/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /////////////////////////////////////////////////////////////////////////////// // // // Track finder // // // // Authors: // // Alex Bercuci // // Markus Fasel // // // /////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include "AliLog.h" #include "AliMathBase.h" #include "AliESDEvent.h" #include "AliGeomManager.h" #include "AliRieman.h" #include "AliTrackPointArray.h" #include "AliTRDgeometry.h" #include "AliTRDpadPlane.h" #include "AliTRDcalibDB.h" #include "AliTRDReconstructor.h" #include "AliTRDCalibraFillHisto.h" #include "AliTRDrecoParam.h" #include "AliTRDcluster.h" #include "AliTRDdigitsParam.h" #include "AliTRDseedV1.h" #include "AliTRDtrackV1.h" #include "AliTRDtrackerV1.h" #include "AliTRDtrackerDebug.h" #include "AliTRDtrackingChamber.h" #include "AliTRDchamberTimeBin.h" ClassImp(AliTRDtrackerV1) ClassImp(AliTRDtrackerV1::AliTRDLeastSquare) ClassImp(AliTRDtrackerV1::AliTRDtrackFitterRieman) AliTRDtrackerV1::ETRDtrackerV1BetheBloch AliTRDtrackerV1::fgBB = AliTRDtrackerV1::kGeant; Double_t AliTRDtrackerV1::fgTopologicQA[kNConfigs] = { 0.5112, 0.5112, 0.5112, 0.0786, 0.0786, 0.0786, 0.0786, 0.0579, 0.0579, 0.0474, 0.0474, 0.0408, 0.0335, 0.0335, 0.0335 }; const Double_t AliTRDtrackerV1::fgkX0[kNPlanes] = { 300.2, 312.8, 325.4, 338.0, 350.6, 363.2}; // Number of Time Bins/chamber should be also stored independently by the traker // (also in AliTRDReconstructor) in oder to be able to run HLT. Fix TODO Int_t AliTRDtrackerV1::fgNTimeBins = 0; AliRieman* AliTRDtrackerV1::fgRieman = NULL; TLinearFitter* AliTRDtrackerV1::fgTiltedRieman = NULL; TLinearFitter* AliTRDtrackerV1::fgTiltedRiemanConstrained = NULL; //____________________________________________________________________ AliTRDtrackerV1::AliTRDtrackerV1(const AliTRDReconstructor *rec) :AliTracker() ,fkReconstructor(NULL) ,fkRecoParam(NULL) ,fGeom(NULL) ,fClusters(NULL) ,fTracklets(NULL) ,fTracks(NULL) ,fTracksESD(NULL) ,fSieveSeeding(0) ,fEventInFile(-1) { // // Default constructor. // SetReconstructor(rec); // initialize reconstructor // initialize geometry if(!AliGeomManager::GetGeometry()){ AliFatal("Could not get geometry."); } fGeom = new AliTRDgeometry(); fGeom->CreateClusterMatrixArray(); TGeoHMatrix *matrix = NULL; Double_t loc[] = {0., 0., 0.}; Double_t glb[] = {0., 0., 0.}; for(Int_t ily=kNPlanes; ily--;){ Int_t ism = 0; while(!(matrix = fGeom->GetClusterMatrix(AliTRDgeometry::GetDetector(ily, 2, ism)))) ism++; if(!matrix){ AliError(Form("Could not get transformation matrix for layer %d. Use default.", ily)); fR[ily] = fgkX0[ily]; continue; } matrix->LocalToMaster(loc, glb); fR[ily] = glb[0]+ AliTRDgeometry::AnodePos()-.5*AliTRDgeometry::AmThick() - AliTRDgeometry::DrThick(); } // initialize cluster containers for (Int_t isector = 0; isector < AliTRDgeometry::kNsector; isector++) new(&fTrSec[isector]) AliTRDtrackingSector(fGeom, isector); // initialize arrays memset(fTrackQuality, 0, kMaxTracksStack*sizeof(Double_t)); memset(fSeedLayer, 0, kMaxTracksStack*sizeof(Int_t)); memset(fSeedTB, 0, kNSeedPlanes*sizeof(AliTRDchamberTimeBin*)); fTracksESD = new TClonesArray("AliESDtrack", 2*kMaxTracksStack); fTracksESD->SetOwner(); } //____________________________________________________________________ AliTRDtrackerV1::~AliTRDtrackerV1() { // // Destructor // if(fgRieman) delete fgRieman; fgRieman = NULL; if(fgTiltedRieman) delete fgTiltedRieman; fgTiltedRieman = NULL; if(fgTiltedRiemanConstrained) delete fgTiltedRiemanConstrained; fgTiltedRiemanConstrained = NULL; for(Int_t isl =0; islDelete(); delete fTracksESD; } if(fTracks) {fTracks->Delete(); delete fTracks;} if(fTracklets) {fTracklets->Delete(); delete fTracklets;} if(IsClustersOwner() && fClusters) { AliInfo(Form("tracker[%p] removing %d own clusters @ %p", (void*)this, fClusters->GetEntries(), (void*)fClusters)); fClusters->Delete(); delete fClusters; } if(fGeom) delete fGeom; } //____________________________________________________________________ Int_t AliTRDtrackerV1::Clusters2Tracks(AliESDEvent *esd) { // // Steering stand alone tracking for full TRD detector // // Parameters : // esd : The ESD event. On output it contains // the ESD tracks found in TRD. // // Output : // Number of tracks found in the TRD detector. // // Detailed description // 1. Launch individual SM trackers. // See AliTRDtrackerV1::Clusters2TracksSM() for details. // if(!fkRecoParam){ AliError("Reconstruction configuration not initialized. Call first AliTRDReconstructor::SetRecoParam()."); return 0; } //AliInfo("Start Track Finder ..."); Int_t ntracks = 0; for(int ism=0; ismGetDetector(); Int_t sec = fGeom->GetSector(det); Double_t alpha = (sec+.5)*AliTRDgeometry::GetAlpha(), sinA = TMath::Sin(alpha), cosA = TMath::Cos(alpha); Double_t local[3]; local[0] = tracklet->GetX(); local[1] = tracklet->GetY(); local[2] = tracklet->GetZ(); Double_t global[3]; fGeom->RotateBack(det, local, global); Double_t cov2D[3]; Float_t cov[6]; tracklet->GetCovAt(local[0], cov2D); cov[0] = cov2D[0]*sinA*sinA; cov[1] =-cov2D[0]*sinA*cosA; cov[2] =-cov2D[1]*sinA; cov[3] = cov2D[0]*cosA*cosA; cov[4] = cov2D[1]*cosA; cov[5] = cov2D[2]; // store the global position of the tracklet and its covariance matrix in the track point p.SetXYZ(global[0],global[1],global[2], cov); // setting volume id AliGeomManager::ELayerID iLayer = AliGeomManager::ELayerID(AliGeomManager::kTRD1+fGeom->GetLayer(det)); Int_t modId = fGeom->GetSector(det) * AliTRDgeometry::kNstack + fGeom->GetStack(det); UShort_t volid = AliGeomManager::LayerToVolUID(iLayer, modId); p.SetVolumeID(volid); return kTRUE; } //____________________________________________________________________ TLinearFitter* AliTRDtrackerV1::GetTiltedRiemanFitter() { if(!fgTiltedRieman) fgTiltedRieman = new TLinearFitter(4, "hyp4"); return fgTiltedRieman; } //____________________________________________________________________ TLinearFitter* AliTRDtrackerV1::GetTiltedRiemanFitterConstraint() { if(!fgTiltedRiemanConstrained) fgTiltedRiemanConstrained = new TLinearFitter(2, "hyp2"); return fgTiltedRiemanConstrained; } //____________________________________________________________________ AliRieman* AliTRDtrackerV1::GetRiemanFitter() { if(!fgRieman) fgRieman = new AliRieman(AliTRDseedV1::kNtb * AliTRDgeometry::kNlayer); return fgRieman; } //_____________________________________________________________________________ Int_t AliTRDtrackerV1::PropagateBack(AliESDEvent *event) { // Propagation of ESD tracks from TPC to TOF detectors and building of the TRD track. For building // a TRD track an ESD track is used as seed. The informations obtained on the TRD track (measured points, // covariance, PID, etc.) are than used to update the corresponding ESD track. // Each track seed is first propagated to the geometrical limit of the TRD detector. // Its prolongation is searched in the TRD and if corresponding clusters are found tracklets are // constructed out of them (see AliTRDseedV1::AttachClusters()) and the track is updated. // Otherwise the ESD track is left unchanged. // // The following steps are performed: // 1. Selection of tracks based on the variance in the y-z plane. // 2. Propagation to the geometrical limit of the TRD volume. If track propagation fails the AliESDtrack::kTRDStop is set. // 3. Prolongation inside the fiducial volume (see AliTRDtrackerV1::FollowBackProlongation()) and marking // the following status bits: // - AliESDtrack::kTRDin - if the tracks enters the TRD fiducial volume // - AliESDtrack::kTRDStop - if the tracks fails propagation // - AliESDtrack::kTRDbackup - if the tracks fulfills chi2 conditions and qualify for refitting // 4. Writting to friends, PID, MC label, quality etc. Setting status bit AliESDtrack::kTRDout. // 5. Propagation to TOF. If track propagation fails the AliESDtrack::kTRDStop is set. // if(!fClusters || !fClusters->GetEntriesFast()){ AliInfo("No TRD clusters"); return 0; } AliTRDCalibraFillHisto *calibra = AliTRDCalibraFillHisto::Instance(); // Calibration monitor if (!calibra) AliInfo("Could not get Calibra instance"); if (!fgNTimeBins) fgNTimeBins = fkReconstructor->GetNTimeBins(); // Define scalers Int_t nFound = 0, // number of tracks found nBacked = 0, // number of tracks backed up for refit nSeeds = 0, // total number of ESD seeds nTRDseeds= 0, // number of seeds in the TRD acceptance nTPCseeds= 0; // number of TPC seeds Float_t foundMin = 20.0; Float_t *quality = NULL; Int_t *index = NULL; fEventInFile = event->GetEventNumberInFile(); nSeeds = event->GetNumberOfTracks(); // Sort tracks according to quality // (covariance in the yz plane) if(nSeeds){ quality = new Float_t[nSeeds]; index = new Int_t[4*nSeeds]; for (Int_t iSeed = nSeeds; iSeed--;) { AliESDtrack *seed = event->GetTrack(iSeed); Double_t covariance[15]; seed->GetExternalCovariance(covariance); quality[iSeed] = covariance[0] + covariance[2]; } TMath::Sort(nSeeds, quality, index,kFALSE); } // Propagate all seeds Int_t expectedClr; AliTRDtrackV1 track; for (Int_t iSeed = 0; iSeed < nSeeds; iSeed++) { // Get the seeds in sorted sequence AliESDtrack *seed = event->GetTrack(index[iSeed]); Float_t p4 = seed->GetC(seed->GetBz()); // Check the seed status ULong_t status = seed->GetStatus(); if ((status & AliESDtrack::kTRDout) != 0) continue; if ((status & AliESDtrack::kTPCout)){ AliDebug(3, Form("Prolongate seed[%2d] which is TPC.", iSeed)); // set steering parameters for TPC //fkRecoParam->SetTrackParam(kTPC); /* } else { if ((status & AliESDtrack::kITSout)){ AliDebug(3, Form("Prolongate seed[%2d] which is ITS.", iSeed)); // set steering parameters for ITS //fkRecoParam->SetTrackParam(kITS); // rotate Float_t globalToTracking = AliTRDgeometry::GetAlpha()*(Int_t(seed->GetAlpha()/AliTRDgeometry::GetAlpha()) + (seed->GetAlpha()>0. ? 0.5 : -0.5)); if(!seed->Rotate(globalToTracking)) continue; } else continue;*/ } else continue; // Propagate to the entrance in the TRD mother volume track.~AliTRDtrackV1(); new(&track) AliTRDtrackV1(*seed); if(AliTRDgeometry::GetXtrdBeg() > (AliTRDReconstructor::GetMaxStep() + track.GetX()) && !PropagateToX(track, AliTRDgeometry::GetXtrdBeg(), AliTRDReconstructor::GetMaxStep())){ seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop); continue; } if(!AdjustSector(&track)){ seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop); continue; } if(TMath::Abs(track.GetSnp()) > AliTRDReconstructor::GetMaxSnp()) { seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop); continue; } nTPCseeds++; AliDebug(2, Form("TRD propagate TPC seed[%d] = %d.", iSeed, index[iSeed])); // store track status at TRD entrance seed->UpdateTrackParams(&track, AliESDtrack::kTRDbackup); // prepare track and do propagation in the TRD track.SetReconstructor(fkReconstructor); track.SetKink(Bool_t(seed->GetKinkIndex(0))); track.SetPrimary(status & AliESDtrack::kTPCin); expectedClr = FollowBackProlongation(track); // check if track entered the TRD fiducial volume if(track.GetTrackIn()){ seed->UpdateTrackParams(&track, AliESDtrack::kTRDin); nTRDseeds++; } // check if track was stopped in the TRD if (expectedClr<0){ seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop); continue; } else { nFound++; // compute PID track.CookPID(); //compute MC label track.CookLabel(1. - AliTRDReconstructor::GetLabelFraction()); // update calibration references using this track if(calibra->GetHisto2d()) calibra->UpdateHistogramsV1(&track); // save calibration object if (fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 0 || AliTRDReconstructor::GetStreamLevel()>0 ) { AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(track); calibTrack->SetOwner(); seed->AddCalibObject(calibTrack); } //update ESD track seed->UpdateTrackParams(&track, AliESDtrack::kTRDout); track.UpdateESDtrack(seed); } // Make backup for back propagation if ((TMath::Abs(track.GetC(track.GetBz()) - p4) / TMath::Abs(p4) < 0.2) || (track.Pt() > 0.8)) { Int_t foundClr = track.GetNumberOfClusters(); if (foundClr >= foundMin) { //if(track.GetBackupTrack()) UseClusters(track.GetBackupTrack()); // Sign only gold tracks if (track.GetChi2() / track.GetNumberOfClusters() < 4) { //if ((seed->GetKinkIndex(0) == 0) && (track.Pt() < 1.5)) UseClusters(&track); } Bool_t isGold = kFALSE; // Full gold track if (track.GetChi2() / track.GetNumberOfClusters() < 5) { if (track.GetBackupTrack()) seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup); nBacked++; isGold = kTRUE; } // Almost gold track if ((!isGold) && (track.GetNCross() == 0) && (track.GetChi2() / track.GetNumberOfClusters() < 7)) { //seed->UpdateTrackParams(track, AliESDtrack::kTRDbackup); if (track.GetBackupTrack()) seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup); nBacked++; isGold = kTRUE; } if ((!isGold) && (track.GetBackupTrack())) { if ((track.GetBackupTrack()->GetNumberOfClusters() > foundMin) && ((track.GetBackupTrack()->GetChi2()/(track.GetBackupTrack()->GetNumberOfClusters()+1)) < 7)) { seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup); nBacked++; isGold = kTRUE; } } } } // Propagation to the TOF if(!(seed->GetStatus()&AliESDtrack::kTRDStop)) { Int_t sm = track.GetSector(); // default value in case we have problems with the geometry. Double_t xtof = 371.; //Calculate radial position of the beginning of the TOF //mother volume. In order to avoid mixing of the TRD //and TOF modules some hard values are needed. This are: //1. The path to the TOF module. //2. The width of the TOF (29.05 cm) //(with the help of Annalisa de Caro Mar-17-2009) if(gGeoManager){ gGeoManager->cd(Form("/ALIC_1/B077_1/BSEGMO%d_1/BTOF%d_1", sm, sm)); TGeoHMatrix *m = NULL; Double_t loc[]={0., 0., -.5*29.05}, glob[3]; if((m=gGeoManager->GetCurrentMatrix())){ m->LocalToMaster(loc, glob); xtof = TMath::Sqrt(glob[0]*glob[0]+glob[1]*glob[1]); } } if(xtof > (AliTRDReconstructor::GetMaxStep() + track.GetX()) && !PropagateToX(track, xtof, AliTRDReconstructor::GetMaxStep())){ seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop); continue; } if(!AdjustSector(&track)){ seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop); continue; } if(TMath::Abs(track.GetSnp()) > AliTRDReconstructor::GetMaxSnp()){ seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop); continue; } //seed->UpdateTrackParams(&track, AliESDtrack::kTRDout); // TODO obsolete - delete seed->SetTRDQuality(track.StatusForTOF()); } seed->SetTRDBudget(track.GetBudget(0)); } if(index) delete [] index; if(quality) delete [] quality; AliInfo(Form("Number of seeds: TPCout[%d] TRDin[%d]", nTPCseeds, nTRDseeds)); AliInfo(Form("Number of tracks: TRDout[%d] TRDbackup[%d]", nFound, nBacked)); // run stand alone tracking if (fkReconstructor->IsSeeding()) Clusters2Tracks(event); return 0; } //____________________________________________________________________ Int_t AliTRDtrackerV1::RefitInward(AliESDEvent *event) { // // Refits tracks within the TRD. The ESD event is expected to contain seeds // at the outer part of the TRD. // The tracks are propagated to the innermost time bin // of the TRD and the ESD event is updated // Origin: Thomas KUHR (Thomas.Kuhr@cern.ch) // Int_t nseed = 0; // contor for loaded seeds Int_t found = 0; // contor for updated TRD tracks if(!fClusters || !fClusters->GetEntriesFast()){ AliInfo("No TRD clusters"); return 0; } AliTRDtrackV1 track; for (Int_t itrack = 0; itrack < event->GetNumberOfTracks(); itrack++) { AliESDtrack *seed = event->GetTrack(itrack); ULong_t status = seed->GetStatus(); new(&track) AliTRDtrackV1(*seed); if (track.GetX() < 270.0) { seed->UpdateTrackParams(&track, AliESDtrack::kTRDbackup); continue; } // reject tracks which failed propagation in the TRD or // are produced by the TRD stand alone tracker if(!(status & AliESDtrack::kTRDout)) continue; if(!(status & AliESDtrack::kTRDin)) continue; nseed++; track.ResetCovariance(50.0); // do the propagation and processing Bool_t kUPDATE = kFALSE; Double_t xTPC = 250.0; if(FollowProlongation(track)){ // Update the friend track if (fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 0 || AliTRDReconstructor::GetStreamLevel()>0 ){ TObject *o = NULL; Int_t ic = 0; AliTRDtrackV1 *calibTrack = NULL; while((o = seed->GetCalibObject(ic++))){ if(!