/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ #include #include #include #include "AliESDtrack.h" #include "AliTRDgeometry.h" #include "AliTRDcluster.h" #include "AliTRDtrack.h" #include "AliTRDtracklet.h" ClassImp(AliTRDtrack) /////////////////////////////////////////////////////////////////////////////// // // // Represents a reconstructed TRD track // // Local TRD Kalman track // // // /////////////////////////////////////////////////////////////////////////////// AliTRDtrack::AliTRDtrack(): AliKalmanTrack(), fSeedLab(-1), fdEdx(0), fdEdxT(0), fDE(0), fAlpha(0), fX(0), fStopped(kFALSE), fY(0), fZ(0), fE(0), fT(0), fC(0), fCyy(1e10), fCzy(0), fCzz(1e10), fCey(0), fCez(0), fCee(1e10), fCty(0), fCtz(0), fCte(0), fCtt(1e10), fCcy(0), fCcz(0), fCce(0), fCct(0), fCcc(1e10), fLhElectron(0), fNWrong(0), fNRotate(0), fNCross(0), fNExpected(0), fNLast(0), fNExpectedLast(0), fNdedx(0), fChi2Last(1e10), fBackupTrack(0x0) { for (Int_t i=0; i=TMath::Pi()) fAlpha -= 2*TMath::Pi(); fX=xref; fY=xx[0]; fZ=xx[1]; fE=xx[2]; fT=xx[3]; fC=xx[4]; SaveLocalConvConst(); fCyy=cc[0]; fCzy=cc[1]; fCzz=cc[2]; fCey=cc[3]; fCez=cc[4]; fCee=cc[5]; fCty=cc[6]; fCtz=cc[7]; fCte=cc[8]; fCtt=cc[9]; fCcy=cc[10]; fCcz=cc[11]; fCce=cc[12]; fCct=cc[13]; fCcc=cc[14]; fIndex[0]=index; SetNumberOfClusters(1); fdEdx=0.; fdEdxT=0.; fDE=0.; for (Int_t i=0;iGetQ()); Double_t s = fX*fC - fE, t=fT; if(s*s < 1) q *= TMath::Sqrt((1-s*s)/(1+t*t)); fdQdl[0] = q; // initialisation [SR, GSI 18.02.2003] (i startd for 1) for(UInt_t i=1; i= TMath::Pi()) fAlpha -= 2*TMath::Pi(); Double_t x, p[5]; t.GetExternalParameters(x,p); fX=x; fY=p[0]; fZ=p[1]; fT=p[3]; x=GetLocalConvConst(); fC=p[4]/x; fE=fC*fX - p[2]; //Conversion of the covariance matrix Double_t c[15]; t.GetExternalCovariance(c); c[10]/=x; c[11]/=x; c[12]/=x; c[13]/=x; c[14]/=x*x; Double_t c22=fX*fX*c[14] - 2*fX*c[12] + c[5]; Double_t c32=fX*c[13] - c[8]; Double_t c20=fX*c[10] - c[3], c21=fX*c[11] - c[4], c42=fX*c[14] - c[12]; fCyy=c[0 ]; fCzy=c[1 ]; fCzz=c[2 ]; fCey=c20; fCez=c21; fCee=c22; fCty=c[6 ]; fCtz=c[7 ]; fCte=c32; fCtt=c[9 ]; fCcy=c[10]; fCcz=c[11]; fCce=c42; fCct=c[13]; fCcc=c[14]; // Initialization [SR, GSI, 18.02.2003] for(UInt_t i=0; i= TMath::Pi()) fAlpha -= 2*TMath::Pi(); Double_t x, p[5]; t.GetExternalParameters(x,p); //Conversion of the covariance matrix Double_t c[15]; t.GetExternalCovariance(c); if (t.GetStatus()&AliESDtrack::kTRDbackup){ t.GetOuterExternalParameters(fAlpha,x,p); t.GetOuterExternalCovariance(c); if (fAlpha < -TMath::Pi()) fAlpha += 2*TMath::Pi(); else if (fAlpha >= TMath::Pi()) fAlpha -= 