#ifndef ALITRDSEEDV1_H #define ALITRDSEEDV1_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ //////////////////////////////////////////////////////////////////////////// // // // \class AliTRDseedV1 // \brief The TRD offline tracklet // \author Alexandru Bercuci // // //////////////////////////////////////////////////////////////////////////// #ifndef ALITRDTRACKLETBASE_H #include "AliTRDtrackletBase.h" #endif #ifndef ROOT_TMath #include "TMath.h" #endif #ifndef ALITRDGEOMETRY_H #include "AliTRDgeometry.h" #endif #ifndef ALIPID_H #include "AliPID.h" #endif #ifndef ALITRDCLUSTER_H #include "AliTRDcluster.h" #endif class TTreeSRedirector; class TLinearFitter; class AliRieman; class AliTRDReconstructor; class AliTRDtrackingChamber; class AliTRDtrackV1; class AliTRDpadPlane; class AliTRDseedV1 : public AliTRDtrackletBase { friend class AliHLTTRDTracklet; // wrapper for HLT public: enum ETRDtrackletBuffers { kNbits = 6 // bits to store number of clusters ,kMask = 0x3f // bit mask ,kNtb = 31 // max clusters/pad row ,kNclusters = 2*kNtb // max number of clusters/tracklet ,kNslices = 10 // max dEdx slices }; // bits from 0-13 are reserved by ROOT (see TObject.h) enum ETRDtrackletStatus { kOwner = BIT(14) // owner of its clusters ,kRowCross = BIT(15) // pad row cross tracklet ,kPID = BIT(16) // PID contributor ,kCalib = BIT(17) // calibrated tracklet ,kKink = BIT(18) // kink prolongation tracklet ,kStandAlone = BIT(19) // tracklet build during stand alone track finding ,kPrimary = BIT(20) // tracklet from a primary track candidate ,kChmbGood = BIT(21) // status of the detector from calibration view point }; enum ETRDtrackletError { // up to 8 bits kAttachClFound = 0 // not enough clusters found ,kAttachRowGap = 1 // found gap attached rows ,kAttachRow = 2 // found 3 rows ,kAttachMultipleCl= 3// multiple clusters attached to time bin ,kAttachClAttach= 4 // not enough clusters attached ,kFitCl = 5 // not enough clusters for fit ,kFitFailedY = 6 // fit failed in XY plane failed ,kFitFailedZ = 7 // fit in the QZ plane failed }; AliTRDseedV1(Int_t det = -1); ~AliTRDseedV1(); AliTRDseedV1(const AliTRDseedV1 &ref); AliTRDseedV1& operator=(const AliTRDseedV1 &ref); Bool_t AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t tilt = kFALSE, Bool_t ChgPlus=kTRUE, Int_t ev=-1); void Bootstrap(const AliTRDReconstructor *rec); void Calibrate(); void CookdEdx(Int_t nslices); void CookLabels(); Bool_t CookPID(); Bool_t Fit(UChar_t opt=0); Bool_t FitRobust(Bool_t ChgPlus=kTRUE); Bool_t Init(AliTRDtrackV1 *track); void Init(const AliRieman *fit); Bool_t IsEqual(const TObject *inTracklet) const; Bool_t IsCalibrated() const { return TestBit(kCalib);} Bool_t IsChmbGood() const { return TestBit(kChmbGood);} Bool_t IsOwner() const { return TestBit(kOwner);} Bool_t IsKink() const { return TestBit(kKink);} Bool_t IsPrimary() const { return TestBit(kPrimary);} Bool_t HasPID() const { return TestBit(kPID);} Bool_t HasError(ETRDtrackletError err) const { return TESTBIT(fErrorMsg, err);} Bool_t IsOK() const { return GetN() > 4 && GetNUsed() < 4;} Bool_t IsRowCross() const { return