(calibTrack = dynamic_cast(o))) continue; calibTrack->SetTrackOut(&track); } } // Prolongate to TPC if (PropagateToX(track, xTPC, AliTRDReconstructor::GetMaxStep())) { // -with update seed->UpdateTrackParams(&track, AliESDtrack::kTRDrefit); found++; kUPDATE = kTRUE; } } // Prolongate to TPC without update if(!kUPDATE) { AliTRDtrackV1 tt(*seed); if (PropagateToX(tt, xTPC, AliTRDReconstructor::GetMaxStep())) seed->UpdateTrackParams(&tt, AliESDtrack::kTRDbackup); } } AliInfo(Form("Number of seeds: TRDout[%d]", nseed)); AliInfo(Form("Number of tracks: TRDrefit[%d]", found)); return 0; } //____________________________________________________________________ Int_t AliTRDtrackerV1::FollowProlongation(AliTRDtrackV1 &t) { // Extrapolates the TRD track in the TPC direction. // // Parameters // t : the TRD track which has to be extrapolated // // Output // number of clusters attached to the track // // Detailed description // // Starting from current radial position of track this function // extrapolates the track through the 6 TRD layers. The following steps // are being performed for each plane: // 1. prepare track: // a. get plane limits in the local x direction // b. check crossing sectors // c. check track inclination // 2. search tracklet in the tracker list (see GetTracklet() for details) // 3. evaluate material budget using the geo manager // 4. propagate and update track using the tracklet information. // // Debug level 2 // Int_t nClustersExpected = 0; for (Int_t iplane = kNPlanes; iplane--;) { Int_t index(-1); AliTRDseedV1 *tracklet = GetTracklet(&t, iplane, index); AliDebug(2, Form("Tracklet[%p] ly[%d] idx[%d]", (void*)tracklet, iplane, index)); if(!tracklet) continue; if(!tracklet->IsOK()){ AliDebug(1, Form("Tracklet Det[%d] !OK", tracklet->GetDetector())); continue; } Double_t x = tracklet->GetX();//GetX0(); // reject tracklets which are not considered for inward refit if(x > t.GetX()+AliTRDReconstructor::GetMaxStep()) continue; // append tracklet to track t.SetTracklet(tracklet, index); if (x < (t.GetX()-AliTRDReconstructor::GetMaxStep()) && !PropagateToX(t, x+AliTRDReconstructor::GetMaxStep(), AliTRDReconstructor::GetMaxStep())) break; if (!AdjustSector(&t)) break; // Start global position Double_t xyz0[3]; t.GetXYZ(xyz0); // End global position Double_t alpha = t.GetAlpha(), y, z; if (!t.GetProlongation(x,y,z)) break; Double_t xyz1[3]; xyz1[0] = x * TMath::Cos(alpha) - y * TMath::Sin(alpha); xyz1[1] = x * TMath::Sin(alpha) + y * TMath::Cos(alpha); xyz1[2] = z; Double_t length = TMath::Sqrt( (xyz0[0]-xyz1[0])*(xyz0[0]-xyz1[0]) + (xyz0[1]-xyz1[1])*(xyz0[1]-xyz1[1]) + (xyz0[2]-xyz1[2])*(xyz0[2]-xyz1[2]) ); if(length>0.){ // Get material budget Double_t param[7]; if(AliTracker::MeanMaterialBudget(xyz0, xyz1, param)<=0.) break; Double_t xrho= param[0]*param[4]; Double_t xx0 = param[1]; // Get mean propagation parameters // Propagate and update t.PropagateTo(x, xx0, xrho); if (!AdjustSector(&t)) break; } Double_t cov[3]; tracklet->GetCovAt(x, cov); Double_t p[2] = { tracklet->GetY(), tracklet->GetZ()}; Double_t chi2 = ((AliExternalTrackParam)t).GetPredictedChi2(p, cov); if(fkReconstructor->IsDebugStreaming()){ Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber(); TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); AliExternalTrackParam param0(t); AliExternalTrackParam param1(t); param1.Update(p, cov); TVectorD vcov(3,cov); TVectorD vpar(3,p); cstreamer << "FollowProlongationInfo" << "EventNumber=" << eventNumber << "iplane="< dXY: %+e %+e | chi2:%.2f pT:%.2f alp:%.3f", iplane,x,t.GetX(),p[0],p[1],cov[0],cov[1],cov[2], p[0]-t.GetY(),p[1]-t.GetZ(), chi2,t.Pt()*t.Charge(),t.GetAlpha())); */ if (chi2 < fkRecoParam->GetChi2Cut() && ((AliExternalTrackParam&)t).Update(p, cov)){ // MI parameterizad chi2 cut 03.05.2014 // if (chi2 < 1e+10 && ((AliExternalTrackParam&)t).Update(p, cov)){ // Register info to track t.SetNumberOfClusters(); t.UpdateChi2(chi2); nClustersExpected += tracklet->GetN(); } } if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 1 || AliTRDReconstructor::GetStreamLevel()>1){ Int_t index; for(int iplane=0; iplaneIsDebugStreaming()){ Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber(); TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); AliTRDtrackV1 track(t); track.SetOwner(); cstreamer << "FollowProlongation" << "EventNumber=" << eventNumber << "ncl=" << nClustersExpected << "track.=" << &track << "\n"; } } return nClustersExpected; } //_____________________________________________________________________________ Int_t AliTRDtrackerV1::FollowBackProlongation(AliTRDtrackV1 &t) { // Extrapolates/Build the TRD track in the TOF direction. // // Parameters // t : the TRD track which has to be extrapolated // // Output // number of clusters attached to the track // // Starting from current radial position of track this function // extrapolates the track through the 6 TRD layers. The following steps // are being performed for each plane: // 1. Propagate track to the entrance of the next chamber: // - get chamber limits in the radial direction // - check crossing sectors // - check track inclination // - check track prolongation against boundary conditions (see exclusion boundaries on AliTRDgeometry::IsOnBoundary()) // 2. Build tracklet (see AliTRDseed::AttachClusters() for details) for this layer if needed. If only // Kalman filter is needed and tracklets are already linked to the track this step is skipped. // 3. Fit tracklet using the information from the Kalman filter. // 4. Propagate and update track at reference radial position of the tracklet. // 5. Register tracklet with the tracker and track; update pulls monitoring. // // Observation // 1. During the propagation a bit map is filled detailing the status of the track in each TRD chamber. The following errors are being registered for each tracklet: // - AliTRDtrackV1::kProlongation : track prolongation failed // - AliTRDtrackV1::kPropagation : track prolongation failed // - AliTRDtrackV1::kAdjustSector : failed during sector crossing // - AliTRDtrackV1::kSnp : too large bending // - AliTRDtrackV1::kTrackletInit : fail to initialize tracklet // - AliTRDtrackV1::kUpdate : fail to attach clusters or fit the tracklet // - AliTRDtrackV1::kUnknown : anything which is not covered before // 2. By default the status of the track before first TRD update is saved. // // Debug level 2 // // Author // Alexandru Bercuci // Int_t n = 0; Double_t driftLength = .5*AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick(); AliTRDtrackingChamber *chamber = NULL; Int_t debugLevel = fkReconstructor->IsDebugStreaming() ? fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) : 0; if ( AliTRDReconstructor::GetStreamLevel()>0) debugLevel= AliTRDReconstructor::GetStreamLevel(); TTreeSRedirector *cstreamer = fkReconstructor->IsDebugStreaming() ? fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker) : 0x0; Bool_t kStoreIn(kTRUE), // toggel store track params. at TRD entry kStandAlone(kFALSE), // toggle tracker awarness of stand alone seeding kUseTRD(fkRecoParam->IsOverPtThreshold(t.Pt()));// use TRD measurment to update Kalman Int_t startLayer(0); AliTRDseedV1 tracklet, *ptrTracklet = NULL; // Special case for stand alone tracking // - store all tracklets found by seeding // - start propagation from first tracklet found AliTRDseedV1 *tracklets[kNPlanes]; memset(tracklets, 0, sizeof(AliTRDseedV1 *) * kNPlanes); for(Int_t ip(kNPlanes); ip--;){ if(!(tracklets[ip] = t.GetTracklet(ip))) continue; t.UnsetTracklet(ip); if(tracklets[ip]->IsOK()) startLayer=ip; kStandAlone = kTRUE; kUseTRD = kTRUE; } AliDebug(4, Form("SA[%c] Start[%d]\n" " [0]idx[%d] traklet[%p]\n" " [1]idx[%d] traklet[%p]\n" " [2]idx[%d] traklet[%p]\n" " [3]idx[%d] traklet[%p]\n" " [4]idx[%d] traklet[%p]\n" " [5]idx[%d] traklet[%p]" , kStandAlone?'y':'n', startLayer , t.GetTrackletIndex(0), (void*)tracklets[0] , t.GetTrackletIndex(1), (void*)tracklets[1] , t.GetTrackletIndex(2), (void*)tracklets[2] , t.GetTrackletIndex(3), (void*)tracklets[3] , t.GetTrackletIndex(4), (void*)tracklets[4] , t.GetTrackletIndex(5), (void*)tracklets[5])); // Loop through the TRD layers TGeoHMatrix *matrix = NULL; Double_t x(0.), y(0.), z(0.); for (Int_t ily=startLayer, sm=-1, stk=-1, det=-1; ily < AliTRDgeometry::kNlayer; ily++) { AliDebug(2, Form("Propagate to x[%d] = %7.2f", ily, fR[ily])); // rough estimate of the entry point if (!t.GetProlongation(fR[ily], y, z)){ n=-1; t.SetErrStat(AliTRDtrackV1::kProlongation); AliDebug(4, Form("Failed Rough Prolongation to ly[%d] x[%7.2f] y[%7.2f] z[%7.2f]", ily, fR[ily], y, z)); break; } // find sector / stack / detector sm = t.GetSector(); // TODO cross check with y value ! stk = fGeom->GetStack(z, ily); det = stk>=0 ? AliTRDgeometry::GetDetector(ily, stk, sm) : -1; matrix = det>=0 ? fGeom->GetClusterMatrix(det) : NULL; // check if supermodule/chamber is installed if( !fGeom->GetSMstatus(sm) || stk<0. || fGeom->IsHole(ily, stk, sm) || !matrix ){ AliDebug(4, Form("Missing Geometry ly[%d]. Guess radial position", ily)); // propagate to the default radial position if(fR[ily] > (AliTRDReconstructor::GetMaxStep() + t.GetX()) && !PropagateToX(t, fR[ily], AliTRDReconstructor::GetMaxStep())){ n=-1; t.SetErrStat(AliTRDtrackV1::kPropagation); AliDebug(4, "Failed Propagation [Missing Geometry]"); break; } if(!AdjustSector(&t)){ n=-1; t.SetErrStat(AliTRDtrackV1::kAdjustSector); AliDebug(4, "Failed Adjust Sector [Missing Geometry]"); break; } if(TMath::Abs(t.GetSnp()) > AliTRDReconstructor::GetMaxSnp()){ n=-1; t.SetErrStat(AliTRDtrackV1::kSnp); AliDebug(4, "Failed Max Snp [Missing Geometry]"); break; } t.SetErrStat(AliTRDtrackV1::kGeometry, ily); continue; } // retrieve rotation matrix for the current chamber Double_t loc[] = {AliTRDgeometry::AnodePos()- driftLength, 0., 0.}; Double_t glb[] = {0., 0., 0.}; matrix->LocalToMaster(loc, glb); AliDebug(3, Form("Propagate to det[%3d] x_anode[%7.2f] (%f %f)", det, glb[0]+driftLength, glb[1], glb[2])); // Propagate to the radial distance of the current layer x = glb[0] - AliTRDReconstructor::GetMaxStep(); if(x > (AliTRDReconstructor::GetMaxStep() + t.GetX()) && !PropagateToX(t, x, AliTRDReconstructor::GetMaxStep())){ n=-1; t.SetErrStat(AliTRDtrackV1::kPropagation); AliDebug(4, Form("Failed Initial Propagation to x[%7.2f]", x)); break; } if(!AdjustSector(&t)){ n=-1; t.SetErrStat(AliTRDtrackV1::kAdjustSector); AliDebug(4, "Failed Adjust Sector Start"); break; } if(TMath::Abs(t.GetSnp()) > AliTRDReconstructor::GetMaxSnp()) { n=-1; t.SetErrStat(AliTRDtrackV1::kSnp); AliDebug(4, Form("Failed Max Snp[%f] MaxSnp[%f]", t.GetSnp(), AliTRDReconstructor::GetMaxSnp())); break; } Bool_t doRecalculate = kFALSE; if(sm != t.GetSector()){ sm = t.GetSector(); doRecalculate = kTRUE; } if(stk != fGeom->GetStack(z, ily)){ stk = fGeom->GetStack(z, ily); doRecalculate = kTRUE; } if(doRecalculate){ det = AliTRDgeometry::GetDetector(ily, stk, sm); if(!(matrix = fGeom->GetClusterMatrix(det))){ t.SetErrStat(AliTRDtrackV1::kGeometry, ily); AliDebug(4, Form("Failed Geometry Matrix ly[%d]", ily)); continue; } matrix->LocalToMaster(loc, glb); x = glb[0] - AliTRDReconstructor::GetMaxStep(); } // check if track is well inside fiducial volume if (!t.GetProlongation(x+AliTRDReconstructor::GetMaxStep(), y, z)) { n=-1; t.SetErrStat(AliTRDtrackV1::kProlongation); AliDebug(4, Form("Failed Prolongation to x[%7.2f] y[%7.2f] z[%7.2f]", x+AliTRDReconstructor::GetMaxStep(), y, z)); break; } if(fGeom->IsOnBoundary(det, y, z, .5)){ t.SetErrStat(AliTRDtrackV1::kBoundary, ily); AliDebug(4, "Failed Track on Boundary"); continue; } Float_t prod(t.GetBz()*t.Charge()); ptrTracklet = tracklets[ily]; if(!ptrTracklet){ // BUILD TRACKLET AliDebug(3, Form("Building tracklet det[%d]", det)); // check data in supermodule if(!fTrSec[sm].GetNChambers()){ t.SetErrStat(AliTRDtrackV1::kNoClusters, ily); AliDebug(4, "Failed NoClusters"); continue; } if(fTrSec[sm].GetX(ily) < 1.){ t.SetErrStat(AliTRDtrackV1::kNoClusters, ily); AliDebug(4, "Failed NoX"); continue; } // check data in chamber if(!(chamber = fTrSec[sm].GetChamber(stk, ily))){ t.SetErrStat(AliTRDtrackV1::kNoClusters, ily); AliDebug(4, "Failed No Detector"); continue; } if(chamber->GetNClusters() < fgNTimeBins*fkRecoParam ->GetFindableClusters()){ t.SetErrStat(AliTRDtrackV1::kNoClusters, ily); AliDebug(4, "Failed Not Enough Clusters in Detector"); continue; } // build tracklet tracklet.~AliTRDseedV1(); ptrTracklet = new(&tracklet) AliTRDseedV1(det); ptrTracklet->SetReconstructor(fkReconstructor); ptrTracklet->SetKink(t.IsKink()); ptrTracklet->SetPrimary(t.IsPrimary()); ptrTracklet->SetPadPlane(fGeom->GetPadPlane(ily, stk)); //set first approximation of radial position of anode wire corresponding to middle chamber y=0, z=0 // the uncertainty is given by the actual position of the tracklet (y,z) and chamber inclination ptrTracklet->SetX0(glb[0]+driftLength); if(!ptrTracklet->Init(&t)){ n=-1; t.SetErrStat(AliTRDtrackV1::kTrackletInit); AliDebug(4, "Failed Tracklet Init"); break; } // Select attachment base on track to B field sign not only track charge which is buggy // mark kFALSE same sign tracks and kTRUE opposite sign tracks // A.Bercuci 3.11.2011 if(!ptrTracklet->AttachClusters(chamber, kTRUE, prod<0.?kTRUE:kFALSE, fEventInFile)){ t.SetErrStat(AliTRDtrackV1::kNoAttach, ily); if(debugLevel>3){ AliTRDseedV1 trackletCp(*ptrTracklet); UChar_t status(t.GetStatusTRD(ily)); (*cstreamer) << "FollowBackProlongation4" <<"status=" << status <<"tracklet.=" << &trackletCp << "\n"; } AliDebug(4, "Failed Attach Clusters"); continue; } AliDebug(3, Form("Number of Clusters in Tracklet: %d", ptrTracklet->GetN())); if(ptrTracklet->GetN() < fgNTimeBins*fkRecoParam->GetFindableClusters()){ t.SetErrStat(AliTRDtrackV1::kNoClustersTracklet, ily); if(debugLevel>3){ AliTRDseedV1 trackletCp(*ptrTracklet); UChar_t status(t.GetStatusTRD(ily)); (*cstreamer) << "FollowBackProlongation4" <<"status=" << status <<"tracklet.=" << &trackletCp << "\n"; } AliDebug(4, "Failed N Clusters Attached"); continue; } ptrTracklet->UpdateUsed(); } else AliDebug(2, Form("Use external tracklet ly[%d]", ily)); // propagate track to the radial position of the tracklet // fit tracklet in the local chamber coordinate system // tilt correction options // 0 : no correction // 2 : pseudo tilt correction if(!ptrTracklet->FitRobust(fGeom->GetPadPlane(ily, stk), prod>0., t.Charge())){ t.SetErrStat(AliTRDtrackV1::kNoFit, ily); AliDebug(4, "Failed Tracklet Fit"); continue; } // Calculate tracklet position in tracking coordinates // A.Bercuci 27.11.2013 ptrTracklet->SetXYZ(matrix); x = ptrTracklet->GetX(); //GetX0(); if(x > (AliTRDReconstructor::GetMaxStep() + t.GetX()) && !PropagateToX(t, x, AliTRDReconstructor::GetMaxStep())) { n=-1; t.SetErrStat(AliTRDtrackV1::kPropagation); AliDebug(4, Form("Failed Propagation to Tracklet x[%7.2f]", x)); break; } if(!AdjustSector(&t)) { n=-1; t.SetErrStat(AliTRDtrackV1::kAdjustSector); AliDebug(4, "Failed Adjust Sector"); break; } if(TMath::Abs(t.GetSnp()) > AliTRDReconstructor::GetMaxSnp()) { n=-1; t.SetErrStat(AliTRDtrackV1::kSnp); AliDebug(4, Form("Failed Max Snp[%f] MaxSnp[%f]", t.GetSnp(), AliTRDReconstructor::GetMaxSnp())); break; } Double_t cov[3]; ptrTracklet->GetCovAt(x, cov); Double_t p[2] = { ptrTracklet->GetY(), ptrTracklet->GetZ()}; Double_t chi2 = ((AliExternalTrackParam)t).GetPredictedChi2(p, cov); /* AliInfo(Form("Pl:%d X:%+e : %+e P: %+e %+e Cov:%+e %+e %+e -> dXY: %+e %+e | chi2:%.2f pT:%.2f alp:%.3f", ily,x,t.GetX(),p[0],p[1],cov[0],cov[1],cov[2], p[0]-t.GetY(),p[1]-t.GetZ(), chi2,t.Pt()*t.Charge(),t.GetAlpha())); */ if(fkReconstructor->IsDebugStreaming()){ Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber(); // TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); AliExternalTrackParam param0(t); AliExternalTrackParam param1(t); param1.Update(p, cov); TVectorD vcov(3,cov); TVectorD vpar(3,p); (*cstreamer) << "FollowBackProlongationInfo" << "EventNumber=" << eventNumber << "chi2="< fkRecoParam->GetChi2Cut()){ // MI parameterizad chi2 cut 03.05.2014 // if(chi2>10){ // RS // if(chi2>1e+10){ // TODO t.SetErrStat(AliTRDtrackV1::kChi2, ily); if(debugLevel > 2){ UChar_t status(t.GetStatusTRD()); AliTRDseedV1 trackletCp(*ptrTracklet); AliTRDtrackV1 trackCp(t); trackCp.SetOwner(); (*cstreamer) << "FollowBackProlongation3" << "status=" << status << "tracklet.=" << &trackletCp << "track.=" << &trackCp << "\n"; } AliDebug(4, Form("Failed Chi2[%f]", chi2)); continue; } if(fkReconstructor->IsDebugStreaming()){ Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber(); // TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); AliExternalTrackParam param0(t); AliExternalTrackParam param1(t); param1.Update(p, cov); TVectorD vcov(3,cov); TVectorD vpar(3,p); (*cstreamer) << "FollowBackProlongationInfo" << "EventNumber=" << eventNumber << "chi2="< fkRecoParam->GetChi2Cut()){ // MI parameterizad chi2 cut 03.05.2014 // if(chi2>10){ // RS // if(chi2>1e+10){ // TODO t.SetErrStat(AliTRDtrackV1::kChi2, ily); if(debugLevel > 2){ UChar_t status(t.GetStatusTRD()); AliTRDseedV1 trackletCp(*ptrTracklet); AliTRDtrackV1 trackCp(t); trackCp.SetOwner(); (*cstreamer) << "FollowBackProlongation3" << "status=" << status << "tracklet.