2*TMath::Pi(); } fX=x; fY=p[0]; fZ=p[1]; SaveLocalConvConst(); fT=p[3]; x=GetLocalConvConst(); fC=p[4]/x; fE=fC*fX - p[2]; c[10]/=x; c[11]/=x; c[12]/=x; c[13]/=x; c[14]/=x*x; Double_t c22=fX*fX*c[14] - 2*fX*c[12] + c[5]; Double_t c32=fX*c[13] - c[8]; Double_t c20=fX*c[10] - c[3], c21=fX*c[11] - c[4], c42=fX*c[14] - c[12]; fCyy=c[0 ]; fCzy=c[1 ]; fCzz=c[2 ]; fCey=c20; fCez=c21; fCee=c22; fCty=c[6 ]; fCtz=c[7 ]; fCte=c32; fCtt=c[9 ]; fCcy=c[10]; fCcz=c[11]; fCce=c42; fCct=c[13]; fCcc=c[14]; // Initialization [SR, GSI, 18.02.2003] for(UInt_t i=0; i= TMath::Pi()) fAlpha -= 2*TMath::Pi(); return *this; } //____________________________________________________________________________ Float_t AliTRDtrack::StatusForTOF() { // // Defines the status of the TOF extrapolation // Float_t res = (0.2 + 0.8*(fN/(fNExpected+5.)))*(0.4+0.6*fTracklets[5].GetN()/20.); res *= (0.25+0.8*40./(40.+fBudget[2])); return res; Int_t status=0; if (GetNumberOfClusters()<20) return 0; // if (fN>110&&fChi2/(Float_t(fN))<3) return 3; //gold if (fNLast>30&&fChi2Last/(Float_t(fNLast))<3) return 3; //gold if (fNLast>20&&fChi2Last/(Float_t(fNLast))<2) return 3; //gold if (fNLast/(fNExpectedLast+3.)>0.8 && fChi2Last/Float_t(fNLast)<5&&fNLast>20) return 2; //silber if (fNLast>5 &&((fNLast+1.)/(fNExpectedLast+1.))>0.8&&fChi2Last/(fNLast-5.)<6) return 1; return status; } //_____________________________________________________________________________ void AliTRDtrack::GetExternalCovariance(Double_t cc[15]) const { // // This function returns external representation of the covriance matrix. // Double_t a=GetLocalConvConst(); Double_t c22=fX*fX*fCcc-2*fX*fCce+fCee; Double_t c32=fX*fCct-fCte; Double_t c20=fX*fCcy-fCey, c21=fX*fCcz-fCez, c42=fX*fCcc-fCce; cc[0 ]=fCyy; cc[1 ]=fCzy; cc[2 ]=fCzz; cc[3 ]=c20; cc[4 ]=c21; cc[5 ]=c22; cc[6 ]=fCty; cc[7 ]=fCtz; cc[8 ]=c32; cc[9 ]=fCtt; cc[10]=fCcy*a; cc[11]=fCcz*a; cc[12]=c42*a; cc[13]=fCct*a; cc[14]=fCcc*a*a; } //_____________________________________________________________________________ void AliTRDtrack::GetCovariance(Double_t cc[15]) const { // // Returns the track covariance matrix // cc[0]=fCyy; cc[1]=fCzy; cc[2]=fCzz; cc[3]=fCey; cc[4]=fCez; cc[5]=fCee; cc[6]=fCcy; cc[7]=fCcz; cc[8]=fCce; cc[9]=fCcc; cc[10]=fCty; cc[11]=fCtz; cc[12]=fCte; cc[13]=fCct; cc[14]=fCtt; } //_____________________________________________________________________________ Int_t AliTRDtrack::Compare(const TObject *o) const { // // Compares tracks according to their Y2 or curvature // AliTRDtrack *t=(AliTRDtrack*)o; // Double_t co=t->GetSigmaY2(); // Double_t c =GetSigmaY2(); Double_t co=TMath::Abs(t->GetC()); Double_t c =TMath::Abs(GetC()); if (c>co) return 1; else if (c= 0.90000) { // Int_t n=GetNumberOfClusters(); //if (n>4) cerr << n << " AliTRDtrack: Propagation failed, \tPt = " // << GetPt() << "\t" << GetLabel() << "\t" << GetMass() << endl; return 0; } Double_t lcc=GetLocalConvConst(); // track Length measurement [SR, GSI, 17.02.2003] Double_t oldX = fX, oldY = fY, oldZ = fZ; Double_t x1=fX, x2=x1+(xk-x1), dx=x2-x1, y1=fY, z1=fZ; Double_t c1=fC*x1 - fE; if((c1*c1) > 1) return 0; Double_t r1=sqrt(1.- c1*c1); Double_t c2=fC*x2 - fE; if((c2*c2) > 1) return 0; Double_t r2=sqrt(1.- c2*c2); fY += dx*(c1+c2)/(r1+r2); fZ += dx*(c1+c2)/(c1*r2 + c2*r1)*fT; //f = F - 1 Double_t rr=r1+r2, cc=c1+c2, xx=x1+x2; Double_t f02=-dx*(2*rr + cc*(c1/r1 + c2/r2))/(rr*rr); Double_t f04= dx*(rr*xx + cc*(c1*x1/r1+c2*x2/r2))/(rr*rr); Double_t cr=c1*r2+c2*r1; Double_t f12=-dx*fT*(2*cr + cc*(c2*c1/r1-r1 + c1*c2/r2-r2))/(cr*cr); Double_t f13= dx*cc/cr; Double_t f14=dx*fT*(cr*xx-cc*(r1*x2-c2*c1*x1/r1+r2*x1-c1*c2*x2/r2))/(cr*cr); //b = C*ft Double_t b00=f02*fCey + f04*fCcy, b01=f12*fCey + f14*fCcy + f13*fCty; Double_t b10=f02*fCez + f04*fCcz, b11=f12*fCez + f14*fCcz + f13*fCtz; Double_t b20=f02*fCee + f04*fCce, b21=f12*fCee + f14*fCce + f13*fCte; Double_t b30=f02*fCte + f04*fCct, b31=f12*fCte + f14*fCct + f13*fCtt; Double_t b40=f02*fCce + f04*fCcc, b41=f12*fCce + f14*fCcc + f13*fCct; //a = f*b = f*C*ft Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a11=f12*b21+f14*b41+f13*b31; //F*C*Ft = C + (a + b + bt) fCyy += a00 + 2*b00; fCzy += a01 + b01 + b10; fCey += b20; fCty += b30; fCcy += b40; fCzz += a11 + 2*b11; fCez += b21; fCtz += b31; fCcz += b41; fX=x2; //Change of the magnetic field ************* SaveLocalConvConst(); cc=fC; fC*=lcc/GetLocalConvConst(); fE+=fX*(fC-cc); //Multiple scattering ****************** Double_t d=sqrt((x1-fX)*(x1-fX)+(y1-fY)*(y1-fY)+(z1-fZ)*(z1-fZ)); Double_t p2=(1.+ GetTgl()*GetTgl())/(Get1Pt()*Get1Pt()); Double_t beta2=p2/(p2 + GetMass()*GetMass()); Double_t theta2=14.1*14.1/(beta2*p2*1e6)*d/x0*rho; Double_t ey=fC*fX - fE, ez=fT; Double_t xz=fC*ez, zz1=ez*ez+1, xy=fE+ey; fCee += (2*ey*ez*ez*fE+1-ey*ey+ez*ez+fE*fE*ez*ez)*theta2; fCte += ez*zz1*xy*theta2; fCtt += zz1*zz1*theta2; fCce += xz*ez*xy*theta2; fCct += xz*zz1*theta2; fCcc += xz*xz*theta2; /* Double_t dc22 = (1-ey*ey+xz*xz*fX*fX)*theta2; Double_t dc32 = (xz*fX*zz1)*theta2; Double_t dc33 = (zz1*zz1)*theta2; Double_t dc42 = (xz*fX*xz)*theta2; Double_t dc43 = (zz1*xz)*theta2; Double_t dc44 = (xz*xz)*theta2; fCee += dc22; fCte += dc32; fCtt += dc33; fCce += dc42; fCct += dc43; fCcc += dc44; */ //Energy losses************************ if((5940*beta2/(1-beta2+1e-10) - beta2) < 0) return 0; Double_t dE=0.153e-3/beta2*(log(5940*beta2/(1-beta2+1e-10)) - beta2)*d*rho; Float_t budget = d* rho; fBudget[0] +=budget; // // suspicious part - think about it ? Double_t kinE = TMath::Sqrt(p2); if (dE>0.8*kinE) dE = 0.8*kinE; // if (dE<0) dE = 0.0; // not valid region for Bethe bloch // // fDE+=dE; if (x1 < x2) dE=-dE; cc=fC; fC*=(1.