/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id: AliTRDseedV1.cxx 60233 2013-01-10 09:04:08Z abercuci $ */ //////////////////////////////////////////////////////////////////////////// //// // The TRD offline tracklet // // The running horse of the TRD reconstruction. The following tasks are preformed: // 1. Clusters attachment to tracks based on prior information stored at tracklet level (see AttachClusters) // 2. Clusters position recalculation based on track information (see GetClusterXY and Fit) // 3. Cluster error parametrization recalculation (see Fit) // 4. Linear track approximation (Fit) // 5. Optimal position (including z estimate for pad row cross tracklets) and covariance matrix of the track fit inside one TRD chamber (Fit) // 6. Tilt pad correction and systematic effects (GetCovAt) // 7. dEdx calculation (CookdEdx) // 8. PID probabilities estimation (CookPID) // // Authors: // // Alex Bercuci // // Markus Fasel // // // //////////////////////////////////////////////////////////////////////////// #include "TMath.h" #include "TGeoManager.h" #include "TTreeStream.h" #include "TGraphErrors.h" #include "AliLog.h" #include "AliMathBase.h" #include "AliRieman.h" #include "AliCDBManager.h" #include "AliTRDReconstructor.h" #include "AliTRDpadPlane.h" #include "AliTRDtransform.h" #include "AliTRDcluster.h" #include "AliTRDseedV1.h" #include "AliTRDtrackV1.h" #include "AliTRDcalibDB.h" #include "AliTRDchamberTimeBin.h" #include "AliTRDtrackingChamber.h" #include "AliTRDtrackerV1.h" #include "AliTRDrecoParam.h" #include "AliTRDCommonParam.h" #include "AliTRDtrackletOflHelper.h" #include "AliTRDCalTrkAttach.h" #include "AliTRDCalPID.h" #include "AliTRDCalROC.h" #include "AliTRDCalDet.h" class AliTracker; ClassImp(AliTRDseedV1) //____________________________________________________________________ AliTRDseedV1::AliTRDseedV1(Int_t det) :AliTRDtrackletBase() ,fkReconstructor(NULL) ,fClusterIter(NULL) ,fExB(0.) ,fVD(0.) ,fT0(0.) ,fS2PRF(0.) ,fDiffL(0.) ,fDiffT(0.) ,fClusterIdx(0) ,fErrorMsg(0) ,fN(0) ,fDet(det) ,fPt(0.) ,fdX(0.) ,fX0(0.) ,fX(0.) ,fY(0.) ,fZ(0.) ,fS2Y(0.) ,fS2Z(0.) ,fChi2(0.) { // // Constructor // memset(fIndexes,0xFF,kNclusters*sizeof(fIndexes[0])); memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*)); memset(fPad, 0, 4*sizeof(Float_t)); fYref[0] = 0.; fYref[1] = 0.; fZref[0] = 0.; fZref[1] = 0.; fYfit[0] = 0.; fYfit[1] = 0.; fZfit[0] = 0.; fZfit[1] = 0.; memset(fdEdx, 0, kNdEdxSlices*sizeof(Float_t)); for(int ispec=0; ispecGetZat(fX0); fZref[1] = rieman->GetDZat(fX0); fYref[0] = rieman->GetYat(fX0); fYref[1] = rieman->GetDYat(fX0); if(fkReconstructor && fkReconstructor->IsHLT()){ fRefCov[0] = 1; fRefCov[2] = 10; }else{ fRefCov[0] = rieman->GetErrY(fX0); fRefCov[2] = rieman->GetErrZ(fX0); } fC[0] = rieman->GetC(); fChi2 = rieman->GetChi2(); } //____________________________________________________________ Bool_t AliTRDseedV1::Init(const AliTRDtrackV1 *track) { // Initialize this tracklet using the track information // // Parameters: // track - the TRD track used to initialize the tracklet // // Detailed description // The function sets the starting point and