=" << &trackletCp << "track.=" << &trackCp << "\n"; } AliDebug(4, Form("Failed Chi2[%f]", chi2)); continue; } // mark track as entering the FIDUCIAL volume of TRD if(kStoreIn){ t.SetTrackIn(); kStoreIn = kFALSE; } if(kUseTRD){ if(!((AliExternalTrackParam&)t).Update(p, cov)) { n=-1; t.SetErrStat(AliTRDtrackV1::kUpdate); if(debugLevel > 2){ UChar_t status(t.GetStatusTRD()); AliTRDseedV1 trackletCp(*ptrTracklet); AliTRDtrackV1 trackCp(t); trackCp.SetOwner(); (*cstreamer) << "FollowBackProlongation3" << "status=" << status << "tracklet.=" << &trackletCp << "track.=" << &trackCp << "\n"; } AliDebug(4, Form("Failed Track Update @ y[%7.2f] z[%7.2f] s2y[%f] s2z[%f] covyz[%f]", p[0], p[1], cov[0], cov[2], cov[1])); break; } } if(!kStandAlone) ptrTracklet->UseClusters(); // fill residuals ?! AliTracker::FillResiduals(&t, p, cov, ptrTracklet->GetVolumeId()); // register tracklet with the tracker and track // Save inside the tracklet the track parameters BEFORE track update. // Commented out their overwriting AFTER track update // A.Bercuci 3.11.2011 //ptrTracklet->Update(&t); ptrTracklet = SetTracklet(ptrTracklet); Int_t index(fTracklets->GetEntriesFast()-1); t.SetTracklet(ptrTracklet, index); // Register info to track t.SetNumberOfClusters(); t.UpdateChi2(chi2); n += ptrTracklet->GetN(); AliDebug(2, Form("Setting Tracklet[%d] @ Idx[%d]", ily, index)); // Reset material budget if 2 consecutive gold // if(ilayer>0 && t.GetTracklet(ilayer-1) && ptrTracklet->GetN() + t.GetTracklet(ilayer-1)->GetN() > 20) t.SetBudget(2, 0.); // Make backup of the track until is gold Int_t failed(0); if(!kStandAlone && (failed = t.MakeBackupTrack())) AliDebug(2, Form("Failed backup on cut[%d]", failed)); } // end layers loop //printf("clusters[%d] chi2[%f] x[%f] status[%d ", n, t.GetChi2(), t.GetX(), t.GetStatusTRD()); //for(int i=0; i<6; i++) printf("%d ", t.GetStatusTRD(i)); printf("]\n"); if(n && debugLevel > 1){ //Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber(); AliTRDtrackV1 track(t); track.SetOwner(); (*cstreamer) << "FollowBackProlongation2" << "EventNumber=" << fEventInFile << "track.=" << &track << "\n"; } return n; } //_________________________________________________________________________ Float_t AliTRDtrackerV1::FitRieman(AliTRDseedV1 *tracklets, Double_t *chi2, Int_t *const planes){ // // Fits a Riemann-circle to the given points without tilting pad correction. // The fit is performed using an instance of the class AliRieman (equations // and transformations see documentation of this class) // Afterwards all the tracklets are Updated // // Parameters: - Array of tracklets (AliTRDseedV1) // - Storage for the chi2 values (beginning with direction z) // - Seeding configuration // Output: - The curvature // AliRieman *fitter = AliTRDtrackerV1::GetRiemanFitter(); fitter->Reset(); Int_t allplanes[] = {0, 1, 2, 3, 4, 5}; Int_t *ppl = &allplanes[0]; Int_t maxLayers = 6; if(planes){ maxLayers = 4; ppl = planes; } for(Int_t il = 0; il < maxLayers; il++){ if(!tracklets[ppl[il]].IsOK()) continue; fitter->AddPoint(tracklets[ppl[il]].GetX0(), tracklets[ppl[il]].GetYfit(0), tracklets[ppl[il]].GetZfit(0),1,10); } fitter->Update(); // Set the reference position of the fit and calculate the chi2 values memset(chi2, 0, sizeof(Double_t) * 2); for(Int_t il = 0; il < maxLayers; il++){ // Reference positions tracklets[ppl[il]].Init(fitter); // chi2 if((!tracklets[ppl[il]].IsOK()) && (!planes)) continue; chi2[0] += tracklets[ppl[il]].GetChi2Y(); chi2[1] += tracklets[ppl[il]].GetChi2Z(); } return fitter->GetC(); } //_________________________________________________________________________ void AliTRDtrackerV1::FitRieman(AliTRDcluster **seedcl, Double_t chi2[2]) { // // Performs a Riemann helix fit using the seedclusters as spacepoints // Afterwards the chi2 values are calculated and the seeds are updated // // Parameters: - The four seedclusters // - The tracklet array (AliTRDseedV1) // - The seeding configuration // - Chi2 array // // debug level 2 // AliRieman *fitter = AliTRDtrackerV1::GetRiemanFitter(); fitter->Reset(); for(Int_t i = 0; i < 4; i++){ fitter->AddPoint(seedcl[i]->GetX(), seedcl[i]->GetY(), seedcl[i]->GetZ(), 1., 10.); } fitter->Update(); // Update the seed and calculated the chi2 value chi2[0] = 0; chi2[1] = 0; for(Int_t ipl = 0; ipl < kNSeedPlanes; ipl++){ // chi2 chi2[0] += (seedcl[ipl]->GetZ() - fitter->GetZat(seedcl[ipl]->GetX())) * (seedcl[ipl]->GetZ() - fitter->GetZat(seedcl[ipl]->GetX())); chi2[1] += (seedcl[ipl]->GetY() - fitter->GetYat(seedcl[ipl]->GetX())) * (seedcl[ipl]->GetY() - fitter->GetYat(seedcl[ipl]->GetX())); } } //_________________________________________________________________________ Float_t AliTRDtrackerV1::FitTiltedRiemanConstraint(AliTRDseedV1 *tracklets, Double_t zVertex) { // // Fits a helix to the clusters. Pad tilting is considered. As constraint it is // assumed that the vertex position is set to 0. // This method is very usefull for high-pt particles // Basis for the fit: (x - x0)^2 + (y - y0)^2 - R^2 = 0 // x0, y0: Center of the circle // Measured y-position: ymeas = y - tan(phiT)(zc - zt) // zc: center of the pad row // Equation which has to be fitted (after transformation): // a + b * u + e * v + 2*(ymeas + tan(phiT)(z - zVertex))*t = 0 // Transformation: // t = 1/(x^2 + y^2) // u = 2 * x * t // v = 2 * x * tan(phiT) * t // Parameters in the equation: // a = -1/y0, b = x0/y0, e = dz/dx // // The Curvature is calculated by the following equation: // - curv = a/Sqrt(b^2 + 1) = 1/R // Parameters: - the 6 tracklets // - the Vertex constraint // Output: - the Chi2 value of the track // // debug level 5 // TLinearFitter *fitter = GetTiltedRiemanFitterConstraint(); fitter->StoreData(kTRUE); fitter->ClearPoints(); AliTRDcluster *cl = NULL; Float_t x, y, z, w, t, error, tilt; Double_t uvt[2]; Int_t nPoints = 0; for(Int_t ilr = 0; ilr < AliTRDgeometry::kNlayer; ilr++){ if(!tracklets[ilr].IsOK()) continue; for(Int_t itb = 0; itb < AliTRDseedV1::kNclusters; itb++){ if(!tracklets[ilr].IsUsable(itb)) continue; if(!(cl = tracklets[ilr].GetClusters(itb))) continue; if(!cl->IsInChamber()) continue; x = cl->GetX(); y = cl->GetY(); z = cl->GetZ(); tilt = tracklets[ilr].GetTilt(); // Transformation t = 1./(x * x + y * y); uvt[0] = 2. * x * t; uvt[1] = 2. * x * t * tilt ; w = 2. * (y + tilt * (z - zVertex)) * t; error = 2. * TMath::Sqrt(cl->GetSigmaY2()+tilt*tilt*cl->GetSigmaZ2()) * t; fitter->AddPoint(uvt, w, error); nPoints++; } } fitter->Eval(); // Calculate curvature Double_t a = fitter->GetParameter(0); Double_t b = fitter->GetParameter(1); Double_t curvature = a/TMath::Sqrt(b*b + 1); Float_t chi2track = 0.0; if (nPoints > 0) { chi2track = fitter->GetChisquare()/Double_t(nPoints); } for(Int_t ip = 0; ip < AliTRDtrackerV1::kNPlanes; ip++) tracklets[ip].SetC(curvature, 1); if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")>3) printf("D-AliTRDtrackerV1::FitTiltedRiemanConstraint: Chi2[%f] C[%5.2e] pt[%8.3f]\n", chi2track, curvature, GetBz()*kB2C/curvature); /* if(fkReconstructor->GetRecoParam()->GetStreamLevel(AliTRDrecoParam::kTracker()) >= 5){ //Linear Model on z-direction Double_t xref = CalculateReferenceX(tracklets); // Relative to the middle of the stack Double_t slope = fitter->GetParameter(2); Double_t zref = slope * xref; Float_t chi2Z = CalculateChi2Z(tracklets, zref, slope, xref); Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber(); Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber(); TTreeSRedirector &treeStreamer = *fkReconstructor->GetDebugStream(AliTRDReconstructor::kTracker); treeStreamer << "FitTiltedRiemanConstraint" << "EventNumber=" << eventNumber << "CandidateNumber=" << candidateNumber << "Curvature=" << curvature << "Chi2Track=" << chi2track << "Chi2Z=" << chi2Z << "zref=" << zref << "\n"; }*/ return chi2track; } //_________________________________________________________________________ Float_t AliTRDtrackerV1::FitTiltedRieman(AliTRDseedV1 *tracklets, Bool_t sigError) { // // Performs a Riemann fit taking tilting pad correction into account // The equation of a Riemann circle, where the y position is substituted by the // measured y-position taking pad tilting into account, has to be transformed // into a 4-dimensional hyperplane equation // Riemann circle: (x-x0)^2 + (y-y0)^2 -R^2 = 0 // Measured y-Position: ymeas = y - tan(phiT)(zc - zt) // zc: center of the pad row // zt: z-position of the track // The z-position of the track is assumed to be linear dependent on the x-position // Transformed equation: a + b * u + c * t + d * v + e * w - 2 * (ymeas + tan(phiT) * zc) * t = 0 // Transformation: u = 2 * x * t // v = 2 * tan(phiT) * t // w = 2 * tan(phiT) * (x - xref) * t // t = 1 / (x^2 + ymeas^2) // Parameters: a = -1/y0 // b = x0/y0 // c = (R^2 -x0^2 - y0^2)/y0 // d = offset // e = dz/dx // If the offset respectively the slope in z-position is impossible, the parameters are fixed using // results from the simple riemann fit. Afterwards the fit is redone. // The curvature is calculated according to the formula: // curv = a/(1 + b^2 + c*a) = 1/R // // Paramters: - Array of tracklets (connected to the track candidate) // - Flag selecting the error definition // Output: - Chi2 values of the track (in Parameter list) // TLinearFitter *fitter = GetTiltedRiemanFitter(); fitter->StoreData(kTRUE); fitter->ClearPoints(); AliTRDLeastSquare zfitter; AliTRDcluster *cl = NULL; Double_t xref = CalculateReferenceX(tracklets); Double_t x, y, z, t, tilt, dx, w, we, erry, errz; Double_t uvt[4], sumPolY[5], sumPolZ[3]; memset(sumPolY, 0, sizeof(Double_t) * 5); memset(sumPolZ, 0, sizeof(Double_t) * 3); Int_t nPoints = 0; // Containers for Least-square fitter for(Int_t ipl = 0; ipl < kNPlanes; ipl++){ if(!tracklets[ipl].IsOK()) continue; tilt = tracklets[ipl].GetTilt(); for(Int_t itb = 0; itb < AliTRDseedV1::kNclusters; itb++){ if(!(cl = tracklets[ipl].GetClusters(itb))) continue; if(!cl->IsInChamber()) continue; if (!tracklets[ipl].IsUsable(itb)) continue; x = cl->GetX(); y = cl->GetY(); z = cl->GetZ(); dx = x - xref; // Transformation t = 1./(x*x + y*y); uvt[0] = 2. * x * t; uvt[1] = t; uvt[2] = 2. * tilt * t; uvt[3] = 2. * tilt * dx * t; w = 2. * (y + tilt*z) * t; // error definition changes for the different calls we = 2. * t; we *= sigError ? TMath::Sqrt(cl->GetSigmaY2()+tilt*tilt*cl->GetSigmaZ2()) : 0.2; fitter->AddPoint(uvt, w, we); zfitter.AddPoint(&x, z, static_cast(TMath::Sqrt(cl->GetSigmaZ2()))); // adding points for covariance matrix estimation erry = 1./(TMath::Sqrt(cl->GetSigmaY2()) + 0.1); // 0.1 is a systematic error (due to misalignment and miscalibration) erry *= erry; errz = 1./cl->GetSigmaZ2(); for(Int_t ipol = 0; ipol < 5; ipol++){ sumPolY[ipol] += erry; erry *= x; if(ipol < 3){ sumPolZ[ipol] += errz; errz *= x; } } nPoints++; } } if (fitter->Eval()) return 1.e10; zfitter.Eval(); Double_t offset = fitter->GetParameter(3); Double_t slope = fitter->GetParameter(4); // Linear fitter - not possible to make boundaries // Do not accept non possible z and dzdx combinations Bool_t acceptablez = kTRUE; Double_t zref = 0.0; for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) { if(!tracklets[iLayer].IsOK()) continue; zref = offset + slope * (tracklets[iLayer].GetX0() - xref); if (TMath::Abs(tracklets[iLayer].GetZfit(0) - zref) > tracklets[iLayer].GetPadLength() * 0.5 + 1.0) acceptablez = kFALSE; } if (!acceptablez) { Double_t dzmf = zfitter.GetFunctionParameter(1); Double_t zmf = zfitter.GetFunctionValue(&xref); fgTiltedRieman->FixParameter(3, zmf); fgTiltedRieman->FixParameter(4, dzmf); fitter->Eval(); fitter->ReleaseParameter(3); fitter->ReleaseParameter(4); offset = fitter->GetParameter(3); slope = fitter->GetParameter(4); } // Calculate Curvarture Double_t a = fitter->GetParameter(0); Double_t b = fitter->GetParameter(1); Double_t c = fitter->GetParameter(2); Double_t curvature = 1.0 + b*b - c*a; if (curvature > 0.0) curvature = a / TMath::Sqrt(curvature); Double_t chi2track = fitter->GetChisquare()/Double_t(nPoints); // Prepare error calculation TMatrixD covarPolY(3,3); covarPolY(0,0) = sumPolY[0]; covarPolY(1,1) = sumPolY[2]; covarPolY(2,2) = sumPolY[4]; covarPolY(0,1) = covarPolY(1,0) = sumPolY[1]; covarPolY(0,2) = covarPolY(2,0) = sumPolY[2]; covarPolY(2,1) = covarPolY(1,2) = sumPolY[3]; covarPolY.Invert(); TMatrixD covarPolZ(2,2); covarPolZ(0,0) = sumPolZ[0]; covarPolZ(1,1) = sumPolZ[2]; covarPolZ(1,0) = covarPolZ(0,1) = sumPolZ[1]; covarPolZ.Invert(); // Update the tracklets Double_t dy, dz; Double_t cov[15]; memset(cov, 0, sizeof(Double_t) * 15); for(Int_t iLayer = 0; iLayer < AliTRDtrackerV1::kNPlanes; iLayer++) { x = tracklets[iLayer].GetX0(); // x1 = x - xref; y = 0; z = 0; dy = 0; dz = 0; memset(cov, 0, sizeof(Double_t) * 3); TMatrixD transform(3,3); transform(0,0) = 1; transform(0,1) = x; transform(0,2) = x*x; transform(1,1) = 1; transform(1,2) = x; transform(2,2) = 1; TMatrixD covariance(transform, TMatrixD::kMult, covarPolY); covariance *= transform.T(); TMatrixD transformZ(2,2); transformZ(0,0) = transformZ(1,1) = 1; transformZ(0,1) = x; TMatrixD covarZ(transformZ, TMatrixD::kMult, covarPolZ); covarZ *= transformZ.T(); // y: R^2 = (x - x0)^2 + (y - y0)^2 // => y = y0 +/- Sqrt(R^2 - (x - x0)^2) // R = Sqrt() = 1/Curvature // => y = y0 +/- Sqrt(1/Curvature^2 - (x - x0)^2) Double_t res = (x * a + b); // = (x - x0)/y0 res *= res; res = 1.0 - c * a + b * b - res; // = (R^2 - (x - x0)^2)/y0^2 if (res >= 0) { res = TMath::Sqrt(res); y = (1.0 - res) / a; } cov[0] = covariance(0,0); cov[2] = covarZ(0,0); cov[1] = 0.; // dy: R^2 = (x - x0)^2 + (y - y0)^2 // => y = +/- Sqrt(R^2 - (x - x0)^2) + y0 // => dy/dx = (x - x0)/Sqrt(R^2 - (x - x0)^2) // Curvature: cr = 1/R = a/Sqrt(1 + b^2 - c*a) // => dy/dx = (x - x0)/(1/(cr^2) - (x - x0)^2) Double_t x0 = -b / a; if (-c * a + b * b + 1 > 0) { if (1.0/(curvature * curvature) - (x - x0) * (x - x0) > 0.0) { Double_t yderiv = (x - x0) / TMath::Sqrt(1.0/(curvature * curvature) - (x - x0) * (x - x0)); if (a < 0) yderiv *= -1.0; dy = yderiv; } } z = offset + slope * (x - xref); dz = slope; tracklets[iLayer].SetYref(0, y); tracklets[iLayer].SetYref(1, dy); tracklets[iLayer].SetZref(0, z); tracklets[iLayer].SetZref(1, dz); tracklets[iLayer].SetC(curvature); tracklets[iLayer].SetCovRef(cov); tracklets[iLayer].SetChi2(chi2track); } if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")>3) printf("D-AliTRDtrackerV1::FitTiltedRieman: Chi2[%f] C[%5.2e] pt[%8.3f]\n", chi2track, curvature, GetBz()*kB2C/curvature); /* if(fkReconstructor->GetRecoParam()->GetStreamLevel(AliTRDrecoParam::kTracker) >=5){ TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber(); Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber(); Double_t chi2z = CalculateChi2Z(tracklets, offset, slope, xref); cstreamer << "FitTiltedRieman0" << "EventNumber=" << eventNumber << "CandidateNumber=" << candidateNumber << "xref=" << xref << "Chi2Z=" << chi2z << "\n"; }*/ return chi2track; } //____________________________________________________________________ Double_t AliTRDtrackerV1::FitLine(const AliTRDtrackV1 *track, AliTRDseedV1 *tracklets, Bool_t err, Int_t np, AliTrackPoint *points) { // // Fit track with a staight line // Fills an AliTrackPoint array with np points // Function should be used to refit tracks when no magnetic field was on // AliTRDLeastSquare yfitter, zfitter; AliTRDcluster *cl = NULL; AliTRDseedV1 work[kNPlanes], *tracklet = NULL; if(!tracklets){ for(Int_t ipl = 0; ipl < kNPlanes; ipl++){ if(!(tracklet = track->GetTracklet(ipl))) continue; if(!tracklet->IsOK()) continue; new(&work[ipl]) AliTRDseedV1(*tracklet); } tracklets = &work[0]; } Double_t xref = CalculateReferenceX(tracklets); Double_t x, y, z, dx, ye, yr, tilt; for(Int_t ipl = 0; ipl < kNPlanes; ipl++){ if(!tracklets[ipl].IsOK()) continue; for(Int_t itb = 0; itb < fgNTimeBins; itb++){ if(!(cl = tracklets[ipl].GetClusters(itb))) continue; if (!tracklets[ipl].IsUsable(itb)) continue; x = cl->GetX(); z = cl->GetZ(); dx = x - xref; zfitter.AddPoint(&dx, z, static_cast(TMath::Sqrt(cl->GetSigmaZ2()))); } } zfitter.Eval(); Double_t z0 = zfitter.GetFunctionParameter(0); Double_t dzdx = zfitter.GetFunctionParameter(1); for(Int_t ipl = 0; ipl < kNPlanes; ipl++){ if(!tracklets[ipl].IsOK()) continue; for(Int_t itb = 0; itb < fgNTimeBins; itb++){ if(!