TestBit(kRowCross);} Bool_t IsUsable(Int_t i) const { return fClusters[i] && !fClusters[i]->IsUsed();} Bool_t IsStandAlone() const { return TestBit(kStandAlone);} Float_t GetAnodeWireOffset(Float_t zt); Float_t GetC(Int_t typ=0) const { return fC[typ]; } Float_t GetCharge(Bool_t useOutliers=kFALSE) const; Float_t GetChi2() const { return fChi2; } inline Float_t GetChi2Z() const; inline Float_t GetChi2Y() const; inline Float_t GetChi2Phi() const; void GetCovAt(Double_t x, Double_t *cov) const; void GetCovXY(Double_t *cov) const { memcpy(cov, &fCov[0], 3*sizeof(Double_t));} void GetCovRef(Double_t *cov) const { memcpy(cov, &fRefCov, 7*sizeof(Double_t));} static Int_t GetCovSqrt(const Double_t * const c, Double_t *d); static Double_t GetCovInv(const Double_t * const c, Double_t *d); UChar_t GetErrorMsg() const { return fErrorMsg;} Float_t GetdX() const { return fdX;} const Float_t* GetdEdx() const { return &fdEdx[0];} Float_t GetQperTB(Int_t tb) const; Float_t GetdQdl() const; Float_t GetdQdl(Int_t ic, Float_t *dx=NULL) const; Float_t GetdYdX() const { return fYfit[1];} Float_t GetdZdX() const { return fZfit[1];} Int_t GetdY() const { return Int_t(GetY()/0.014);} Int_t GetDetector() const { return fDet;} void GetCalibParam(Float_t &exb, Float_t &vd, Float_t &t0, Float_t &s2, Float_t &dl, Float_t &dt) const { exb = fExB; vd = fVD; t0 = fT0; s2 = fS2PRF; dl = fDiffL; dt = fDiffT;} AliTRDcluster* GetClusters(Int_t i) const { return i<0 || i>=kNclusters ? NULL: fClusters[i];} Bool_t GetEstimatedCrossPoint(Float_t &x, Float_t &z) const; Int_t GetIndexes(Int_t i) const{ return i<0 || i>=kNclusters ? -1 : fIndexes[i];} Int_t GetLabels(Int_t i) const { return fLabels[i];} Float_t GetMomentum(Float_t *err = NULL) const; Int_t GetN() const { return (Int_t)fN&kMask;} Int_t GetN2() const { return GetN();} Int_t GetNUsed() const { return Int_t((fN>>kNbits)&kMask);} Int_t GetNShared() const { return Int_t(((fN>>kNbits)>>kNbits)&kMask);} Int_t GetTBoccupancy() const; Int_t GetTBcross() const; Float_t GetQuality(Bool_t kZcorr) const; Float_t GetPadLength() const { return fPad[0];} Float_t GetPadWidth() const { return fPad[1];} Int_t GetPlane() const { return AliTRDgeometry::GetLayer(fDet); } Float_t* GetProbability(Bool_t force=kFALSE); Float_t GetPt() const { return fPt; } inline Double_t GetPID(Int_t is=-1) const; Float_t GetS2Y() const { return fS2Y;} Float_t GetS2Z() const { return fS2Z;} Float_t GetSigmaY() const { return fS2Y > 0. ? TMath::Sqrt(fS2Y) : 0.2;} Float_t GetSnp() const { return fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]);} Float_t GetTgl() const { return fZref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]);} Float_t GetTilt() const { return fPad[2];} UInt_t GetTrackletWord() const { return 0;} UShort_t GetVolumeId() const; Float_t GetX0() const { return fX0;} Float_t GetX() const { return fX0 - fX;} Float_t GetY() const { return fYfit[0] - fYfit[1] * fX;} Double_t GetYat(Double_t x) const { return fYfit[0] - fYfit[1] * (fX0-x);} Float_t GetYfit(Int_t id) const { return fYfit[id];} Float_t GetYref(Int_t id) const { return