/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ //////////////////////////////////////////////////////////////////////////// // // // TRAP config // // // // Author: J. Klein (Jochen.Klein@cern.ch) // // // //////////////////////////////////////////////////////////////////////////// #include "AliLog.h" #include "AliTRDgeometry.h" #include "AliTRDfeeParam.h" #include "AliTRDtrapConfig.h" #include #include #include ClassImp(AliTRDtrapConfig) AliTRDtrapConfig* AliTRDtrapConfig::fgInstance = 0x0; const Int_t AliTRDtrapConfig::fgkMaxMcm = AliTRDfeeParam::GetNmcmRob() + 2; const Int_t AliTRDtrapConfig::fgkDmemStartAddress = 0xc000; AliTRDtrapConfig::AliTRDtrapConfig() : TObject(), fScaleQ0(0), fScaleQ1(0) { // default constructor, initializing array of TRAP registers // Name Address Nbits Reset Value fRegs[kSML0] = SimpleReg_t("SML0", 0x0A00, 15, 0x4050 ); // Global state machine fRegs[kSML1] = SimpleReg_t("SML1", 0x0A01, 15, 0x4200 ); fRegs[kSML2] = SimpleReg_t("SML2", 0x0A02, 15, 0x4384 ); fRegs[kSMMODE] = SimpleReg_t("SMMODE", 0x0A03, 16, 0xF0E2 ); fRegs[kNITM0] = SimpleReg_t("NITM0", 0x0A08, 14, 0x3FFF ); fRegs[kNITM1] = SimpleReg_t("NITM1", 0x0A09, 14, 0x3FFF ); fRegs[kNITM2] = SimpleReg_t("NITM2", 0x0A0A, 14, 0x3FFF ); fRegs[kNIP4D] = SimpleReg_t("NIP4D", 0x0A0B, 7, 0x7F ); fRegs[kCPU0CLK] = SimpleReg_t("CPU0CLK", 0x0A20, 5, 0x07 ); fRegs[kCPU1CLK] = SimpleReg_t("CPU1CLK", 0x0A22, 5, 0x07 ); fRegs[kCPU2CLK] = SimpleReg_t("CPU2CLK", 0x0A24, 5, 0x07 ); fRegs[kCPU3CLK] = SimpleReg_t("CPU3CLK", 0x0A26, 5, 0x07 ); fRegs[kNICLK] = SimpleReg_t("NICLK", 0x0A28, 5, 0x07 ); fRegs[kFILCLK] = SimpleReg_t("FILCLK", 0x0A2A, 5, 0x07 ); fRegs[kPRECLK] = SimpleReg_t("PRECLK", 0x0A2C, 5, 0x07 ); fRegs[kADCEN] = SimpleReg_t("ADCEN", 0x0A2E, 5, 0x07 ); fRegs[kNIODE] = SimpleReg_t("NIODE", 0x0A30, 5, 0x07 ); fRegs[kNIOCE] = SimpleReg_t("NIOCE", 0x0A32, 6, 0x21 ); // bit 5 is status bit (read-only)! fRegs[kNIIDE] = SimpleReg_t("NIIDE", 0x0A34, 5, 0x07 ); fRegs[kNIICE] = SimpleReg_t("NIICE", 0x0A36, 5, 0x07 ); fRegs[kARBTIM] = SimpleReg_t("ARBTIM", 0x0A3F, 4, 0x0 ); // Arbiter fRegs[kIA0IRQ0] = SimpleReg_t("IA0IRQ0", 0x0B00, 12, 0x000 ); // IVT of CPU0 fRegs[kIA0IRQ1] = SimpleReg_t("IA0IRQ1", 0x0B01, 12, 0x000 ); fRegs[kIA0IRQ2] = SimpleReg_t("IA0IRQ2", 0x0B02, 12, 0x000 ); fRegs[kIA0IRQ3] = SimpleReg_t("IA0IRQ3", 0x0B03, 12, 0x000 ); fRegs[kIA0IRQ4] = SimpleReg_t("IA0IRQ4", 0x0B04, 12, 0x000 ); fRegs[kIA0IRQ5] = SimpleReg_t("IA0IRQ5", 0x0B05, 12, 0x000 ); fRegs[kIA0IRQ6] = SimpleReg_t("IA0IRQ6", 0x0B06, 12, 0x000 ); fRegs[kIA0IRQ7] = SimpleReg_t("IA0IRQ7", 0x0B07, 12, 0x000 ); fRegs[kIA0IRQ8] = SimpleReg_t("IA0IRQ8", 0x0B08, 12, 0x000 ); fRegs[kIA0IRQ9] = SimpleReg_t("IA0IRQ9", 0x0B09, 12, 0x000 ); fRegs[kIA0IRQA] = SimpleReg_t("IA0IRQA", 0x0B0A, 12, 0x000 ); fRegs[kIA0IRQB] = SimpleReg_t("IA0IRQB", 0x0B0B, 12, 0x000 ); fRegs[kIA0IRQC] = SimpleReg_t("IA0IRQC", 0x0B0C, 12, 0x000 ); fRegs[kIRQSW0] = SimpleReg_t("IRQSW0", 0x0B0D, 13, 0x1FFF ); fRegs[kIRQHW0] = SimpleReg_t("IRQHW0", 0x0B0E, 13, 0x0000 ); fRegs[kIRQHL0] = SimpleReg_t("IRQHL0", 0x0B0F, 13, 0x0000 ); fRegs[kIA1IRQ0] = SimpleReg_t("IA1IRQ0", 0x0B20, 12, 0x000 ); // IVT of CPU1 fRegs[kIA1IRQ1] = SimpleReg_t("IA1IRQ1", 0x0B21, 12, 0x000 ); fRegs[kIA1IRQ2] = SimpleReg_t("IA1IRQ2", 0x0B22, 12, 0x000 ); fRegs[kIA1IRQ3] = SimpleReg_t("IA1IRQ3", 0x0B23, 12, 0x000 ); fRegs[kIA1IRQ4] = SimpleReg_t("IA1IRQ4", 0x0B24, 12, 0x000 ); fRegs[kIA1IRQ5] = SimpleReg_t("IA1IRQ5", 0x0B25, 12, 0x000 ); fRegs[kIA1IRQ6] = SimpleReg_t("IA1IRQ6", 0x0B26, 12, 0x000 ); fRegs[kIA1IRQ7] = SimpleReg_t("IA1IRQ7", 0x0B27, 12, 0x000 ); fRegs[kIA1IRQ8] = SimpleReg_t("IA1IRQ8", 0x0B28, 12, 0x000 ); fRegs[kIA1IRQ9] = SimpleReg_t("IA1IRQ9", 0x0B29, 12, 0x000 ); fRegs[kIA1IRQA] = SimpleReg_t("IA1IRQA", 0x0B2A, 12, 0x000 ); fRegs[kIA1IRQB] = SimpleReg_t("IA1IRQB", 0x0B2B, 12, 0x000 ); fRegs[kIA1IRQC] = SimpleReg_t("IA1IRQC", 0x0B2C, 12, 0x000 ); fRegs[kIRQSW1] = SimpleReg_t("IRQSW1", 0x0B2D, 13, 0x1FFF ); fRegs[kIRQHW1] = SimpleReg_t("IRQHW1", 0x0B2E, 13, 0x0000 ); fRegs[kIRQHL1] = SimpleReg_t("IRQHL1", 0x0B2F, 13, 0x0000 ); fRegs[kIA2IRQ0] = SimpleReg_t("IA2IRQ0", 0x0B40, 12, 0x000 ); // IVT of CPU2 fRegs[kIA2IRQ1] = SimpleReg_t("IA2IRQ1", 0x0B41, 12, 0x000 ); fRegs[kIA2IRQ2] = SimpleReg_t("IA2IRQ2", 0x0B42, 12, 0x000 ); fRegs[kIA2IRQ3] = SimpleReg_t("IA2IRQ3", 0x0B43, 12, 0x000 ); fRegs[kIA2IRQ4] = SimpleReg_t("IA2IRQ4", 0x0B44, 12, 0x000 ); fRegs[kIA2IRQ5] = SimpleReg_t("IA2IRQ5", 0x0B45, 12, 0x000 ); fRegs[kIA2IRQ6] = SimpleReg_t("IA2IRQ6", 0x0B46, 12, 0x000 ); fRegs[kIA2IRQ7] = SimpleReg_t("IA2IRQ7", 0x0B47, 12, 0x000 ); fRegs[kIA2IRQ8] = SimpleReg_t("IA2IRQ8", 0x0B48, 12, 0x000 ); fRegs[kIA2IRQ9] = SimpleReg_t("IA2IRQ9", 0x0B49, 12, 0x000 ); fRegs[kIA2IRQA] = SimpleReg_t("IA2IRQA", 0x0B4A, 12, 0x000 ); fRegs[kIA2IRQB] = SimpleReg_t("IA2IRQB", 0x0B4B, 12, 0x000 ); fRegs[kIA2IRQC] = SimpleReg_t("IA2IRQC", 0x0B4C, 12, 0x000 ); fRegs[kIRQSW2] = SimpleReg_t("IRQSW2", 0x0B4D, 13, 0x1FFF ); fRegs[kIRQHW2] = SimpleReg_t("IRQHW2", 0x0B4E, 13, 0x0000 ); fRegs[kIRQHL2] = SimpleReg_t("IRQHL2", 0x0B4F, 13, 0x0000 ); fRegs[kIA3IRQ0] = SimpleReg_t("IA3IRQ0", 0x0B60, 12, 0x000 ); // IVT of CPU3 fRegs[kIA3IRQ1] = SimpleReg_t("IA3IRQ1", 0x0B61, 12, 0x000 ); fRegs[kIA3IRQ2] = SimpleReg_t("IA3IRQ2", 0x0B62, 12, 0x000 ); fRegs[kIA3IRQ3] = SimpleReg_t("IA3IRQ3", 0x0B63, 12, 0x000 ); fRegs[kIA3IRQ4] = SimpleReg_t("IA3IRQ4", 0x0B64, 12, 0x000 ); fRegs[kIA3IRQ5] = SimpleReg_t("IA3IRQ5", 0x0B65, 12, 0x000 ); fRegs[kIA3IRQ6] = SimpleReg_t("IA3IRQ6", 0x0B66, 12, 0x000 ); fRegs[kIA3IRQ7] = SimpleReg_t("IA3IRQ7", 0x0B67, 12, 0x000 ); fRegs[kIA3IRQ8] = SimpleReg_t("IA3IRQ8", 0x0B68, 12, 0x000 ); fRegs[kIA3IRQ9] = SimpleReg_t("IA3IRQ9", 0x0B69, 12, 0x000 ); fRegs[kIA3IRQA] = SimpleReg_t("IA3IRQA", 0x0B6A, 12, 0x000 ); fRegs[kIA3IRQB] = SimpleReg_t("IA3IRQB", 0x0B6B, 12, 0x000 ); fRegs[kIA3IRQC] = SimpleReg_t("IA3IRQC", 