- sqrt(p2+GetMass()*GetMass())/p2*dE); fE+=fX*(fC-cc); // Double_t sigmade = 0.1*dE*TMath::Sqrt(TMath::Sqrt(1+fT*fT)*90./(d+0.0001)); // 20 percent fluctuation - normalized to some length Double_t sigmade = 0.07*TMath::Sqrt(TMath::Abs(dE)); // energy loss fluctuation Double_t sigmac2 = sigmade*sigmade*fC*fC*(p2+GetMass()*GetMass())/(p2*p2); fCcc += sigmac2; fCee += fX*fX*sigmac2; // track time measurement [SR, GSI 17.02.2002] if (x1 < x2) if (IsStartedTimeIntegral()) { Double_t l2 = TMath::Sqrt((fX-oldX)*(fX-oldX) + (fY-oldY)*(fY-oldY) + (fZ-oldZ)*(fZ-oldZ)); if (TMath::Abs(l2*fC)>0.0001){ // make correction for curvature if neccesary l2 = 0.5*TMath::Sqrt((fX-oldX)*(fX-oldX) + (fY-oldY)*(fY-oldY)); l2 = 2*TMath::ASin(l2*fC)/fC; l2 = TMath::Sqrt(l2*l2+(fZ-oldZ)*(fZ-oldZ)); } AddTimeStep(l2); } return 1; } //_____________________________________________________________________________ Int_t AliTRDtrack::Update(const AliTRDcluster *c, Double_t chisq, UInt_t index , Double_t h01) { // Assignes found cluster to the track and updates track information Bool_t fNoTilt = kTRUE; if(TMath::Abs(h01) > 0.003) fNoTilt = kFALSE; // add angular effect to the error contribution - MI Float_t tangent2 = (fC*fX-fE)*(fC*fX-fE); if (tangent2 < 0.90000){ tangent2 = tangent2/(1.-tangent2); } Float_t errang = tangent2*0.04; // Float_t padlength = TMath::Sqrt(c->GetSigmaZ2()*12.); Double_t r00=c->GetSigmaY2() +errang, r01=0., r11=c->GetSigmaZ2()*100.; r00+=fCyy; r01+=fCzy; r11+=fCzz; Double_t det=r00*r11 - r01*r01; Double_t tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det; Double_t k00=fCyy*r00+fCzy*r01, k01=fCyy*r01+fCzy*r11; Double_t k10=fCzy*r00+fCzz*r01, k11=fCzy*r01+fCzz*r11; Double_t k20=fCey*r00+fCez*r01, k21=fCey*r01+fCez*r11; Double_t k30=fCty*r00+fCtz*r01, k31=fCty*r01+fCtz*r11; Double_t k40=fCcy*r00+fCcz*r01, k41=fCcy*r01+fCcz*r11; Double_t dy=c->GetY() - fY, dz=c->GetZ() - fZ; Double_t cur=fC + k40*dy + k41*dz, eta=fE + k20*dy + k21*dz; if(fNoTilt) { if (TMath::Abs(cur*fX-eta) >= 0.90000) { // Int_t n=GetNumberOfClusters(); //if (n>4) cerr<GetY() - fY; dz=c->GetZ() - fZ; dy=dy+h01*dz; Float_t add=0; if (TMath::Abs(dz)>padlength/2.){ Float_t dy2 = c->GetY() - fY; Float_t sign = (dz>0) ? -1.: 1.; dy2+=h01*sign*padlength/2.; dy = dy2; add = 