direction of the // tracklet according to the information from the TRD track. // // Caution // The TRD track has to be propagated to the beginning of the // chamber where the tracklet will be constructed // Double_t y, z; if(!track->GetProlongation(fX0, y, z)) return kFALSE; Update(track); return kTRUE; } //_____________________________________________________________________________ void AliTRDseedV1::Reset(Option_t *opt) { // // Reset seed. If option opt="c" is given only cluster arrays are cleared. // for(Int_t ic=kNclusters; ic--;) fIndexes[ic] = -1; memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*)); fN=0; SetBit(kRowCross, kFALSE); if(strcmp(opt, "c")==0) return; fExB=0.;fVD=0.;fT0=0.;fS2PRF=0.; fDiffL=0.;fDiffT=0.; fClusterIdx=0; fErrorMsg = 0; fDet=-1; fPt=0.; fdX=0.;fX0=0.; fX=0.; fY=0.; fZ=0.; fS2Y=0.; fS2Z=0.; fC[0]=0.; fC[1]=0.; fChi2 = 0.; memset(fPad, 0, 4*sizeof(Float_t)); fYref[0] = 0.; fYref[1] = 0.; fZref[0] = 0.; fZref[1] = 0.; fYfit[0] = 0.; fYfit[1] = 0.; fZfit[0] = 0.; fZfit[1] = 0.; memset(fdEdx, 0, kNdEdxSlices*sizeof(Float_t)); for(int ispec=0; ispecGetSnp(); Double_t fTgl = trk->GetTgl(); fPt = trk->Pt(); Double_t norm =1./TMath::Sqrt((1.-fSnp)*(1.+fSnp)); fYref[1] = fSnp*norm; fZref[1] = fTgl*norm; SetCovRef(trk->GetCovariance()); Double_t dx = trk->GetX() - fX0; fYref[0] = trk->GetY() - dx*fYref[1]; fZref[0] = trk->GetZ() - dx*fZref[1]; } //_____________________________________________________________________________ void AliTRDseedV1::UpdateUsed() { // // Calculate number of used clusers in the tracklet // Int_t nused = 0, nshared = 0; for (Int_t i = kNclusters; i--; ) { if (!fClusters[i]) continue; if(fClusters[i]->IsUsed()){ nused++; } else if(fClusters[i]->IsShared()){ if(IsStandAlone()) nused++; else nshared++; } } SetNUsed(nused); SetNShared(nshared); } //_____________________________________________________________________________ void AliTRDseedV1::UseClusters() { // // Use clusters // // In stand alone mode: // Clusters which are marked as used or shared from another track are // removed from the tracklet // // In barrel mode: // - Clusters which are used by another track become shared // - Clusters which are attached to a kink track become shared // AliTRDcluster **c = &fClusters[0]; for (Int_t ic=kNclusters; ic--; c++) { if(!(*c)) continue; if(IsStandAlone()){ if((*c)->IsShared() || (*c)->IsUsed()){ if((*c)->IsShared()) SetNShared(GetNShared()-1); else SetNUsed(GetNUsed()-1); (*c) = NULL; fIndexes[ic] = -1; SetN(GetN()-1); continue; } } else { if((*c)->IsUsed() || IsKink()){ (*c)->SetShared(); continue; } } (*c)->Use(); } } //____________________________________________________________________ void AliTRDseedV1::CookdEdx(Int_t nslices) { // Calculates average dE/dx for all slices and store them in the internal array fdEdx. // // Parameters: // nslices : number of slices for which dE/dx should be calculated // Output: // store results in the internal array fdEdx. This can be accessed with the method // AliTRDseedV1::GetdEdx() // // Detailed description // Calculates average dE/dx for all slices. Depending on the PID methode // the number of slices