0x0B6C, 12, 0x000 ); fRegs[kIRQSW3] = SimpleReg_t("IRQSW3", 0x0B6D, 13, 0x1FFF ); fRegs[kIRQHW3] = SimpleReg_t("IRQHW3", 0x0B6E, 13, 0x0000 ); fRegs[kIRQHL3] = SimpleReg_t("IRQHL3", 0x0B6F, 13, 0x0000 ); fRegs[kCTGDINI] = SimpleReg_t("CTGDINI", 0x0B80, 32, 0x00000000 ); // Global Counter/Timer fRegs[kCTGCTRL] = SimpleReg_t("CTGCTRL", 0x0B81, 12, 0xE3F ); fRegs[kC08CPU0] = SimpleReg_t("C08CPU0", 0x0C00, 32, 0x00000000 ); // CPU constants fRegs[kC09CPU0] = SimpleReg_t("C09CPU0", 0x0C01, 32, 0x00000000 ); fRegs[kC10CPU0] = SimpleReg_t("C10CPU0", 0x0C02, 32, 0x00000000 ); fRegs[kC11CPU0] = SimpleReg_t("C11CPU0", 0x0C03, 32, 0x00000000 ); fRegs[kC12CPUA] = SimpleReg_t("C12CPUA", 0x0C04, 32, 0x00000000 ); fRegs[kC13CPUA] = SimpleReg_t("C13CPUA", 0x0C05, 32, 0x00000000 ); fRegs[kC14CPUA] = SimpleReg_t("C14CPUA", 0x0C06, 32, 0x00000000 ); fRegs[kC15CPUA] = SimpleReg_t("C15CPUA", 0x0C07, 32, 0x00000000 ); fRegs[kC08CPU1] = SimpleReg_t("C08CPU1", 0x0C08, 32, 0x00000000 ); fRegs[kC09CPU1] = SimpleReg_t("C09CPU1", 0x0C09, 32, 0x00000000 ); fRegs[kC10CPU1] = SimpleReg_t("C10CPU1", 0x0C0A, 32, 0x00000000 ); fRegs[kC11CPU1] = SimpleReg_t("C11CPU1", 0x0C0B, 32, 0x00000000 ); fRegs[kC08CPU2] = SimpleReg_t("C08CPU2", 0x0C10, 32, 0x00000000 ); fRegs[kC09CPU2] = SimpleReg_t("C09CPU2", 0x0C11, 32, 0x00000000 ); fRegs[kC10CPU2] = SimpleReg_t("C10CPU2", 0x0C12, 32, 0x00000000 ); fRegs[kC11CPU2] = SimpleReg_t("C11CPU2", 0x0C13, 32, 0x00000000 ); fRegs[kC08CPU3] = SimpleReg_t("C08CPU3", 0x0C18, 32, 0x00000000 ); fRegs[kC09CPU3] = SimpleReg_t("C09CPU3", 0x0C19, 32, 0x00000000 ); fRegs[kC10CPU3] = SimpleReg_t("C10CPU3", 0x0C1A, 32, 0x00000000 ); fRegs[kC11CPU3] = SimpleReg_t("C11CPU3", 0x0C1B, 32, 0x00000000 ); fRegs[kNMOD] = SimpleReg_t("NMOD", 0x0D40, 6, 0x08 ); // NI interface fRegs[kNDLY] = SimpleReg_t("NDLY", 0x0D41, 30, 0x24924924 ); fRegs[kNED] = SimpleReg_t("NED", 0x0D42, 16, 0xA240 ); fRegs[kNTRO] = SimpleReg_t("NTRO", 0x0D43, 18, 0x3FFFC ); fRegs[kNRRO] = SimpleReg_t("NRRO", 0x0D44, 18, 0x3FFFC ); fRegs[kNES] = SimpleReg_t("NES", 0x0D45, 32, 0x00000000 ); fRegs[kNTP] = SimpleReg_t("NTP", 0x0D46, 32, 0x0000FFFF ); fRegs[kNBND] = SimpleReg_t("NBND", 0x0D47, 16, 0x6020 ); fRegs[kNP0] = SimpleReg_t("NP0", 0x0D48, 11, 0x44C ); fRegs[kNP1] = SimpleReg_t("NP1", 0x0D49, 11, 0x44C ); fRegs[kNP2] = SimpleReg_t("NP2", 0x0D4A, 11, 0x44C ); fRegs[kNP3] = SimpleReg_t("NP3", 0x0D4B, 11, 0x44C ); fRegs[kNCUT] = SimpleReg_t("NCUT", 0x0D4C, 32, 0xFFFFFFFF ); fRegs[kTPPT0] = SimpleReg_t("TPPT0", 0x3000, 7, 0x01 ); // Filter and Preprocessor fRegs[kTPFS] = SimpleReg_t("TPFS", 0x3001, 7, 0x05 ); fRegs[kTPFE] = SimpleReg_t("TPFE", 0x3002, 7, 0x14 ); fRegs[kTPPGR] = SimpleReg_t("TPPGR", 0x3003, 7, 0x15 ); fRegs[kTPPAE] = SimpleReg_t("TPPAE", 0x3004, 7, 0x1E ); fRegs[kTPQS0] = SimpleReg_t("TPQS0", 0x3005, 7, 0x00 ); fRegs[kTPQE0] = SimpleReg_t("TPQE0", 0x3006, 7, 0x0A ); fRegs[kTPQS1] = SimpleReg_t("TPQS1", 0x3007, 7, 0x0B ); fRegs[kTPQE1] = SimpleReg_t("TPQE1", 0x3008, 7, 0x14 ); fRegs[kEBD] = SimpleReg_t("EBD", 0x3009, 3, 0x0 ); fRegs[kEBAQA] = SimpleReg_t("EBAQA", 0x300A, 7, 0x00 ); fRegs[kEBSIA] = SimpleReg_t("EBSIA", 0x300B, 7, 0x20 ); fRegs[kEBSF] = SimpleReg_t("EBSF", 0x300C, 1, 0x1 ); fRegs[kEBSIM] = SimpleReg_t("EBSIM", 0x300D, 1, 0x1 ); fRegs[kEBPP] = SimpleReg_t("EBPP", 0x300E, 1, 0x1 ); fRegs[kEBPC] = SimpleReg_t("EBPC", 0x300F, 1, 0x1 ); fRegs[kEBIS] = SimpleReg_t("EBIS", 0x3014, 10, 0x005 ); fRegs[kEBIT] = SimpleReg_t("EBIT", 0x3015, 12, 0x028 ); fRegs[kEBIL] = SimpleReg_t("EBIL", 0x3016, 8, 0xF0 ); fRegs[kEBIN] = SimpleReg_t("EBIN", 0x3017, 1, 0x1 ); fRegs[kFLBY] = SimpleReg_t("FLBY", 0x3018, 1, 0x0 ); fRegs[kFPBY] = SimpleReg_t("FPBY", 0x3019, 1, 0x0 ); fRegs[kFGBY] = SimpleReg_t("FGBY", 0x301A, 1, 0x0 ); fRegs[kFTBY] = SimpleReg_t("FTBY", 0x301B, 1, 0x0 ); fRegs[kFCBY] = SimpleReg_t("FCBY", 0x301C, 1, 0x0 ); fRegs[kFPTC] = SimpleReg_t("FPTC", 0x3020, 2, 0x3 ); fRegs[kFPNP] = SimpleReg_t("FPNP", 0x3021, 9, 0x078 ); fRegs[kFPCL] = SimpleReg_t("FPCL", 0x3022, 1, 0x1 ); fRegs[kFGTA] = SimpleReg_t("FGTA", 0x3028, 12, 0x014 ); fRegs[kFGTB] = SimpleReg_t("FGTB", 0x3029, 12, 0x80C ); fRegs[kFGCL] = SimpleReg_t("FGCL", 0x302A, 1, 0x1 ); fRegs[kFTAL] = SimpleReg_t("FTAL", 0x3030, 10, 0x0F6 ); fRegs[kFTLL] = SimpleReg_t("FTLL", 0x3031, 9, 0x11D ); fRegs[kFTLS] = SimpleReg_t("FTLS", 0x3032, 9, 0x0D3 ); fRegs[kFCW1] = SimpleReg_t("FCW1", 0x3038, 8, 0x1E ); fRegs[kFCW2] = SimpleReg_t("FCW2", 0x3039, 8, 0xD4 ); fRegs[kFCW3] = SimpleReg_t("FCW3", 0x303A, 8, 0xE6 ); fRegs[kFCW4] = SimpleReg_t("FCW4", 0x303B, 8, 0x4A ); fRegs[kFCW5] = SimpleReg_t("FCW5", 0x303C, 8, 0xEF ); fRegs[kTPFP] = SimpleReg_t("TPFP", 0x3040, 9, 0x037 ); fRegs[kTPHT] = SimpleReg_t("TPHT", 0x3041, 14, 0x00A0 ); fRegs[kTPVT] = SimpleReg_t("TPVT", 0x3042, 6, 0x00 ); fRegs[kTPVBY] = SimpleReg_t("TPVBY", 0x3043, 1, 0x0 ); fRegs[kTPCT] = SimpleReg_t("TPCT", 0x3044, 5, 0x08 ); fRegs[kTPCL] = SimpleReg_t("TPCL", 0x3045, 5, 0x01 ); fRegs[kTPCBY] = SimpleReg_t("TPCBY", 0x3046, 1, 0x1 ); fRegs[kTPD] = SimpleReg_t("TPD", 0x3047, 4, 0xF ); fRegs[kTPCI0] = SimpleReg_t("TPCI0", 0x3048, 5, 0x00 ); fRegs[kTPCI1] = SimpleReg_t("TPCI1", 0x3049, 5, 0x00 ); fRegs[kTPCI2] = SimpleReg_t("TPCI2", 0x304A, 5, 0x00 ); fRegs[kTPCI3] = SimpleReg_t("TPCI3", 0x304B, 5, 0x00 ); fRegs[kADCMSK] = SimpleReg_t("ADCMSK", 0x3050, 21, 0x1FFFFF ); fRegs[kADCINB] = SimpleReg_t("ADCINB", 0x3051, 2, 0x2 ); fRegs[kADCDAC] = SimpleReg_t("ADCDAC", 0x3052, 5, 0x10 ); fRegs[kADCPAR] = SimpleReg_t("ADCPAR", 0x3053, 18, 0x195EF ); fRegs[kADCTST] = SimpleReg_t("ADCTST", 0x3054, 2, 0x0 ); fRegs[kSADCAZ] = SimpleReg_t("SADCAZ", 0x3055, 1, 0x1 ); fRegs[kFGF0] = SimpleReg_t("FGF0", 0x3080, 9, 0x000 ); fRegs[kFGF1] = SimpleReg_t("FGF1", 0x3081, 9, 0x000 ); fRegs[kFGF2] = SimpleReg_t("FGF2", 0x3082, 9, 0x000 ); fRegs[kFGF3] = SimpleReg_t("FGF3", 0x3083, 9, 0x000 ); fRegs[kFGF4] = SimpleReg_t("FGF4", 