#ifndef ALITRDSEEDV1_H #define ALITRDSEEDV1_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ //////////////////////////////////////////////////////////////////////////// // // // The TRD offline tracklet // // // //////////////////////////////////////////////////////////////////////////// #ifndef ALITRDTRACKLETBASE_H #include "AliTRDtrackletBase.h" #endif #ifndef ROOT_TMath #include "TMath.h" #endif #ifndef ALITRDGEOMETRY_H #include "AliTRDgeometry.h" #endif #ifndef ALIPID_H #include "AliPID.h" #endif #ifndef ALIRIEMAN_H #include "AliRieman.h" #endif #ifndef ALITRDCLUSTER_H #include "AliTRDcluster.h" #endif #include "AliTRDReconstructor.h" class TTreeSRedirector; class TLinearFitter; class AliRieman; class AliTRDtrackingChamber; class AliTRDtrackV1; class AliTRDpadPlane; class AliTRDseedV1 : public AliTRDtrackletBase { public: enum ETRDtrackletBuffers { kNtb = 31 // max clusters/pad row ,kNclusters = 2*kNtb // max number of clusters/tracklet ,kNslices = 10 // max dEdx slices }; // bits from 0-13 are reserved by ROOT (see TObject.h) enum ETRDtrackletStatus { kOwner = BIT(14) // owner of its clusters ,kRowCross = BIT(15) // pad row cross tracklet ,kPID = BIT(16) // PID contributor ,kCalib = BIT(17) // calibrated tracklet ,kKink = BIT(18) // kink prolongation tracklet ,kStandAlone = BIT(19) // tracklet build during stand alone track finding }; AliTRDseedV1(Int_t det = -1); ~AliTRDseedV1(); AliTRDseedV1(const AliTRDseedV1 &ref); AliTRDseedV1& operator=(const AliTRDseedV1 &ref); Bool_t AttachClusters(AliTRDtrackingChamber *chamber, Bool_t tilt = kFALSE); void Bootstrap(const AliTRDReconstructor *rec); void Calibrate(); void CookdEdx(Int_t nslices); void CookLabels(); Bool_t CookPID(); Bool_t Fit(Bool_t tilt=kFALSE, Bool_t zcorr=kFALSE); Bool_t Init(AliTRDtrackV1 *track); inline void Init(const AliRieman *fit); Bool_t IsEqual(const TObject *inTracklet) const; Bool_t IsCalibrated() const { return TestBit(kCalib);} Bool_t IsOwner() const { return TestBit(kOwner);} Bool_t IsKink() const { return TestBit(kKink);} Bool_t HasPID() const { return TestBit(kPID);} Bool_t IsOK() const { return GetN() > 4 && GetNUsed() < 4;} Bool_t IsRowCross() const { return TestBit(kRowCross);} Bool_t IsUsable(Int_t i) const { return fClusters[i] && !fClusters[i]->IsUsed();} Bool_t IsStandAlone() const { return TestBit(kStandAlone);} Float_t GetC() const { return fC; } Float_t GetChi2() const { return fChi2; } inline Float_t GetChi2Z() const; inline Float_t GetChi2Y() const; inline Float_t GetChi2Phi() const; void GetCovAt(Double_t x, Double_t *cov) const; void GetCovXY(Double_t *cov) const { memcpy(cov, &fCov[0], 3*sizeof(Double_t));} void GetCovRef(Double_t *cov) const { memcpy(cov, &fRefCov, 7*sizeof(Double_t));} static Double_t GetCovSqrt(Double_t *c, Double_t *d); static Double_t GetCovInv(Double_t *c, Double_t *d); Float_t GetdX() const { return fdX;} Float_t* GetdEdx() { return &fdEdx[0];} Float_t GetdQdl(Int_t ic, Float_t *dx=0x0) const; Float_t GetdYdX() const { return fYfit[1]; } Float_t GetdZdX() const { return fZref[1]; } Int_t GetdY() const { return Int_t(GetY()/0.014);} Int_t GetDetector() const { return fDet;} void GetCalibParam(Float_t &exb, Float_t &vd, Float_t &t0, Float_t &s2, Float_t &dl, Float_t &dt) const { exb = fExB; vd = fVD; t0 = fT0; s2 = fS2PRF; dl = fDiffL; dt = fDiffT;} AliTRDcluster* GetClusters(Int_t i) const { return i<0 || i>=kNclusters ? 