can be 3 (LQ) or 8(NN). // The calculation of dQ/dl are done using the tracklet fit results (see AliTRDseedV1::GetdQdl(Int_t)) // // The following effects are included in the calculation: // 1. calibration values for t0 and vdrift (using x coordinate to calculate slice) // 2. cluster sharing (optional see AliTRDrecoParam::SetClusterSharing()) // 3. cluster size // memset(fdEdx, 0, kNdEdxSlices*sizeof(Float_t)); const Double_t kDriftLength = (.5 * AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick()); AliTRDcluster *c(NULL); for(int ic=0; icGetX()); // Filter clusters for dE/dx calculation // 1.consider calibration effects for slice determination Int_t slice; if(dxIsInChamber() slice = Int_t(dx * nslices / kDriftLength); } else slice = c->GetX() < fX0 ? nslices-1 : 0; // 2. take sharing into account Float_t w = /*c->IsShared() ? .5 :*/ 1.; // 3. take into account large clusters TODO //w *= c->GetNPads() > 3 ? .8 : 1.; //CHECK !!! fdEdx[slice] += w * GetdQdl(ic); //fdQdl[ic]; } // End of loop over clusters } //_____________________________________________________________________________ void AliTRDseedV1::CookLabels() { // // Cook 2 labels for seed // Int_t labels[200]; Int_t out[200]; Int_t nlab = 0; for (Int_t i = 0; i < kNclusters; i++) { if (!fClusters[i]) continue; for (Int_t ilab = 0; ilab < 3; ilab++) { if (fClusters[i]->GetLabel(ilab) >= 0) { labels[nlab] = fClusters[i]->GetLabel(ilab); nlab++; } } } fLabels[2] = AliMathBase::Freq(nlab,labels,out,kTRUE); fLabels[0] = out[0]; if ((fLabels[2] > 1) && (out[3] > 1)) fLabels[1] = out[2]; } //____________________________________________________________ Float_t AliTRDseedV1::GetAnodeWireOffset(Float_t zt) { // Find position inside the amplification cell for reading drift velocity map Float_t d = fPad[3] - zt; if(d<0.){ AliError(Form("Fail AnodeWireOffset calculation z0[%+7.2f] zt[%+7.2f] d[%+7.2f].", fPad[3], zt, d)); return 0.125; } d -= ((Int_t)(2 * d)) / 2.0; if(d > 0.25) d = 0.5 - d; return d; } //____________________________________________________________________ Float_t AliTRDseedV1::GetCharge(Bool_t useOutliers) const { // Computes total charge attached to tracklet. If "useOutliers" is set clusters // which are not in chamber are also used (default false) AliTRDcluster *c(NULL); Float_t qt(0.); for(int ic=0; icIsInChamber() && !useOutliers) continue; qt += TMath::Abs(c->GetQ()); } return qt; } //____________________________________________________________________ Int_t AliTRDseedV1::GetChargeGaps(Float_t sz[kNtb], Float_t pos[kNtb], Int_t isz[kNtb]) const { // Find number, size and position of charge gaps (consecutive missing time bins). // Returns the number of gaps and fills their size in input array "sz" and position in array "pos" Bool_t gap(kFALSE); Int_t n(0); Int_t ipos[kNtb]; memset(isz, 0, kNtb*sizeof(Int_t));memset(ipos, 0, kNtb*sizeof(Int_t)); for(int ic(0); icGetSamplingFrequency(); fake.SetPadTime(ipos[igap]); pos[igap] = fake.GetXloc(fT0, fVD); if(isz[igap]>1){ fake.SetPadTime(ipos[igap]-isz[igap]+1); pos[igap] += fake.GetXloc(fT0, fVD); pos[igap] /= 2.; } } return n; } //____________________________________________________________________ Double_t AliTRDseedV1::EstimatedCrossPoint(AliTRDpadPlane *pp, Float_t bz) { // Algorithm to estimate cross point in the x-z plane for pad row cross tracklets or the z coordinate of pad row without pad row cross in the local chamber coordinates. // Returns variance of the radial offset from anode wire in case of raw cross or 0 otherwise. Int_t row[] = {-1, -1}; Double_t zoff(0.5 * (pp->GetRow0() + pp->GetRowEnd())), sx(0.), mean(0.5*pp->GetNrows()-0.5); AliTRDcluster *c(NULL); fS2Y = 0.; if(!IsRowCross()){ for(int ic=0; icIsInChamber()) continue; row[0] = c->GetPadRow(); fZfit[0] = Int_t(mean-row[0])*pp->GetLengthIPad() + 0.5*(mean-row[0]>0.?1.:-1.)*(row[0]>0&&row[0]GetNrows()-1?pp->GetLengthIPad():pp->GetLengthOPad()); break; } } else { Float_t tbm[2] = {0.}; // mean value of time bin in rows Int_t tb[kNtb]={0}, //array of time bins from first row nc[2] = {0}, // no. of clusters in rows mc(0); // no. of common clusters Bool_t w[2] = {kFALSE, kFALSE}; // acceptance flag for rows // Find radial range for first row for(int ic(0); icIsInChamber()) continue; if(row[0]<0) row[0] = c->GetPadRow(); tb[nc[0]++] = ic; tbm[0] += ic; } if(nc[0]>2){ tbm[0] /= nc[0]; w[0] = kTRUE; } // Find radial range for second row for(int ic(kNtb), jc(0); icIsInChamber()) continue; if(row[1]<0) row[1] = c->GetPadRow(); tbm[1] += jc; nc[1]++; for(Int_t kc(0); kc2){ tbm[1] /= nc[1]; w[1] = kTRUE; } //printf("0 : %f[%2d] 1 : %f[%2d] mc[%d]\n", tbm[0], nc[0], tbm[1], nc[1], mc); if(!w[0] && !w[1]){ AliError("Too few clusters to estimate tracklet."); return -1; } if(!w[0] || !w[1]){ SetBit(kRowCross, kFALSE); // reset RC bit if(w[1]) row[0] = row[1]; fZfit[0] = Int_t(mean-row[0])*pp->GetLengthIPad() + 0.5*(mean-row[0]>0.?1.:-1.)*(row[0]>0&&row[0]GetNrows()-1?pp->GetLengthIPad():pp->GetLengthOPad()); }else{ // find the best matching timebin fZfit[0] = Int_t(mean-0.5*(row[0]+row[1]))*pp->GetLengthIPad(); Int_t itb(0), dtb(0); if(!mc) { // no common range itb = Int_t(0.5*(tbm[0] + tbm[1])); dtb = Int_t(0.5*TMath::Abs(tbm[0] - tbm[1])); // simple parameterization of the cluster gap } else { Double_t rmax(100.); Int_t itbStart(-1), itbStop(0); // compute distance from for(Int_t jc(0); jcGetSamplingFrequency():10.); fS2Y = ((itb-0.5)/freq - fT0 - 0.189)*fVD; // xOff sx = dtb*0.288675134594812921/freq; sx *= sx; sx += 1.56e-2; sx *= fVD*fVD; } } // estimate dzdx Float_t dx(fX0-fS2Y); fZfit[1] = (fZfit[0]+zoff)/dx; // correct dzdx for the bias UnbiasDZDX(IsRowCross(), bz); if(IsRowCross()){ // correct x_cross/sigma(x_cross) for the bias in dzdx const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); if(recoParam){ fS2Y += recoParam->GetCorrDZDXxcross()*TMath::Abs(fZfit[1]); sx += recoParam->GetCorrDZDXxcross()*recoParam->GetCorrDZDXxcross()*GetS2DZDX(fZfit[1]); } // correct sigma(x_cross) for the width of the crossing area sx += GetS2XcrossDZDX(TMath::Abs(fZfit[1])); // estimate z and error @ anode wire fZfit[0] += fZfit[1]*fS2Y; fS2Z = fZfit[1]*fZfit[1]*sx+fS2Y*fS2Y*GetS2DZDX(fZfit[1]); } return sx; } //____________________________________________________________________ void AliTRDseedV1::UnbiasDZDX(Bool_t