0x3084, 9, 0x000 ); fRegs[kFGF5] = SimpleReg_t("FGF5", 0x3085, 9, 0x000 ); fRegs[kFGF6] = SimpleReg_t("FGF6", 0x3086, 9, 0x000 ); fRegs[kFGF7] = SimpleReg_t("FGF7", 0x3087, 9, 0x000 ); fRegs[kFGF8] = SimpleReg_t("FGF8", 0x3088, 9, 0x000 ); fRegs[kFGF9] = SimpleReg_t("FGF9", 0x3089, 9, 0x000 ); fRegs[kFGF10] = SimpleReg_t("FGF10", 0x308A, 9, 0x000 ); fRegs[kFGF11] = SimpleReg_t("FGF11", 0x308B, 9, 0x000 ); fRegs[kFGF12] = SimpleReg_t("FGF12", 0x308C, 9, 0x000 ); fRegs[kFGF13] = SimpleReg_t("FGF13", 0x308D, 9, 0x000 ); fRegs[kFGF14] = SimpleReg_t("FGF14", 0x308E, 9, 0x000 ); fRegs[kFGF15] = SimpleReg_t("FGF15", 0x308F, 9, 0x000 ); fRegs[kFGF16] = SimpleReg_t("FGF16", 0x3090, 9, 0x000 ); fRegs[kFGF17] = SimpleReg_t("FGF17", 0x3091, 9, 0x000 ); fRegs[kFGF18] = SimpleReg_t("FGF18", 0x3092, 9, 0x000 ); fRegs[kFGF19] = SimpleReg_t("FGF19", 0x3093, 9, 0x000 ); fRegs[kFGF20] = SimpleReg_t("FGF20", 0x3094, 9, 0x000 ); fRegs[kFGA0] = SimpleReg_t("FGA0", 0x30A0, 6, 0x00 ); fRegs[kFGA1] = SimpleReg_t("FGA1", 0x30A1, 6, 0x00 ); fRegs[kFGA2] = SimpleReg_t("FGA2", 0x30A2, 6, 0x00 ); fRegs[kFGA3] = SimpleReg_t("FGA3", 0x30A3, 6, 0x00 ); fRegs[kFGA4] = SimpleReg_t("FGA4", 0x30A4, 6, 0x00 ); fRegs[kFGA5] = SimpleReg_t("FGA5", 0x30A5, 6, 0x00 ); fRegs[kFGA6] = SimpleReg_t("FGA6", 0x30A6, 6, 0x00 ); fRegs[kFGA7] = SimpleReg_t("FGA7", 0x30A7, 6, 0x00 ); fRegs[kFGA8] = SimpleReg_t("FGA8", 0x30A8, 6, 0x00 ); fRegs[kFGA9] = SimpleReg_t("FGA9", 0x30A9, 6, 0x00 ); fRegs[kFGA10] = SimpleReg_t("FGA10", 0x30AA, 6, 0x00 ); fRegs[kFGA11] = SimpleReg_t("FGA11", 0x30AB, 6, 0x00 ); fRegs[kFGA12] = SimpleReg_t("FGA12", 0x30AC, 6, 0x00 ); fRegs[kFGA13] = SimpleReg_t("FGA13", 0x30AD, 6, 0x00 ); fRegs[kFGA14] = SimpleReg_t("FGA14", 0x30AE, 6, 0x00 ); fRegs[kFGA15] = SimpleReg_t("FGA15", 0x30AF, 6, 0x00 ); fRegs[kFGA16] = SimpleReg_t("FGA16", 0x30B0, 6, 0x00 ); fRegs[kFGA17] = SimpleReg_t("FGA17", 0x30B1, 6, 0x00 ); fRegs[kFGA18] = SimpleReg_t("FGA18", 0x30B2, 6, 0x00 ); fRegs[kFGA19] = SimpleReg_t("FGA19", 0x30B3, 6, 0x00 ); fRegs[kFGA20] = SimpleReg_t("FGA20", 0x30B4, 6, 0x00 ); fRegs[kFLL00] = SimpleReg_t("FLL00", 0x3100, 6, 0x00 ); // non-linearity table, 64 x 6 bits fRegs[kFLL01] = SimpleReg_t("FLL01", 0x3101, 6, 0x00 ); fRegs[kFLL02] = SimpleReg_t("FLL02", 0x3102, 6, 0x00 ); fRegs[kFLL03] = SimpleReg_t("FLL03", 0x3103, 6, 0x00 ); fRegs[kFLL04] = SimpleReg_t("FLL04", 0x3104, 6, 0x00 ); fRegs[kFLL05] = SimpleReg_t("FLL05", 0x3105, 6, 0x00 ); fRegs[kFLL06] = SimpleReg_t("FLL06", 0x3106, 6, 0x00 ); fRegs[kFLL07] = SimpleReg_t("FLL07", 0x3107, 6, 0x00 ); fRegs[kFLL08] = SimpleReg_t("FLL08", 0x3108, 6, 0x00 ); fRegs[kFLL09] = SimpleReg_t("FLL09", 0x3109, 6, 0x00 ); fRegs[kFLL0A] = SimpleReg_t("FLL0A", 0x310A, 6, 0x00 ); fRegs[kFLL0B] = SimpleReg_t("FLL0B", 0x310B, 6, 0x00 ); fRegs[kFLL0C] = SimpleReg_t("FLL0C", 0x310C, 6, 0x00 ); fRegs[kFLL0D] = SimpleReg_t("FLL0D", 0x310D, 6, 0x00 ); fRegs[kFLL0E] = SimpleReg_t("FLL0E", 0x310E, 6, 0x00 ); fRegs[kFLL0F] = SimpleReg_t("FLL0F", 0x310F, 6, 0x00 ); fRegs[kFLL10] = SimpleReg_t("FLL10", 0x3110, 6, 0x00 ); fRegs[kFLL11] = SimpleReg_t("FLL11", 0x3111, 6, 0x00 ); fRegs[kFLL12] = SimpleReg_t("FLL12", 0x3112, 6, 0x00 ); fRegs[kFLL13] = SimpleReg_t("FLL13", 0x3113, 6, 0x00 ); fRegs[kFLL14] = SimpleReg_t("FLL14", 0x3114, 6, 0x00 ); fRegs[kFLL15] = SimpleReg_t("FLL15", 0x3115, 6, 0x00 ); fRegs[kFLL16] = SimpleReg_t("FLL16", 0x3116, 6, 0x00 ); fRegs[kFLL17] = SimpleReg_t("FLL17", 0x3117, 6, 0x00 ); fRegs[kFLL18] = SimpleReg_t("FLL18", 0x3118, 6, 0x00 ); fRegs[kFLL19] = SimpleReg_t("FLL19", 0x3119, 6, 0x00 ); fRegs[kFLL1A] = SimpleReg_t("FLL1A", 0x311A, 6, 0x00 ); fRegs[kFLL1B] = SimpleReg_t("FLL1B", 0x311B, 6, 0x00 ); fRegs[kFLL1C] = SimpleReg_t("FLL1C", 0x311C, 6, 0x00 ); fRegs[kFLL1D] = SimpleReg_t("FLL1D", 0x311D, 6, 0x00 ); fRegs[kFLL1E] = SimpleReg_t("FLL1E", 0x311E, 6, 0x00 ); fRegs[kFLL1F] = SimpleReg_t("FLL1F", 0x311F, 6, 0x00 ); fRegs[kFLL20] = SimpleReg_t("FLL20", 0x3120, 6, 0x00 ); fRegs[kFLL21] = SimpleReg_t("FLL21", 0x3121, 6, 0x00 ); fRegs[kFLL22] = SimpleReg_t("FLL22", 0x3122, 6, 0x00 ); fRegs[kFLL23] = SimpleReg_t("FLL23", 0x3123, 6, 0x00 ); fRegs[kFLL24] = SimpleReg_t("FLL24", 0x3124, 6, 0x00 ); fRegs[kFLL25] = SimpleReg_t("FLL25", 0x3125, 6, 0x00 ); fRegs[kFLL26] = SimpleReg_t("FLL26", 0x3126, 6, 0x00 ); fRegs[kFLL27] = SimpleReg_t("FLL27", 0x3127, 6, 0x00 ); fRegs[kFLL28] = SimpleReg_t("FLL28", 0x3128, 6, 0x00 ); fRegs[kFLL29] = SimpleReg_t("FLL29", 0x3129, 6, 0x00 ); fRegs[kFLL2A] = SimpleReg_t("FLL2A", 0x312A, 6, 0x00 ); fRegs[kFLL2B] = SimpleReg_t("FLL2B", 0x312B, 6, 0x00 ); fRegs[kFLL2C] = SimpleReg_t("FLL2C", 0x312C, 6, 0x00 ); fRegs[kFLL2D] = SimpleReg_t("FLL2D", 0x312D, 6, 0x00 ); fRegs[kFLL2E] = SimpleReg_t("FLL2E", 0x312E, 6, 0x00 ); fRegs[kFLL2F] = SimpleReg_t("FLL2F", 0x312F, 6, 0x00 ); fRegs[kFLL30] = SimpleReg_t("FLL30", 0x3130, 6, 0x00 ); fRegs[kFLL31] = SimpleReg_t("FLL31", 0x3131, 6, 0x00 ); fRegs[kFLL32] = SimpleReg_t("FLL32", 0x3132, 6, 0x00 ); fRegs[kFLL33] = SimpleReg_t("FLL33", 0x3133, 6, 0x00 ); fRegs[kFLL34] = SimpleReg_t("FLL34", 0x3134, 6, 0x00 ); fRegs[kFLL35] = SimpleReg_t("FLL35", 0x3135, 6, 0x00 ); fRegs[kFLL36] = SimpleReg_t("FLL36", 0x3136, 6, 0x00 ); fRegs[kFLL37] = SimpleReg_t("FLL37", 0x3137, 6, 0x00 ); fRegs[kFLL38] = SimpleReg_t("FLL38", 0x3138, 6, 0x00 ); fRegs[kFLL39] = SimpleReg_t("FLL39", 0x3139, 6, 0x00 ); fRegs[kFLL3A] = SimpleReg_t("FLL3A", 0x313A, 6, 0x00 ); fRegs[kFLL3B] = SimpleReg_t("FLL3B", 0x313B, 6, 0x00 ); fRegs[kFLL3C] = SimpleReg_t("FLL3C", 0x313C, 6, 0x00 ); fRegs[kFLL3D] = SimpleReg_t("FLL3D", 0x313D, 6, 0x00 ); fRegs[kFLL3E] = SimpleReg_t("FLL3E", 0x313E, 6, 0x00 ); fRegs[kFLL3F] = SimpleReg_t("FLL3F", 0x313F, 6, 0x00 ); fRegs[kPASADEL] = SimpleReg_t("PASADEL", 0x3158, 8, 0xFF ); // end of non-lin table fRegs[kPASAPHA] = SimpleReg_t("PASAPHA", 0x3159, 6, 0x3F ); fRegs[kPASAPRA] = SimpleReg_t("PASAPRA", 0x315A, 