(cl = tracklets[ipl].GetClusters(itb))) continue; if (!tracklets[ipl].IsUsable(itb)) continue; x = cl->GetX(); y = cl->GetY(); z = cl->GetZ(); tilt = tracklets[ipl].GetTilt(); dx = x - xref; yr = y + tilt*(z - z0 - dzdx*dx); // error definition changes for the different calls ye = tilt*TMath::Sqrt(cl->GetSigmaZ2()); ye += err ? tracklets[ipl].GetSigmaY() : 0.2; yfitter.AddPoint(&dx, yr, ye); } } yfitter.Eval(); Double_t y0 = yfitter.GetFunctionParameter(0); Double_t dydx = yfitter.GetFunctionParameter(1); Double_t chi2 = 0.;//yfitter.GetChisquare()/Double_t(nPoints); //update track points array if(np && points){ Float_t xyz[3]; for(int ip=0; ip // A.Bercuci // M.Fasel TLinearFitter *fitter = GetTiltedRiemanFitter(); fitter->StoreData(kTRUE); fitter->ClearPoints(); AliTRDLeastSquare zfitter; AliTRDcluster *cl = NULL; AliTRDseedV1 work[kNPlanes], *tracklet = NULL; if(!tracklets){ for(Int_t ipl = 0; ipl < kNPlanes; ipl++){ if(!(tracklet = track->GetTracklet(ipl))) continue; if(!tracklet->IsOK()) continue; new(&work[ipl]) AliTRDseedV1(*tracklet); } tracklets = &work[0]; } Double_t xref = CalculateReferenceX(tracklets); if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")>3) printf("D-AliTRDtrackerV1::FitRiemanTilt:\nx0[(0)%6.2f (1)%6.2f (2)%6.2f (3)%6.2f (4)%6.2f (5)%6.2f] xref[%6.2f]", tracklets[0].GetX0(), tracklets[1].GetX0(), tracklets[2].GetX0(), tracklets[3].GetX0(), tracklets[4].GetX0(), tracklets[5].GetX0(), xref); Double_t x, y, z, t, tilt, dx, w, we; Double_t uvt[4]; Int_t nPoints = 0; // Containers for Least-square fitter for(Int_t ipl = 0; ipl < kNPlanes; ipl++){ if(!tracklets[ipl].IsOK()) continue; for(Int_t itb = 0; itb < AliTRDseedV1::kNclusters; itb++){ if(!(cl = tracklets[ipl].GetClusters(itb))) continue; //if (!tracklets[ipl].IsUsable(itb)) continue; x = cl->GetX(); y = cl->GetY(); z = cl->GetZ(); tilt = tracklets[ipl].GetTilt(); dx = x - xref; // Transformation t = 1./(x*x + y*y); uvt[0] = 2. * x * t; uvt[1] = t; uvt[2] = 2. * tilt * t; uvt[3] = 2. * tilt * dx * t; w = 2. * (y + tilt*z) * t; // error definition changes for the different calls we = 2. * t; we *= sigError ? TMath::Sqrt(cl->GetSigmaY2()) : 0.2; fitter->AddPoint(uvt, w, we); zfitter.AddPoint(&x, z, static_cast(TMath::Sqrt(cl->GetSigmaZ2()))); nPoints++; } } if(fitter->Eval()) return 1.E10; Double_t z0 = fitter->GetParameter(3); Double_t dzdx = fitter->GetParameter(4); // Linear fitter - not possible to make boundaries // Do not accept non possible z and dzdx combinations Bool_t accept = kTRUE; Double_t zref = 0.0; for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) { if(!tracklets[iLayer].IsOK()) continue; zref = z0 + dzdx * (tracklets[iLayer].GetX0() - xref); if (TMath::Abs(tracklets[iLayer].GetZfit(0) - zref) > tracklets[iLayer].GetPadLength() * 0.5 + 1.0) accept = kFALSE; } if (!accept) { zfitter.Eval(); Double_t dzmf = zfitter.GetFunctionParameter(1); Double_t zmf = zfitter.GetFunctionValue(&xref); fitter->FixParameter(3, zmf); fitter->FixParameter(4, dzmf); fitter->Eval(); fitter->ReleaseParameter(3); fitter->ReleaseParameter(4); z0 = fitter->GetParameter(3); // = zmf ? dzdx = fitter->GetParameter(4); // = dzmf ? } // Calculate Curvature Double_t a = fitter->GetParameter(0); Double_t b = fitter->GetParameter(1); Double_t c = fitter->GetParameter(2); Double_t y0 = 1. / a; Double_t x0 = -b * y0; Double_t tmp = y0*y0 + x0*x0 - c*y0; if(tmp<=0.) return 1.E10; Double_t radius = TMath::Sqrt(tmp); Double_t curvature = 1.0 + b*b - c*a; if (curvature > 0.0) curvature = a / TMath::Sqrt(curvature); // Calculate chi2 of the fit Double_t chi2 = fitter->GetChisquare()/Double_t(nPoints); if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")>3) printf("D-AliTRDtrackerV1::FitRiemanTilt:x0[%6.2f] y0[%6.2f] R[%6.2f] chi2[%f]\n", x0, y0, radius, chi2); // Update the tracklets if(!track){ for(Int_t ip = 0; ip < kNPlanes; ip++) { x = tracklets[ip].GetX0(); tmp = radius*radius-(x-x0)*(x-x0); if(tmp <= 0.) continue; tmp = TMath::Sqrt(tmp); // y: R^2 = (x - x0)^2 + (y - y0)^2 // => y = y0 +/- Sqrt(R^2 - (x - x0)^2) tracklets[ip].SetYref(0, y0 - (y0>0.?1.:-1)*tmp); // => dy/dx = (x - x0)/Sqrt(R^2 - (x - x0)^2) tracklets[ip].SetYref(1, (x - x0) / tmp); tracklets[ip].SetZref(0, z0 + dzdx * (x - xref)); tracklets[ip].SetZref(1, dzdx); tracklets[ip].SetC(curvature); tracklets[ip].SetChi2(chi2); } } //update track points array if(np && points){ Float_t xyz[3]; for(int ip=0; ip radius ? 100. : y0 - (y0>0.?1.:-1.)*TMath::Sqrt((radius-(xyz[0]-x0))*(radius+(xyz[0]-x0))); xyz[2] = z0 + dzdx * (xyz[0] - xref); points[ip].SetXYZ(xyz); } } return chi2; } //____________________________________________________________________ Double_t AliTRDtrackerV1::FitKalman(AliTRDtrackV1 *track, AliTRDseedV1 * const tracklets, Bool_t up, Int_t np, AliTrackPoint *points) { // Kalman filter implementation for the TRD. // It returns the positions of the fit in the array "points" // // Author : A.Bercuci@gsi.de // printf("Start track @ x[%f]\n", track->GetX()); //prepare marker points along the track Int_t ip = np ? 0 : 1; while(ipGetX() - points[ip].GetX()) > 0.) break; //printf("AliTRDtrackerV1::FitKalman() : Skip track marker x[%d] = %7.3f. Before track start ( %7.3f ).\n", ip, points[ip].GetX(), track->GetX()); ip++; } //if(points) printf("First marker point @ x[%d] = %f\n", ip, points[ip].GetX()); AliTRDseedV1 tracklet; AliTRDseedV1 *ptrTracklet = NULL; //Loop through the TRD planes for (Int_t jplane = 0; jplane < kNPlanes; jplane++) { // GET TRACKLET OR BUILT IT Int_t iplane = up ? jplane : kNPlanes - 1 - jplane; if(tracklets){ if(!(ptrTracklet = &tracklets[iplane])) continue; }else{ if(!(ptrTracklet = track->GetTracklet(iplane))){ /*AliTRDtrackerV1 *tracker = NULL; if(!(tracker = dynamic_cast( AliTRDrecoParam:Tracker()))) continue; ptrTracklet = new(&tracklet) AliTRDseedV1(iplane); if(!tracker->MakeTracklet(ptrTracklet, track)) */ continue; } } if(!ptrTracklet->IsOK()) continue; Double_t x = ptrTracklet->GetX0(); while(ip < np){ //don't do anything if next marker is after next update point. if((up?-1:1) * (points[ip].GetX() - x) - AliTRDReconstructor::GetMaxStep() < 0) break; if(((up?-1:1) * (points[ip].GetX() - track->GetX()) < 0) && !PropagateToX(*track, points[ip].GetX(), AliTRDReconstructor::GetMaxStep())) return -1.; Double_t xyz[3]; // should also get the covariance track->GetXYZ(xyz); track->Global2LocalPosition(xyz, track->GetAlpha()); points[ip].SetXYZ(xyz[0], xyz[1], xyz[2]); ip++; } // printf("plane[%d] tracklet[%p] x[%f]\n", iplane, ptrTracklet, x); // Propagate closer to the next update point if(((up?-1:1) * (x - track->GetX()) + AliTRDReconstructor::GetMaxStep() < 0) && !PropagateToX(*track, x + (up?-1:1)*AliTRDReconstructor::GetMaxStep(), AliTRDReconstructor::GetMaxStep())) return -1.; if(!AdjustSector(track)) return -1; if(TMath::Abs(track->GetSnp()) > AliTRDReconstructor::GetMaxSnp()) return -1; //load tracklet to the tracker and the track /* Int_t index; if((index = FindTracklet(ptrTracklet)) < 0){ ptrTracklet = SetTracklet(&tracklet); index = fTracklets->GetEntriesFast()-1; } track->SetTracklet(ptrTracklet, index);*/ // register tracklet to track with tracklet creation !! // PropagateBack : loaded tracklet to the tracker and update index // RefitInward : update index // MakeTrack : loaded tracklet to the tracker and update index if(!tracklets) track->SetTracklet(ptrTracklet, -1); //Calculate the mean material budget along the path inside the chamber Double_t xyz0[3]; track->GetXYZ(xyz0); Double_t alpha = track->GetAlpha(); Double_t xyz1[3], y, z; if(!track->GetProlongation(x, y, z)) return -1; xyz1[0] = x * TMath::Cos(alpha) - y * TMath::Sin(alpha); xyz1[1] = +x * TMath::Sin(alpha) + y * TMath::Cos(alpha); xyz1[2] = z; if(TMath::Abs(xyz0[0] - xyz1[0]) < 1e-3 && TMath::Abs(xyz0[1] - xyz1[1]) < 1e-3) continue; // check wheter we are at the same global x position Double_t param[7]; if(AliTracker::MeanMaterialBudget(xyz0, xyz1, param) <=0.) break; Double_t xrho = param[0]*param[4]; // density*length Double_t xx0 = param[1]; // radiation length //Propagate the track track->PropagateTo(x, xx0, xrho); if (!AdjustSector(track)) break; //Update track Double_t cov[3]; ptrTracklet->GetCovAt(x, cov); Double_t p[2] = { ptrTracklet->GetY(), ptrTracklet->GetZ()}; Double_t chi2 = ((AliExternalTrackParam*)track)->GetPredictedChi2(p, cov); if(chi2<1e+10) ((AliExternalTrackParam*)track)->Update(p, cov); if(!up) continue; //Reset material budget if 2 consecutive gold if(iplane>0 && track->GetTracklet(iplane-1) && ptrTracklet->GetN() + track->GetTracklet(iplane-1)->GetN() > 20) track->SetBudget(2, 0.); } // end planes loop // extrapolation while(ip < np){ if(((up?-1:1) * (points[ip].GetX() - track->GetX()) < 0) && !PropagateToX(*track, points[ip].GetX(), AliTRDReconstructor::GetMaxStep())) return -1.; Double_t xyz[3]; // should also get the covariance track->GetXYZ(xyz); track->Global2LocalPosition(xyz, track->GetAlpha()); points[ip].SetXYZ(xyz[0], xyz[1], xyz[2]); ip++; } return track->GetChi2(); } //_________________________________________________________________________ Float_t AliTRDtrackerV1::CalculateChi2Z(const AliTRDseedV1 *tracklets, Double_t offset, Double_t slope, Double_t xref) { // // Calculates the chi2-value of the track in z-Direction including tilting pad correction. // A linear dependence on the x-value serves as a model. // The parameters are related to the tilted Riemann fit. // Parameters: - Array of tracklets (AliTRDseedV1) related to the track candidate // - the offset for the reference x // - the slope // - the reference x position // Output: - The Chi2 value of the track in z-Direction // Float_t chi2Z = 0, nLayers = 0; for (Int_t iLayer = 0; iLayer < AliTRDgeometry::kNlayer; iLayer++) { if(!tracklets[iLayer].IsOK()) continue; Double_t z = offset + slope * (tracklets[iLayer].GetX0() - xref); chi2Z += TMath::Abs(tracklets[iLayer].GetZfit(0) - z); nLayers++; } chi2Z /= TMath::Max((nLayers - 3.0),1.0); return chi2Z; } //_____________________________________________________________________________ Int_t AliTRDtrackerV1::PropagateToX(AliTRDtrackV1 &t, Double_t xToGo, Double_t maxStep) { // // Starting from current X-position of track this function // extrapolates the track up to radial position in steps of . // Returns 1 if track reaches the plane, and 0 otherwise // // Current track X-position Double_t xpos = t.GetX()/*, mass = t.GetMass()*/; // Direction: inward or outward Double_t dir = (xpos < xToGo) ? 1.0 : -1.0; while (((xToGo - xpos) * dir) > AliTRDReconstructor::GetEpsilon()) { // printf("to go %f\n", (xToGo - xpos) * dir); Double_t xyz0[3]; Double_t xyz1[3]; Double_t param[7]; Double_t x; Double_t y; Double_t z; // The next step size Double_t step = dir * TMath::Min(TMath::Abs(xToGo-xpos),maxStep); // Get the global position of the starting point t.GetXYZ(xyz0); // X-position after next step x = xpos + step; // Get local Y and Z at the X-position of the next step if(t.GetProlongation(x,y,z)<0) return 0; // No prolongation possible // The global position of the end point of this prolongation step xyz1[0] = x * TMath::Cos(t.GetAlpha()) - y * TMath::Sin(t.GetAlpha()); xyz1[1] = +x * TMath::Sin(t.GetAlpha()) + y * TMath::Cos(t.GetAlpha()); xyz1[2] = z; // Calculate the mean material budget between start and // end point of this prolongation step if(AliTracker::MeanMaterialBudget(xyz0, xyz1, param)<=0.) return 0; // Propagate the track to the X-position after the next step if (!t.PropagateTo(x, param[1], param[0]*param[4])) return 0; /* // Correct for mean material budget Double_t dEdx(0.), bg(TMath::Abs(t.GetP()/mass)); if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")>=3){ const char *pn[] = {"rho", "x/X0", "", "", "L", "", "Nb"}; printf("D-AliTRDtrackerV1::PropagateTo(): x[%6.2f] bg[%6.2f]\n", xpos, bg); printf(" param :: %s[%e] %s[%e] %s[%e] %s[%e] %s[%e] %s[%e] %s[%e]\n" , pn[0], param[0] , pn[1], param[1] , pn[2], param[2] , pn[3], param[3] , pn[4], param[4] , pn[5], param[5] , pn[6], param[6]); } switch(fgBB){ case kSolid: dEdx = AliExternalTrackParam::BetheBlochSolid(bg); break; case kGas: dEdx = AliExternalTrackParam::BetheBlochGas(bg); break; case kGeant: { // mean exitation energy (GeV) Double_t mee = ((param[3] < 13.) ? (12. * param[3] + 7.) : (9.76 * param[3] + 58.8 * TMath::Power(param[3],-0.19))) * 1.e-9; Double_t mZA = param[5]>1.e-5?param[5]:(param[3]/param[2]); if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")>=3) printf("D-AliTRDtrackerV1::PropagateTo(): Mee[%e] [%e]\n", mee, mZA); // protect against failed calculation of rho in MeanMaterialBudget() dEdx = AliExternalTrackParam::BetheBlochGeant(bg, param[0]>1.e-6?param[0]:2.33, 0.2, 3., mee, mZA); } break; } if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")>=2) printf("D-AliTRDtrackerV1::PropagateTo(): dEdx(bg=%e, m=%e)= %e[GeV/cm]\n", bg, mass, dEdx); if (!t.CorrectForMeanMaterialdEdx(param[1], dir*param[0]*param[4], mass, dEdx)) return 0; */ // Rotate the track if necessary if(!AdjustSector(&t)) return 0; // New track X-position xpos = t.GetX(); } return 1; } //_____________________________________________________________________________ Bool_t AliTRDtrackerV1::ReadClusters(TTree *clusterTree) { // // Reads AliTRDclusters from the file. // The names of the cluster tree and branches // should match the ones used in AliTRDclusterizer::WriteClusters() // Int_t nsize = Int_t(clusterTree->GetTotBytes() / (sizeof(AliTRDcluster))); TObjArray *clusterArray = new TObjArray(nsize+1000); TBranch *branch = clusterTree->GetBranch("TRDcluster"); if (!branch) { AliError("Can't get the branch !"); return kFALSE; } branch->SetAddress(&clusterArray); if(!fClusters){ Float_t nclusters = fkRecoParam->GetNClusters(); if(fkReconstructor->IsHLT()) nclusters /= AliTRDgeometry::kNsector; fClusters = new TClonesArray("AliTRDcluster", Int_t(nclusters)); fClusters->SetOwner(kTRUE); SetClustersOwner(); AliInfo(Form("Tracker owning clusters @ %p", (void*)fClusters)); } // Loop through all entries in the tree Int_t nEntries = (Int_t) clusterTree->GetEntries(); Int_t nbytes = 0; Int_t ncl = 0; AliTRDcluster *c = NULL; for (Int_t iEntry = 0; iEntry < nEntries; iEntry++) { // Import the tree nbytes += clusterTree->GetEvent(iEntry); // Get the number of points in the detector Int_t nCluster = clusterArray->GetEntriesFast(); for (Int_t iCluster = 0; iCluster < nCluster; iCluster++) { if(!(c = (AliTRDcluster *) clusterArray->UncheckedAt(iCluster))) continue; new((*fClusters)[ncl++]) AliTRDcluster(*c); delete (clusterArray->RemoveAt(iCluster)); } } delete clusterArray; return kTRUE; } //_____________________________________________________________________________ Int_t AliTRDtrackerV1::LoadClusters(TTree *cTree) { // // Fills clusters into TRD tracking sectors // fkRecoParam = fkReconstructor->GetRecoParam(); // load reco param for this event // if(!fkReconstructor->IsWritingClusters()) AliInfo(Form("IsWritingClusters[%c]", fkReconstructor->IsWritingClusters()?'y':'n')); if(!