rc, Float_t bz) { // correct dzdx for the bias in z according to MC const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); if(!recoParam) return; fZfit[1] *= recoParam->GetCorrDZDX(rc)-(bz>0?0.01:0.); if(rc) fZfit[1] += recoParam->GetCorrDZDXbiasRC(fZfit[1]<0); } //____________________________________________________________________ Double_t AliTRDseedV1::UnbiasY(Bool_t rc, Float_t bz) { // correct y coordinate for tail cancellation. This should be fixed by considering TC as a function of q/pt. // rc : TRUE if tracklet crosses rows // bz : magnetic field z component const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); if(!recoParam) return 0.; Double_t par[3]={0.}; Int_t idx(2*(rc?1:0)+Int_t(bz>0)); recoParam->GetYcorrTailCancel(idx, par); return par[0]*TMath::Sin(par[1]*fYref[1])+par[2]; } //____________________________________________________________________ Float_t AliTRDseedV1::GetQperTB(Int_t tb) const { // // Charge of the clusters at timebin // Float_t q = 0; if(fClusters[tb] /*&& fClusters[tb]->IsInChamber()*/) q += TMath::Abs(fClusters[tb]->GetQ()); if(fClusters[tb+kNtb] /*&& fClusters[tb+kNtb]->IsInChamber()*/) q += TMath::Abs(fClusters[tb+kNtb]->GetQ()); return q/TMath::Sqrt(1. + fYref[1]*fYref[1] + fZref[1]*fZref[1]); } //____________________________________________________________________ Float_t AliTRDseedV1::GetdQdl() const { // Calculate total charge / tracklet length for 1D PID // Float_t Q = GetCharge(kTRUE); return Q/TMath::Sqrt(1. + fYref[1]*fYref[1] + fZref[1]*fZref[1]); } //____________________________________________________________________ Float_t AliTRDseedV1::GetdQdl(Int_t ic, Float_t *dl) const { // Using the linear approximation of the track inside one TRD chamber (TRD tracklet) // the charge per unit length can be written as: // BEGIN_LATEX // #frac{dq}{dl} = #frac{q_{c}}{dx * #sqrt{1 + #(){#frac{dy}{dx}}^{2}_{fit} + #(){#frac{dz}{dx}}^{2}_{ref}}} // END_LATEX // where qc is the total charge collected in the current time bin and dx is the length // of the time bin. // The following correction are applied : // - charge : pad row cross corrections // [diffusion and TRF assymetry] TODO // - dx : anisochronity, track inclination - see Fit and AliTRDcluster::GetXloc() // and AliTRDcluster::GetYloc() for the effects taken into account // //Begin_Html // //End_Html // In the picture the energy loss measured on the tracklet as a function of drift time [left] and respectively // drift length [right] for different particle species is displayed. // Author : Alex Bercuci // Float_t dq = 0.; // check whether both clusters are inside the chamber Bool_t hasClusterInChamber = kFALSE; if(fClusters[ic] && fClusters[ic]->IsInChamber()){ hasClusterInChamber = kTRUE; dq += TMath::Abs(fClusters[ic]->GetQ()); } if(fClusters[ic+kNtb] && fClusters[ic+kNtb]->IsInChamber()){ hasClusterInChamber = kTRUE; dq += TMath::Abs(fClusters[ic+kNtb]->GetQ()); } if(!hasClusterInChamber) return 0.; if(dq<1.e-3) return 0.; Double_t dx = fdX; if(ic-1>=0 && ic+1IsInChamber()) x2 = fClusters[ic-1]->GetX(); else if(fClusters[ic-1+kNtb] && fClusters[ic-1+kNtb]->IsInChamber()) x2 = fClusters[ic-1+kNtb]->GetX(); else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x2 = fClusters[ic]->GetX()+fdX; else x2 = fClusters[ic+kNtb]->GetX()+fdX; // try to estimate lower radial position (find the cluster which is inside the chamber) if(fClusters[ic+1] && fClusters[ic+1]->IsInChamber()) x1 = fClusters[ic+1]->GetX(); else if(fClusters[ic+1+kNtb] && fClusters[ic+1+kNtb]->IsInChamber()) x1 = fClusters[ic+1+kNtb]->GetX(); else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x1 = fClusters[ic]->GetX()-fdX; else x1 = fClusters[ic+kNtb]->GetX()-fdX; dx = .5*(x2 - x1); } dx *= TMath::Sqrt(1. + fYfit[1]*fYfit[1] + fZref[1]*fZref[1]); if(dl) (*dl) = dx; if(dx>1.e-9) return dq/dx; else return 0.; } //____________________________________________________________ Float_t AliTRDseedV1::GetMomentum(Float_t *err) const { // Returns momentum of the track after update with the current tracklet as: // BEGIN_LATEX // p=#frac{1}{1/p_{t}} #sqrt{1+tgl^{2}} // END_LATEX // and optionally the momentum error (if err is not null). // The estimated variance of the momentum is given by: // BEGIN_LATEX // #sigma_{p}^{2} = (#frac{dp}{dp_{t}})^{2} #sigma_{p_{t}}^{2}+(#frac{dp}{dtgl})^{2} #sigma_{tgl}^{2}+2#frac{dp}{dp_{t}}#frac{dp}{dtgl} cov(tgl,1/p_{t}) // END_LATEX // which can be simplified to // BEGIN_LATEX // #sigma_{p}^{2} = p^{2}p_{t}^{4}tgl^{2}#sigma_{tgl}^{2}-2p^{2}p_{t}^{3}tgl cov(tgl,1/p_{t})+p^{2}p_{t}^{2}#sigma_{1/p_{t}}^{2} // END_LATEX // Double_t p = fPt*TMath::Sqrt(1.+fZref[1]*fZref[1]); if(err){ Double_t p2 = p*p; Double_t tgl2 = fZref[1]*fZref[1]; Double_t pt2 = fPt*fPt; Double_t s2 = p2*tgl2*pt2*pt2*fRefCov[4] -2.*p2*fZref[1]*fPt*pt2*fRefCov[5] +p2*pt2*fRefCov[6]; (*err) = TMath::Sqrt(s2); } return p; } //____________________________________________________________________ Int_t AliTRDseedV1::GetTBoccupancy() const { // Returns no. of TB occupied by clusters Int_t n(0); for(int ic(0); icGetPIDObject(fkReconstructor->GetPIDMethod()); if (!pd) { AliError("No access to AliTRDCalPID object"); return kFALSE; } // calculate tracklet length TO DO Float_t length = (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick())/ TMath::Sqrt((1.0 - GetSnp()*GetSnp()) / (1.0 + GetTgl()*GetTgl())); //calculate dE/dx CookdEdx(AliTRDCalPID::kNSlicesNN); AliDebug(4, Form("p=%6.4f[GeV/c] dEdx{%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f} l=%4.2f[cm]", GetMomentum(), fdEdx[0], fdEdx[1], fdEdx[2], fdEdx[3], fdEdx[4], fdEdx[5], fdEdx[6], fdEdx[7], length)); // Sets the a priori probabilities Bool_t kPIDNN(fkReconstructor->GetPIDMethod()==AliTRDpidUtil::kNN); for(int ispec=0; ispecGetProbability(ispec, GetMomentum(), &fdEdx[0], length, kPIDNN?GetPlane():fkReconstructor->GetRecoParam()->GetPIDLQslices()); return kTRUE; } //____________________________________________________________________ Float_t AliTRDseedV1::GetQuality(Bool_t kZcorr) const { // // Returns a quality measurement of the current seed // Float_t zcorr = kZcorr ? GetTilt() * (fZfit[0] - fZref[0]) : 0.; return .5 * TMath::Abs(18.0 - GetN()) + 10.