6, 0x0F ); fRegs[kPASADAC] = SimpleReg_t("PASADAC", 0x315B, 8, 0x80 ); fRegs[kPASACHM] = SimpleReg_t("PASACHM", 0x315C, 19, 0x7FFFF ); fRegs[kPASASTL] = SimpleReg_t("PASASTL", 0x315D, 8, 0xFF ); fRegs[kPASAPR1] = SimpleReg_t("PASAPR1", 0x315E, 1, 0x0 ); fRegs[kPASAPR0] = SimpleReg_t("PASAPR0", 0x315F, 1, 0x0 ); fRegs[kSADCTRG] = SimpleReg_t("SADCTRG", 0x3161, 1, 0x0 ); fRegs[kSADCRUN] = SimpleReg_t("SADCRUN", 0x3162, 1, 0x0 ); fRegs[kSADCPWR] = SimpleReg_t("SADCPWR", 0x3163, 3, 0x7 ); fRegs[kL0TSIM] = SimpleReg_t("L0TSIM", 0x3165, 14, 0x0050 ); fRegs[kSADCEC] = SimpleReg_t("SADCEC", 0x3166, 7, 0x00 ); fRegs[kSADCMC] = SimpleReg_t("SADCMC", 0x3170, 8, 0xC0 ); fRegs[kSADCOC] = SimpleReg_t("SADCOC", 0x3171, 8, 0x19 ); fRegs[kSADCGTB] = SimpleReg_t("SADCGTB", 0x3172, 32, 0x37737700 ); fRegs[kSEBDEN] = SimpleReg_t("SEBDEN", 0x3178, 3, 0x0 ); fRegs[kSEBDOU] = SimpleReg_t("SEBDOU", 0x3179, 3, 0x0 ); fRegs[kTPL00] = SimpleReg_t("TPL00", 0x3180, 5, 0x00 ); // pos table, 128 x 5 bits fRegs[kTPL01] = SimpleReg_t("TPL01", 0x3181, 5, 0x00 ); fRegs[kTPL02] = SimpleReg_t("TPL02", 0x3182, 5, 0x00 ); fRegs[kTPL03] = SimpleReg_t("TPL03", 0x3183, 5, 0x00 ); fRegs[kTPL04] = SimpleReg_t("TPL04", 0x3184, 5, 0x00 ); fRegs[kTPL05] = SimpleReg_t("TPL05", 0x3185, 5, 0x00 ); fRegs[kTPL06] = SimpleReg_t("TPL06", 0x3186, 5, 0x00 ); fRegs[kTPL07] = SimpleReg_t("TPL07", 0x3187, 5, 0x00 ); fRegs[kTPL08] = SimpleReg_t("TPL08", 0x3188, 5, 0x00 ); fRegs[kTPL09] = SimpleReg_t("TPL09", 0x3189, 5, 0x00 ); fRegs[kTPL0A] = SimpleReg_t("TPL0A", 0x318A, 5, 0x00 ); fRegs[kTPL0B] = SimpleReg_t("TPL0B", 0x318B, 5, 0x00 ); fRegs[kTPL0C] = SimpleReg_t("TPL0C", 0x318C, 5, 0x00 ); fRegs[kTPL0D] = SimpleReg_t("TPL0D", 0x318D, 5, 0x00 ); fRegs[kTPL0E] = SimpleReg_t("TPL0E", 0x318E, 5, 0x00 ); fRegs[kTPL0F] = SimpleReg_t("TPL0F", 0x318F, 5, 0x00 ); fRegs[kTPL10] = SimpleReg_t("TPL10", 0x3190, 5, 0x00 ); fRegs[kTPL11] = SimpleReg_t("TPL11", 0x3191, 5, 0x00 ); fRegs[kTPL12] = SimpleReg_t("TPL12", 0x3192, 5, 0x00 ); fRegs[kTPL13] = SimpleReg_t("TPL13", 0x3193, 5, 0x00 ); fRegs[kTPL14] = SimpleReg_t("TPL14", 0x3194, 5, 0x00 ); fRegs[kTPL15] = SimpleReg_t("TPL15", 0x3195, 5, 0x00 ); fRegs[kTPL16] = SimpleReg_t("TPL16", 0x3196, 5, 0x00 ); fRegs[kTPL17] = SimpleReg_t("TPL17", 0x3197, 5, 0x00 ); fRegs[kTPL18] = SimpleReg_t("TPL18", 0x3198, 5, 0x00 ); fRegs[kTPL19] = SimpleReg_t("TPL19", 0x3199, 5, 0x00 ); fRegs[kTPL1A] = SimpleReg_t("TPL1A", 0x319A, 5, 0x00 ); fRegs[kTPL1B] = SimpleReg_t("TPL1B", 0x319B, 5, 0x00 ); fRegs[kTPL1C] = SimpleReg_t("TPL1C", 0x319C, 5, 0x00 ); fRegs[kTPL1D] = SimpleReg_t("TPL1D", 0x319D, 5, 0x00 ); fRegs[kTPL1E] = SimpleReg_t("TPL1E", 0x319E, 5, 0x00 ); fRegs[kTPL1F] = SimpleReg_t("TPL1F", 0x319F, 5, 0x00 ); fRegs[kTPL20] = SimpleReg_t("TPL20", 0x31A0, 5, 0x00 ); fRegs[kTPL21] = SimpleReg_t("TPL21", 0x31A1, 5, 0x00 ); fRegs[kTPL22] = SimpleReg_t("TPL22", 0x31A2, 5, 0x00 ); fRegs[kTPL23] = SimpleReg_t("TPL23", 0x31A3, 5, 0x00 ); fRegs[kTPL24] = SimpleReg_t("TPL24", 0x31A4, 5, 0x00 ); fRegs[kTPL25] = SimpleReg_t("TPL25", 0x31A5, 5, 0x00 ); fRegs[kTPL26] = SimpleReg_t("TPL26", 0x31A6, 5, 0x00 ); fRegs[kTPL27] = SimpleReg_t("TPL27", 0x31A7, 5, 0x00 ); fRegs[kTPL28] = SimpleReg_t("TPL28", 0x31A8, 5, 0x00 ); fRegs[kTPL29] = SimpleReg_t("TPL29", 0x31A9, 5, 0x00 ); fRegs[kTPL2A] = SimpleReg_t("TPL2A", 0x31AA, 5, 0x00 ); fRegs[kTPL2B] = SimpleReg_t("TPL2B", 0x31AB, 5, 0x00 ); fRegs[kTPL2C] = SimpleReg_t("TPL2C", 0x31AC, 5, 0x00 ); fRegs[kTPL2D] = SimpleReg_t("TPL2D", 0x31AD, 5, 0x00 ); fRegs[kTPL2E] = SimpleReg_t("TPL2E", 0x31AE, 5, 0x00 ); fRegs[kTPL2F] = SimpleReg_t("TPL2F", 0x31AF, 5, 0x00 ); fRegs[kTPL30] = SimpleReg_t("TPL30", 0x31B0, 5, 0x00 ); fRegs[kTPL31] = SimpleReg_t("TPL31", 0x31B1, 5, 0x00 ); fRegs[kTPL32] = SimpleReg_t("TPL32", 0x31B2, 5, 0x00 ); fRegs[kTPL33] = SimpleReg_t("TPL33", 0x31B3, 5, 0x00 ); fRegs[kTPL34] = SimpleReg_t("TPL34", 0x31B4, 5, 0x00 ); fRegs[kTPL35] = SimpleReg_t("TPL35", 0x31B5, 5, 0x00 ); fRegs[kTPL36] = SimpleReg_t("TPL36", 0x31B6, 5, 0x00 ); fRegs[kTPL37] = SimpleReg_t("TPL37", 0x31B7, 5, 0x00 ); fRegs[kTPL38] = SimpleReg_t("TPL38", 0x31B8, 5, 0x00 ); fRegs[kTPL39] = SimpleReg_t("TPL39", 0x31B9, 5, 0x00 ); fRegs[kTPL3A] = SimpleReg_t("TPL3A", 0x31BA, 5, 0x00 ); fRegs[kTPL3B] = SimpleReg_t("TPL3B", 0x31BB, 5, 0x00 ); fRegs[kTPL3C] = SimpleReg_t("TPL3C", 0x31BC, 5, 0x00 ); fRegs[kTPL3D] = SimpleReg_t("TPL3D", 0x31BD, 5, 0x00 ); fRegs[kTPL3E] = SimpleReg_t("TPL3E", 0x31BE, 5, 0x00 ); fRegs[kTPL3F] = SimpleReg_t("TPL3F", 0x31BF, 5, 0x00 ); fRegs[kTPL40] = SimpleReg_t("TPL40", 0x31C0, 5, 0x00 ); fRegs[kTPL41] = SimpleReg_t("TPL41", 0x31C1, 5, 0x00 ); fRegs[kTPL42] = SimpleReg_t("TPL42", 0x31C2, 5, 0x00 ); fRegs[kTPL43] = SimpleReg_t("TPL43", 0x31C3, 5, 0x00 ); fRegs[kTPL44] = SimpleReg_t("TPL44", 0x31C4, 5, 0x00 ); fRegs[kTPL45] = SimpleReg_t("TPL45", 0x31C5, 5, 0x00 ); fRegs[kTPL46] = SimpleReg_t("TPL46", 0x31C6, 5, 0x00 ); fRegs[kTPL47] = SimpleReg_t("TPL47", 0x31C7, 5, 0x00 ); fRegs[kTPL48] = SimpleReg_t("TPL48", 0x31C8, 5, 0x00 ); fRegs[kTPL49] = SimpleReg_t("TPL49", 0x31C9, 5, 0x00 ); fRegs[kTPL4A] = SimpleReg_t("TPL4A", 0x31CA, 5, 0x00 ); fRegs[kTPL4B] = SimpleReg_t("TPL4B", 0x31CB, 5, 0x00 ); fRegs[kTPL4C] = SimpleReg_t("TPL4C", 0x31CC, 5, 0x00 ); fRegs[kTPL4D] = SimpleReg_t("TPL4D", 0x31CD, 5, 0x00 ); fRegs[kTPL4E] = SimpleReg_t("TPL4E", 0x31CE, 5, 0x00 ); fRegs[kTPL4F] = SimpleReg_t("TPL4F", 0x31CF, 5, 0x00 ); fRegs[kTPL50] = SimpleReg_t("TPL50", 0x31D0, 5, 0x00 ); fRegs[kTPL51] = SimpleReg_t("TPL51", 0x31D1, 5, 0x00 ); fRegs[kTPL52] = SimpleReg_t("TPL52", 0x31D2, 5, 0x00 ); fRegs[kTPL53] = SimpleReg_t("TPL53", 0x31D3, 5, 0x00 ); fRegs[kTPL54] = SimpleReg_t("TPL54", 0x31D4, 5, 0x00 ); fRegs[kTPL55] = SimpleReg_t("TPL55", 0x31D5, 5, 0x00 ); fRegs[kTPL56] = SimpleReg_t("TPL56", 0x31D6, 5, 0x00 ); fRegs[kTPL57] = SimpleReg_t("TPL57", 0x31D7, 5, 0x00 ); fRegs[kTPL58] = SimpleReg_t("TPL58", 