fYref[id];} Float_t GetZ() const { return fZfit[0] - fZfit[1] * fX;} Double_t GetZat(Double_t x) const { return fZfit[0] - fZfit[1] * (fX0-x);} Float_t GetZfit(Int_t id) const { return fZfit[id];} Float_t GetZref(Int_t id) const { return fZref[id];} Int_t GetYbin() const { return Int_t(GetY()/0.016);} Int_t GetZbin() const { return Int_t(GetZ()/fPad[0]);} inline AliTRDcluster* NextCluster(); inline AliTRDcluster* PrevCluster(); void Print(Option_t *o = "") const; inline void ResetClusterIter(Bool_t forward = kTRUE); void Reset(Option_t *opt=""); void SetC(Float_t c, Int_t typ=0) { fC[typ] = c;} void SetChmbGood(Bool_t k = kTRUE){ SetBit(kChmbGood, k);} void SetChi2(Float_t chi2) { fChi2 = chi2;} inline void SetCovRef(const Double_t *cov); void SetErrorMsg(ETRDtrackletError err) { SETBIT(fErrorMsg, err);} void SetIndexes(Int_t i, Int_t idx) { fIndexes[i] = idx; } void SetLabels(Int_t *lbls) { memcpy(fLabels, lbls, 3*sizeof(Int_t)); } void SetKink(Bool_t k = kTRUE){ SetBit(kKink, k);} void SetPrimary(Bool_t k = kTRUE){ SetBit(kPrimary, k);} void SetPID(Bool_t k = kTRUE) { SetBit(kPID, k);} void SetStandAlone(Bool_t st) { SetBit(kStandAlone, st); } void SetPt(Double_t pt) { fPt = pt;} void SetOwner(); void SetPadPlane(AliTRDpadPlane * const p); void SetPadLength(Float_t l) { fPad[0] = l;} void SetPadWidth(Float_t w) { fPad[1] = w;} void SetTilt(Float_t tilt) { fPad[2] = tilt; } void SetDetector(Int_t d) { fDet = d; } void SetDX(Float_t inDX) { fdX = inDX;} void SetReconstructor(const AliTRDReconstructor *rec) {fkReconstructor = rec;} void SetX0(Float_t x0) { fX0 = x0; } void SetYref(Int_t i, Float_t y) { fYref[i] = y;} void SetZref(Int_t i, Float_t z) { fZref[i] = z;} // void SetUsabilityMap(Long_t um) { fUsable = um; } void Update(const AliTRDtrackV1* trk); void UpdateUsed(); void UseClusters(); protected: void Copy(TObject &ref) const; private: inline void SetN(Int_t n); inline void SetNUsed(Int_t n); inline void SetNShared(Int_t n); inline void Swap(Int_t &n1, Int_t &n2) const; inline void Swap(Double_t &d1, Double_t &d2) const; const AliTRDReconstructor *fkReconstructor;//! local reconstructor AliTRDcluster **fClusterIter; //! clusters iterator Int_t fIndexes[kNclusters]; //! Indexes Float_t fExB; // tg(a_L) @ tracklet location Float_t fVD; // drift velocity @ tracklet location Float_t fT0; // time 0 @ tracklet location Float_t fS2PRF; // sigma^2 PRF for xd->0 and phi=a_L Float_t fDiffL; // longitudinal diffusion coefficient Float_t fDiffT; // transversal diffusion coefficient Char_t fClusterIdx; //! clusters iterator UChar_t fErrorMsg; // processing error UInt_t fN; // number of clusters attached/used/shared Short_t fDet; // TRD detector AliTRDcluster *fClusters[kNclusters]; // Clusters Float_t fPad[4]; // local pad definition : length/width/tilt/anode wire offset Float_t fYref[2]; // Reference y, dydx Float_t fZref[2]; // Reference z, dz/dx Float_t fYfit[2]; // Fit y, dy/dx Float_t fZfit[2]; // Fit z Float_t fPt; // Pt estimate @ tracklet [GeV/c] Float_t fdX; // length of time bin Float_t fX0; // anode wire position Float_t fX; // radial position of