* TMath::Abs(fYfit[1] - fYref[1]) + 5. * TMath::Abs(fYfit[0] - fYref[0] + zcorr) + 2. * TMath::Abs(fZfit[0] - fZref[0]) / GetPadLength(); } //____________________________________________________________________ void AliTRDseedV1::GetCovAt(Double_t /*x*/, Double_t *cov) const { // Computes covariance in the y-z plane at radial point x (in tracking coordinates) // and returns the results in the preallocated array cov[3] as : // cov[0] = Var(y) // cov[1] = Cov(yz) // cov[2] = Var(z) // // Details // // For the linear transformation // BEGIN_LATEX // Y = T_{x} X^{T} // END_LATEX // The error propagation has the general form // BEGIN_LATEX // C_{Y} = T_{x} C_{X} T_{x}^{T} // END_LATEX // We apply this formula 2 times. First to calculate the covariance of the tracklet // at point x we consider: // BEGIN_LATEX // T_{x} = (1 x); X=(y0 dy/dx); C_{X}=#(){#splitline{Var(y0) Cov(y0, dy/dx)}{Cov(y0, dy/dx) Var(dy/dx)}} // END_LATEX // and secondly to take into account the tilt angle // BEGIN_LATEX // T_{#alpha} = #(){#splitline{cos(#alpha) __ sin(#alpha)}{-sin(#alpha) __ cos(#alpha)}}; X=(y z); C_{X}=#(){#splitline{Var(y) 0}{0 Var(z)}} // END_LATEX // // using simple trigonometrics one can write for this last case // BEGIN_LATEX // C_{Y}=#frac{1}{1+tg^{2}#alpha} #(){#splitline{(#sigma_{y}^{2}+tg^{2}#alpha#sigma_{z}^{2}) __ tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2})}{tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2}) __ (#sigma_{z}^{2}+tg^{2}#alpha#sigma_{y}^{2})}} // END_LATEX // which can be aproximated for small alphas (2 deg) with // BEGIN_LATEX // C_{Y}=#(){#splitline{#sigma_{y}^{2} __ (#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha}{((#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha __ #sigma_{z}^{2}}} // END_LATEX // // before applying the tilt rotation we also apply systematic uncertainties to the tracklet // position which can be tunned from outside via the AliTRDrecoParam::SetSysCovMatrix(). They might // account for extra misalignment/miscalibration uncertainties. // // Author : // Alex Bercuci // Date : Jan 8th 2009 // //Double_t xr = fX0-x; Double_t sy2 = fCov[0];// +2.*xr*fCov[1] + xr*xr*fCov[2]; Double_t sz2 = fS2Z; //GetPadLength()*GetPadLength()/12.; // insert systematic uncertainties if(fkReconstructor){ Double_t sys[15]; memset(sys, 0, 15*sizeof(Double_t)); fkReconstructor->GetRecoParam()->GetSysCovMatrix(sys); // sy2 += sys[0]; // sz2 += sys[1]; } // rotate covariance matrix if no RC if(!IsRowCross()){ Double_t t2 = GetTilt()*GetTilt(); Double_t correction = 1./(1. + t2); cov[0] = (sy2+t2*sz2)*correction; cov[1] = GetTilt()*(sz2 - sy2)*correction; cov[2] = (t2*sy2+sz2)*correction; } else { cov[0] = sy2; cov[1] = 0.; cov[2] = sz2; } AliDebug(4, Form("C(%6.1f %+6.3f %6.1f) RC[%c]", 1.e4*TMath::Sqrt(cov[0]), cov[1], 1.e4*TMath::Sqrt(cov[2]), IsRowCross()?'y':'n')); } //____________________________________________________________ Int_t AliTRDseedV1::GetCovSqrt(const Double_t * const c, Double_t *d) { // Helper function to calculate the square root of the covariance matrix. // The input matrix is stored in the vector c and the result in the vector d. // Both arrays have to be initialized by the user with at least 3 elements. Return