0x31D8, 5, 0x00 ); fRegs[kTPL59] = SimpleReg_t("TPL59", 0x31D9, 5, 0x00 ); fRegs[kTPL5A] = SimpleReg_t("TPL5A", 0x31DA, 5, 0x00 ); fRegs[kTPL5B] = SimpleReg_t("TPL5B", 0x31DB, 5, 0x00 ); fRegs[kTPL5C] = SimpleReg_t("TPL5C", 0x31DC, 5, 0x00 ); fRegs[kTPL5D] = SimpleReg_t("TPL5D", 0x31DD, 5, 0x00 ); fRegs[kTPL5E] = SimpleReg_t("TPL5E", 0x31DE, 5, 0x00 ); fRegs[kTPL5F] = SimpleReg_t("TPL5F", 0x31DF, 5, 0x00 ); fRegs[kTPL60] = SimpleReg_t("TPL60", 0x31E0, 5, 0x00 ); fRegs[kTPL61] = SimpleReg_t("TPL61", 0x31E1, 5, 0x00 ); fRegs[kTPL62] = SimpleReg_t("TPL62", 0x31E2, 5, 0x00 ); fRegs[kTPL63] = SimpleReg_t("TPL63", 0x31E3, 5, 0x00 ); fRegs[kTPL64] = SimpleReg_t("TPL64", 0x31E4, 5, 0x00 ); fRegs[kTPL65] = SimpleReg_t("TPL65", 0x31E5, 5, 0x00 ); fRegs[kTPL66] = SimpleReg_t("TPL66", 0x31E6, 5, 0x00 ); fRegs[kTPL67] = SimpleReg_t("TPL67", 0x31E7, 5, 0x00 ); fRegs[kTPL68] = SimpleReg_t("TPL68", 0x31E8, 5, 0x00 ); fRegs[kTPL69] = SimpleReg_t("TPL69", 0x31E9, 5, 0x00 ); fRegs[kTPL6A] = SimpleReg_t("TPL6A", 0x31EA, 5, 0x00 ); fRegs[kTPL6B] = SimpleReg_t("TPL6B", 0x31EB, 5, 0x00 ); fRegs[kTPL6C] = SimpleReg_t("TPL6C", 0x31EC, 5, 0x00 ); fRegs[kTPL6D] = SimpleReg_t("TPL6D", 0x31ED, 5, 0x00 ); fRegs[kTPL6E] = SimpleReg_t("TPL6E", 0x31EE, 5, 0x00 ); fRegs[kTPL6F] = SimpleReg_t("TPL6F", 0x31EF, 5, 0x00 ); fRegs[kTPL70] = SimpleReg_t("TPL70", 0x31F0, 5, 0x00 ); fRegs[kTPL71] = SimpleReg_t("TPL71", 0x31F1, 5, 0x00 ); fRegs[kTPL72] = SimpleReg_t("TPL72", 0x31F2, 5, 0x00 ); fRegs[kTPL73] = SimpleReg_t("TPL73", 0x31F3, 5, 0x00 ); fRegs[kTPL74] = SimpleReg_t("TPL74", 0x31F4, 5, 0x00 ); fRegs[kTPL75] = SimpleReg_t("TPL75", 0x31F5, 5, 0x00 ); fRegs[kTPL76] = SimpleReg_t("TPL76", 0x31F6, 5, 0x00 ); fRegs[kTPL77] = SimpleReg_t("TPL77", 0x31F7, 5, 0x00 ); fRegs[kTPL78] = SimpleReg_t("TPL78", 0x31F8, 5, 0x00 ); fRegs[kTPL79] = SimpleReg_t("TPL79", 0x31F9, 5, 0x00 ); fRegs[kTPL7A] = SimpleReg_t("TPL7A", 0x31FA, 5, 0x00 ); fRegs[kTPL7B] = SimpleReg_t("TPL7B", 0x31FB, 5, 0x00 ); fRegs[kTPL7C] = SimpleReg_t("TPL7C", 0x31FC, 5, 0x00 ); fRegs[kTPL7D] = SimpleReg_t("TPL7D", 0x31FD, 5, 0x00 ); fRegs[kTPL7E] = SimpleReg_t("TPL7E", 0x31FE, 5, 0x00 ); fRegs[kTPL7F] = SimpleReg_t("TPL7F", 0x31FF, 5, 0x00 ); fRegs[kMEMRW] = SimpleReg_t("MEMRW", 0xD000, 7, 0x79 ); // end of pos table fRegs[kMEMCOR] = SimpleReg_t("MEMCOR", 0xD001, 9, 0x000 ); fRegs[kDMDELA] = SimpleReg_t("DMDELA", 0xD002, 4, 0x8 ); fRegs[kDMDELS] = SimpleReg_t("DMDELS", 0xD003, 4, 0x8 ); for(Int_t iAddr = 0; iAddr < fgkDmemWords; iAddr++) { if(iAddr == fgkDmemAddrDeflCorr - fgkDmemStartAddress) { fDmem[iAddr] = new UInt_t[fgkDmemSizeSmIndividual]; fDmemDepth[iAddr] = fgkDmemSizeSmIndividual; } else if(iAddr == fgkDmemAddrNdrift - fgkDmemStartAddress) { fDmem[iAddr] = new UInt_t[fgkDmemSizeSmRocIndividual]; fDmemDepth[iAddr] = fgkDmemSizeSmRocIndividual; } else if(iAddr >= fgkDmemAddrDeflCutStart-fgkDmemStartAddress && iAddr <= fgkDmemAddrDeflCutEnd-fgkDmemStartAddress) { fDmem[iAddr] = new UInt_t[fgkDmemSizeSmIndividual]; fDmemDepth[iAddr] = fgkDmemSizeSmIndividual; } else if(iAddr >= fgkDmemAddrTrackletStart-fgkDmemStartAddress && iAddr <= fgkDmemAddrTrackletEnd-fgkDmemStartAddress) { fDmem[iAddr] = new UInt_t[fgkDmemSizeTotalIndividual]; fDmemDepth[iAddr] = fgkDmemSizeTotalIndividual; } else if(iAddr >= fgkDmemAddrLUTStart-fgkDmemStartAddress && iAddr <= fgkDmemAddrLUTEnd-fgkDmemStartAddress) { fDmem[iAddr] = new UInt_t; // same value for all MCMs fDmemDepth[iAddr] = fgkDmemSizeUniform; } else if(iAddr == fgkDmemAddrLUTcor0-fgkDmemStartAddress) { fDmem[iAddr] = new UInt_t[fgkDmemSizeSmIndividual]; fDmemDepth[iAddr] = fgkDmemSizeSmIndividual; } else if(iAddr == fgkDmemAddrLUTcor1-fgkDmemStartAddress) { fDmem[iAddr] = new UInt_t[fgkDmemSizeSmIndividual]; fDmemDepth[iAddr] = fgkDmemSizeSmIndividual; } else if(iAddr == fgkDmemAddrLUTnbins-fgkDmemStartAddress) { fDmem[iAddr] = new UInt_t; // same value for all MCMs fDmemDepth[iAddr] = fgkDmemSizeUniform; } else if(iAddr == fgkDmemAddrLUTLength-fgkDmemStartAddress) { fDmem[iAddr] = new UInt_t; // same value for all MCMs fDmemDepth[iAddr] = fgkDmemSizeUniform; } else { fDmem[iAddr] = NULL; fDmemDepth[iAddr] = fgkDmemSizeEmpty; } } InitRegs(); ResetDmem(); } AliTRDtrapConfig* AliTRDtrapConfig::Instance() { // return a pointer to an instance of this class if (!fgInstance) { fgInstance = new AliTRDtrapConfig(); fgInstance->LoadConfig(); } return fgInstance; } AliTRDtrapConfig::~AliTRDtrapConfig() { for(Int_t iAddr = 0; iAddr < fgkDmemWords; iAddr++) { if(iAddr == fgkDmemAddrDeflCorr - fgkDmemStartAddress) delete [] fDmem[iAddr]; else if(iAddr == fgkDmemAddrNdrift - fgkDmemStartAddress) delete [] fDmem[iAddr]; else if(iAddr >= fgkDmemAddrDeflCutStart-fgkDmemStartAddress && iAddr <= fgkDmemAddrDeflCutEnd-fgkDmemStartAddress) delete [] fDmem[iAddr]; else if(iAddr >= fgkDmemAddrTrackletStart-fgkDmemStartAddress && iAddr <= fgkDmemAddrTrackletEnd-fgkDmemStartAddress) delete [] fDmem[iAddr]; else if(iAddr >= fgkDmemAddrLUTStart-fgkDmemStartAddress && iAddr <= fgkDmemAddrLUTEnd-fgkDmemStartAddress) delete fDmem[iAddr]; else if(iAddr == fgkDmemAddrLUTcor0-fgkDmemStartAddress) delete [] fDmem[iAddr]; else if(iAddr == fgkDmemAddrLUTcor1-fgkDmemStartAddress) delete [] fDmem[iAddr]; else if(iAddr == fgkDmemAddrLUTnbins-fgkDmemStartAddress) delete fDmem[iAddr]; else if(iAddr == fgkDmemAddrLUTLength-fgkDmemStartAddress) delete fDmem[iAddr]; } } void AliTRDtrapConfig::InitRegs() { // Reset the content of all TRAP registers to the reset values (see TRAP User Manual) for (Int_t iReg = 0; iReg < kLastReg; iReg++) { fRegisterValue[iReg].individualValue = 0x0; fRegisterValue[iReg].globalValue = GetRegResetValue((TrapReg_t) iReg); fRegisterValue[iReg].state = RegValue_t::kGlobal; } } void AliTRDtrapConfig::ResetRegs() { // Reset the content of all TRAP registers to the reset values (see TRAP User Manual) for (Int_t iReg = 0; iReg < kLastReg; iReg++) { if(fRegisterValue[iReg].state == RegValue_t::kIndividual) { if (fRegisterValue[iReg].individualValue) { delete [] fRegisterValue[iReg].individualValue; fRegisterValue[iReg].individualValue = 0x0; } } fRegisterValue[iReg].globalValue = GetRegResetValue((TrapReg_t) iReg); fRegisterValue[iReg].state = RegValue_t::kGlobal; // printf("%-8s: 0x%08x\n", GetRegName((TrapReg_t) iReg), fRegisterValue[iReg].globalValue); } } void AliTRDtrapConfig::ResetDmem() { for(Int_t iAddr = 0; iAddr < fgkDmemWords; iAddr++) { if(fDmemDepth[iAddr] == 0) continue; for(Int_t j=0; j < fDmemDepth[iAddr]; j++) { fDmem[iAddr][j]=0; } } } Int_t AliTRDtrapConfig::GetTrapReg(TrapReg_t reg, Int_t det, Int_t rob, Int_t mcm) const { // get the value of an individual TRAP register // if it is individual for TRAPs a valid TRAP has to be specified if ((reg < 0) || (reg >= kLastReg)) { AliError("Non-existing register requested"); return 0; } else { if (fRegisterValue[reg].state == RegValue_t::kGlobal) { return fRegisterValue[reg].globalValue; } else if (fRegisterValue[reg].state == RegValue_t::kIndividual) { if((det >= 0 && det < AliTRDgeometry::Ndet()) && (rob >= 0 && rob < AliTRDfeeParam::GetNrobC1()) && (mcm >= 0 && mcm < fgkMaxMcm)) { return fRegisterValue[reg].individualValue[det*AliTRDfeeParam::GetNrobC1()*fgkMaxMcm + rob*fgkMaxMcm + mcm]; } else { AliError("Invalid MCM specified or register is individual"); return 0; } } else { // should never be reached AliError("MCM register status neither kGlobal nor kIndividual"); return 0; } } } Bool_t AliTRDtrapConfig::SetTrapReg(TrapReg_t reg, Int_t value) { // set a global value for the given TRAP register, // i.e. the same value for all TRAPs if (fRegisterValue[reg].state == RegValue_t::kGlobal) { fRegisterValue[reg].globalValue = value; return kTRUE; } else { AliError("Register has individual values"); } return kFALSE; } Bool_t AliTRDtrapConfig::SetTrapReg(TrapReg_t reg, Int_t value, Int_t det) { // set a global value for the given TRAP register, // i.e. the same value for all TRAPs if (fRegisterValue[reg].state == RegValue_t::kGlobal) { fRegisterValue[reg].globalValue = value; return kTRUE; } else if (fRegisterValue[reg].state == RegValue_t::kIndividual) { // if the register is in idividual mode but a broadcast is requested, the selected register is // set to value for all MCMs on the chamber if( (det>=0 && det= 0 && det < AliTRDgeometry::Ndet()) && (rob >= 0 && rob < AliTRDfeeParam::GetNrobC1()) && (mcm >= 0 && mcm < fgkMaxMcm) ) { if (fRegisterValue[reg].state == RegValue_t::kGlobal) { Int_t defaultValue = fRegisterValue[reg].globalValue; fRegisterValue[reg].state = RegValue_t::kIndividual; fRegisterValue[reg].individualValue = new Int_t[AliTRDgeometry::Ndet()*AliTRDfeeParam::GetNrobC1()*fgkMaxMcm]; for(Int_t i = 0; i < AliTRDgeometry::Ndet()*AliTRDfeeParam::GetNrobC1()*fgkMaxMcm; i++) fRegisterValue[reg].individualValue[i] = defaultValue; // set the requested register of all MCMs to the value previously stored fRegisterValue[reg].individualValue[det*AliTRDfeeParam::GetNrobC1()*fgkMaxMcm + rob*fgkMaxMcm + mcm] = value; } else if (fRegisterValue[reg].state == RegValue_t::kIndividual) { fRegisterValue[reg].individualValue[det*AliTRDfeeParam::GetNrobC1()*fgkMaxMcm + rob*fgkMaxMcm + mcm] = value; } else { // should never be reached AliError("MCM register status neither kGlobal nor kIndividual"); return kFALSE; } } else { AliError(Form("Invalid value for det, ROB or MCM selected: %i, %i, %i", det, rob, mcm)); return kFALSE; } return kTRUE; } UInt_t AliTRDtrapConfig::Peek(Int_t addr, Int_t det, Int_t rob, Int_t mcm) const { // reading from given address if ( (addr >= fgkDmemStartAddress) && (addr < (fgkDmemStartAddress + fgkDmemWords)) ) { return GetDmemUnsigned(addr, det, rob, mcm); } else { TrapReg_t mcmReg = GetRegByAddress(addr); if ( mcmReg >= 0 && mcmReg < kLastReg) { return (UInt_t) GetTrapReg(mcmReg, det, rob, mcm); } } return -1; } Bool_t AliTRDtrapConfig::Poke(Int_t addr, UInt_t value, Int_t det, Int_t rob, Int_t mcm) { // writing to given address if ( (addr >= fgkDmemStartAddress) && (addr < (fgkDmemStartAddress + fgkDmemWords)) ) { AliDebug(2, Form("DMEM 0x%08x : %i", addr, value)); SetDmem(addr, value, det, rob, mcm); return kTRUE; } else { TrapReg_t mcmReg = GetRegByAddress(addr); if ( mcmReg >= 0 && mcmReg < kLastReg) { AliDebug(2, Form("Register: %s : %i\n", GetRegName(mcmReg), value)); SetTrapReg(mcmReg, (UInt_t) value, det, rob, mcm); return kTRUE; } } return kFALSE; } Bool_t AliTRDtrapConfig::SetDmem(Int_t addr, UInt_t value) { // Set the content of the given DMEM address addr = addr - fgkDmemStartAddress; if(addr < 0 || addr >= fgkDmemWords) { AliError(Form("No DMEM address: 0x%08x", addr+fgkDmemStartAddress)); return kFALSE; } switch(fDmemDepth[addr]) { case fgkDmemSizeEmpty: AliDebug(4, Form("DMEM address %i not active", addr)); return kFALSE; break; case fgkDmemSizeUniform: if(fDmem[addr][0]!=0) AliDebug(5, Form("Warning: Setting new value to DMEM 0x%08x", addr+fgkDmemStartAddress)); fDmem[addr][0] = value; break; case fgkDmemSizeSmIndividual: for(Int_t i=0; i= fgkDmemWords) { AliError(Form("No DMEM address: 0x%08x", addr+fgkDmemStartAddress)); return kFALSE; } Int_t detFactor=8*16; Int_t robFactor=16; switch(fDmemDepth[addr]) { case fgkDmemSizeEmpty: AliDebug(4, Form("DMEM address 0x%08x not active", addr+fgkDmemStartAddress)); return kFALSE; break; case fgkDmemSizeUniform: if(fDmem[addr][0]!=0) AliDebug(5, Form("Warning: Setting new value to DMEM 0x%08x", addr+fgkDmemStartAddress)); fDmem[addr][0] = value; break; case fgkDmemSizeSmIndividual: loc = detFactor*roc + robFactor*rob + mcm; if(loc < fgkDmemSizeSmIndividual) { if(fDmem[addr][loc]!=0) AliDebug(5, Form("Warning: Setting new value to DMEM 0x%08x", addr+fgkDmemStartAddress)); fDmem[addr][loc] = value; } else { AliError(Form("DMEM sub-address %i out of scope", loc)); return kFALSE; } break; case fgkDmemSizeTotalIndividual: loc = detFactor*det + robFactor*rob + mcm; if(loc < fgkDmemSizeTotalIndividual) { if(fDmem[addr][loc]!