(fClusters = AliTRDReconstructor::GetClusters())){ AliWarning("Clusters unavailable from TRD reconstructor. Trying reading from tree ..."); } else { if(!ReadClusters(cTree)) { AliError("Reading clusters from tree failed."); return 1; } } if(!fClusters || !fClusters->GetEntriesFast()){ AliInfo("No TRD clusters"); return 1; } else AliInfo(Form("Using :: clusters[%d] onl.tracklets[%d] onl.tracks[%d]", fClusters?fClusters->GetEntriesFast():0, AliTRDReconstructor::GetTracklets()?AliTRDReconstructor::GetTracklets()->GetEntriesFast():0, AliTRDReconstructor::GetTracks()?AliTRDReconstructor::GetTracks()->GetEntriesFast():0)); BuildTrackingContainers(); return 0; } //_____________________________________________________________________________ Int_t AliTRDtrackerV1::LoadClusters(TClonesArray * const clusters) { // // Fills clusters into TRD tracking sectors // Function for use in the HLT if(!clusters || !clusters->GetEntriesFast()){ AliInfo("No TRD clusters"); return 1; } else AliInfo(Form("Using :: external.clusters[%d]", clusters->GetEntriesFast())); fClusters = clusters; fkRecoParam = fkReconstructor->GetRecoParam(); // load reco param for this event BuildTrackingContainers(); return 0; } //____________________________________________________________________ Int_t AliTRDtrackerV1::BuildTrackingContainers() { // Building tracking containers for clusters Int_t nin(0), ncl(fClusters->GetEntriesFast()); while (ncl--) { AliTRDcluster *c = (AliTRDcluster *) fClusters->UncheckedAt(ncl); if(c->IsInChamber()) nin++; if(fkReconstructor->IsHLT()) c->SetRPhiMethod(AliTRDcluster::kCOG); Int_t detector = c->GetDetector(); Int_t sector = fGeom->GetSector(detector); Int_t stack = fGeom->GetStack(detector); Int_t layer = fGeom->GetLayer(detector); fTrSec[sector].GetChamber(stack, layer, kTRUE)->InsertCluster(c, ncl); } for(int isector =0; isectorDelete(); if(HasRemoveContainers()){delete fTracks; fTracks = NULL;} } if(fTracklets){ fTracklets->Delete(); if(HasRemoveContainers()){delete fTracklets; fTracklets = NULL;} } if(fClusters && IsClustersOwner()){ AliInfo(Form("tracker[%p] clearing %d own clusters @ %p", (void*)this, fClusters->GetEntries(), (void*)fClusters)); fClusters->Delete(); // // // save clusters array in the reconstructor for further use. // if(!fkReconstructor->IsWritingClusters()){ // AliTRDReconstructor::SetClusters(fClusters); // SetClustersOwner(kFALSE); // } else AliTRDReconstructor::SetClusters(NULL); } for (int i = 0; i < AliTRDgeometry::kNsector; i++) fTrSec[i].Clear(); // Increment the Event Number AliTRDtrackerDebug::SetEventNumber(AliTRDtrackerDebug::GetEventNumber() + 1); } // //____________________________________________________________________ // void AliTRDtrackerV1::UseClusters(const AliKalmanTrack *t, Int_t) const // { // const AliTRDtrackV1 *track = dynamic_cast(t); // if(!track) return; // // AliTRDseedV1 *tracklet = NULL; // for(Int_t ily=AliTRDgeometry::kNlayer; ily--;){ // if(!(tracklet = track->GetTracklet(ily))) continue; // AliTRDcluster *c = NULL; // for(Int_t ic=AliTRDseed::kNclusters; ic--;){ // if(!(c=tracklet->GetClusters(ic))) continue; // c->Use(); // } // } // } // //_____________________________________________________________________________ Bool_t AliTRDtrackerV1::AdjustSector(AliTRDtrackV1 *const track) { // // Rotates the track when necessary // Double_t alpha = AliTRDgeometry::GetAlpha(); Double_t y = track->GetY(); Double_t ymax = track->GetX()*TMath::Tan(0.5*alpha); if (y > ymax) { if (!track->Rotate( alpha)) { return kFALSE; } } else if (y < -ymax) { if (!track->Rotate(-alpha)) { return kFALSE; } } return kTRUE; } //____________________________________________________________________ AliTRDseedV1* AliTRDtrackerV1::GetTracklet(const AliTRDtrackV1 *const track, Int_t p, Int_t &idx) { // Find tracklet for TRD track // Parameters // - track // - sector // - plane // - index // Output // tracklet // index // Detailed description // idx = track->GetTrackletIndex(p); AliTRDseedV1 *tracklet = (idx<0) ? NULL : (AliTRDseedV1*)fTracklets->UncheckedAt(idx); return tracklet; } //____________________________________________________________________ AliTRDseedV1* AliTRDtrackerV1::SetTracklet(const AliTRDseedV1 * const tracklet) { // Add this tracklet to the list of tracklets stored in the tracker // // Parameters // - tracklet : pointer to the tracklet to be added to the list // // Output // - the index of the new tracklet in the tracker tracklets list // // Detailed description // Build the tracklets list if it is not yet created (late initialization) // and adds the new tracklet to the list. // if(!fTracklets){ fTracklets = new TClonesArray("AliTRDseedV1", AliTRDgeometry::Nsector()*kMaxTracksStack); fTracklets->SetOwner(kTRUE); } Int_t nentries = fTracklets->GetEntriesFast(); return new ((*fTracklets)[nentries]) AliTRDseedV1(*tracklet); } //____________________________________________________________________ AliTRDtrackV1* AliTRDtrackerV1::SetTrack(const AliTRDtrackV1 * const track) { // Add this track to the list of tracks stored in the tracker // // Parameters // - track : pointer to the track to be added to the list // // Output // - the pointer added // // Detailed description // Build the tracks list if it is not yet created (late initialization) // and adds the new track to the list. // if(!fTracks){ fTracks = new TClonesArray("AliTRDtrackV1", AliTRDgeometry::Nsector()*kMaxTracksStack); fTracks->SetOwner(kTRUE); } Int_t nentries = fTracks->GetEntriesFast(); return new ((*fTracks)[nentries]) AliTRDtrackV1(*track); } //____________________________________________________________________ Int_t AliTRDtrackerV1::Clusters2TracksSM(Int_t sector, AliESDEvent *esd) { // // Steer tracking for one SM. // // Parameters : // sector : Array of (SM) propagation layers containing clusters // esd : The current ESD event. On output it contains the also // the ESD (TRD) tracks found in this SM. // // Output : // Number of tracks found in this TRD supermodule. // // Detailed description // // 1. Unpack AliTRDpropagationLayers objects for each stack. // 2. Launch stack tracking. // See AliTRDtrackerV1::Clusters2TracksStack() for details. // 3. Pack results in the ESD event. // Int_t nTracks = 0; Int_t nChambers = 0; AliTRDtrackingChamber **stack = NULL, *chamber = NULL; for(int istack = 0; istackGetNClusters() < fgNTimeBins * fkRecoParam->GetFindableClusters()) continue; nChambers++; //AliInfo(Form("sector %d stack %d layer %d clusters %d", sector, istack, ilayer, chamber->GetNClusters())); } if(nChambers < 4) continue; //AliInfo(Form("Doing stack %d", istack)); nTracks += Clusters2TracksStack(stack, fTracksESD); } if(nTracks) AliDebug(2, Form("Number of tracks: SM_%02d[%d]", sector, nTracks)); for(int itrack=0; itrackoperator[](itrack))); Int_t id = esd->AddTrack(esdTrack); // set ESD id to stand alone TRD tracks if (fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 0 || AliTRDReconstructor::GetStreamLevel()>0 ){ esdTrack=esd->GetTrack(id); TObject *o(NULL); Int_t ic(0); AliTRDtrackV1 *calibTrack(NULL); while((o = esdTrack->GetCalibObject(ic++))){ if(!(calibTrack = dynamic_cast(o))) continue; calibTrack->SetESDid(esdTrack->GetID()); break; } } } // Reset Track and Candidate Number AliTRDtrackerDebug::SetCandidateNumber(0); AliTRDtrackerDebug::SetTrackNumber(0); // delete ESD tracks in the array fTracksESD->Delete(); return nTracks; } //____________________________________________________________________ Int_t AliTRDtrackerV1::Clusters2TracksStack(AliTRDtrackingChamber **stack, TClonesArray * const esdTrackList) { // // Make tracks in one TRD stack. // // Parameters : // layer : Array of stack propagation layers containing clusters // esdTrackList : Array of ESD tracks found by the stand alone tracker. // On exit the tracks found in this stack are appended. // // Output : // Number of tracks found in this stack. // // Detailed description // // 1. Find the 3 most useful seeding chambers. See BuildSeedingConfigs() for details. // 2. Steer AliTRDtrackerV1::MakeSeeds() for 3 seeding layer configurations. // See AliTRDtrackerV1::MakeSeeds() for more details. // 3. Arrange track candidates in decreasing order of their quality // 4. Classify tracks in 5 categories according to: // a) number of layers crossed // b) track quality // 5. Sign clusters by tracks in decreasing order of track quality // 6. Build AliTRDtrack out of seeding tracklets // 7. Cook MC label // 8. Build ESD track and register it to the output list // AliTRDtrackingChamber *chamber = NULL; AliTRDtrackingChamber **ci = NULL; AliTRDseedV1 sseed[kMaxTracksStack*6]; // to be initialized Int_t pars[4]; // MakeSeeds parameters //Double_t alpha = AliTRDgeometry::GetAlpha(); //Double_t shift = .5 * alpha; Int_t configs[kNConfigs]; // Purge used clusters from the containers ci = &stack[0]; for(Int_t ic = kNPlanes; ic--; ci++){ if(!(*ci)) continue; (*ci)->Update(); } // Build initial seeding configurations Double_t quality = BuildSeedingConfigs(stack, configs); if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 10 || AliTRDReconstructor::GetStreamLevel()>10){ AliInfo(Form("Plane config %d %d %d Quality %f" , configs[0], configs[1], configs[2], quality)); } // Initialize contors Int_t ntracks, // number of TRD track candidates ntracks1, // number of registered TRD tracks/iter ntracks2 = 0; // number of all registered TRD tracks in stack fSieveSeeding = 0; // Get stack index Int_t ic = 0; ci = &stack[0]; while(icGetStack((*ci)->GetDetector()); do{ // Loop over seeding configurations ntracks = 0; ntracks1 = 0; for (Int_t iconf = 0; iconfGetNumberOfSeedConfigs(); iconf++) { pars[0] = configs[iconf]; pars[1] = ntracks; pars[2] = istack; ntracks = MakeSeeds(stack, &sseed[6*ntracks], pars); //AliInfo(Form("Number of Tracks after iteration step %d: %d\n", iconf, ntracks)); if(ntracks == kMaxTracksStack) break; } AliDebug(2, Form("Candidate TRD tracks %d in iteration %d.", ntracks, fSieveSeeding)); if(!ntracks) break; // Sort the seeds according to their quality Int_t sort[kMaxTracksStack+1]; TMath::Sort(ntracks, fTrackQuality, sort, kTRUE); if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1") > 2){ AliDebug(3, "Track candidates classification:"); for (Int_t it(0); it < ntracks; it++) { Int_t jt(sort[it]); printf(" %2d idx[%d] Quality[%e]\n", it, jt, fTrackQuality[jt]); } } // Initialize number of tracks so far and logic switches Int_t ntracks0 = esdTrackList->GetEntriesFast(); Bool_t signedTrack[kMaxTracksStack]; Bool_t fakeTrack[kMaxTracksStack]; for (Int_t i=0; i 30){ AliDebug(4, Form("REJECTED : %d idx[%d] quality[%e] tracklets[%d] usedClusters[%d]", itrack, trackIndex, fTrackQuality[trackIndex], nlayers, nused)); fakeTrack[trackIndex] = kTRUE; continue; } if (ncl>0 && Float_t(nused)/ncl >= .25){ AliDebug(4, Form("REJECTED : %d idx[%d] quality[%e] tracklets[%d] usedClusters[%d] used/ncl[%f]", itrack, trackIndex, fTrackQuality[trackIndex], nlayers, nused, Float_t(nused)/ncl)); fakeTrack[trackIndex] = kTRUE; continue; } AliDebug(4, Form("Candidate[%d] Quality[%e] Tracklets[%d] Findable[%d] Ncl[%d] Nused[%d]", trackIndex, fTrackQuality[trackIndex], nlayers, findable, ncl, nused)); // Classify tracks Bool_t skip = kFALSE; switch(jSieve){ case 0: // select 6 tracklets primary tracks, good quality if(nlayers > findable || nlayers < kNPlanes) {skip = kTRUE; break;} if(TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -5.){skip = kTRUE; break;} break; case 1: // select shorter primary tracks, good quality //if(findable<4){skip = kTRUE; break;} if(nlayers < findable){skip = kTRUE; break;} if(TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -4.){skip = kTRUE; break;} break; case 2: // select 6 tracklets secondary tracks if(nlayers < kNPlanes) { skip = kTRUE; break;} if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -6.0){skip = kTRUE; break;} break; case 3: // select shorter tracks, good quality if (nlayers<4){skip = kTRUE; break;} if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -5.){skip = kTRUE; break;} break; case 4: // select anything with at least 4 tracklets if (nlayers<4){skip = kTRUE; break;} //if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) - nused/(nlayers-3.0) < -15.0){skip = kTRUE; break;} break; } if(skip){ rejectedCandidates++; AliDebug(4, Form("REJECTED : %d idx[%d] quality[%e] tracklets[%d] usedClusters[%d]", itrack, trackIndex, fTrackQuality[trackIndex], nlayers, nused)); continue; } else AliDebug(4, Form("ACCEPTED : %d idx[%d] quality[%e] tracklets[%d] usedClusters[%d]", itrack, trackIndex, fTrackQuality[trackIndex], nlayers, nused)); signedTrack[trackIndex] = kTRUE; AliTRDseedV1 *lseed =&sseed[trackIndex*kNPlanes]; AliTRDtrackV1 *track = MakeTrack(lseed); if(!track){ AliDebug(1, "Track building failed."); continue; } else { if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1") > 1){ Int_t ich = 0; while(!(chamber = stack[ich])) ich++; AliDebug(2, Form("Track pt=%7.2fGeV/c SM[%2d] Done.", track->Pt(), fGeom->GetSector(chamber->GetDetector()))); } } if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 1 && fkReconstructor->IsDebugStreaming()){ //AliInfo(Form("Track %d [%d] nlayers %d trackQuality = %e nused %d, yref = %3.3f", itrack, trackIndex, nlayers, fTrackQuality[trackIndex], nused, trackParams[1])); AliTRDseedV1 *dseed[6]; for(Int_t iseed = AliTRDgeometry::kNlayer; iseed--;) dseed[iseed] = new AliTRDseedV1(lseed[iseed]); //Int_t eventNrInFile = esd->GetEventNumberInFile(); Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber(); Int_t trackNumber = AliTRDtrackerDebug::GetTrackNumber(); Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber(); TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); cstreamer << "Clusters2TracksStack" << "EventNumber=" << eventNumber << "TrackNumber=" << trackNumber << "CandidateNumber=" << candidateNumber << "Iter=" << fSieveSeeding << "Like=" << fTrackQuality[trackIndex] << "S0.=" << dseed[0] << "S1.=" << dseed[1] << "S2.=" << dseed[2] << "S3.=" << dseed[3] << "S4.=" << dseed[4] << "S5.=" << dseed[5] << "Ncl=" << ncl << "NLayers=" << nlayers << "Findable=" << findable << "NUsed=" << nused << "\n"; } AliESDtrack *esdTrack = new ((*esdTrackList)[ntracks0++]) AliESDtrack(); esdTrack->UpdateTrackParams(track, AliESDtrack::kTRDout); esdTrack->SetLabel(track->GetLabel()); track->UpdateESDtrack(esdTrack); // write ESD-friends if neccessary if (fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 0 || AliTRDReconstructor::GetStreamLevel()>0 ){ AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(*track); calibTrack->SetOwner(); esdTrack->AddCalibObject(calibTrack); } ntracks1++; AliTRDtrackerDebug::SetTrackNumber(AliTRDtrackerDebug::GetTrackNumber() + 1); } jSieve++; } while(jSieve<5 && rejectedCandidates); // end track candidates sieve if(!ntracks1) break; // increment counters ntracks2 += ntracks1; if(fkReconstructor->IsHLT()) break; fSieveSeeding++; // Rebuild plane configurations and indices taking only unused clusters into account quality = BuildSeedingConfigs(stack, configs); if(quality < 1.E-7) break; //fkReconstructor->GetRecoParam() ->GetPlaneQualityThreshold()) break; for(Int_t ip = 0; ip < kNPlanes; ip++){ if(!(chamber = stack[ip])) continue; chamber->Build(fGeom);//Indices(fSieveSeeding); } if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 10 || AliTRDReconstructor::GetStreamLevel()>10){ AliInfo(Form("Sieve level %d Plane config %d %d %d Quality %f", fSieveSeeding, configs[0], configs[1], configs[2], quality)); } } while(fSieveSeeding<10); // end stack clusters sieve //AliInfo(Form("Registered TRD tracks %d in stack %d.", ntracks2, pars[1])); return ntracks2; } //___________________________________________________________________ Double_t AliTRDtrackerV1::BuildSeedingConfigs(AliTRDtrackingChamber **stack, Int_t *configs) { // // Assign probabilities to chambers according to their // capability of producing seeds. // // Parameters : // // layers : Array of stack propagation layers for all 6 chambers in one stack // configs : On exit array of configuration indexes (see GetSeedingConfig() // for details) in the decreasing order of their seeding probabilities. // // Output : // // Return top configuration quality // // Detailed description: // // To each chamber seeding configuration (see GetSeedingConfig() for // the list of all configurations) one defines 2 quality factors: // - an apriori topological quality (see GetSeedingConfig() for details) and // - a data quality based on the uniformity of the distribution of // clusters over the x range (time bins population). See CookChamberQA() for details. // The overall chamber quality is given by the product of this 2 contributions. // Double_t chamberQ[kNPlanes];memset(chamberQ, 0, kNPlanes*sizeof(Double_t)); AliTRDtrackingChamber *chamber = NULL; for(int iplane=0; iplaneGetQuality() : 0.; } Double_t tconfig[kNConfigs];memset(tconfig, 0, kNConfigs*sizeof(Double_t)); Int_t planes[] = {0, 0, 0, 0}; for(int iconf=0; iconf seeding chambers configuration // ipar[1] -> stack index // ipar[2] -> number of track candidates found so far // // Output : // Number of tracks candidates found. // // The following steps are performed: // 1. Build seeding layers by collapsing all time bins from each of the four seeding chambers along the // radial coordinate. See AliTRDtrackingChamber::GetSeedingLayer() for details. The chambers selection for seeding // is described in AliTRDtrackerV1::Clusters2TracksStack(). // 2. Using the seeding clusters from the seeding layer (step 1) build combinatorics using the following algorithm: // - for each seeding cluster in the lower seeding layer find // - all seeding clusters in the upper seeding layer inside a road defined by a given phi angle. The angle // is calculated on the minimum pt of tracks from vertex accesible to the stand alone tracker. // - for each