0, nshared = 0; for (Int_t i = kNclusters; i--; ) { if (!fClusters[i]) continue; if(fClusters[i]->IsUsed()){ nused++; } else if(fClusters[i]->IsShared()){ if(IsStandAlone()) nused++; else nshared++; } } SetNUsed(nused); SetNShared(nshared); } //_____________________________________________________________________________ void AliTRDseedV1::UseClusters() { // // Use clusters // // In stand alone mode: // Clusters which are marked as used or shared from another track are // removed from the tracklet // // In barrel mode: // - Clusters which are used by another track become shared // - Clusters which are attached to a kink track become shared // AliTRDcluster **c = &fClusters[0]; for (Int_t ic=kNclusters; ic--; c++) { if(!(*c)) continue; if(IsStandAlone()){ if((*c)->IsShared() || (*c)->IsUsed()){ if((*c)->IsShared()) SetNShared(GetNShared()-1); else SetNUsed(GetNUsed()-1); (*c) = NULL; fIndexes[ic] = -1; SetN(GetN()-1); continue; } } else { if((*c)->IsUsed() || IsKink()){ (*c)->SetShared(); continue; } } (*c)->Use(); } } //____________________________________________________________________ void AliTRDseedV1::CookdEdx(Int_t nslices) { // Calculates average dE/dx for all slices and store them in the internal array fdEdx. // // Parameters: // nslices : number of slices for which dE/dx should be calculated // Output: // store results in the internal array fdEdx. This can be accessed with the method // AliTRDseedV1::GetdEdx() // // Detailed description // Calculates average dE/dx for all slices. Depending on the PID methode // the number of slices can be 3 (LQ) or 8(NN). // The calculation of dQ/dl are done using the tracklet fit results (see AliTRDseedV1::GetdQdl(Int_t)) // // The following effects are included in the calculation: // 1. calibration values for t0 and vdrift (using x coordinate to calculate slice) // 2. cluster sharing (optional see AliTRDrecoParam::SetClusterSharing()) // 3. cluster size // Int_t nclusters[kNslices]; memset(nclusters, 0, kNslices*sizeof(Int_t)); memset(fdEdx, 0, kNslices*sizeof(Float_t)); const Double_t kDriftLength = (.5 * AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick()); AliTRDcluster *c = NULL; for(int ic=0; icGetX()); // Filter clusters for dE/dx calculation // 1.consider calibration effects for slice determination Int_t slice; if(dxIsInChamber() slice = Int_t(dx * nslices / kDriftLength); } else slice = c->GetX() < fX0 ? nslices-1 : 0; // 2. take sharing into account Float_t w = /*c->IsShared() ? .5 :*/ 1.; // 3. take into account large clusters TODO //w *= c->GetNPads() > 3 ? .8 : 1.; //CHECK !!! fdEdx[slice] += w * GetdQdl(ic); //fdQdl[ic]; nclusters[slice]++; } // End of loop over clusters //if(fkReconstructor->GetPIDMethod() == AliTRDReconstructor::kLQPID){ if(nslices == AliTRDpidUtil::kLQslices){ // calculate mean charge per slice (only LQ PID) for(int is=0; isGetLabel(ilab) >= 0) { labels[nlab] = fClusters[i]->GetLabel(ilab); nlab++; } } } fLabels[2] = AliMathBase::Freq(nlab,labels,out,kTRUE); fLabels[0] = out[0]; if ((fLabels[2] > 1) && (out[3] > 1)) fLabels[1] = out[2]; } //____________________________________________________________________ Float_t AliTRDseedV1::GetdQdl(Int_t ic, Float_t *dl) const { // Using the linear approximation of the track inside one TRD chamber (TRD tracklet) // the charge per unit length can be written as: // BEGIN_LATEX // #frac{dq}{dl} = #frac{q_{c}}{dx * #sqrt{1 + #(){#frac{dy}{dx}}^{2}_{fit} + #(){#frac{dz}{dx}}^{2}_{ref}}} // END_LATEX // where qc is the total charge collected in the current time bin and dx is the length // of the time bin. // The following correction are applied : // - charge : pad row cross corrections // [diffusion and TRF assymetry] TODO // - dx : anisochronity, track inclination - see Fit and AliTRDcluster::GetXloc() // and AliTRDcluster::GetYloc() for the effects taken into account // //Begin_Html // //End_Html // In the picture the energy loss measured on the tracklet as a function of drift time [left] and respectively // drift length [right] for different particle species is displayed. // Author : Alex Bercuci // Float_t dq = 0.; // check whether both clusters are inside the chamber Bool_t hasClusterInChamber = kFALSE; if(fClusters[ic] && fClusters[ic]->IsInChamber()){ hasClusterInChamber = kTRUE; dq += TMath::Abs(fClusters[ic]->GetQ()); }else if(fClusters[ic+kNtb] && fClusters[ic+kNtb]->IsInChamber()){ hasClusterInChamber = kTRUE; dq += TMath::Abs(fClusters[ic+kNtb]->GetQ()); } if(!hasClusterInChamber) return 0.; if(dq<1.e-3) return 0.; Double_t dx = fdX; if(ic-1>=0 && ic+1IsInChamber()) x2 = fClusters[ic-1]->GetX(); else if(fClusters[ic-1+kNtb] && fClusters[ic-1+kNtb]->IsInChamber()) x2 = fClusters[ic-1+kNtb]->GetX(); else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x2 = fClusters[ic]->GetX()+fdX; else x2 = fClusters[ic+kNtb]->GetX()+fdX; // try to estimate lower radial position (find the cluster which is inside the chamber) if(fClusters[ic+1] && fClusters[ic+1]->IsInChamber()) x1 = fClusters[ic+1]->GetX(); else if(fClusters[ic+1+kNtb] && fClusters[ic+1+kNtb]->IsInChamber()) x1 = fClusters[ic+1+kNtb]->GetX(); else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x1 = fClusters[ic]->GetX()-fdX; else x1 = fClusters[ic+kNtb]->GetX()-fdX; dx = .5*(x2 - x1); } dx *= TMath::Sqrt(1. + fYfit[1]*fYfit[1] + fZref[1]*fZref[1]); if(dl) (*dl) = dx; return dq/dx; } //____________________________________________________________ Float_t AliTRDseedV1::GetMomentum(Float_t *err) const { // Returns momentum of the track after update with the current tracklet as: // BEGIN_LATEX // p=#frac{1}{1/p_{t}} #sqrt{1+tgl^{2}} // END_LATEX // and optionally the momentum error (if err is not null). // The estimated variance of the momentum is given by: // BEGIN_LATEX // #sigma_{p}^{2} = (#frac{dp}{dp_{t}})^{2} #sigma_{p_{t}}^{2}+(#frac{dp}{dtgl})^{2} #sigma_{tgl}^{2}+2#frac{dp}{dp_{t}}#frac{dp}{dtgl} cov(tgl,1/p_{t}) // END_LATEX // which can be simplified to // BEGIN_LATEX // #sigma_{p}^{2} = p^{2}p_{t}^{4}tgl^{2}#sigma_{tgl}^{2}-2p^{2}p_{t}^{3}tgl cov(tgl,1/p_{t})+p^{2}p_{t}^{2}#sigma_{1/p_{t}}^{2} // END_LATEX // Double_t p = fPt*TMath::Sqrt(1.+fZref[1]*fZref[1]); Double_t p2 = p*p; Double_t tgl2 = fZref[1]*fZref[1]; Double_t pt2 = fPt*fPt; if(err){ Double_t s2 = p2*tgl2*pt2*pt2*fRefCov[4] -2.*p2*fZref[1]*fPt*pt2*fRefCov[5] +p2*pt2*fRefCov[6]; (*err) = TMath::Sqrt(s2); } return p; } //____________________________________________________________________ Float_t* AliTRDseedV1::GetProbability(Bool_t force) { if(!force) return &fProb[0]; if(!CookPID()) return NULL; return &fProb[0]; } //____________________________________________________________ Bool_t AliTRDseedV1::CookPID() { // Fill probability array for tracklet from the DB. // // Parameters // // Output // returns pointer to the probability array and NULL if missing DB access // // Retrieve PID probabilities for e+-, mu+-, K+-, pi+- and p+- from the DB according to tracklet information: // - estimated momentum at tracklet reference point // - dE/dx measurements // - tracklet length // - TRD layer // According to the steering settings specified in the reconstruction one of the following methods are used // - Neural Network [default] - option "nn" // - 2D Likelihood - option "!nn" AliTRDcalibDB *calibration = AliTRDcalibDB::Instance(); if (!calibration) { AliError("No access to calibration data"); return kFALSE; } if (!fkReconstructor) { AliError("Reconstructor not set."); return kFALSE; } // Retrieve the CDB container class with the parametric detector response const AliTRDCalPID *pd = calibration->GetPIDObject(fkReconstructor->GetPIDMethod()); if (!pd) { AliError("No access to AliTRDCalPID object"); return kFALSE; } //AliInfo(Form("Method[%d] : %s", fkReconstructor->GetRecoParam() ->GetPIDMethod(), pd->IsA()->GetName())); // calculate tracklet length TO DO Float_t length = (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick()); /// TMath::Sqrt((1.0 - fSnp[iPlane]*fSnp[iPlane]) / (1.0 + fTgl[iPlane]*fTgl[iPlane])); //calculate dE/dx CookdEdx(fkReconstructor->GetNdEdxSlices()); // Sets the a priori probabilities for(int ispec=0; ispecGetProbability(ispec, GetMomentum(), &fdEdx[0], length, GetPlane()); return kTRUE; } //____________________________________________________________________ Float_t AliTRDseedV1::GetQuality(Bool_t kZcorr) const { // // Returns a quality measurement of the current seed // Float_t zcorr = kZcorr ? GetTilt() * (fZfit[0] - fZref[0]) : 0.; return .5 * TMath::Abs(18.0 - GetN()) + 10.* TMath::Abs(fYfit[1] - fYref[1]) + 5. * TMath::Abs(fYfit[0] - fYref[0] + zcorr) + 2. * TMath::Abs(fZfit[0] - fZref[0]) / GetPadLength(); } //____________________________________________________________________ void AliTRDseedV1::GetCovAt(Double_t x, Double_t *cov) const { // Computes covariance in the y-z plane at radial point x (in tracking coordinates) // and returns the results in the preallocated array cov[3] as : // cov[0] = Var(y) // cov[1] = Cov(yz) // cov[2] = Var(z) // // Details // // For the linear transformation // BEGIN_LATEX // Y = T_{x} X^{T} // END_LATEX // The error propagation has the general form // BEGIN_LATEX // C_{Y} = T_{x} C_{X} T_{x}^{T} // END_LATEX // We apply this formula 2 times. First to calculate the covariance of the tracklet // at point x we consider: // BEGIN_LATEX // T_{x} = (1 x); X=(y0 dy/dx); C_{X}=#(){#splitline{Var(y0) Cov(y0, dy/dx)}{Cov(y0, dy/dx) Var(dy/dx)}} // END_LATEX // and secondly to take into account the tilt angle // BEGIN_LATEX // T_{#alpha} = #(){#splitline{cos(#alpha) __ sin(#alpha)}{-sin(#alpha) __ cos(#alpha)}}; X=(y z); C_{X}=#(){#splitline{Var(y) 0}{0 Var(z)}} // END_LATEX // // using simple trigonometrics one can write for this last case // BEGIN_LATEX // C_{Y}=#frac{1}{1+tg^{2}#alpha} #(){#splitline{(#sigma_{y}^{2}+tg^{2}#alpha#sigma_{z}^{2}) __ tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2})}{tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2}) __ (#sigma_{z}^{2}+tg^{2}#alpha#sigma_{y}^{2})}} // END_LATEX // which can be aproximated for small alphas (2 deg) with // BEGIN_LATEX // C_{Y}=#(){#splitline{#sigma_{y}^{2} __ (#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha}{((#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha __ #sigma_{z}^{2}}} // END_LATEX // // before applying the tilt rotation we also apply systematic uncertainties to the tracklet // position which can be tunned from outside via the AliTRDrecoParam::SetSysCovMatrix(). They might // account for extra misalignment/miscalibration uncertainties. // // Author : // Alex Bercuci // Date : Jan 8th 2009 // Double_t xr = fX0-x; Double_t sy2 = fCov[0] +2.