#ifndef ALITRDTRACK_H #define ALITRDTRACK_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ #include #include #include "AliBarrelTrack.h" #include "AliTRDgeometry.h" #include "TVector2.h" class AliTRDcluster; class AliTPCtrack; class AliESDtrack; const unsigned kMAX_CLUSTERS_PER_TRACK=210; class AliTRDtrack : public AliKalmanTrack { // Represents reconstructed TRD track public: AliTRDtrack():AliKalmanTrack(){} AliTRDtrack(const AliTRDcluster *c, UInt_t index, const Double_t xx[5], const Double_t cc[15], Double_t xr, Double_t alpha); AliTRDtrack(const AliTRDtrack& t); AliTRDtrack(const AliKalmanTrack& t, Double_t alpha); AliTRDtrack(const AliESDtrack& t); Int_t Compare(const TObject *o) const; void CookdEdx(Double_t low=0.05, Double_t up=0.70); Double_t GetAlpha() const {return fAlpha;} Int_t GetSector() const { //if (fabs(fAlpha) < AliTRDgeometry::GetAlpha()/2) return 0; return Int_t(TVector2::Phi_0_2pi(fAlpha)/AliTRDgeometry::GetAlpha())%AliTRDgeometry::kNsect;} Double_t GetC() const {return fC;} Int_t GetClusterIndex(Int_t i) const {return fIndex[i];} Float_t GetClusterdQdl(Int_t i) const {return fdQdl[i];} void GetCovariance(Double_t cov[15]) const; Double_t GetdEdx() const {return fdEdx;} Double_t GetPIDsignal() const {return GetdEdx();} Double_t GetEta() const {return fE;} void GetExternalCovariance(Double_t cov[15]) const ; void GetExternalParameters(Double_t& xr, Double_t x[5]) const ; Double_t GetLikelihoodElectron() const { return fLhElectron; }; Double_t Get1Pt() const {return (1e-9*TMath::Abs(fC)/fC + fC)*GetConvConst(); } Double_t GetP() const { return TMath::Abs(GetPt())*sqrt(1.+GetTgl()*GetTgl()); } Double_t GetPredictedChi2(const AliTRDcluster*, Double_t h01) const ; Double_t GetPt() const {return 1./Get1Pt();} void GetPxPyPz(Double_t &px, Double_t &py, Double_t &pz) const ; void GetGlobalXYZ(Double_t &x, Double_t &y, Double_t &z) const ; Int_t GetSeedLabel() const { return fSeedLab; } Double_t GetSigmaC2() const {return fCcc;} Double_t GetSigmaTgl2() const {return fCtt;} Double_t GetSigmaY2() const {return fCyy;} Double_t GetSigmaZ2() const {return fCzz;} Double_t GetSnp() const {return fX*fC - fE;} Double_t GetTgl() const {return fT;} Double_t GetX() const {return fX;} Double_t GetY() const {return fY;} Double_t GetZ() const {return fZ;} Double_t GetYat(Double_t xk) const { //----------------------------------------------------------------- // This function calculates the Y-coordinate of a track at the plane x=xk. // Needed for matching with the TOF (I.Belikov) //----------------------------------------------------------------- Double_t c1=fC*fX - fE, r1=TMath::Sqrt(1.- c1*c1); Double_t c2=fC*xk - fE, r2=TMath::Sqrt(1.- c2*c2); return fY + (xk-fX)*(c1+c2)/(r1+r2); } Int_t PropagateTo(Double_t xr, Double_t x0=8.72, Double_t rho=5.86e-3); void ResetCovariance(); void ResetClusters() { SetChi2(0.); SetNumberOfClusters(0); } Int_t Rotate(Double_t angle); void SetdEdx(Float_t dedx) {fdEdx=dedx;} void SetLikelihoodElectron(Float_t l) { fLhElectron = l; }; void SetSampledEdx(Float_t q, Int_t i) { Double_t s=GetSnp(), t=GetTgl(); q*= TMath::Sqrt((1-s*s)/(1+t*t)); fdQdl[i]=q; } void SetSeedLabel(Int_t lab) { fSeedLab=lab; } Int_t Update(const AliTRDcluster* c, Double_t chi2, UInt_t i, Double_t h01); // void GetBarrelTrack(AliBarrelTrack *track); void AddNWrong() {fNWrong++;} Int_t GetNWrong() const {return fNWrong;} Int_t GetNRotate() const {return fNRotate;} // protected: Int_t fSeedLab; // track label taken from seeding Float_t fdEdx; // dE/dx Double_t fAlpha; // rotation angle Double_t fX; // running local X-coordinate of the track (time bin) Double_t fY; // Y-coordinate of the track Double_t fZ; // Z-coordinate of the track Double_t fE; // C*x0 Double_t fT; // tangent of the track momentum dip angle Double_t fC; // track curvature Double_t fCyy; // covariance Double_t fCzy, fCzz; // matrix Double_t fCey, fCez, fCee; // of the Double_t fCty, fCtz, fCte, fCtt; // track Double_t fCcy, fCcz, fCce, fCct, fCcc; // parameters UInt_t fIndex[kMAX_CLUSTERS_PER_TRACK]; // global indexes of clusters Float_t fdQdl[kMAX_CLUSTERS_PER_TRACK]; // cluster amplitudes corrected // for track angles Float_t fLhElectron; // Likelihood to be an electron Int_t fNWrong; // number of wrong clusters Int_t fNRotate; ClassDef(AliTRDtrack,2) // TRD reconstructed tracks }; #endif