pair of two extreme seeding clusters select middle upper cluster using roads defined externally by the // reco params // - select last seeding cluster as the nearest to the linear approximation of the track described by the first three // seeding clusters. // The implementation of road calculation and cluster selection can be found in the functions AliTRDchamberTimeBin::BuildCond() // and AliTRDchamberTimeBin::GetClusters(). // 3. Helix fit of the seeding clusters set. (see AliTRDtrackerFitter::FitRieman(AliTRDcluster**)). No tilt correction is // performed at this level // 4. Initialize seeding tracklets in the seeding chambers. // 5. *Filter 0* Chi2 cut on the Y and Z directions. The threshold is set externally by the reco params. // 6. Attach (true) clusters to seeding tracklets (see AliTRDseedV1::AttachClusters()) and fit tracklet (see // AliTRDseedV1::Fit()). The number of used clusters used by current seeds should not exceed ... (25). // 7. *Filter 1* Check if all 4 seeding tracklets are correctly constructed. // 8. Helix fit of the clusters from the seeding tracklets with tilt correction. Refit tracklets using the new // approximation of the track. // 9. *Filter 2* Calculate likelihood of the track. (See AliTRDtrackerV1::CookLikelihood()). The following quantities are // checked against the Riemann fit: // - position resolution in y // - angular resolution in the bending plane // - likelihood of the number of clusters attached to the tracklet // 10. Extrapolation of the helix fit to the other 2 chambers *non seeding* chambers: // - Initialization of extrapolation tracklets with the fit parameters // - Attach clusters to extrapolated tracklets // - Helix fit of tracklets // 11. Improve seeding tracklets quality by reassigning clusters based on the last parameters of the track // See AliTRDtrackerV1::ImproveSeedQuality() for details. // 12. Helix fit of all 6 seeding tracklets and chi2 calculation // 13. Hyperplane fit and track quality calculation. See AliTRDtrackerFitter::FitHyperplane() for details. // 14. Cooking labels for tracklets. Should be done only for MC // 15. Register seeds. // // Authors: // Marian Ivanov // Alexandru Bercuci // Markus Fasel AliTRDtrackingChamber *chamber = NULL; AliTRDcluster *c[kNSeedPlanes] = {NULL, NULL, NULL, NULL}; // initilize seeding clusters AliTRDseedV1 *cseed = &sseed[0]; // initialize tracklets for first track Int_t ncl, mcl; // working variable for looping over clusters Int_t index[AliTRDchamberTimeBin::kMaxClustersLayer], jndex[AliTRDchamberTimeBin::kMaxClustersLayer]; // chi2 storage // chi2[0] = tracklet chi2 on the Z direction // chi2[1] = tracklet chi2 on the R direction Double_t chi2[4]; // this should be data member of AliTRDtrack TODO // Double_t seedQuality[kMaxTracksStack]; // unpack control parameters Int_t config = ipar[0]; Int_t ntracks = ipar[1]; Int_t istack = ipar[2]; Int_t planes[kNSeedPlanes]; GetSeedingConfig(config, planes); Int_t planesExt[kNPlanes-kNSeedPlanes]; GetExtrapolationConfig(config, planesExt); // Init chambers geometry Double_t hL[kNPlanes]; // Tilting angle Float_t padlength[kNPlanes]; // pad lenghts Float_t padwidth[kNPlanes]; // pad widths AliTRDpadPlane *pp = NULL; for(int iplane=0; iplaneGetPadPlane(iplane, istack); hL[iplane] = TMath::Tan(TMath::DegToRad()*pp->GetTiltingAngle()); padlength[iplane] = pp->GetLengthIPad(); padwidth[iplane] = pp->GetWidthIPad(); } // Init anode wire position for chambers Double_t x0[kNPlanes], // anode wire position driftLength = .5*AliTRDgeometry::AmThick() - AliTRDgeometry::DrThick(); // drift length TGeoHMatrix *matrix = NULL; Double_t loc[] = {AliTRDgeometry::AnodePos(), 0., 0.}; Double_t glb[] = {0., 0., 0.}; AliTRDtrackingChamber **cIter = &stack[0]; for(int iLayer=0; iLayerGetClusterMatrix((*cIter)->GetDetector()))){ x0[iLayer] = fgkX0[iLayer]; continue; } matrix->LocalToMaster(loc, glb); x0[iLayer] = glb[0]; } AliDebug(2, Form("Making seeds Stack[%d] Config[%d] Tracks[%d]...", istack, config, ntracks)); // Build seeding layers ResetSeedTB(); Int_t nlayers = 0; for(int isl=0; islGetSeedingLayer(fSeedTB[isl], fGeom, fkReconstructor)) continue; nlayers++; } if(nlayers < kNSeedPlanes) return ntracks; // Start finding seeds Double_t cond0[4], cond1[4], cond2[4]; Int_t icl = 0; while((c[3] = (*fSeedTB[3])[icl++])){ if(!c[3]) continue; fSeedTB[0]->BuildCond(c[3], cond0, 0); fSeedTB[0]->GetClusters(cond0, index, ncl); //printf("Found c[3] candidates 0 %d\n", ncl); Int_t jcl = 0; while(jclGetX() - c[0]->GetX(); Double_t dzdx = (c[3]->GetZ() - c[0]->GetZ())/dx; Double_t dydx = (c[3]->GetY() - c[0]->GetY())/dx; fSeedTB[1]->BuildCond(c[0], cond1, 1, dzdx, dydx); fSeedTB[1]->GetClusters(cond1, jndex, mcl); //printf("Found c[0] candidates 1 %d\n", mcl); Int_t kcl = 0; while(kclBuildCond(c[1], cond2, 2, dzdx, dydx); c[2] = fSeedTB[2]->GetNearestCluster(cond2); //printf("Found c[1] candidate 2 %p\n", c[2]); if(!c[2]) continue; AliDebug(3, Form("Seeding clusters\n 0[%6.3f %6.3f %6.3f]\n 1[%6.3f %6.3f %6.3f]\n 2[%6.3f %6.3f %6.3f]\n 3[%6.3f %6.3f %6.3f].", c[0]->GetX(), c[0]->GetY(), c[0]->GetZ(), c[1]->GetX(), c[1]->GetY(), c[1]->GetZ(), c[2]->GetX(), c[2]->GetY(), c[2]->GetZ(), c[3]->GetX(), c[3]->GetY(), c[3]->GetZ())); for (Int_t il = 0; il < kNPlanes; il++) cseed[il].Reset(); FitRieman(c, chi2); AliTRDseedV1 *tseed = &cseed[0]; cIter = &stack[0]; for(int iLayer=0; iLayerGetDetector() : -1; tseed->SetDetector(det); tseed->SetTilt(hL[iLayer]); tseed->SetPadLength(padlength[iLayer]); tseed->SetPadWidth(padwidth[iLayer]); tseed->SetReconstructor(fkReconstructor); tseed->SetX0(det<0 ? fR[iLayer]+driftLength : x0[iLayer]); tseed->Init(GetRiemanFitter()); tseed->SetStandAlone(kTRUE); } Bool_t isFake = kFALSE; if((fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) >= 2 && fkReconstructor->IsDebugStreaming()) ||AliTRDReconstructor::GetStreamLevel()>=2 ){ if (c[0]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE; if (c[1]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE; if (c[2]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE; Double_t xpos[4]; for(Int_t l = 0; l < kNSeedPlanes; l++) xpos[l] = fSeedTB[l]->GetX(); Float_t yref[4]; for(int il=0; il<4; il++) yref[il] = cseed[planes[il]].GetYref(0); Int_t ll = c[3]->GetLabel(0); Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber(); Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber(); AliRieman *rim = GetRiemanFitter(); TTreeSRedirector &cs0 = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); cs0 << "MakeSeeds0" <<"EventNumber=" << eventNumber <<"CandidateNumber=" << candidateNumber <<"isFake=" << isFake <<"config=" << config <<"label=" << ll <<"chi2z=" << chi2[0] <<"chi2y=" << chi2[1] <<"Y2exp=" << cond2[0] <<"Z2exp=" << cond2[1] <<"X0=" << xpos[0] //layer[sLayer]->GetX() <<"X1=" << xpos[1] //layer[sLayer + 1]->GetX() <<"X2=" << xpos[2] //layer[sLayer + 2]->GetX() <<"X3=" << xpos[3] //layer[sLayer + 3]->GetX() <<"yref0=" << yref[0] <<"yref1=" << yref[1] <<"yref2=" << yref[2] <<"yref3=" << yref[3] <<"c0.=" << c[0] <<"c1.=" << c[1] <<"c2.=" << c[2] <<"c3.=" << c[3] <<"Seed0.=" << &cseed[planes[0]] <<"Seed1.=" << &cseed[planes[1]] <<"Seed2.=" << &cseed[planes[2]] <<"Seed3.=" << &cseed[planes[3]] <<"RiemanFitter.=" << rim <<"\n"; } if(chi2[0] > fkRecoParam->GetChi2Z()/*7./(3. - sLayer)*//*iter*/){ AliDebug(3, Form("Filter on chi2Z [%f].", chi2[0])); AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1); continue; } if(chi2[1] > fkRecoParam->GetChi2Y()/*1./(3. - sLayer)*//*iter*/){ AliDebug(3, Form("Filter on chi2Y [%f].", chi2[1])); AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1); continue; } //AliInfo("Passed chi2 filter."); // try attaching clusters to tracklets Int_t mlayers = 0; AliTRDcluster *cl = NULL; for(int iLayer=0; iLayerIsHLT()*/kFALSE){ cseed[jLayer].UpdateUsed(); if(!cseed[jLayer].IsOK()) continue; }else{ cseed[jLayer].Fit(); cseed[jLayer].UpdateUsed(); cseed[jLayer].ResetClusterIter(); while((cl = cseed[jLayer].NextCluster())){ if(!cl->IsInChamber()) nNotInChamber++; } //printf("clusters[%d], used[%d], not in chamber[%d]\n", cseed[jLayer].GetN(), cseed[jLayer].GetNUsed(), nNotInChamber); if(cseed[jLayer].GetN() - (cseed[jLayer].GetNUsed() + nNotInChamber) < 5) continue; // checking for Cluster which are not in chamber is a much stronger restriction on real data } mlayers++; } if(mlayers < kNSeedPlanes){ AliDebug(2, Form("Found only %d tracklets out of %d. Skip.", mlayers, kNSeedPlanes)); AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1); continue; } // temporary exit door for the HLT if(fkReconstructor->IsHLT()){ // attach clusters to extrapolation chambers for(int iLayer=0; iLayerGetTrackLikelihood()){ AliDebug(3, Form("Filter on likelihood %f[%e].", TMath::Log(1.E-9 + like), like)); AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1); continue; } //AliInfo(Form("Passed likelihood %f[%e].", TMath::Log(1.E-9 + like), like)); // book preliminry results //seedQuality[ntracks] = like; fSeedLayer[ntracks] = config;/*sLayer;*/ // attach clusters to the extrapolation seeds Int_t elayers(0); for(int iLayer=0; iLayerGetStreamLevel(AliTRDrecoParam::kTracker) >= 2 && fkReconstructor->IsDebugStreaming()) ||AliTRDReconstructor::GetStreamLevel()>=2){ TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); TLinearFitter *tiltedRieman = GetTiltedRiemanFitter(); Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber(); Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber(); cstreamer << "MakeSeeds1" << "EventNumber=" << eventNumber << "CandidateNumber=" << candidateNumber << "S0.=" << &cseed[0] << "S1.=" << &cseed[1] << "S2.=" << &cseed[2] << "S3.=" << &cseed[3] << "S4.=" << &cseed[4] << "S5.=" << &cseed[5] << "FitterT.=" << tiltedRieman << "\n"; } if(fkRecoParam->HasImproveTracklets()){ if(!ImproveSeedQuality(stack, cseed, chi2Vals[0])){ AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1); AliDebug(3, "ImproveSeedQuality() failed."); } } // do track fitting with vertex constraint if(fkRecoParam->IsVertexConstrained()) chi2Vals[1] = FitTiltedRiemanConstraint(&cseed[0], GetZ()); else chi2Vals[1] = -1.; chi2Vals[2] = GetChi2Z(&cseed[0]); chi2Vals[3] = GetChi2Phi(&cseed[0]); // calculate track quality fTrackQuality[ntracks] = CalculateTrackLikelihood(&chi2Vals[0]); if((fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) >= 2 && fkReconstructor->IsDebugStreaming()) ||AliTRDReconstructor::GetStreamLevel()>=2){ TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber(); Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber(); TLinearFitter *fitterTC = GetTiltedRiemanFitterConstraint(); TLinearFitter *fitterT = GetTiltedRiemanFitter(); Int_t ncls = 0; for(Int_t iseed = 0; iseed < kNPlanes; iseed++){ ncls += cseed[iseed].IsOK() ? cseed[iseed].GetN2() : 0; } cstreamer << "MakeSeeds2" << "EventNumber=" << eventNumber << "CandidateNumber=" << candidateNumber << "Chi2TR=" << chi2Vals[0] << "Chi2TC=" << chi2Vals[1] << "Nlayers=" << mlayers << "NClusters=" << ncls << "Like=" << like << "S0.=" << &cseed[0] << "S1.=" << &cseed[1] << "S2.=" << &cseed[2] << "S3.=" << &cseed[3] << "S4.=" << &cseed[4] << "S5.=" << &cseed[5] << "FitterT.=" << fitterT << "FitterTC.=" << fitterTC << "\n"; } if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")){ Double_t pt[]={0., 0.}; for(Int_t il(0); ilIsHLT()) FitTiltedRiemanConstraint(tracklet, 0); Double_t alpha = AliTRDgeometry::GetAlpha(); Double_t shift = AliTRDgeometry::GetAlpha()/2.0; // find first good tracklet Int_t idx(0); while(idx2){ AliDebug(1, Form("Found suspect track start @ layer idx[%d]\n" " %c[0] x0[%f] n[%d] nu[%d] OK[%c]\n" " %c[1] x0[%f] n[%d] nu[%d] OK[%c]\n" " %c[2] x0[%f] n[%d] nu[%d] OK[%c]\n" " %c[3] x0[%f] n[%d] nu[%d] OK[%c]\n" " %c[4] x0[%f] n[%d] nu[%d] OK[%c]\n" " %c[5] x0[%f] n[%d] nu[%d] OK[%c]" ,idx ,idx==0?'*':' ', tracklet[0].GetX0(), tracklet[0].GetN(), tracklet[0].GetNUsed(), tracklet[0].IsOK()?'y':'n' ,idx==1?'*':' ', tracklet[1].GetX0(), tracklet[1].GetN(), tracklet[1].GetNUsed(), tracklet[1].IsOK()?'y':'n' ,idx==2?'*':' ', tracklet[2].GetX0(), tracklet[2].GetN(), tracklet[2].GetNUsed(), tracklet[2].IsOK()?'y':'n' ,idx==3?'*':' ', tracklet[3].GetX0(), tracklet[3].GetN(), tracklet[3].GetNUsed(), tracklet[3].IsOK()?'y':'n' ,idx==4?'*':' ', tracklet[4].GetX0(), tracklet[4].GetN(), tracklet[4].GetNUsed(), tracklet[4].IsOK()?'y':'n' ,idx==5?'*':' ', tracklet[5].GetX0(), tracklet[5].GetN(), tracklet[5].GetNUsed(), tracklet[5].IsOK()?'y':'n')); return NULL; } Double_t dx(5.); Double_t x(tracklet[idx].GetX0() - dx); // Build track parameters Double_t params[] = { tracklet[idx].GetYref(0) - dx*tracklet[idx].GetYref(1) // y ,tracklet[idx].GetZref(0) - dx*tracklet[idx].GetZref(1) // z ,TMath::Sin(TMath::ATan(tracklet[idx].GetYref(1))) // snp ,tracklet[idx].GetZref(1) / TMath::Sqrt(1. + tracklet[idx].GetYref(1) * tracklet[idx].GetYref(1)) // tgl ,tracklet[idx].GetC(fkReconstructor->IsHLT()?1:0) // curvature -> 1/pt }; Int_t sector(fGeom->GetSector(tracklet[idx].GetDetector())); Double_t c[15]; c[ 0] = 0.2; // s^2_y c[ 1] = 0.0; c[ 2] = 2.0; // s^2_z c[ 3] = 0.0; c[ 4] = 0.0; c[ 5] = 0.02; // s^2_snp c[ 6] = 0.0; c[ 7] = 0.0; c[ 8] = 0.0; c[ 9] = 0.1; // s^2_tgl c[10] = 0.0; c[11] = 0.0; c[12] = 0.0; c[13] = 0.0; c[14] = params[4]*params[4]*0.01; // s^2_1/pt AliTRDtrackV1 track(tracklet, params, c, x, sector*alpha+shift); AliTRDseedV1 *ptrTracklet = NULL; // skip Kalman filter for HLT if(/*fkReconstructor->IsHLT()*/kFALSE){ for (Int_t jLayer = 0; jLayer < AliTRDgeometry::kNlayer; jLayer++) { track.UnsetTracklet(jLayer); ptrTracklet = &tracklet[jLayer]; if(!ptrTracklet->IsOK()) continue; if(TMath::Abs(ptrTracklet->GetYref(1) - ptrTracklet->GetYfit(1)) >= .2) continue; // check this condition with Marian ptrTracklet = SetTracklet(ptrTracklet); ptrTracklet->UseClusters(); track.SetTracklet(ptrTracklet, fTracklets->GetEntriesFast()-1); } AliTRDtrackV1 *ptrTrack = SetTrack(&track); ptrTrack->CookPID(); ptrTrack->CookLabel(.9); ptrTrack->SetReconstructor(fkReconstructor); return ptrTrack; } // prevent the error message in AliTracker::MeanMaterialBudget: "start point out of geometry" if(TMath::Abs(track.GetX()) + TMath::Abs(track.GetY()) + TMath::Abs(track.GetZ()) > 10000) return NULL; track.ResetCovariance(1); Int_t nc = TMath::Abs(FollowBackProlongation(track)); if((fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 5 && fkReconstructor->IsDebugStreaming()) ||AliTRDReconstructor::GetStreamLevel()>5){ Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber(); Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber(); Double_t p[5]; // Track Params for the Debug Stream track.GetExternalParameters(x, p); TTreeSRedirector &cs = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); cs << "MakeTrack" << "EventNumber=" << eventNumber << "CandidateNumber=" << candidateNumber << "nc=" << nc << "X=" << x << "Y=" << p[0] << "Z=" << p[1] << "snp=" << p[2] << "tnd=" << p[3] << "crv=" << p[4] << "Yin=" << params[0] << "Zin=" << params[1] << "snpin=" << params[2] << "tndin=" << params[3] << "crvin=" << params[4] << "track.=" << &track << "\n"; } if (nc < 30){ UnsetTrackletsTrack(&track); return NULL; } AliTRDtrackV1 *ptrTrack = SetTrack(&track); ptrTrack->SetReconstructor(fkReconstructor); ptrTrack->CookLabel(.9); for(Int_t il(kNPlanes); il--;){ if(!(ptrTracklet = ptrTrack->GetTracklet(il))) continue; ptrTracklet->UseClusters(); } // computes PID for track ptrTrack->CookPID(); // update calibration references using this track AliTRDCalibraFillHisto *calibra = AliTRDCalibraFillHisto::Instance(); if(!calibra){ AliInfo("Could not get Calibra instance."); } else if(calibra->GetHisto2d()){ calibra->UpdateHistogramsV1(ptrTrack); } return ptrTrack; } //____________________________________________________________________ Bool_t AliTRDtrackerV1::ImproveSeedQuality(AliTRDtrackingChamber **stack, AliTRDseedV1 *cseed, Double_t &chi2) { // // Sort tracklets according to "quality" and try to "improve" the first 4 worst // // Parameters : // layers : Array of propagation layers for a stack/supermodule // cseed : Array of 6 seeding tracklets which has to be improved // // Output : // cssed : Improved seeds // // Detailed description // // Iterative procedure in which new clusters are searched for each // tracklet seed such that the seed quality (see AliTRDseed::GetQuality()) // can be maximized. If some optimization is found the old seeds are replaced. // // debug level: 7 // // make a local working copy AliTRDtrackingChamber *chamber = NULL; AliTRDseedV1 bseed[AliTRDgeometry::kNlayer]; Float_t quality(1.e3), lQuality[AliTRDgeometry::kNlayer] = {1.e3, 1.e3, 1.e3, 1.e3, 1.e3, 1.e3}; Int_t rLayers(0); for(Int_t jLayer=AliTRDgeometry::kNlayer; jLayer--;){ bseed[jLayer] = cseed[jLayer]; if(!bseed[jLayer].IsOK()) continue; rLayers++; lQuality[jLayer] = bseed[jLayer].GetQuality(kTRUE); quality += lQuality[jLayer]; } if (rLayers > 0) { quality /= rLayers; } AliDebug(2, Form("Start N[%d] Q[%f] chi2[%f]", rLayers, quality, chi2)); for (Int_t iter = 0; iter < 4; iter++) { // Try better cluster set Int_t nLayers(0); Float_t qualitynew(0.); Int_t indexes[4*AliTRDgeometry::kNlayer]; TMath::Sort(Int_t(AliTRDgeometry::kNlayer), lQuality, indexes, kFALSE); for(Int_t jLayer=AliTRDgeometry::kNlayer; jLayer--;) { Int_t bLayer = indexes[jLayer]; bseed[bLayer].Reset("c"); if(!