*xr*fCov[1] + xr*xr*fCov[2]; Double_t sz2 = fS2Z; //GetPadLength()*GetPadLength()/12.; // insert systematic uncertainties if(fkReconstructor){ Double_t sys[15]; memset(sys, 0, 15*sizeof(Double_t)); fkReconstructor->GetRecoParam()->GetSysCovMatrix(sys); sy2 += sys[0]; sz2 += sys[1]; } // rotate covariance matrix Double_t t2 = GetTilt()*GetTilt(); Double_t correction = 1./(1. + t2); cov[0] = (sy2+t2*sz2)*correction; cov[1] = GetTilt()*(sz2 - sy2)*correction; cov[2] = (t2*sy2+sz2)*correction; //printf("C(%6.1f %+6.3f %6.1f) [%s]\n", 1.e4*TMath::Sqrt(cov[0]), cov[1], 1.e4*TMath::Sqrt(cov[2]), IsRowCross()?" RC ":"-"); } //____________________________________________________________ Double_t AliTRDseedV1::GetCovSqrt(const Double_t * const c, Double_t *d) { // Helper function to calculate the square root of the covariance matrix. // The input matrix is stored in the vector c and the result in the vector d. // Both arrays have to be initialized by the user with at least 3 elements. Return negative in case of failure. // // For calculating the square root of the symmetric matrix c // the following relation is used: // BEGIN_LATEX // C^{1/2} = VD^{1/2}V^{-1} // END_LATEX // with V being the matrix with the n eigenvectors as columns. // In case C is symmetric the followings are true: // - matrix D is diagonal with the diagonal given by the eigenvalues of C // - V = V^{-1} // // Author A.Bercuci // Date Mar 19 2009 Double_t l[2], // eigenvalues v[3]; // eigenvectors // the secular equation and its solution : // (c[0]-L)(c[2]-L)-c[1]^2 = 0 // L^2 - L*Tr(c)+DET(c) = 0 // L12 = [Tr(c) +- sqrt(Tr(c)^2-4*DET(c))]/2 Double_t tr = c[0]+c[2], // trace det = c[0]*c[2]-c[1]*c[1]; // determinant if(TMath::Abs(det)<1.e-20) return -1.; Double_t dd = TMath::Sqrt(tr*tr - 4*det); l[0] = .5*(tr + dd); l[1] = .5*(tr - dd); if(l[0]<0. || l[1]<0.) return -1.; // the sym V matrix // | v00 v10| // | v10 v11| Double_t tmp = (l[0]-c[0])/c[1]; v[0] = TMath::Sqrt(1./(tmp*tmp+1)); v[1] = tmp*v[0]; v[2] = v[1]*c[1]/(l[1]-c[2]); // the VD^{1/2}V is: l[0] = TMath::Sqrt(l[0]); l[1] = TMath::Sqrt(l[1]); d[0] = v[0]*v[0]*l[0]+v[1]*v[1]*l[1]; d[1] = v[0]*v[1]*l[0]+v[1]*v[2]*l[1]; d[2] = v[1]*v[1]*l[0]+v[2]*v[2]*l[1]; return 1.; } //____________________________________________________________ Double_t AliTRDseedV1::GetCovInv(const Double_t * const c, Double_t *d) { // Helper function to calculate the inverse of the covariance matrix. // The input matrix is stored in the vector c and the result in the vector d. // Both arrays have to be initialized by the user with at least 3 elements // The return value is the determinant or 0 in case of singularity. // // Author A.Bercuci // Date Mar 19 2009 Double_t det = c[0]*c[2] - c[1]*c[1]; if(TMath::Abs(det)<1.e-20) return 0.; Double_t invDet = 1./det; d[0] = c[2]*invDet; d[1] =-c[1]*invDet; d[2] = c[0]*invDet; return det; } //____________________________________________________________________ UShort_t AliTRDseedV1::GetVolumeId() const { Int_t ic=0; while(icGetVolumeId() : 0; } //____________________________________________________________________ TLinearFitter* AliTRDseedV1::GetFitterY() { if(!fgFitterY) fgFitterY = new TLinearFitter(1, "pol1"); fgFitterY->ClearPoints(); return fgFitterY; } //____________________________________________________________________ TLinearFitter* AliTRDseedV1::GetFitterZ() { if(!fgFitterZ) fgFitterZ = new TLinearFitter(1, "pol1"); fgFitterZ->ClearPoints(); return fgFitterZ; } //____________________________________________________________________ void AliTRDseedV1::Calibrate() { // Retrieve calibration and position parameters from OCDB. // The following information are used // - detector index // - column and row position of first attached cluster. If no clusters are attached // to the tracklet a random central chamber position (c=70, r=7) will be used. // // The following information is cached in the tracklet // t0 (trigger delay) // drift velocity // PRF width // omega*tau = tg(a_L) // diffusion coefficients (longitudinal and transversal) // // Author : // Alex Bercuci // Date : Jan 8th 2009 // AliCDBManager *cdb = AliCDBManager::Instance(); if(cdb->GetRun() < 0){ AliError("OCDB manager not properly initialized"); return; } AliTRDcalibDB *calib = AliTRDcalibDB::Instance(); AliTRDCalROC *vdROC = calib->GetVdriftROC(fDet), *t0ROC = calib->GetT0ROC(fDet);; const AliTRDCalDet *vdDet = calib->GetVdriftDet(); const AliTRDCalDet *t0Det = calib->GetT0Det(); Int_t col = 70, row = 7; AliTRDcluster **c = &fClusters[0]; if(GetN()){ Int_t ic = 0; while (icGetPadCol(); row = (*c)->GetPadRow(); } } fT0 = t0Det->GetValue(fDet) + t0ROC->GetValue(col,row); fVD = vdDet->GetValue(fDet) * vdROC->GetValue(col, row); fS2PRF = calib->GetPRFWidth(fDet, col, row); fS2PRF *= fS2PRF; fExB = AliTRDCommonParam::Instance()->GetOmegaTau(fVD); AliTRDCommonParam::Instance()->GetDiffCoeff(fDiffL, fDiffT, fVD); SetBit(kCalib, kTRUE); } //____________________________________________________________________ void AliTRDseedV1::SetOwner() { //AliInfo(Form("own [%s] fOwner[%s]", own?"YES":"NO", fOwner?"YES":"NO")); if(TestBit(kOwner)) return; for(int ic=0; icGetTiltingAngle())); SetPadLength(p->GetLengthIPad()); SetPadWidth(p->GetWidthIPad()); } //____________________________________________________________________ Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t