=0) AliDebug(5, Form("Warning: Setting new value to DMEM 0x%08x", addr+fgkDmemStartAddress)); fDmem[addr][loc]=value; } else { AliError(Form("DMEM sub-address %i out of scope", loc)); return kFALSE; } break; case fgkDmemSizeSmRocIndividual: if(det < fgkDmemSizeSmRocIndividual) { if(fDmem[addr][det]!=0) AliDebug(5, Form("Warning: Setting new value to DMEM 0x%08x", addr+fgkDmemStartAddress)); fDmem[addr][det]=value; } else { AliError(Form("DMEM sub-address %i out of scope", det)); return kFALSE; } break; default: AliError(Form("Invalid selection type")); return kFALSE; break; } return kTRUE; } UInt_t AliTRDtrapConfig::GetDmemUnsigned(Int_t addr) const { addr = addr - fgkDmemStartAddress; if(addr < 0 || addr >= fgkDmemWords) { AliError(Form("No DMEM address: 0x%08x", addr+fgkDmemStartAddress)); return 0; } if(fDmemDepth[addr] == fgkDmemSizeUniform) return fDmem[addr][0]; else { AliError(Form("No global DMEM value at 0x%08x", addr+fgkDmemStartAddress)); return 0; } return 0; } UInt_t AliTRDtrapConfig::GetDmemUnsigned(Int_t addr, Int_t det, Int_t rob, Int_t mcm) const { addr = addr - fgkDmemStartAddress; Int_t roc = det%30; Int_t loc; if(addr < 0 || addr >= fgkDmemWords) { AliError(Form("No DMEM address: 0x%08x", addr+fgkDmemStartAddress)); return 0; } Int_t detFactor=8*16; Int_t robFactor=16; switch(fDmemDepth[addr]) { case fgkDmemSizeEmpty: AliDebug(4, Form("DMEM address 0x%08x not active", addr+fgkDmemStartAddress)); return 0; break; case fgkDmemSizeUniform: return fDmem[addr][0]; break; case fgkDmemSizeSmIndividual: loc = detFactor*roc + robFactor*rob + mcm; if(loc < fgkDmemSizeSmIndividual) { return fDmem[addr][loc]; } else { AliError(Form("DMEM sub-address %i out of scope", loc)); return 0; } break; case fgkDmemSizeTotalIndividual: loc = detFactor*det + robFactor*rob + mcm; if(loc < fgkDmemSizeTotalIndividual) { return fDmem[addr][loc]; } else { AliError(Form("DMEM sub-address %i out of scope", loc)); return 0; } break; case fgkDmemSizeSmRocIndividual: if(det < fgkDmemSizeSmRocIndividual) { return fDmem[addr][det]; } else { AliError(Form("DMEM sub-address %i out of scope", det)); return 0; } break; default: AliError(Form("Invalid selection type")); return 0; break; } return 0; } Bool_t AliTRDtrapConfig::LoadConfig() { // load a set of TRAP register values (configuration) // here a default set is implemented for testing // for a detailed description of the registers see the TRAP manual // HC header configuration bits SetTrapReg(kC15CPUA, 0x2102); // zs, deh // no. of timebins SetTrapReg(kC13CPUA, 24); // pedestal filter SetTrapReg(kFPNP, 4*10); SetTrapReg(kFPTC, 0); SetTrapReg(kFPBY, 0); // bypassed! // gain filter for (Int_t adc = 0; adc < 20; adc++) { SetTrapReg(TrapReg_t(kFGA0+adc), 40); SetTrapReg(TrapReg_t(kFGF0+adc), 15); } SetTrapReg(kFGTA, 20); SetTrapReg(kFGTB, 2060); SetTrapReg(kFGBY, 0); // bypassed! // tail cancellation SetTrapReg(kFTAL, 267); SetTrapReg(kFTLL, 356); SetTrapReg(kFTLS, 387); SetTrapReg(kFTBY, 0); // tracklet calculation SetTrapReg(kTPQS0, 5); SetTrapReg(kTPQE0, 10); SetTrapReg(kTPQS1, 11); SetTrapReg(kTPQE1, 20); SetTrapReg(kTPFS, 5); SetTrapReg(kTPFE, 20); SetTrapReg(kTPVBY, 0); SetTrapReg(kTPVT, 10); SetTrapReg(kTPHT, 150); SetTrapReg(kTPFP, 40); SetTrapReg(kTPCL, 1); SetTrapReg(kTPCT, 10); // ndrift (+ 5 binary digits) SetDmem(0xc025, 20 << 5); // deflection + tilt correction SetDmem(0xc022, 0); // deflection range table for (Int_t iTrklCh = 0; iTrklCh < 18; iTrklCh++) { SetDmem(0xc030 + 2 * iTrklCh, -64); // min. deflection SetDmem(0xc031 + 2 * iTrklCh, 63); // max. deflection } // hit position LUT const UShort_t lutPos[128] = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 24, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 27, 27, 27, 27, 26, 26, 26, 26, 25, 25, 25, 24, 24, 23, 23, 22, 22, 21, 21, 20, 20, 19, 18, 18, 17, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 7}; for (Int_t iCOG = 0; iCOG < 128; iCOG++) SetTrapReg((TrapReg_t) (kTPL00 + iCOG), lutPos[iCOG]); // event buffer SetTrapReg(kEBSF, 1); // 0: store filtered; 1: store unfiltered // zs applied to data stored in event buffer (sel. by EBSF) SetTrapReg(kEBIS, 15 << 2); // single indicator threshold (plus two digits) SetTrapReg(kEBIT, 30 << 2); // sum indicator threshold (plus two digits) SetTrapReg(kEBIL, 0xf0); // lookup table SetTrapReg(kEBIN, 0); // neighbour sensitivity // raw data SetTrapReg(kNES, (0x0000 << 16) | 0x1000); return kTRUE; } Bool_t AliTRDtrapConfig::ReadPackedConfig(Int_t hc, UInt_t *data, Int_t size) { // Read the packed configuration from the passed memory block // // To be used to retrieve the TRAP configuration from the // configuration as sent in the raw data. AliDebug(1, "Reading packed configuration"); Int_t det = hc/2; Int_t idx = 0; Int_t err = 0; Int_t step, bwidth, nwords, exitFlag, bitcnt; UShort_t caddr; UInt_t dat, msk, header, dataHi; while (idx < size && *data != 0x00000000) { Int_t rob = (*data >> 28) & 0x7; Int_t mcm = (*data >> 24) & 0xf; AliDebug(1, Form("Config of det. %3i MCM %i:%02i (0x%08x)", det, rob, mcm, *data)); data++; while (idx < size && *data != 0x00000000) { header = *data; data++; idx++; AliDebug(5, Form("read: 0x%08x", header)); if (header & 0x01) // single data { dat = (header >> 2) & 0xFFFF; // 16 bit data caddr = (header >> 18) & 0x3FFF; // 14 bit address if (caddr != 0x1FFF) // temp!!! because the end marker was wrong { if (header & 0x02) // check if > 16 bits { dataHi = *data; AliDebug(5, Form("read: 0x%08x", dataHi)); data++; idx++; err += ((dataHi ^ (dat | 1)) & 0xFFFF) != 0; dat = (dataHi & 0xFFFF0000) | dat; } AliDebug(5, Form("addr=0x%04x (%s) data=0x%08x\n", caddr, GetRegName(GetRegByAddress(caddr)), dat)); if ( ! Poke(caddr, dat, det, rob, mcm) ) AliDebug(5, Form("(single-write): non-existing address 0x%04x containing 0x%08x\n", caddr, header)); if (idx > size) { AliDebug(5, Form("(single-write): no more data, missing end marker\n")); return -err; } } else { AliDebug(5, Form("(single-write): address 0x%04x => old endmarker?