(chamber = stack[bLayer])) continue; if(!bseed[bLayer].AttachClusters(chamber, kTRUE)) continue; bseed[bLayer].Fit(1); if(!bseed[bLayer].IsOK()) continue; nLayers++; lQuality[jLayer] = bseed[jLayer].GetQuality(kTRUE); qualitynew += lQuality[jLayer]; } if(rLayers > nLayers){ AliDebug(1, Form("Lost %d tracklets while improving.", rLayers-nLayers)); return iter>0?kTRUE:kFALSE; } else rLayers=nLayers; qualitynew /= rLayers; if(qualitynew > quality){ AliDebug(4, Form("Quality[%f] worsen in iter[%d] to ref[%f].", qualitynew, iter, quality)); return iter>0?kTRUE:kFALSE; } else quality = qualitynew; // try improve track parameters Float_t chi2new = FitTiltedRieman(bseed, kTRUE); if(chi2new > chi2){ AliDebug(4, Form("Chi2[%f] worsen in iter[%d] to ref[%f].", chi2new, iter, chi2)); return iter>0?kTRUE:kFALSE; } else chi2 = chi2new; // store better tracklets for(Int_t jLayer=AliTRDgeometry::kNlayer; jLayer--;) cseed[jLayer]=bseed[jLayer]; AliDebug(2, Form("Iter[%d] Q[%f] chi2[%f]", iter, quality, chi2)); if((fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) >= 7 && fkReconstructor->IsDebugStreaming()) ||AliTRDReconstructor::GetStreamLevel()>=7){ Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber(); Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber(); TLinearFitter *tiltedRieman = GetTiltedRiemanFitter(); TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); cstreamer << "ImproveSeedQuality" << "EventNumber=" << eventNumber << "CandidateNumber=" << candidateNumber << "Iteration=" << iter << "S0.=" << &cseed[0] << "S1.=" << &cseed[1] << "S2.=" << &cseed[2] << "S3.=" << &cseed[3] << "S4.=" << &cseed[4] << "S5.=" << &cseed[5] << "FitterT.=" << tiltedRieman << "\n"; } } // Loop: iter // we are sure that at least 4 tracklets are OK ! return kTRUE; } //_________________________________________________________________________ Double_t AliTRDtrackerV1::CalculateTrackLikelihood(Double_t *chi2){ // // Calculates the Track Likelihood value. This parameter serves as main quality criterion for // the track selection // The likelihood value containes: // - The chi2 values from the both fitters and the chi2 values in z-direction from a linear fit // - The Sum of the Parameter |slope_ref - slope_fit|/Sigma of the tracklets // For all Parameters an exponential dependency is used // // Parameters: - Array of tracklets (AliTRDseedV1) related to the track candidate // - Array of chi2 values: // * Non-Constrained Tilted Riemann fit // * Vertex-Constrained Tilted Riemann fit // * z-Direction from Linear fit // Output: - The calculated track likelihood // // debug level 2 // // Non-constrained Tilted Riemann Double_t likeChi2TR = TMath::Exp(-chi2[0] * 0.0078); // Constrained Tilted Riemann Double_t likeChi2TC(1.); if(chi2[1]>0.){ likeChi2TC = TMath::Exp(-chi2[1] * 0.677); Double_t r = likeChi2TC/likeChi2TR; if(r>1.e2){;} // -> a primary track use TC else if(r<1.e2) // -> a secondary track use TR likeChi2TC =1.; else{;} // -> test not conclusive } // Chi2 only on Z direction Double_t likeChi2Z = TMath::Exp(-chi2[2] * 0.14); // Chi2 angular resolution Double_t likeChi2Phi= TMath::Exp(-chi2[3] * 3.23); Double_t trackLikelihood = likeChi2Z * likeChi2TR * likeChi2TC * likeChi2Phi; AliDebug(2, Form("Likelihood [%e]\n" " Rieman : chi2[%f] likelihood[%6.2e]\n" " Vertex : chi2[%f] likelihood[%6.2e]\n" " Z : chi2[%f] likelihood[%6.2e]\n" " Phi : chi2[%f] likelihood[%6.2e]" , trackLikelihood , chi2[0], likeChi2TR , chi2[1], likeChi2TC , chi2[2], likeChi2Z , chi2[3], likeChi2Phi )); if((fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) >= 2 && fkReconstructor->IsDebugStreaming()) ||AliTRDReconstructor::GetStreamLevel()>=2){ Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber(); Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber(); TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); cstreamer << "CalculateTrackLikelihood0" << "EventNumber=" << eventNumber << "CandidateNumber=" << candidateNumber << "LikeChi2Z=" << likeChi2Z << "LikeChi2TR=" << likeChi2TR << "LikeChi2TC=" << likeChi2TC << "LikeChi2Phi=" << likeChi2Phi << "TrackLikelihood=" << trackLikelihood << "\n"; } return trackLikelihood; } //____________________________________________________________________ Double_t AliTRDtrackerV1::CookLikelihood(AliTRDseedV1 *cseed, Int_t planes[4]) { // // Calculate the probability of this track candidate. // // Parameters : // cseeds : array of candidate tracklets // planes : array of seeding planes (see seeding configuration) // chi2 : chi2 values (on the Z and Y direction) from the rieman fit of the track. // // Output : // likelihood value // // Detailed description // // The track quality is estimated based on the following 4 criteria: // 1. precision of the rieman fit on the Y direction (likea) // 2. chi2 on the Y direction (likechi2y) // 3. chi2 on the Z direction (likechi2z) // 4. number of attached clusters compared to a reference value // (see AliTRDrecoParam::fkFindable) (likeN) // // The distributions for each type of probabilities are given below as of // (date). They have to be checked to assure consistency of estimation. // // ratio of the total number of clusters/track which are expected to be found by the tracker. Double_t chi2y = GetChi2Y(&cseed[0]); Double_t chi2z = GetChi2Z(&cseed[0]); Float_t nclusters = 0.; Double_t sumda = 0.; for(UChar_t ilayer = 0; ilayer < 4; ilayer++){ Int_t jlayer = planes[ilayer]; nclusters += cseed[jlayer].GetN2(); sumda += TMath::Abs(cseed[jlayer].GetYfit(1) - cseed[jlayer].GetYref(1)); } nclusters *= .25; Double_t likea = TMath::Exp(-sumda * fkRecoParam->GetPhiSlope()); Double_t likechi2y = 0.0000000001; if (fkReconstructor->IsCosmic() || chi2y < fkRecoParam->GetChi2YCut()) likechi2y += TMath::Exp(-TMath::Sqrt(chi2y) * fkRecoParam->GetChi2YSlope()); Double_t likechi2z = TMath::Exp(-chi2z * fkRecoParam->GetChi2ZSlope()); Double_t likeN = TMath::Exp(-(fkRecoParam->GetNMeanClusters() - nclusters) / fkRecoParam->GetNSigmaClusters()); Double_t like = likea * likechi2y * likechi2z * likeN; if((fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) >= 2 && fkReconstructor->IsDebugStreaming()) ||AliTRDReconstructor::GetStreamLevel()>=2){ Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber(); Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber(); Int_t nTracklets = 0; Float_t meanNcls = 0; for(Int_t iseed=0; iseed < kNPlanes; iseed++){ if(!cseed[iseed].IsOK()) continue; nTracklets++; meanNcls += cseed[iseed].GetN2(); } if(nTracklets) meanNcls /= nTracklets; // The Debug Stream contains the seed TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); cstreamer << "CookLikelihood" << "EventNumber=" << eventNumber << "CandidateNumber=" << candidateNumber << "tracklet0.=" << &cseed[0] << "tracklet1.=" << &cseed[1] << "tracklet2.=" << &cseed[2] << "tracklet3.=" << &cseed[3] << "tracklet4.=" << &cseed[4] << "tracklet5.=" << &cseed[5] << "sumda=" << sumda << "chi2y=" << chi2y << "chi2z=" << chi2z << "likea=" << likea << "likechi2y=" << likechi2y << "likechi2z=" << likechi2z << "nclusters=" << nclusters << "likeN=" << likeN << "like=" << like << "meanncls=" << meanNcls << "\n"; } return like; } //____________________________________________________________________ void AliTRDtrackerV1::GetSeedingConfig(Int_t iconfig, Int_t planes[4]) { // // Map seeding configurations to detector planes. // // Parameters : // iconfig : configuration index // planes : member planes of this configuration. On input empty. // // Output : // planes : contains the planes which are defining the configuration // // Detailed description // // Here is the list of seeding planes configurations together with // their topological classification: // // 0 - 5432 TQ 0 // 1 - 4321 TQ 0 // 2 - 3210 TQ 0 // 3 - 5321 TQ 1 // 4 - 4210 TQ 1 // 5 - 5431 TQ 1 // 6 - 4320 TQ 1 // 7 - 5430 TQ 2 // 8 - 5210 TQ 2 // 9 - 5421 TQ 3 // 10 - 4310 TQ 3 // 11 - 5410 TQ 4 // 12 - 5420 TQ 5 // 13 - 5320 TQ 5 // 14 - 5310 TQ 5 // // The topologic quality is modeled as follows: // 1. The general model is define by the equation: // p(conf) = exp(-conf/2) // 2. According to the topologic classification, configurations from the same // class are assigned the agerage value over the model values. // 3. Quality values are normalized. // // The topologic quality distribution as function of configuration is given below: //Begin_Html // //End_Html // switch(iconfig){ case 0: // 5432 TQ 0 planes[0] = 2; planes[1] = 3; planes[2] = 4; planes[3] = 5; break; case 1: // 4321 TQ 0 planes[0] = 1; planes[1] = 2; planes[2] = 3; planes[3] = 4; break; case 2: // 3210 TQ 0 planes[0] = 0; planes[1] = 1; planes[2] = 2; planes[3] = 3; break; case 3: // 5321 TQ 1 planes[0] = 1; planes[1] = 2; planes[2] = 3; planes[3] = 5; break; case 4: // 4210 TQ 1 planes[0] = 0; planes[1] = 1; planes[2] = 2; planes[3] = 4; break; case 5: // 5431 TQ 1 planes[0] = 1; planes[1] = 3; planes[2] = 4; planes[3] = 5; break; case 6: // 4320 TQ 1 planes[0] = 0; planes[1] = 2; planes[2] = 3; planes[3] = 4; break; case 7: // 5430 TQ 2 planes[0] = 0; planes[1] = 3; planes[2] = 4; planes[3] = 5; break; case 8: // 5210 TQ 2 planes[0] = 0; planes[1] = 1; planes[2] = 2; planes[3] = 5; break; case 9: // 5421 TQ 3 planes[0] = 1; planes[1] = 2; planes[2] = 4; planes[3] = 5; break; case 10: // 4310 TQ 3 planes[0] = 0; planes[1] = 1; planes[2] = 3; planes[3] = 4; break; case 11: // 5410 TQ 4 planes[0] = 0; planes[1] = 1; planes[2] = 4; planes[3] = 5; break; case 12: // 5420 TQ 5 planes[0] = 0; planes[1] = 2; planes[2] = 4; planes[3] = 5; break; case 13: // 5320 TQ 5 planes[0] = 0; planes[1] = 2; planes[2] = 3; planes[3] = 5; break; case 14: // 5310 TQ 5 planes[0] = 0; planes[1] = 1; planes[2] = 3; planes[3] = 5; break; } } //____________________________________________________________________ void AliTRDtrackerV1::GetExtrapolationConfig(Int_t iconfig, Int_t planes[2]) { // // Returns the extrapolation planes for a seeding configuration. // // Parameters : // iconfig : configuration index // planes : planes which are not in this configuration. On input empty. // // Output : // planes : contains the planes which are not in the configuration // // Detailed description // switch(iconfig){ case 0: // 5432 TQ 0 planes[0] = 1; planes[1] = 0; break; case 1: // 4321 TQ 0 planes[0] = 5; planes[1] = 0; break; case 2: // 3210 TQ 0 planes[0] = 4; planes[1] = 5; break; case 3: // 5321 TQ 1 planes[0] = 4; planes[1] = 0; break; case 4: // 4210 TQ 1 planes[0] = 5; planes[1] = 3; break; case 5: // 5431 TQ 1 planes[0] = 2; planes[1] = 0; break; case 6: // 4320 TQ 1 planes[0] = 5; planes[1] = 1; break; case 7: // 5430 TQ 2 planes[0] = 2; planes[1] = 1; break; case 8: // 5210 TQ 2 planes[0] = 4; planes[1] = 3; break; case 9: // 5421 TQ 3 planes[0] = 3; planes[1] = 0; break; case 10: // 4310 TQ 3 planes[0] = 5; planes[1] = 2; break; case 11: // 5410 TQ 4 planes[0] = 3; planes[1] = 2; break; case 12: // 5420 TQ 5 planes[0] = 3; planes[1] = 1; break; case 13: // 5320 TQ 5 planes[0] = 4; planes[1] = 1; break; case 14: // 5310 TQ 5 planes[0] = 4; planes[1] = 2; break; } } //____________________________________________________________________ AliCluster* AliTRDtrackerV1::GetCluster(Int_t idx) const { if(!fClusters) return NULL; Int_t ncls = fClusters->GetEntriesFast(); return idx >= 0 && idx < ncls ? (AliCluster*)fClusters->UncheckedAt(idx) : NULL; } //____________________________________________________________________ AliTRDseedV1* AliTRDtrackerV1::GetTracklet(Int_t idx) const { if(!fTracklets) return NULL; Int_t ntrklt = fTracklets->GetEntriesFast(); return idx >= 0 && idx < ntrklt ? (AliTRDseedV1*)fTracklets->UncheckedAt(idx) : NULL; } //____________________________________________________________________ AliKalmanTrack* AliTRDtrackerV1::GetTrack(Int_t idx) const { if(!fTracks) return NULL; Int_t ntrk = fTracks->GetEntriesFast(); return idx >= 0 && idx < ntrk ? (AliKalmanTrack*)fTracks->UncheckedAt(idx) : NULL; } // //_____________________________________________________________________________ // Int_t AliTRDtrackerV1::Freq(Int_t n, const Int_t *inlist // , Int_t *outlist, Bool_t down) // { // // // // Sort eleements according occurancy // // The size of output array has is 2*n // // // // if (n <= 0) { // return 0; // } // // Int_t *sindexS = new Int_t[n]; // Temporary array for sorting // Int_t *sindexF = new Int_t[2*n]; // for (Int_t i = 0; i < n; i++) { // sindexF[i] = 0; // } // // TMath::Sort(n,inlist,sindexS,down); // // Int_t last = inlist[sindexS[0]]; // Int_t val = last; // sindexF[0] = 1; // sindexF[0+n] = last; // Int_t countPos = 0; // // // Find frequency // for (Int_t i = 1; i < n; i++) { // val = inlist[sindexS[i]]; // if (last == val) { // sindexF[countPos]++; // } // else { // countPos++; // sindexF[countPos+n] = val; // sindexF[countPos]++; // last = val; // } // } // if (last == val) { // countPos++; // } // // // Sort according frequency // TMath::Sort(countPos,sindexF,sindexS,kTRUE); // // for (Int_t i = 0; i < countPos; i++) { // outlist[2*i ] = sindexF[sindexS[i]+n]; // outlist[2*i+1] = sindexF[sindexS[i]]; // } // // delete [] sindexS; // delete [] sindexF; // // return countPos; // // } //____________________________________________________________________ void AliTRDtrackerV1::ResetSeedTB() { // reset buffer for seeding time bin layers. If the time bin // layers are not allocated this function allocates them for(Int_t isl=0; islClear(); } } //_____________________________________________________________________________ Float_t AliTRDtrackerV1::GetChi2Y(const AliTRDseedV1 * const tracklets) const { // Calculates normalized chi2 in y-direction // chi2 = Sum chi2 / n_tracklets Double_t chi2 = 0.; Int_t n = 0; for(Int_t ipl = kNPlanes; ipl--;){ if(!tracklets[ipl].IsOK()) continue; chi2 += tracklets[ipl].GetChi2Y(); n++; } return n ? chi2/n : 0.; } //_____________________________________________________________________________ Float_t AliTRDtrackerV1::GetChi2Z(const AliTRDseedV1 *const tracklets) const { // Calculates normalized chi2 in z-direction // chi2 = Sum chi2 / n_tracklets Double_t chi2 = 0; Int_t n = 0; for(Int_t ipl = kNPlanes; ipl--;){ if(!tracklets[ipl].IsOK()) continue; chi2 += tracklets[ipl].GetChi2Z(); n++; } return n ? chi2/n : 0.; } //_____________________________________________________________________________ Float_t AliTRDtrackerV1::GetChi2Phi(const AliTRDseedV1 *const tracklets) const { // Calculates normalized chi2 for angular resolution // chi2 = Sum chi2 / n_tracklets Double_t chi2 = 0; Int_t n = 0; for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) { if(!tracklets[iLayer].IsOK()) continue; chi2 += tracklets[iLayer].GetChi2Phi(); n++; } return n ? chi2/n: 0.; } //____________________________________________________________________ Float_t AliTRDtrackerV1::CalculateReferenceX(const AliTRDseedV1 *const tracklets){ // // Calculates the reference x-position for the tilted Rieman fit defined as middle // of the stack (middle between layers 2 and 3). For the calculation all the tracklets // are taken into account // // Parameters: - Array of tracklets(AliTRDseedV1) // // Output: - The reference x-position(Float_t) // Only kept for compatibility with the old code // Int_t nDistances = 0; Float_t meanDistance = 0.; Int_t startIndex = 5; for(Int_t il =5; il > 0; il--){ if(tracklets[il].IsOK() && tracklets[il -1].IsOK()){ Float_t xdiff = tracklets[il].GetX0() - tracklets[il -1].GetX0(); meanDistance += xdiff; nDistances++; } if(tracklets[il].IsOK()) startIndex = il; } if(tracklets[0].IsOK()) startIndex = 0; if(!nDistances){ // We should normally never get here Float_t xpos[2]; memset(xpos, 0, sizeof(Float_t) * 2); Int_t iok = 0, idiff = 0; // This attempt is worse and should be avoided: // check for two chambers which are OK and repeat this without taking the mean value // Strategy avoids a division by 0; for(Int_t il = 5; il >= 0; il--){ if(tracklets[il].IsOK()){ xpos[iok] = tracklets[il].GetX0(); iok++; startIndex = il; } if(iok) idiff++; // to get the right difference; if(iok > 1) break; } if(iok > 1){ meanDistance = (xpos[0] - xpos[1])/idiff; } else{ // we have do not even have 2 layers which are OK? The we do not need to fit at all return 331.; } } else{ meanDistance /= nDistances; } return tracklets[startIndex].GetX0() + (2.5 - startIndex) * meanDistance - 0.5 * (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick()); } //_____________________________________________________________________________ Double_t AliTRDtrackerV1::FitTiltedRiemanV1(AliTRDseedV1 *const tracklets){ // // Track Fitter Function using the new class implementation of // the Rieman fit // AliTRDtrackFitterRieman fitter; fitter.SetRiemanFitter(GetTiltedRiemanFitter()); fitter.Reset(); for(Int_t il = 0; il < AliTRDgeometry::kNlayer; il++) fitter.SetTracklet(il, &tracklets[il]); Double_t chi2 = fitter.Eval(); // Update the tracklets Double_t cov[15]; Double_t x0; memset(cov, 0, sizeof(Double_t) * 15); for(Int_t il = 0; il < AliTRDgeometry::kNlayer; il++){ x0 = tracklets[il].GetX0(); tracklets[il].SetYref(0, fitter.GetYat(x0)); tracklets[il].SetZref(0, fitter.GetZat(x0)); tracklets[il].SetYref(1, fitter.GetDyDxAt(x0)); tracklets[il].SetZref(1, fitter.GetDzDx()); tracklets[il].SetC(fitter.GetCurvature()); fitter.GetCovAt(x0, cov); tracklets[il].SetCovRef(cov); tracklets[il].SetChi2(chi2); } return chi2; } //____________________________________________________________________ void AliTRDtrackerV1::UnsetTrackletsTrack(const AliTRDtrackV1 * const track) { // Remove tracklets from tracker list attached to "track" Int_t idx(-1); for(Int_t il(0); ilGetTrackletIndex(il)) < 0) continue; delete (fTracklets->RemoveAt(idx)); } } /////////////////////////////////////////////////////// // // // Resources of class AliTRDLeastSquare // // // /////////////////////////////////////////////////////// //_____________________________________________________________________________ AliTRDtrackerV1::AliTRDLeastSquare::AliTRDLeastSquare(){ // // Constructor of the nested class AliTRDtrackFitterLeastSquare // // Fast solving linear regresion in 2D // y=a + bx // The data members have the following meaning // fParams[0] : a // fParams[1] : b // // fSums[0] : S // fSums[1] : Sx // fSums[2] : Sy // fSums[3] : Sxy // fSums[4] : Sxx // fSums[5] : Syy // // fCovarianceMatrix[0] : s2a // fCovarianceMatrix[1] : s2b // fCovarianceMatrix[2] : cov(ab) memset(fParams, 0, sizeof(Double_t) * 2); memset(fSums, 0, sizeof(Double_t) * 6); memset(fCovarianceMatrix, 0, sizeof(Double_t) * 3); } //_____________________________________________________________________________ void AliTRDtrackerV1::AliTRDLeastSquare::AddPoint(const Double_t *const x, Double_t y, Double_t sigmaY){ // // Adding Point to the fitter // Double_t weight = 1/(sigmaY > 1e-9 ? sigmaY : 1e-9); weight *= weight; const Double_t &xpt = *x; // printf("Adding point x = %f, y = %f, sigma = %f\n", xpt, y, sigmaY); fSums[0] += weight; fSums[1] += weight * xpt; fSums[2] += weight * y; fSums[3] += weight * xpt * y; fSums[4] += weight * xpt * xpt; fSums[5] += weight * y * y; } //_____________________________________________________________________________ void AliTRDtrackerV1::AliTRDLeastSquare::RemovePoint(const Double_t *const x, Double_t y, Double_t sigmaY){ // // Remove Point from the sample // Double_t weight = 1/(sigmaY > 1e-9 ? sigmaY : 1e-9); weight *= weight; const Double_t &xpt = *x; fSums[0] -= weight; fSums[1] -= weight * xpt; fSums[2] -= weight * y; fSums[3] -= weight * xpt * y; fSums[4] -= weight * xpt * xpt; fSums[5] -= weight * y * y; } //_____________________________________________________________________________ Bool_t AliTRDtrackerV1::AliTRDLeastSquare::Eval(){ // // Evaluation of the fit: // Calculation of the parameters // Calculation of the covariance matrix // Double_t det = fSums[0] * fSums[4] - fSums[1] *fSums[1]; if(TMath::Abs(det)<1.e-30) return kFALSE; // for(Int_t isum = 0; isum < 5; isum++) // printf("fSums[%d] = %f\n", isum, fSums[isum]); // printf("denominator = %f\n", denominator); fParams[0] = (fSums[2] * fSums[4] - fSums[1] * fSums[3])/det; fParams[1] = (fSums[0] * fSums[3] - fSums[1] * fSums[2])/det; // printf("fParams[0] = %f, fParams[1] = %f\n", fParams[0], fParams[1]); // Covariance matrix Double_t den = fSums[0]*fSums[4] - fSums[1]*fSums[1]; fCovarianceMatrix[0] = fSums[4] / den; fCovarianceMatrix[1] = fSums[0] / den; fCovarianceMatrix[2] = -fSums[1] / den; /* fCovarianceMatrix[0] = fSums[4] / fSums[0] - fSums[1] * fSums[1] / (fSums[0] * fSums[0]); fCovarianceMatrix[1] = fSums[5] / fSums[0] - fSums[2] * fSums[2] / (fSums[0] * fSums[0]); fCovarianceMatrix[2] = fSums[3] / fSums[0] - fSums[1] * fSums[2] / (fSums[0] * fSums[0]);*/ return kTRUE; } //_____________________________________________________________________________ Double_t AliTRDtrackerV1::AliTRDLeastSquare::GetFunctionValue(const Double_t *const xpos) const { // // Returns the Function value of the fitted function at a given x-position // return fParams[0] + fParams[1] * (*xpos); } //_____________________________________________________________________________ void AliTRDtrackerV1::AliTRDLeastSquare::GetCovarianceMatrix(Double_t *storage) const { // // Copies the values of the covariance matrix into the storage // memcpy(storage, fCovarianceMatrix, sizeof(Double_t) * 3); } //_____________________________________________________________________________ void AliTRDtrackerV1::AliTRDLeastSquare::Reset(){ // // Reset the fitter // memset(fParams, 0, sizeof(Double_t) * 2); memset(fCovarianceMatrix, 0, sizeof(Double_t) * 3); memset(fSums, 0, sizeof(Double_t) * 6); } /////////////////////////////////////////////////////// // // // Resources of class AliTRDtrackFitterRieman // // // /////////////////////////////////////////////////////// //_____________________________________________________________________________ AliTRDtrackerV1::AliTRDtrackFitterRieman::AliTRDtrackFitterRieman(): fTrackFitter(NULL), fZfitter(NULL), fCovarPolY(NULL), fCovarPolZ(NULL), fXref(0.), fSysClusterError(0.) { // // Default constructor // fZfitter = new AliTRDLeastSquare; fCovarPolY = new TMatrixD(3,3); fCovarPolZ = new TMatrixD(2,2); memset(fTracklets, 0, sizeof(AliTRDseedV1 *) * 6); memset(fParameters, 0, sizeof(Double_t) * 5); memset(fSumPolY, 0, sizeof(Double_t) * 5); memset(fSumPolZ, 0, sizeof(Double_t) * 2); } //_____________________________________________________________________________ AliTRDtrackerV1::AliTRDtrackFitterRieman::~AliTRDtrackFitterRieman(){ // // Destructor // if(fZfitter) delete fZfitter; if(fCovarPolY) delete fCovarPolY; if(fCovarPolZ) delete fCovarPolZ; } //_____________________________________________________________________________ void AliTRDtrackerV1::AliTRDtrackFitterRieman::Reset(){ // // Reset the Fitter // if(fTrackFitter){ fTrackFitter->StoreData(kTRUE); fTrackFitter->ClearPoints(); } if(fZfitter){ fZfitter->Reset(); } fXref = 0.; memset(fTracklets, 0, sizeof(AliTRDseedV1 *) * AliTRDgeometry::kNlayer); memset(fParameters, 0, sizeof(Double_t) * 5); memset(fSumPolY, 0, sizeof(Double_t) * 5); memset(fSumPolZ, 0, sizeof(Double_t) * 2); for(Int_t irow = 0; irow < fCovarPolY->GetNrows(); irow++) for(Int_t icol = 0; icol < fCovarPolY->GetNcols(); icol++){ (*fCovarPolY)(irow, icol) = 0.; if(irow < 2 && icol < 2) (*fCovarPolZ)(irow, icol) = 0.; } } //_____________________________________________________________________________ void AliTRDtrackerV1::AliTRDtrackFitterRieman::SetTracklet(Int_t itr, AliTRDseedV1 *tracklet){ // // Add tracklet into the fitter // if(itr >= AliTRDgeometry::kNlayer) return; fTracklets[itr] = tracklet; } //_____________________________________________________________________________ Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::Eval(){ // // Perform the fit // 1. Apply linear transformation and store points in the fitter // 2. Evaluate the fit // 3. Check if the result of the fit in z-direction is reasonable // if not // 3a. Fix the parameters 3 and 4 with the results of a simple least // square fit // 3b. Redo the fit with the fixed parameters // 4. Store fit results (parameters and errors) // if(!fTrackFitter){ return 1e10; } fXref = CalculateReferenceX(); for(Int_t il = 0; il < AliTRDgeometry::kNlayer; il++) UpdateFitters(fTracklets[il]); if(!fTrackFitter->GetNpoints()) return 1e10; // perform the fit fTrackFitter->Eval(); fZfitter->Eval(); fParameters[3] = fTrackFitter->GetParameter(3); fParameters[4] = fTrackFitter->GetParameter(4); if(!CheckAcceptable(fParameters[3], fParameters[4])) { fTrackFitter->FixParameter(3, fZfitter->GetFunctionValue(&fXref)); fTrackFitter->FixParameter(4, fZfitter->GetFunctionParameter(1)); fTrackFitter->Eval(); fTrackFitter->ReleaseParameter(3); fTrackFitter->ReleaseParameter(4); fParameters[3] = fTrackFitter->GetParameter(3); fParameters[4] = fTrackFitter->GetParameter(4); } // Update the Fit Parameters and the errors fParameters[0] = fTrackFitter->GetParameter(0); fParameters[1] = fTrackFitter->GetParameter(1); fParameters[2] = fTrackFitter->GetParameter(2); // Prepare Covariance estimation (*fCovarPolY)(0,0) = fSumPolY[0]; (*fCovarPolY)(1,1) = fSumPolY[2]; (*fCovarPolY)(2,2) = fSumPolY[4]; (*fCovarPolY)(1,0) = (*fCovarPolY)(0,1) = fSumPolY[1]; (*fCovarPolY)(2,0) = (*fCovarPolY)(0,2) = fSumPolY[2]; (*fCovarPolY)(2,1) = (*fCovarPolY)(1,2) = fSumPolY[3]; fCovarPolY->Invert(); (*fCovarPolZ)(0,0) = fSumPolZ[0]; (*fCovarPolZ)(1,1) = fSumPolZ[2]; (*fCovarPolZ)(1,0) = (*fCovarPolZ)(0,1) = fSumPolZ[1]; fCovarPolZ->Invert(); return fTrackFitter->GetChisquare() / fTrackFitter->GetNpoints(); } //_____________________________________________________________________________ void AliTRDtrackerV1::AliTRDtrackFitterRieman::UpdateFitters(const AliTRDseedV1 * const tracklet){ // // Does the transformations and updates the fitters // The following transformation is applied // AliTRDcluster *cl = NULL; Double_t x, y, z, dx, t, w, we, yerr, zerr; Double_t uvt[4]; if(!tracklet || !tracklet->IsOK()) return; Double_t tilt = tracklet->GetTilt(); for(Int_t itb = 0; itb < AliTRDseedV1::kNclusters; itb++){ if(!(cl = tracklet->GetClusters(itb))) continue; if(!cl->IsInChamber()) continue; if (!tracklet->IsUsable(itb)) continue; x = cl->GetX(); y = cl->GetY(); z = cl->GetZ(); dx = x - fXref; // Transformation t = 1./(x*x + y*y); uvt[0] = 2. * x * t; uvt[1] = t; uvt[2] = 2. * tilt * t; uvt[3] = 2. * tilt * dx * t; w = 2. * (y + tilt*z) * t; // error definition changes for the different calls we = 2. * t; we *= TMath::Sqrt(cl->GetSigmaY2()+tilt*tilt*cl->GetSigmaZ2()); // Update sums for error calculation yerr = 1./(TMath::Sqrt(cl->GetSigmaY2()) + fSysClusterError); yerr *= yerr; zerr = 1./cl->GetSigmaZ2(); for(Int_t ipol = 0; ipol < 5; ipol++){ fSumPolY[ipol] += yerr; yerr *= x; if(ipol < 3){ fSumPolZ[ipol] += zerr; zerr *= x; } } fTrackFitter->AddPoint(uvt, w, we); fZfitter->AddPoint(&x, z, static_cast(TMath::Sqrt(cl->GetSigmaZ2()))); } } //_____________________________________________________________________________ Bool_t AliTRDtrackerV1::AliTRDtrackFitterRieman::CheckAcceptable(Double_t offset, Double_t slope){ // // Check whether z-results are acceptable // Definition: Distance between tracklet fit and track fit has to be // less then half a padlength // Point of comparision is at the anode wire // Bool_t acceptablez = kTRUE; Double_t zref = 0.0; for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) { if(!fTracklets[iLayer]->IsOK()) continue; zref = offset + slope * (fTracklets[iLayer]->GetX0() - fXref); if (TMath::Abs(fTracklets[iLayer]->GetZfit(0) - zref) > fTracklets[iLayer]->GetPadLength() * 0.5 + 1.0) acceptablez = kFALSE; } return acceptablez; } //_____________________________________________________________________________ Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::GetYat(Double_t x) const { // // Calculate y position out of the track parameters // y: R^2 = (x - x0)^2 + (y - y0)^2 // => y = y0 +/- Sqrt(R^2 - (x - x0)^2) // R = Sqrt() = 1/Curvature // => y = y0 +/- Sqrt(1/Curvature^2 - (x - x0)^2) // Double_t y = 0; Double_t disc = (x * fParameters[0] + fParameters[1]); disc = 1 - fParameters[0]*fParameters[2] + fParameters[1]*fParameters[1] - disc*disc; if (disc >= 0) { disc = TMath::Sqrt(disc); y = (1.0 - disc) / fParameters[0]; } return y; } //_____________________________________________________________________________ Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::GetZat(Double_t x) const { // // Return z position for a given x position // Simple linear function // return fParameters[3] + fParameters[4] * (x - fXref); } //_____________________________________________________________________________ Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::GetDyDxAt(Double_t x) const { // // Calculate dydx at a given radial position out of the track parameters // dy: R^2 = (x - x0)^2 + (y - y0)^2 // => y = +/- Sqrt(R^2 - (x - x0)^2) + y0 // => dy/dx = (x - x0)/Sqrt(R^2 - (x - x0)^2) // Curvature: cr = 1/R = a/Sqrt(1 + b^2 - c*a) // => dy/dx = (x - x0)/(1/(cr^2) - (x - x0)^2) // Double_t x0 = -fParameters[1] / fParameters[0]; Double_t curvature = GetCurvature(); Double_t dy = 0; if (-fParameters[2] * fParameters[0] + fParameters[1] * fParameters[1] + 1 > 0) { if (1.0/(curvature * curvature) - (x - x0) * (x - x0) > 0.0) { Double_t yderiv = (x - x0) / TMath::Sqrt(1.0/(curvature * curvature) - (x - x0) * (x - x0)); if (fParameters[0] < 0) yderiv *= -1.0; dy = yderiv; } } return dy; } //_____________________________________________________________________________ Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::GetCurvature() const { // // Calculate track curvature // // Double_t curvature = 1.0 + fParameters[1]*fParameters[1] - fParameters[2]*fParameters[0]; if (curvature > 0.0) curvature = fParameters[0] / TMath::Sqrt(curvature); return curvature; } //_____________________________________________________________________________ void AliTRDtrackerV1::AliTRDtrackFitterRieman::GetCovAt(Double_t x, Double_t *cov) const { // // Error Definition according to gauss error propagation // TMatrixD transform(3,3); transform(0,0) = transform(1,1) = transform(2,2) = 1; transform(0,1) = transform(1,2) = x; transform(0,2) = x*x; TMatrixD covariance(transform, TMatrixD::kMult, *fCovarPolY); covariance *= transform.T(); cov[0] = covariance(0,0); TMatrixD transformZ(2,2); transformZ(0,0) = transformZ(1,1) = 1; transformZ(0,1) = x; TMatrixD covarZ(transformZ, TMatrixD::kMult, *fCovarPolZ); covarZ *= transformZ.T(); cov[1] = covarZ(0,0); cov[2] = 0; } //____________________________________________________________________ Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::CalculateReferenceX(){ // // Calculates the reference x-position for the tilted Rieman fit defined as middle // of the stack (middle between layers 2 and 3). For the calculation all the tracklets // are taken into account // // Parameters: - Array of tracklets(AliTRDseedV1) // // Output: - The reference x-position(Float_t) // Int_t nDistances = 0; Float_t meanDistance = 0.; Int_t startIndex = 5; for(Int_t il =5; il > 0; il--){ if(fTracklets[il]->IsOK() && fTracklets[il -1]->IsOK()){ Float_t xdiff = fTracklets[il]->GetX0() - fTracklets[il -1]->GetX0(); meanDistance += xdiff; nDistances++; } if(fTracklets[il]->IsOK()) startIndex = il; } if(fTracklets[0]->IsOK()) startIndex = 0; if(!nDistances){ // We should normally never get here Float_t xpos[2]; memset(xpos, 0, sizeof(Float_t) * 2); Int_t iok = 0, idiff = 0; // This attempt is worse and should be avoided: // check for two chambers which are OK and repeat this without taking the mean value // Strategy avoids a division by 0; for(Int_t il = 5; il >= 0; il--){ if(fTracklets[il]->IsOK()){ xpos[iok] = fTracklets[il]->GetX0(); iok++; startIndex = il; } if(iok) idiff++; // to get the right difference; if(iok > 1) break; } if(iok > 1){ meanDistance = (xpos[0] - xpos[1])/idiff; } else{ // we have do not even have 2 layers which are OK? The we do not need to fit at all return 331.; } } else{ meanDistance /= nDistances; } return fTracklets[startIndex]->GetX0() + (2.5 - startIndex) * meanDistance - 0.5 * (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick()); }