tilt) { // // Projective algorithm to attach clusters to seeding tracklets. The following steps are performed : // 1. Collapse x coordinate for the full detector plane // 2. truncated mean on y (r-phi) direction // 3. purge clusters // 4. truncated mean on z direction // 5. purge clusters // // Parameters // - chamber : pointer to tracking chamber container used to search the tracklet // - tilt : switch for tilt correction during road building [default true] // Output // - true : if tracklet found successfully. Failure can happend because of the following: // - // Detailed description // // We start up by defining the track direction in the xy plane and roads. The roads are calculated based // on tracking information (variance in the r-phi direction) and estimated variance of the standard // clusters (see AliTRDcluster::SetSigmaY2()) corrected for tilt (see GetCovAt()). From this the road is // BEGIN_LATEX // r_{y} = 3*#sqrt{12*(#sigma^{2}_{Trk}(y) + #frac{#sigma^{2}_{cl}(y) + tg^{2}(#alpha_{L})#sigma^{2}_{cl}(z)}{1+tg^{2}(#alpha_{L})})} // r_{z} = 1.5*L_{pad} // END_LATEX // // Author : Alexandru Bercuci // Debug : level >3 Bool_t kPRINT = kFALSE; if(!fkReconstructor->GetRecoParam() ){ AliError("Seed can not be used without a valid RecoParam."); return kFALSE; } // Initialize reco params for this tracklet // 1. first time bin in the drift region Int_t t0 = 14; Int_t kClmin = Int_t(fkReconstructor->GetRecoParam() ->GetFindableClusters()*AliTRDtrackerV1::GetNTimeBins()); Double_t sysCov[5]; fkReconstructor->GetRecoParam()->GetSysCovMatrix(sysCov); Double_t s2yTrk= fRefCov[0], s2yCl = 0., s2zCl = GetPadLength()*GetPadLength()/12., syRef = TMath::Sqrt(s2yTrk), t2 = GetTilt()*GetTilt(); //define roads Double_t kroady = 1., //fkReconstructor->GetRecoParam() ->GetRoad1y(); kroadz = GetPadLength() * fkReconstructor->GetRecoParam()->GetRoadzMultiplicator() + 1.; // define probing cluster (the perfect cluster) and default calibration Short_t sig[] = {0, 0, 10, 30, 10, 0,0}; AliTRDcluster cp(fDet, 6, 75, 0, sig, 0); if(fkReconstructor->IsHLT())cp.SetRPhiMethod(AliTRDcluster::kCOG); Calibrate(); if(kPRINT) printf("AttachClusters() sy[%f] road[%f]\n", syRef, kroady); // working variables const Int_t kNrows = 16; const Int_t kNcls = 3*kNclusters; // buffer size AliTRDcluster *clst[kNrows][kNcls]; Double_t cond[4], dx, dy, yt, zt, yres[kNrows][kNcls]; Int_t idxs[kNrows][kNcls], ncl[kNrows], ncls = 0; memset(ncl, 0, kNrows*sizeof(Int_t)); memset(yres, 0, kNrows*kNcls*sizeof(Double_t)); memset(clst, 0, kNrows*kNcls*sizeof(AliTRDcluster*)); // Do cluster projection AliTRDcluster *c = NULL; AliTRDchamberTimeBin *layer = NULL; Bool_t kBUFFER = kFALSE; for (Int_t it = 0; it < kNtb; it++) { if(!(layer = chamber->GetTB(it))) continue; if(!Int_t(*layer)) continue; // get track projection at layers position dx = fX0 - layer->GetX(); yt = fYref[0] - fYref[1] * dx; zt = fZref[0] - fZref[1] * dx; // get standard cluster error corrected for tilt cp.SetLocalTimeBin(it); cp.SetSigmaY2(0.02, fDiffT, fExB, dx, -1./*zt*/, fYref[1]); s2yCl = (cp.GetSigmaY2() + sysCov[0] + t2*s2zCl)/(1.+t2); // get estimated road kroady = 3.*TMath::Sqrt(12.*(s2yTrk + s2yCl)); if(kPRINT) printf(" %2d dx[%f] yt[%f] zt[%f] sT[um]=%6.2f sy[um]=%6.2f syTilt[um]=%6.2f yRoad[mm]=%f\n", it, dx, yt, zt, 1.e4*TMath::Sqrt(s2yTrk), 1.e4*TMath::Sqrt(cp.GetSigmaY2()), 1.e4*TMath::Sqrt(s2yCl), 1.e1*kroady); // select clusters cond[0] = yt; cond[2] = kroady; cond[1] = zt; cond[3] = kroadz; Int_t n=0, idx[6]; layer->GetClusters(cond, idx, n, 6); for(Int_t ic = n; ic--;){ c = (*layer)[idx[ic]]; dy = yt - c->GetY(); dy += tilt ? GetTilt() * (c->GetZ() - zt) : 0.; // select clusters on a 3 sigmaKalman level /* if(tilt && TMath::Abs(dy) > 3.*syRef){ printf("too large !!!\n"); continue; }*/ Int_t r = c->GetPadRow(); if(kPRINT) printf("\t\t%d dy[%f] yc[%f] r[%d]\n", ic, TMath::Abs(dy), c->GetY(), r); clst[r][ncl[r]] = c; idxs[r][ncl[r]] = idx[ic]; yres[r][ncl[r]] = dy; ncl[r]++; ncls++; if(ncl[r] >= kNcls) { AliWarning(Form("Cluster candidates reached buffer limit %d. Some may be lost.", kNcls)); kBUFFER = kTRUE; break; } } if(kBUFFER) break; } if(kPRINT) printf("Found %d clusters\n", ncls); if(ncls0 && lr-ir != 1){ if(kPRINT) printf("W - gap in rows attached !!\n"); } if(kPRINT) printf("\tir[%d] lr[%d] n[%d]\n", ir, lr, ncl[ir]); // Evaluate truncated mean on the y direction if(ncl[ir] > 3) AliMathBase::EvaluateUni(ncl[ir], yres[ir], mean, syDis, Int_t(ncl[ir]*.8)); else { mean = 0.; syDis = 0.; continue; } if(fkReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) > 3){ TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDReconstructor::kTracker); TVectorD vdy(ncl[ir], yres[ir]); UChar_t stat(0); if(IsKink()) SETBIT(stat, 0); if(IsStandAlone()) SETBIT(stat, 1); cstreamer << "AttachClusters" << "stat=" << stat << "det=" << fDet << "pt=" << fPt << "s2y=" << s2yTrk << "dy=" << &vdy << "m=" << mean << "s=" << syDis << "\n"; } // TODO check mean and sigma agains cluster resolution !! if(kPRINT) printf("\tr[%2d] m[%f %5.3fsigma] s[%f]\n", ir, mean, TMath::Abs(mean/syDis), syDis); // select clusters on a 3 sigmaDistr level Bool_t kFOUND = kFALSE; for(Int_t ic = ncl[ir]; ic--;){ if(yres[ir][ic] - mean > 3. * syDis){ clst[ir][ic] = NULL; continue; } nrow[nr]++; kFOUND = kTRUE; } // exit loop if(kFOUND) nr++; lr = ir; if(nr>=3) break; } if(kPRINT) printf("lr[%d] nr[%d] nrow[0]=%d nrow[1]=%d nrow[2]=%d\n", lr, nr, nrow[0], nrow[1], nrow[2]); // classify cluster rows Int_t row = -1; switch(nr){ case 1: row = lr; break; case 2: SetBit(kRowCross, kTRUE); // mark pad row crossing if(nrow[0] > nrow[1]){ row = lr+1; lr = -1;} else{ row = lr; lr = 1; nrow[2] = nrow[1]; nrow[1] = nrow[0]; nrow[0] = nrow[2]; } break; case 3: SetBit(kRowCross, kTRUE); // mark pad row crossing break; } if(kPRINT) printf("\trow[%d] n[%d]\n\n", row, nrow[0]); if(row<0) return kFALSE; // Select and store clusters // We should consider here : // 1. How far is the chamber boundary // 2. How big is the mean Int_t n = 0; for (Int_t ir = 0; ir < nr; ir++) { Int_t jr = row + ir*lr; if(kPRINT) printf("\tattach %d clusters for row %d\n", ncl[jr], jr); for (Int_t ic = 0; ic < ncl[jr]; ic++) { if(!(c = clst[jr][ic])) continue; Int_t it = c->GetPadTime(); // TODO proper indexing of clusters !! fIndexes[it+kNtb*ir] = chamber->GetTB(it)->GetGlobalIndex(idxs[jr][ic]); fClusters[it+kNtb*ir] = c; //printf("\tid[%2d] it[%d] idx[%d]\n", ic, it, fIndexes[it]); n++; } } // number of minimum numbers of clusters expected for the tracklet if (n < kClmin){ //AliWarning(Form("Not enough clusters to fit the tracklet %d [%d].", n, kClmin)); return kFALSE; } SetN(n); // Load calibration parameters for this tracklet Calibrate(); // calculate dx for time bins in the drift region (calibration aware) Float_t x[2] = {0.,0.}; Int_t tb[2]={0,0}; for (Int_t it = t0, irp=0; irp<2 && it < AliTRDtrackerV1::GetNTimeBins(); it++) { if(!fClusters[it]) continue; x[irp] = fClusters[it]->GetX(); tb[irp] = fClusters[it]->GetLocalTimeBin(); irp++; } Int_t dtb = tb[1] - tb[0]; fdX = dtb ? (x[0] - x[1]) / dtb : 0.15; return kTRUE; } //____________________________________________________________ void AliTRDseedV1::Bootstrap(const AliTRDReconstructor *rec) { // Fill in all derived information. It has to be called after recovery from file or HLT. // The primitive data are // - list of clusters // - detector (as the detector will be removed from clusters) // - position of anode wire (fX0) - temporary // - track reference position and direction // - momentum of the track // - time bin length [cm] // // A.Bercuci Oct 30th 2008 // fkReconstructor = rec; AliTRDgeometry g; AliTRDpadPlane *pp = g.GetPadPlane(fDet); fPad[0] = pp->GetLengthIPad(); fPad[1] = pp->GetWidthIPad(); fPad[3] = TMath::Tan(TMath::DegToRad()*pp->GetTiltingAngle()); //fSnp = fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]); //fTgl = fZref[1]; Int_t n = 0, nshare = 0, nused = 0; AliTRDcluster **cit = &fClusters[0]; for(Int_t ic = kNclusters; ic--; cit++){ if(!(*cit)) return; n++; if((*cit)->IsShared()) nshare++; if((*cit)->IsUsed()) nused++; } SetN(n); SetNUsed(nused); SetNShared(nshare); Fit(); CookLabels(); GetProbability(); } //____________________________________________________________________ Bool_t AliTRDseedV1::Fit(Bool_t tilt, Bool_t zcorr) { // // Linear fit of the clusters attached to the tracklet // // Parameters : // - tilt : switch for tilt pad correction of cluster y position based on // the z, dzdx info from outside [default false]. // - zcorr : switch for using z information to correct for anisochronity // and a finner error parameterization estimation [default false] // Output : // True if successful // // Detailed description // // Fit in the xy plane // // The fit is performed to estimate the y position of the tracklet and the track // angle in the bending plane. The clusters are represented in the chamber coordinate // system (with respect to the anode wire - see AliTRDtrackerV1::FollowBackProlongation() // on how this is set). The x and y position of the cluster and also their variances // are known from clusterizer level (see AliTRDcluster::GetXloc(), AliTRDcluster::GetYloc(), // AliTRDcluster::GetSX() and AliTRDcluster::GetSY()). // If gaussian approximation is used to calculate y coordinate of the cluster the position // is recalculated taking into account the track angle. The general formula to calculate the // error of cluster position in the gaussian approximation taking into account diffusion and track // inclination is given for TRD by: // BEGIN_LATEX // #sigma^{2}_{y} = #sigma^{2}_{PRF} + #frac{x#delta_{t}^{2}}{(1+tg(#alpha_{L}))^{2}} + #frac{x^{2}tg^{2}(#phi-#alpha_{L})tg^{2}(#alpha_{L})}{12} // END_LATEX // // Since errors are calculated only in the y directions, radial errors (x direction) are mapped to y // by projection i.e. // BEGIN_LATEX // #sigma_{x|y} = tg(#phi) #sigma_{x} // END_LATEX // and also by the lorentz angle correction // // Fit in the xz plane // // The "fit" is performed to estimate the radial position (x direction) where pad row cross happens. // If no pad row crossing the z position is taken from geometry and radial position is taken from the xy // fit (see below). // // There are two methods to estimate the radial position of the pad row cross: // 1. leading cluster radial position : Here the lower part of the tracklet is considered and the last // cluster registered (at radial x0) on this segment is chosen to mark the pad row crossing. The error // of the z estimate is given by : // BEGIN_LATEX // #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12 // END_LATEX // The systematic errors for this estimation are generated by the following sources: // - no charge sharing between pad rows is considered (sharp cross) // - missing cluster at row cross (noise peak-up, under-threshold signal etc.). // // 2. charge fit over the crossing point : Here the full energy deposit along the tracklet is considered // to estimate the position of the crossing by a fit in the qx plane. The errors in the q directions are // parameterized as s_q = q^2. The systematic errors for this estimation are generated by the following sources: // - no general model for the qx dependence // - physical fluctuations of the charge deposit // - gain calibration dependence // // Estimation of the radial position of the tracklet // // For pad row cross the radial position is taken from the xz fit (see above). Otherwise it is taken as the // interpolation point of the tracklet i.e. the point where the error in y of the fit is minimum. The error // in the y direction of the tracklet is (see AliTRDseedV1::GetCovAt()): // BEGIN_LATEX // #sigma_{y} = #sigma^{2}_{y_{0}} + 2xcov(y_{0}, dy/dx) + #sigma^{2}_{dy/dx} // END_LATEX // and thus the radial position is: // BEGIN_LATEX // x = - cov(y_{0}, dy/dx)/#sigma^{2}_{dy/dx} // END_LATEX // // Estimation of tracklet position error // // The error in y direction is the error of the linear fit at the radial position of the tracklet while in the z // direction is given by the cluster error or pad row cross error. In case of no pad row cross this is given by: // BEGIN_LATEX // #sigma_{y} = #sigma^{2}_{y_{0}} - 2cov^{2}(y_{0}, dy/dx)/#sigma^{2}_{dy/dx} + #sigma^{2}_{dy/dx} // #sigma_{z} = Pad_{length}/12 // END_LATEX // For pad row cross the full error is calculated at the radial position of the crossing (see above) and the error // in z by the width of the crossing region - being a matter of parameterization. // BEGIN_LATEX // #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12 // END_LATEX // In case of no tilt correction (default in the barrel tracking) the tilt is taken into account by the rotation of // the covariance matrix. See AliTRDseedV1::GetCovAt() for details. // // Author // A.Bercuci if(!IsCalibrated()) Calibrate(); const Int_t kClmin = 8; // get track direction Double_t y0 = fYref[0]; Double_t dydx = fYref[1]; Double_t z0 = fZref[0]; Double_t dzdx = fZref[1]; Double_t yt, zt; //AliTRDtrackerV1::AliTRDLeastSquare fitterZ; TLinearFitter& fitterY=*GetFitterY(); TLinearFitter& fitterZ=*GetFitterZ(); // book cluster information Double_t qc[kNclusters], xc[kNclusters], yc[kNclusters], zc[kNclusters], sy[kNclusters]; Int_t n = 0; AliTRDcluster *c=NULL, **jc = &fClusters[0]; for (Int_t ic=0; icIsInChamber()) continue; Float_t w = 1.; if(c->GetNPads()>4) w = .5; if(c->GetNPads()>5) w = .2; // cluster charge qc[n] = TMath::Abs(c->GetQ()); // pad row of leading // Radial cluster position //Int_t jc = TMath::Max(fN-3, 0); //xc[fN] = c->GetXloc(fT0, fVD, &qc[jc], &xc[jc]/*, z0 - c->GetX()*dzdx*/); xc[n] = fX0 - c->GetX(); // extrapolated track to cluster position yt = y0 - xc[n]*dydx; zt = z0 - xc[n]*dzdx; // Recalculate cluster error based on tracking information c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], zcorr?zt:-1., dydx); sy[n] = TMath::Sqrt(c->GetSigmaY2()); yc[n] = fkReconstructor->UseGAUS() ? c->GetYloc(y0, sy[n], GetPadWidth()): c->GetY(); zc[n] = c->GetZ(); //optional tilt correction if(tilt) yc[n] -= (GetTilt()*(zc[n] - zt)); fitterY.AddPoint(&xc[n], yc[n], TMath::Sqrt(sy[n])); fitterZ.AddPoint(&xc[n], qc[n], 1.); n++; } // to few clusters if (n < kClmin) return kFALSE; // fit XY fitterY.Eval(); fYfit[0] = fitterY.GetParameter(0); fYfit[1] = -fitterY.GetParameter(1); // store covariance Double_t *p = fitterY.GetCovarianceMatrix(); fCov[0] = p[0]; // variance of y0 fCov[1] = p[1]; // covariance of y0, dydx fCov[2] = p[3]; // variance of dydx // the ref radial position is set at the minimum of // the y variance of the tracklet fX = -fCov[1]/fCov[2]; // fit XZ if(IsRowCross()){ /* // THE LEADING CLUSTER METHOD Float_t xMin = fX0; Int_t ic=n=kNclusters-1; jc = &fClusters[ic]; AliTRDcluster *c0 =0x0, **kc = &fClusters[kNtb-1]; for(; ic>kNtb; ic--, --jc, --kc){ if((c0 = (*kc)) && c0->IsInChamber() && (xMin>c0->GetX())) xMin = c0->GetX(); if(!(c = (*jc))) continue; if(!c->IsInChamber()) continue; zc[kNclusters-1] = c->GetZ(); fX = fX0 - c->GetX(); } fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.; // Error parameterization fS2Z = fdX*fZref[1]; fS2Z *= fS2Z; fS2Z *= 0.2887; // 1/sqrt(12)*/ // THE FIT X-Q PLANE METHOD Int_t ic=n=kNclusters-1; jc = &fClusters[ic]; for(; ic>kNtb; ic--, --jc){ if(!(c = (*jc))) continue; if(!c->IsInChamber()) continue; qc[n] = TMath::Abs(c->GetQ()); xc[n] = fX0 - c->GetX(); zc[n] = c->GetZ(); fitterZ.AddPoint(&xc[n], -qc[n], 1.); n--; } // fit XZ fitterZ.Eval(); if(fitterZ.GetParameter(1)!=0.){ fX = -fitterZ.GetParameter(0)/fitterZ.GetParameter(1); fX=(fX<0.)?0.:fX; Float_t dl = .5*AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght(); fX=(fX> dl)?dl:fX; fX-=.055; // TODO to be understood } fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.; // temporary external error parameterization fS2Z = 0.05+0.4*TMath::Abs(fZref[1]); fS2Z *= fS2Z; // TODO correct formula //fS2Z = sigma_x*TMath::Abs(fZref[1]); } else { fZfit[0] = zc[0]; fZfit[1] = 0.; fS2Z = GetPadLength()*GetPadLength()/12.; } fS2Y = fCov[0] +2.