\n", caddr)); return err; } } else // block of data { step = (header >> 1) & 0x0003; bwidth = ((header >> 3) & 0x001F) + 1; nwords = (header >> 8) & 0x00FF; caddr = (header >> 16) & 0xFFFF; exitFlag = (step == 0) || (step == 3) || (nwords == 0); if (exitFlag) break; switch (bwidth) { case 15: case 10: case 7: case 6: case 5: { msk = (1 << bwidth) - 1; bitcnt = 0; while (nwords > 0) { nwords--; bitcnt -= bwidth; if (bitcnt < 0) { header = *data; AliDebug(5, Form("read 0x%08x", header)); data++; idx++; err += (header & 1); header = header >> 1; bitcnt = 31 - bwidth; } AliDebug(5, Form("addr=0x%04x (%s) data=0x%08x\n", caddr, GetRegName(GetRegByAddress(caddr)), header & msk)); if ( ! Poke(caddr, header & msk, det, rob, mcm) ) AliDebug(5, Form("(single-write): non-existing address 0x%04x containing 0x%08x\n", caddr, header)); caddr += step; header = header >> bwidth; if (idx >= size) { AliDebug(5, Form("(block-write): no end marker! %d words read\n", idx)); return -err; } } break; } // end case 5-15 case 31: { while (nwords > 0) { header = *data; AliDebug(5, Form("read 0x%08x", header)); data++; idx++; nwords--; err += (header & 1); AliDebug(5, Form("addr=0x%04x (%s) data=0x%08x", caddr, GetRegName(GetRegByAddress(caddr)), header >> 1)); if ( ! Poke(caddr, header >> 1, det, rob, mcm) ) AliDebug(5, Form("(single-write): non-existing address 0x%04x containing 0x%08x\n", caddr, header)); caddr += step; if (idx >= size) { AliDebug(5, Form("no end marker! %d words read", idx)); return -err; } } break; } default: return err; } // end switch } // end block case } } // end while AliDebug(5, Form("no end marker! %d words read", idx)); return -err; // only if the max length of the block reached! } Bool_t AliTRDtrapConfig::PrintTrapReg(TrapReg_t reg, Int_t det, Int_t rob, Int_t mcm) const { // print the value stored in the given register // if it is individual a valid MCM has to be specified if (fRegisterValue[reg].state == RegValue_t::kGlobal) { printf("%s (%i bits) at 0x%08x is 0x%08x and resets to: 0x%08x (currently global mode)\n", GetRegName((TrapReg_t) reg), GetRegNBits((TrapReg_t) reg), GetRegAddress((TrapReg_t) reg), fRegisterValue[reg].globalValue, GetRegResetValue((TrapReg_t) reg)); } else if (fRegisterValue[reg].state == RegValue_t::kIndividual) { if((det >= 0 && det < AliTRDgeometry::Ndet()) && (rob >= 0 && rob < AliTRDfeeParam::GetNrobC1()) && (mcm >= 0 && mcm < fgkMaxMcm)) { printf("%s (%i bits) at 0x%08x is 0x%08x and resets to: 0x%08x (currently individual mode)\n", GetRegName((TrapReg_t) reg), GetRegNBits((TrapReg_t) reg), GetRegAddress((TrapReg_t) reg), fRegisterValue[reg].individualValue[det*AliTRDfeeParam::GetNrobC1()*fgkMaxMcm + rob*fgkMaxMcm + mcm], GetRegResetValue((TrapReg_t) reg)); } else { AliError("Register value is MCM-specific: Invalid detector, ROB or MCM requested"); return kFALSE; } } else { // should never be reached AliError("MCM register status neither kGlobal nor kIndividual"); return kFALSE; } return kTRUE; } Bool_t AliTRDtrapConfig::PrintTrapAddr(Int_t addr, Int_t det, Int_t rob, Int_t mcm) const { // print the value stored at the given address in the MCM chip TrapReg_t reg = GetRegByAddress(addr); if (reg >= 0 && reg < kLastReg) { return PrintTrapReg(reg, det, rob, mcm); } else { AliError(Form("There is no register at address 0x%08x in the simulator", addr)); return kFALSE; } } Bool_t AliTRDtrapConfig::AddValues(UInt_t det, UInt_t cmd, UInt_t extali, Int_t addr, UInt_t data) { // transfer the informations provided by LoadConfig to the internal class variables if(cmd != fgkScsnCmdWrite) { AliError(Form("Invalid command received: %i", cmd)); return kFALSE; } TrapReg_t mcmReg = GetRegByAddress(addr); Int_t rocType = AliTRDgeometry::GetStack(det) == 2 ? 0 : 1; static const int mcmListSize=40; // 40 is more or less arbitrary Int_t mcmList[mcmListSize]; // configuration registers if(mcmReg >= 0 && mcmReg < kLastReg) { for(Int_t linkPair=0; linkPair>7), (mcmList[i]&0x7F)); i++; } } } return kTRUE; } // DMEM else if ( (addr >= fgkDmemStartAddress) && (addr < (fgkDmemStartAddress + fgkDmemWords))) { for(Int_t linkPair=0; linkPair> 7, mcmList[i] & 0x7f); i++; } } } return kTRUE; } else return kFALSE; } AliTRDtrapConfig::TrapReg_t AliTRDtrapConfig::GetRegByAddress(Int_t address) const { // get register by its address // used for reading of configuration data as sent to real FEE TrapReg_t mcmReg = kLastReg; Int_t reg = 0; do { if(fRegs[reg].fAddr == address) mcmReg = (TrapReg_t) reg; reg++; } while (mcmReg == kLastReg && reg < kLastReg); return mcmReg; } void AliTRDtrapConfig::PrintMemDatx(ostream &os, Int_t addr) const { PrintMemDatx(os, addr, 0, 0, 127); } void AliTRDtrapConfig::PrintMemDatx(ostream &os, Int_t addr, Int_t det, Int_t rob, Int_t mcm) const { if(addr < fgkDmemStartAddress || addr >= fgkDmemStartAddress+fgkDmemWords) { AliError(Form("Invalid DMEM address 0x%08x!", addr)); return; } PrintDatx(os, addr, GetDmemUnsigned(addr, det, rob, mcm), rob, mcm); } void AliTRDtrapConfig::PrintMemDatx(ostream &os, TrapReg_t reg) const { PrintMemDatx(os, reg, 0, 0, 127); } void AliTRDtrapConfig::PrintMemDatx(ostream &os, TrapReg_t reg, Int_t det, Int_t rob, Int_t mcm) const { if(reg>= kLastReg) { AliError(Form("Invalid register %i!", reg)); return; } PrintDatx(os, GetRegAddress(reg), GetTrapReg(reg, det, rob, mcm), rob, mcm); } void AliTRDtrapConfig::PrintDatx(ostream &os, UInt_t addr, UInt_t data, Int_t rob, Int_t mcm) const { os << std::setw(5) << 10 << std::setw(8) << addr << std::setw(12) << data; if(mcm==127) os << std::setw(8) << 127; else os << std::setw(8) << AliTRDfeeParam::AliToExtAli(rob, mcm); os << std::endl; }