the tracklet Float_t fY; // r-phi position of the tracklet Float_t fZ; // z position of the tracklet Float_t fS2Y; // estimated resolution in the r-phi direction Float_t fS2Z; // estimated resolution in the z direction Float_t fC[2]; // Curvature for standalone [0] rieman [1] vertex constrained Float_t fChi2; // Global chi2 Float_t fdEdx[kNslices]; // dE/dx measurements for tracklet Float_t fProb[AliPID::kSPECIES]; // PID probabilities Int_t fLabels[3]; // most frequent MC labels and total number of different labels Double_t fRefCov[7]; // covariance matrix of the track in the yz plane + the rest of the diagonal elements Double_t fCov[3]; // covariance matrix of the tracklet in the xy plane ClassDef(AliTRDseedV1, 12) // The offline TRD tracklet }; //____________________________________________________________ inline Float_t AliTRDseedV1::GetChi2Z() const { Double_t dz = fZref[0]-fZfit[0]; dz*=dz; Double_t cov[3]; GetCovAt(fX, cov); Double_t s2 = fRefCov[2]+cov[2]; return s2 > 0. ? dz/s2 : 0.; } //____________________________________________________________ inline Float_t AliTRDseedV1::GetChi2Y() const { Double_t dy = fYref[0]-fYfit[0]; dy*=dy; Double_t cov[3]; GetCovAt(fX, cov); Double_t s2 = fRefCov[0]+cov[0]; return s2 > 0. ? dy/s2 : 0.; } //____________________________________________________________ inline Float_t AliTRDseedV1::GetChi2Phi() const { Double_t dphi = fYref[1]-fYfit[1]; dphi*=dphi; Double_t cov[3]; GetCovAt(fX, cov); Double_t s2 = fRefCov[2]+cov[2]; return s2 > 0. ? dphi/s2 : 0.; } //____________________________________________________________ inline Double_t AliTRDseedV1::GetPID(Int_t is) const { if(is<0) return fProb[AliPID::kElectron]; if(is= 0){ if(!(*fClusterIter)){ fClusterIdx--; fClusterIter--; continue; } return *fClusterIter; } return NULL; } //____________________________________________________________ inline void AliTRDseedV1::ResetClusterIter(Bool_t forward) { // Mimic the usage of STL iterators. // Facilitate the usage of NextCluster for forward like // iterator (kTRUE) and PrevCluster for backward like iterator (kFALSE) if(forward){ fClusterIter = &fClusters[0]; fClusterIter--; fClusterIdx=-1; } else { fClusterIter = &fClusters[kNclusters-1]; fClusterIter++; fClusterIdx=kNclusters; } } //____________________________________________________________ inline void AliTRDseedV1::SetCovRef(const Double_t *cov) { // Copy some "important" covariance matrix elements // var(y) // cov(y,z) var(z) // var(snp) // var(tgl) // cov(tgl, 1/pt) var(1/pt) memcpy(&fRefCov[0], cov, 3*sizeof(Double_t)); // yz full covariance fRefCov[3] = cov[ 5]; // snp variance fRefCov[4] = cov[ 9]; // tgl variance fRefCov[5] = cov[13]; // cov(tgl, 1/pt) fRefCov[6] = cov[14]; // 1/pt variance } //____________________________________________________________ inline void AliTRDseedV1::SetN(Int_t n) { if(n<0 || n>kNclusters) return; fN &= ~kMask; fN |= (n&kMask); } //____________________________________________________________ inline void AliTRDseedV1::SetNUsed(Int_t n) { if(n<0 || n>kNclusters) return; UInt_t mask(kMask<kNclusters) return; UInt_t mask((kMask<