0; } r00=c->GetSigmaY2()+errang+add, r01=0., r11=c->GetSigmaZ2()*xuFactor; r00+=(fCyy+2.0*h01*fCzy+h01*h01*fCzz); r01+=(fCzy+h01*fCzz); r11+=fCzz; det=r00*r11 - r01*r01; tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det; k00=fCyy*r00+fCzy*(r01+h01*r00),k01=fCyy*r01+fCzy*(r11+h01*r01); k10=fCzy*r00+fCzz*(r01+h01*r00),k11=fCzy*r01+fCzz*(r11+h01*r01); k20=fCey*r00+fCez*(r01+h01*r00),k21=fCey*r01+fCez*(r11+h01*r01); k30=fCty*r00+fCtz*(r01+h01*r00),k31=fCty*r01+fCtz*(r11+h01*r01); k40=fCcy*r00+fCcz*(r01+h01*r00),k41=fCcy*r01+fCcz*(r11+h01*r01); cur=fC + k40*dy + k41*dz; eta=fE + k20*dy + k21*dz; if (TMath::Abs(cur*fX-eta) >= 0.90000) { // Int_t n=GetNumberOfClusters(); //if (n>4) cerr<GetSigmaZ2()*12); Double_t xuFactor = 1000.; // empirical factor set by C.Xu // in the first tilt version dy=c->GetY() - fY; dz=c->GetZ() - fZ; //dy=dy+h01*dz+correction; Double_t tiltdz = dz; if (TMath::Abs(tiltdz)>padlength/2.) { tiltdz = TMath::Sign(padlength/2,dz); } // dy=dy+h01*dz; dy=dy+h01*tiltdz; Double_t add=0; if (TMath::Abs(dz)>padlength/2.){ //Double_t dy2 = c->GetY() - fY; //Double_t sign = (dz>0) ? -1.: 1.; //dy2-=h01*sign*padlength/2.; //dy = dy2; add =1; } Double_t s00 = (c->GetSigmaY2()+errang)*extend+errsys+add; // error pad Double_t s11 = c->GetSigmaZ2()*xuFactor; // error pad-row // r00 = fCyy + 2*fCzy*h01 + fCzz*h01*h01+s00; r01 = fCzy + fCzz*h01; r11 = fCzz + s11; det = r00*r11 - r01*r01; // inverse matrix tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det; // K matrix k00=fCyy*r00+fCzy*(r01+h01*r00),k01=fCyy*r01+fCzy*(r11+h01*r01); k10=fCzy*r00+fCzz*(r01+h01*r00),k11=fCzy*r01+fCzz*(r11+h01*r01); k20=fCey*r00+fCez*(r01+h01*r00),k21=fCey*r01+fCez*(r11+h01*r01); k30=fCty*r00+fCtz*(r01+h01*r00),k31=fCty*r01+fCtz*(r11+h01*r01); k40=fCcy*r00+fCcz*(r01+h01*r00),k41=fCcy*r01+fCcz*(r11+h01*r01); // //Update measurement cur=fC + k40*dy + k41*dz; eta=fE + k20*dy + k21*dz; if (TMath::Abs(cur*fX-eta) >= 0.90000) { //Int_t n=GetNumberOfClusters(); // if (n>4) cerr< 1) return 0; Double_t y0=fY + sqrt(1.- r2*r2)/fC; if ((fY-y0)*fC >= 0.) { Int_t n=GetNumberOfClusters(); if (n>4) cerr< 0.003) fNoTilt = kFALSE; Double_t chi2, dy, r00, r01, r11; if(fNoTilt) { dy=c->GetY() - fY; r00=c->GetSigmaY2(); chi2 = (dy*dy)/r00; } else { Double_t padlength = TMath::Sqrt(c->GetSigmaZ2()*12); // r00=c->GetSigmaY2(); r01=0.; r11=c->GetSigmaZ2(); r00+=fCyy; r01+=fCzy; r11+=fCzz; Double_t det=r00*r11 - r01*r01; if (TMath::Abs(det) < 1.e-10) { Int_t n=GetNumberOfClusters(); if (n>4) cerr<GetY() - fY, dz=c->GetZ() - fZ; Double_t tiltdz = dz; if (TMath::Abs(tiltdz)>padlength/2.) { tiltdz = TMath::Sign(padlength/2,dz); } // dy=dy+h01*dz; dy=dy+h01*tiltdz; chi2 = (dy*r00*dy + 2*r01*dy*dz + dz*r11*dz)/det; } return chi2; } //_________________________________________________________________________ void AliTRDtrack::GetPxPyPz(Double_t& px, Double_t& py, Double_t& pz) const { // Returns reconstructed track momentum in the global system. Double_t pt=TMath::Abs(GetPt()); // GeV/c Double_t r=fC*fX-fE; Double_t y0; if(r > 1) { py = pt; px = 0; } else if(r < -1) { py = -pt; px = 0; } else { y0=fY + sqrt(1.- r*r)/fC; px=-pt*(fY-y0)*fC; //cos(phi); py=-pt*(fE-fX*fC); //sin(phi); } pz=pt*fT; Double_t tmp=px*TMath::Cos(fAlpha) - py*TMath::Sin(fAlpha); py=px*TMath::Sin(fAlpha) + py*TMath::Cos(fAlpha); px=tmp; } //_________________________________________________________________________ void AliTRDtrack::GetGlobalXYZ(Double_t& x, Double_t& y, Double_t& z) const { // Returns reconstructed track coordinates in the global system. x = fX; y = fY; z = fZ; Double_t tmp=x*TMath::Cos(fAlpha) - y*TMath::Sin(fAlpha); y=x*TMath::Sin(fAlpha) + y*TMath::Cos(fAlpha); x=tmp; } //_________________________________________________________________________ void AliTRDtrack::ResetCovariance() { // // Resets covariance matrix // fCyy*=10.; fCzy=0.; fCzz*=10.; fCey=0.; fCez=0.; fCee*=10.; fCty=0.; fCtz=0.; fCte=0.; fCtt*=10.; fCcy=0.; fCcz=0.; fCce=0.; fCct=0.; fCcc*=10.; } //_____________________________________________________________________________ void AliTRDtrack::ResetCovariance(Float_t mult) { // // Resets covariance matrix // fCyy*=mult; fCzy*=0.; fCzz*=1.; fCey*=0.; fCez*=0.; fCee*=mult; fCty*=0.; fCtz*=0.; fCte*=0.; fCtt*=1.; fCcy*=0.; fCcz*=0.; fCce*=0.; fCct*=0.; fCcc*=mult; } //_____________________________________________________________________________ void AliTRDtrack::MakeBackupTrack() { // // Creates a backup track // if (fBackupTrack) delete fBackupTrack; fBackupTrack = new AliTRDtrack(*this); } //_____________________________________________________________________________ Int_t AliTRDtrack::GetProlongation(Double_t xk, Double_t &y, Double_t &z) { // // Find prolongation at given x // return 0 if not exist Double_t c1=fC*fX - fE; if (TMath::Abs(c1)>1.) return 0; Double_t r1=TMath::Sqrt(1.- c1*c1); Double_t c2=fC*xk - fE; if (TMath::Abs(c2)>1.) return 0; Double_t r2=TMath::Sqrt(1.