*fX*fCov[1] + fX*fX*fCov[2]; return kTRUE; } /* //_____________________________________________________________________________ void AliTRDseedV1::FitMI() { // // Fit the seed. // Marian Ivanov's version // // linear fit on the y direction with respect to the reference direction. // The residuals for each x (x = xc - x0) are deduced from: // dy = y - yt (1) // the tilting correction is written : // y = yc + h*(zc-zt) (2) // yt = y0+dy/dx*x (3) // zt = z0+dz/dx*x (4) // from (1),(2),(3) and (4) // dy = yc - y0 - (dy/dx + h*dz/dx)*x + h*(zc-z0) // the last term introduces the correction on y direction due to tilting pads. There are 2 ways to account for this: // 1. use tilting correction for calculating the y // 2. neglect tilting correction here and account for it in the error parametrization of the tracklet. const Float_t kRatio = 0.8; const Int_t kClmin = 5; const Float_t kmaxtan = 2; if (TMath::Abs(fYref[1]) > kmaxtan){ //printf("Exit: Abs(fYref[1]) = %3.3f, kmaxtan = %3.3f\n", TMath::Abs(fYref[1]), kmaxtan); return; // Track inclined too much } Float_t sigmaexp = 0.05 + TMath::Abs(fYref[1] * 0.25); // Expected r.m.s in y direction Float_t ycrosscor = GetPadLength() * GetTilt() * 0.5; // Y correction for crossing Int_t fNChange = 0; Double_t sumw; Double_t sumwx; Double_t sumwx2; Double_t sumwy; Double_t sumwxy; Double_t sumwz; Double_t sumwxz; // Buffering: Leave it constant fot Performance issues Int_t zints[kNtb]; // Histograming of the z coordinate // Get 1 and second max probable coodinates in z Int_t zouts[2*kNtb]; Float_t allowedz[kNtb]; // Allowed z for given time bin Float_t yres[kNtb]; // Residuals from reference //Float_t anglecor = GetTilt() * fZref[1]; // Correction to the angle Float_t pos[3*kNtb]; memset(pos, 0, 3*kNtb*sizeof(Float_t)); Float_t *fX = &pos[0], *fY = &pos[kNtb], *fZ = &pos[2*kNtb]; Int_t fN = 0; AliTRDcluster *c = 0x0; fN2 = 0; for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) { yres[i] = 10000.0; if (!(c = fClusters[i])) continue; if(!c->IsInChamber()) continue; // Residual y //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]); fX[i] = fX0 - c->GetX(); fY[i] = c->GetY(); fZ[i] = c->GetZ(); yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1])); zints[fN] = Int_t(fZ[i]); fN++; } if (fN < kClmin){ //printf("Exit fN < kClmin: fN = %d\n", fN); return; } Int_t nz = AliTRDtrackerV1::Freq(fN, zints, zouts, kFALSE); Float_t fZProb = zouts[0]; if (nz <= 1) zouts[3] = 0; if (zouts[1] + zouts[3] < kClmin) { //printf("Exit zouts[1] = %d, zouts[3] = %d\n",zouts[1],zouts[3]); return; } // Z distance bigger than pad - length if (TMath::Abs(zouts[0]-zouts[2]) > 12.0) zouts[3] = 0; Int_t breaktime = -1; Bool_t mbefore = kFALSE; Int_t cumul[kNtb][2]; Int_t counts[2] = { 0, 0 }; if (zouts[3] >= 3) { // // Find the break time allowing one chage on pad-rows // with maximal number of accepted clusters // fNChange = 1; for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) { cumul[i][0] = counts[0]; cumul[i][1] = counts[1]; if (TMath::Abs(fZ[i]-zouts[0]) < 2) counts[0]++; if (TMath::Abs(fZ[i]-zouts[2]) < 2) counts[1]++; } Int_t maxcount = 0; for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) { Int_t after = cumul[AliTRDtrackerV1::GetNTimeBins()][0] - cumul[i][0]; Int_t before = cumul[i][1]; if (after + before > maxcount) { maxcount = after + before; breaktime = i; mbefore = kFALSE; } after = cumul[AliTRDtrackerV1::GetNTimeBins()-1][1] - cumul[i][1]; before = cumul[i][0]; if (after + before > maxcount) { maxcount = after + before; breaktime = i; mbefore = kTRUE; } } breaktime -= 1; } for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { if (i > breaktime) allowedz[i] = mbefore ? zouts[2] : zouts[0]; if (i <= breaktime) allowedz[i] = (!mbefore) ? zouts[2] : zouts[0]; } if (((allowedz[0] > allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] < 0)) || ((allowedz[0] < allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] > 0))) { // // Tracklet z-direction not in correspondance with track z direction // fNChange = 0; for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { allowedz[i] = zouts[0]; // Only longest taken } } if (fNChange > 0) { // // Cross pad -row tracklet - take the step change into account // for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { if (!fClusters[i]) continue; if(!fClusters[i]->IsInChamber()) continue; if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue; // Residual y //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]); yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1])); // if (TMath::Abs(fZ[i] - fZProb) > 2) { // if (fZ[i] > fZProb) yres[i] += GetTilt() * GetPadLength(); // if (fZ[i] < fZProb) yres[i] -= GetTilt() * GetPadLength(); } } } Double_t yres2[kNtb]; Double_t mean; Double_t sigma; for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { if (!fClusters[i]) continue; if(!fClusters[i]->IsInChamber()) continue; if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue; yres2[fN2] = yres[i]; fN2++; } if (fN2 < kClmin) { //printf("Exit fN2 < kClmin: fN2 = %d\n", fN2); fN2 = 0; return; } AliMathBase::EvaluateUni(fN2,yres2,mean,sigma, Int_t(fN2*kRatio-2.)); if (sigma < sigmaexp * 0.8) { sigma = sigmaexp; } //Float_t fSigmaY = sigma; // Reset sums sumw = 0; sumwx = 0; sumwx2 = 0; sumwy = 0; sumwxy = 0; sumwz = 0; sumwxz = 0; fN2 = 0; Float_t fMeanz = 0; Float_t fMPads = 0; fUsable = 0; for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { if (!fClusters[i]) continue; if (!fClusters[i]->IsInChamber()) continue; if (TMath::Abs(fZ[i] - allowedz[i]) > 2){fClusters[i] = 0x0; continue;} if (TMath::Abs(yres[i] - mean) > 4.0 * sigma){fClusters[i] = 0x0; continue;} SETBIT(fUsable,i); fN2++; fMPads += fClusters[i]->GetNPads(); Float_t weight = 1.0; if (fClusters[i]->GetNPads() > 4) weight = 0.5; if (fClusters[i]->GetNPads() > 5) weight = 0.2; Double_t x = fX[i]; //printf("x = %7.3f dy = %7.3f fit %7.3f\n", x, yres[i], fY[i]-yres[i]); sumw += weight; sumwx += x * weight; sumwx2 += x*x * weight; sumwy += weight * yres[i]; sumwxy += weight * (yres[i]) * x; sumwz += weight * fZ[i]; sumwxz += weight * fZ[i] * x; } if (fN2 < kClmin){ //printf("Exit fN2 < kClmin(2): fN2 = %d\n",fN2); fN2 = 0; return; } fMeanz = sumwz / sumw; Float_t correction = 0; if (fNChange > 0) { // Tracklet on boundary if (fMeanz < fZProb) correction = ycrosscor; if (fMeanz > fZProb) correction = -ycrosscor; } Double_t det = sumw * sumwx2 - sumwx * sumwx; fYfit[0] = (sumwx2 * sumwy - sumwx * sumwxy) / det; fYfit[1] = (sumw * sumwxy - sumwx * sumwy) / det; fS2Y = 0; for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) { if (!TESTBIT(fUsable,i)) continue; Float_t delta = yres[i] - fYfit[0] - fYfit[1] * fX[i]; fS2Y += delta*delta; } fS2Y = TMath::Sqrt(fS2Y / Float_t(fN2-2)); // TEMPORARY UNTIL covariance properly calculated fS2Y = TMath::Max(fS2Y, Float_t(.1)); fZfit[0] = (sumwx2 * sumwz - sumwx * sumwxz) / det; fZfit[1] = (sumw * sumwxz - sumwx * sumwz) / det; // fYfitR[0] += fYref[0] + correction; // fYfitR[1] += fYref[1]; // fYfit[0] = fYfitR[0]; fYfit[1] = -fYfit[1]; UpdateUsed(); }*/ //___________________________________________________________________ void AliTRDseedV1::Print(Option_t *o) const { // // Printing the seedstatus // AliInfo(Form("Det[%3d] X0[%7.2f] Pad{L[%5.2f] W[%5.2f] Tilt[%+6.2f]}", fDet, fX0, GetPadLength(), GetPadWidth(), GetTilt())); AliInfo(Form("N[%2d] Nused[%2d] Nshared[%2d] [%d]", GetN(), GetNUsed(), GetNShared(), fN)); AliInfo(Form("FLAGS : RC[%c] Kink[%c] SA[%c]", IsRowCross()?'y':'n', IsKink()?'y':'n', IsStandAlone()?'y':'n')); Double_t cov[3], x=GetX(); GetCovAt(x, cov); AliInfo(" | x[cm] | y[cm] | z[cm] | dydx | dzdx |"); AliInfo(Form("Fit | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | ----- |", x, GetY(), TMath::Sqrt(cov[0]), GetZ(), TMath::Sqrt(cov[2]), fYfit[1])); AliInfo(Form("Ref | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | %5.2f |", x, fYref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[0]), fZref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[2]), fYref[1], fZref[1])) if(strcmp(o, "a")!=0) return; AliTRDcluster* const* jc = &fClusters[0]; for(int ic=0; icPrint(o); } } //___________________________________________________________________ Bool_t AliTRDseedV1::IsEqual(const TObject *o) const { // Checks if current instance of the class has the same essential members // as the given one if(!o) return kFALSE; const AliTRDseedV1 *inTracklet = dynamic_cast(o); if(!inTracklet) return kFALSE; for (Int_t i = 0; i < 2; i++){ if ( fYref[i] != inTracklet->fYref[i] ) return kFALSE; if ( fZref[i] != inTracklet->fZref[i] ) return kFALSE; } if ( fS2Y != inTracklet->fS2Y ) return kFALSE; if ( GetTilt() != inTracklet->GetTilt() ) return kFALSE; if ( GetPadLength() != inTracklet->GetPadLength() ) return kFALSE; for (Int_t i = 0; i < kNclusters; i++){ // if ( fX[i] != inTracklet->GetX(i) ) return kFALSE; // if ( fY[i] != inTracklet->GetY(i) ) return kFALSE; // if ( fZ[i] != inTracklet->GetZ(i) ) return kFALSE; if ( fIndexes[i] != inTracklet->fIndexes[i] ) return kFALSE; } // if ( fUsable != inTracklet->fUsable ) return kFALSE; for (Int_t i=0; i < 2; i++){ if ( fYfit[i] != inTracklet->fYfit[i] ) return kFALSE; if ( fZfit[i] != inTracklet->fZfit[i] ) return kFALSE; if ( fLabels[i] != inTracklet->fLabels[i] ) return kFALSE; } /* if ( fMeanz != inTracklet->GetMeanz() ) return kFALSE; if ( fZProb != inTracklet->GetZProb() ) return kFALSE;*/ if ( fN != inTracklet->fN ) return kFALSE; //if ( fNUsed != inTracklet->fNUsed ) return kFALSE; //if ( fFreq != inTracklet->GetFreq() ) return kFALSE; //if ( fNChange != inTracklet->GetNChange() ) return kFALSE; if ( fC != inTracklet->fC ) return kFALSE; //if ( fCC != inTracklet->GetCC() ) return kFALSE; if ( fChi2 != inTracklet->fChi2 ) return kFALSE; // if ( fChi2Z != inTracklet->GetChi2Z() ) return kFALSE; if ( fDet != inTracklet->fDet ) return kFALSE; if ( fPt != inTracklet->fPt ) return kFALSE; if ( fdX != inTracklet->fdX ) return kFALSE; for (Int_t iCluster = 0; iCluster < kNclusters; iCluster++){ AliTRDcluster *curCluster = fClusters[iCluster]; AliTRDcluster *inCluster = inTracklet->fClusters[iCluster]; if (curCluster && inCluster){ if (! curCluster->IsEqual(inCluster) ) { curCluster->Print(); inCluster->Print(); return kFALSE; } } else { // if one cluster exists, and corresponding // in other tracklet doesn't - return kFALSE if(curCluster || inCluster) return kFALSE; } } return kTRUE; }