0x0 : fClusters[i];} static TLinearFitter* GetFitterY(); static TLinearFitter* GetFitterZ(); Int_t GetIndexes(Int_t i) const{ return i<0 || i>=kNclusters ? -1 : fIndexes[i];} Int_t GetLabels(Int_t i) const { return fLabels[i];} Float_t GetMomentum(Float_t *err = 0x0) const; Int_t GetN() const { return (Int_t)fN&0x1f;} Int_t GetN2() const { return GetN();} Int_t GetNUsed() const { return Int_t((fN>>5)&0x1f);} Int_t GetNShared() const { return Int_t((fN>>10)&0x1f);} Float_t GetQuality(Bool_t kZcorr) const; Float_t GetPadLength() const { return fPad[0];} Float_t GetPadWidth() const { return fPad[1];} Int_t GetPlane() const { return AliTRDgeometry::GetLayer(fDet); } Float_t* GetProbability(Bool_t force=kFALSE); Float_t GetPt() const { return fPt; } inline Double_t GetPID(Int_t is=-1) const; Float_t GetS2Y() const { return fS2Y;} Float_t GetS2Z() const { return fS2Z;} Float_t GetSigmaY() const { return fS2Y > 0. ? TMath::Sqrt(fS2Y) : 0.2;} Float_t GetSnp() const { return fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]);} Float_t GetTgl() const { return fZref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]);} Float_t GetTilt() const { return fPad[2];} UInt_t GetTrackletWord() const { return 0;} UShort_t GetVolumeId() const; Float_t GetX0() const { return fX0;} Float_t GetX() const { return fX0 - fX;} Float_t GetY() const { return fYfit[0] - fYfit[1] * fX;} Double_t GetYat(Double_t x) const { return fYfit[0] - fYfit[1] * (fX0-x);} Float_t GetYfit(Int_t id) const { return fYfit[id];} Float_t GetYref(Int_t id) const { return fYref[id];} Float_t GetZ() const { return fZfit[0] - fZfit[1] * fX;} Double_t GetZat(Double_t x) const { return fZfit[0] - fZfit[1] * (fX0-x);} Float_t GetZfit(Int_t id) const { return fZfit[id];} Float_t GetZref(Int_t id) const { return fZref[id];} Int_t GetYbin() const { return Int_t(GetY()/0.016);} Int_t GetZbin() const { return Int_t(GetZ()/fPad[0]);} inline AliTRDcluster* NextCluster(); inline AliTRDcluster* PrevCluster(); void Print(Option_t *o = "") const; inline void ResetClusterIter(Bool_t forward = kTRUE); void Reset(); void SetC(Float_t c) { fC = c;} void SetChi2(Float_t chi2) { fChi2 = chi2;} inline void SetCovRef(const Double_t *cov); void SetIndexes(Int_t i, Int_t idx) { fIndexes[i] = idx; } void SetLabels(Int_t *lbls) { memcpy(fLabels, lbls, 3*sizeof(Int_t)); } void SetKink(Bool_t k = kTRUE){ SetBit(kKink, k);} void SetPID(Bool_t k = kTRUE) { SetBit(kPID, k);} void SetStandAlone(Bool_t st) { SetBit(kStandAlone, st); } void SetPt(Double_t pt) { fPt = pt;} void SetOwner(); void SetPadPlane(AliTRDpadPlane *p); void SetPadLength(Float_t l) { fPad[0] = l;} void SetPadWidth(Float_t w) { fPad[1] = w;} void SetTilt(Float_t tilt) { fPad[2] = tilt; } void SetDetector(Int_t d) { fDet = d; } void SetDX(Float_t inDX) { fdX = inDX;} void SetReconstructor(const AliTRDReconstructor *rec) {fReconstructor = rec;} void SetX0(Float_t x0) { fX0 = x0; } void SetYref(Int_t i, Float_t y) { fYref[i] = y;} void SetZref(Int_t i, Float_t z) { fZref[i] = z;} // void SetUsabilityMap(Long_t um) { fUsable = um; } void Update(const AliTRDtrackV1* trk); void UpdateUsed(); void UseClusters(); protected: void Copy(TObject &ref) const; private: inline void SetN(Int_t n); inline void SetNUsed(Int_t n); inline void SetNShared(Int_t n); const AliTRDReconstructor *fReconstructor;//! local reconstructor AliTRDcluster **fClusterIter; //! clusters iterator Int_t fIndexes[kNclusters]; //! Indexes Float_t fExB; //! tg(a_L) @ tracklet location Float_t fVD; //! drift velocity @ tracklet location Float_t fT0; //! time 0 @ tracklet location Float_t fS2PRF; //! sigma^2 PRF for xd->0 and phi=a_L Float_t fDiffL; //! longitudinal diffusion coefficient Float_t fDiffT; //! transversal diffusion coefficient Char_t fClusterIdx; //! clusters iterator UShort_t fN; // number of clusters attached/used/shared Short_t fDet; // TRD detector AliTRDcluster *fClusters[kNclusters]; // Clusters Float_t fPad[3]; // local pad definition : length/width/tilt Float_t fYref[2]; // Reference y, dydx Float_t fZref[2]; // Reference z, dz/dx Float_t fYfit[2]; // Fit y, dy/dx Float_t fZfit[2]; // Fit z Float_t fPt; // Pt estimate @ tracklet [GeV/c] Float_t fdX; // length of time bin Float_t fX0; // anode wire position Float_t fX; // radial position of the tracklet Float_t fY; // r-phi position of the tracklet Float_t fZ; // z position of the tracklet Float_t fS2Y; // estimated resolution in the r-phi direction Float_t fS2Z; // estimated resolution in