- c2*c2); y =fY + (xk-fX)*(c1+c2)/(r1+r2); z =fZ + (xk-fX)*(c1+c2)/(c1*r2 + c2*r1)*fT; return 1; } //_____________________________________________________________________________ Int_t AliTRDtrack::PropagateToX(Double_t xr, Double_t step) { // // Propagate track to given x position // works inside of the 20 degree segmentation (local cooordinate frame for TRD , TPC, TOF) // // material budget from geo manager // Double_t xyz0[3], xyz1[3],y,z; const Double_t kAlphac = TMath::Pi()/9.; const Double_t kTalphac = TMath::Tan(kAlphac*0.5); // critical alpha - cross sector indication // Double_t dir = (fX>xr) ? -1.:1.; // direction +- for (Double_t x=fX+dir*step;dir*x0&¶m[1]>0) PropagateTo(x,param[1],param[0]); if (fY>fX*kTalphac){ Rotate(-kAlphac); } if (fY<-fX*kTalphac){ Rotate(kAlphac); } } // PropagateTo(xr); return 0; } //_____________________________________________________________________________ Int_t AliTRDtrack::PropagateToR(Double_t r,Double_t step) { // // propagate track to the radial position // rotation always connected to the last track position // Double_t xyz0[3], xyz1[3],y,z; Double_t radius = TMath::Sqrt(fX*fX+fY*fY); Double_t dir = (radius>r) ? -1.:1.; // direction +- // for (Double_t x=radius+dir*step;dir*x kVeryBigConvConst) return 1./kMostProbableMomentum/TMath::Sqrt(1.+ GetTgl()*GetTgl()); return (TMath::Sign(1e-9,fC) + fC)*GetLocalConvConst(); } //_____________________________________________________________________________ Double_t AliTRDtrack::GetP() const { // // Returns the total momentum // return TMath::Abs(GetPt())*sqrt(1.+GetTgl()*GetTgl()); } //_____________________________________________________________________________ Double_t AliTRDtrack::GetYat(Double_t xk) const { // // This function calculates the Y-coordinate of a track at // the plane x = xk. // Needed for matching with the TOF (I.Belikov) // Double_t c1 = fC*fX - fE; Double_t r1 = TMath::Sqrt(1.0 - c1*c1); Double_t c2 = fC*xk - fE; Double_t r2 = TMath::Sqrt(1.0- c2*c2); return fY + (xk-fX)*(c1+c2)/(r1+r2); } //_____________________________________________________________________________ void AliTRDtrack::SetSampledEdx(Float_t q, Int_t i) { // // The sampled energy loss // Double_t s = GetSnp(); Double_t t = GetTgl(); q *= TMath::Sqrt((1-s*s)/(1+t*t)); fdQdl[i] = q; } //_____________________________________________________________________________ void AliTRDtrack::SetSampledEdx(Float_t q) { // // The sampled energy loss // Double_t s = GetSnp(); Double_t t = GetTgl(); q*= TMath::Sqrt((1-s*s)/(1+t*t)); fdQdl[fNdedx] = q; fNdedx++; } //_____________________________________________________________________________ void AliTRDtrack::GetXYZ(Float_t r[3]) const { //--------------------------------------------------------------------- // Returns the position of the track in the global coord. system //--------------------------------------------------------------------- Double_t cs = TMath::Cos(fAlpha); Double_t sn = TMath::Sin(fAlpha); r[0] = fX*cs - fY*sn; r[1] = fX*sn + fY*cs; r[2] = fZ; }