the z direction Float_t fC; // Curvature Float_t fChi2; // Global chi2 Float_t fdEdx[kNslices]; // dE/dx measurements for tracklet Float_t fProb[AliPID::kSPECIES]; // PID probabilities Int_t fLabels[3]; // most frequent MC labels and total number of different labels Double_t fRefCov[7]; // covariance matrix of the track in the yz plane + the rest of the diagonal elements Double_t fCov[3]; // covariance matrix of the tracklet in the xy plane static TLinearFitter *fgFitterY; static TLinearFitter *fgFitterZ; ClassDef(AliTRDseedV1, 7) // The offline TRD tracklet }; //____________________________________________________________ inline Float_t AliTRDseedV1::GetChi2Z() const { Double_t dz = fZref[0]-fZfit[0]; dz*=dz; Double_t cov[3]; GetCovAt(fX, cov); Double_t s2 = fRefCov[2]+cov[2]; return s2 > 0. ? dz/s2 : 0.; } //____________________________________________________________ inline Float_t AliTRDseedV1::GetChi2Y() const { Double_t dy = fYref[0]-fYfit[0]; dy*=dy; Double_t cov[3]; GetCovAt(fX, cov); Double_t s2 = fRefCov[0]+cov[0]; return s2 > 0. ? dy/s2 : 0.; } //____________________________________________________________ inline Float_t AliTRDseedV1::GetChi2Phi() const { Double_t dphi = fYref[1]-fYfit[1]; dphi*=dphi; Double_t cov[3]; GetCovAt(fX, cov); Double_t s2 = fRefCov[2]+cov[2]; return s2 > 0. ? dphi/s2 : 0.; } //____________________________________________________________ inline Double_t AliTRDseedV1::GetPID(Int_t is) const { if(is<0) return fProb[AliPID::kElectron]; if(isGetZat(fX0); fZref[1] = rieman->GetDZat(fX0); fYref[0] = rieman->GetYat(fX0); fYref[1] = rieman->GetDYat(fX0); if(fReconstructor && fReconstructor->IsHLT()){ fRefCov[0] = 1; fRefCov[2] = 10; }else{ fRefCov[0] = rieman->GetErrY(fX0); fRefCov[2] = rieman->GetErrZ(fX0); } fC = rieman->GetC(); fChi2 = rieman->GetChi2(); } //____________________________________________________________ inline AliTRDcluster* AliTRDseedV1::NextCluster() { // Mimic the usage of STL iterators. // Forward iterator fClusterIdx++; fClusterIter++; while(fClusterIdx < kNclusters){ if(!(*fClusterIter)){ fClusterIdx++; fClusterIter++; continue; } return *fClusterIter; } return 0x0; } //____________________________________________________________ inline AliTRDcluster* AliTRDseedV1::PrevCluster() { // Mimic the usage of STL iterators. // Backward iterator fClusterIdx--; fClusterIter--; while(fClusterIdx >= 0){ if(!(*fClusterIter)){ fClusterIdx--; fClusterIter--; continue; } return *fClusterIter; } return 0x0; } //____________________________________________________________ inline void AliTRDseedV1::ResetClusterIter(Bool_t forward) { // Mimic the usage of STL iterators. // Facilitate the usage of NextCluster for forward like // iterator (kTRUE) and PrevCluster for backward like iterator (kFALSE) if(forward){ fClusterIter = &fClusters[0]; fClusterIter--; fClusterIdx=-1; } else { fClusterIter = &fClusters[kNclusters-1]; fClusterIter++; fClusterIdx=kNclusters; } } //____________________________________________________________ inline void AliTRDseedV1::SetCovRef(const Double_t *cov) { // Copy some "important" covariance matrix elements // var(y) // cov(y,z) var(z) // var(snp) // var(tgl) // cov(tgl, 1/pt) var(1/pt) memcpy(&fRefCov[0], cov, 3*sizeof(Double_t)); // yz full covariance fRefCov[3] = cov[ 5]; // snp variance fRefCov[4] = cov[ 9]; // tgl variance fRefCov[5] = cov[13]; // cov(tgl, 1/pt) fRefCov[6] = cov[14]; // 1/pt variance } //____________________________________________________________ inline void AliTRDseedV1::SetN(Int_t n) { if(n<0 || n>= (1<<5)) return; fN &= ~0x1f; fN |= n; } //____________________________________________________________ inline void AliTRDseedV1::SetNUsed(Int_t n) { if(n<0 || n>= (1<<5)) return; fN &= ~(0x1f<<5); n <<= 5; fN |= n; } //____________________________________________________________ inline void AliTRDseedV1::SetNShared(Int_t n) { if(n<0 || n>= (1<<5)) return; fN &= ~(0x1f<<10); n <<= 10; fN |= n; } #endif