negative in case of failure. // // For calculating the square root of the symmetric matrix c // the following relation is used: // BEGIN_LATEX // C^{1/2} = VD^{1/2}V^{-1} // END_LATEX // with V being the matrix with the n eigenvectors as columns. // In case C is symmetric the followings are true: // - matrix D is diagonal with the diagonal given by the eigenvalues of C // - V = V^{-1} // // Author A.Bercuci // Date Mar 19 2009 const Double_t kZero(1.e-20); Double_t l[2], // eigenvalues v[3]; // eigenvectors // the secular equation and its solution : // (c[0]-L)(c[2]-L)-c[1]^2 = 0 // L^2 - L*Tr(c)+DET(c) = 0 // L12 = [Tr(c) +- sqrt(Tr(c)^2-4*DET(c))]/2 Double_t tr = c[0]+c[2], // trace det = c[0]*c[2]-c[1]*c[1]; // determinant if(TMath::Abs(det)c[2]?-1.:1.)); l[1] = .5*(tr + dd*(c[0]>c[2]?1.:-1.)); if(l[0] // Date Mar 19 2009 Double_t det = c[0]*c[2] - c[1]*c[1]; if(TMath::Abs(det)<1.e-20) return 0.; Double_t invDet = 1./det; d[0] = c[2]*invDet; d[1] =-c[1]*invDet; d[2] = c[0]*invDet; return det; } //____________________________________________________________________ UShort_t AliTRDseedV1::GetVolumeId() const { // Returns geometry volume id by delegation for(Int_t ic(0);icGetVolumeId(); } return 0; } //____________________________________________________________________ void AliTRDseedV1::Calibrate() { // Retrieve calibration and position parameters from OCDB. // The following information are used // - detector index // - column and row position of first attached cluster. If no clusters are attached // to the tracklet a random central chamber position (c=70, r=7) will be used. // // The following information is cached in the tracklet // t0 (trigger delay) // drift velocity // PRF width // omega*tau = tg(a_L) // diffusion coefficients (longitudinal and transversal) // // Author : // Alex Bercuci // Date : Jan 8th 2009 // AliCDBManager *cdb = AliCDBManager::Instance(); if(cdb->GetRun() < 0){ AliError("OCDB manager not properly initialized"); return; } AliTRDcalibDB *calib = AliTRDcalibDB::Instance(); AliTRDCalROC *vdROC = calib->GetVdriftROC(fDet), *t0ROC = calib->GetT0ROC(fDet);; const AliTRDCalDet *vdDet = calib->GetVdriftDet(); const AliTRDCalDet *t0Det = calib->GetT0Det(); Int_t col = 70, row = 7; AliTRDcluster **c = &fClusters[0]; if(GetN()){ Int_t ic = 0; while (icGetPadCol(); row = (*c)->GetPadRow(); } } fT0 = (t0Det->GetValue(fDet) + t0ROC->GetValue(col,row)) / AliTRDCommonParam::Instance()->GetSamplingFrequency(); fVD = vdDet->GetValue(fDet) * vdROC->GetValue(col, row); fS2PRF = calib->GetPRFWidth(fDet, col, row); fS2PRF *= fS2PRF; fExB = AliTRDCommonParam::Instance()->GetOmegaTau(fVD); AliTRDCommonParam::Instance()->GetDiffCoeff(fDiffL, fDiffT, fVD); AliDebug(4, Form("Calibration params for Det[%3d] Col[%3d] Row[%2d]\n t0[%f] vd[%f] s2PRF[%f] ExB[%f] Dl[%f] Dt[%f]", fDet, col, row, fT0, fVD, fS2PRF, fExB, fDiffL, fDiffT)); SetBit(kCalib, kTRUE); } //____________________________________________________________________ void AliTRDseedV1::SetOwner() { //AliInfo(Form("own [%s] fOwner[%s]", own?"YES":"NO", fOwner?"YES":"NO")); if(TestBit(kOwner)) return; for(int ic=0; icGetLengthIPad(); fPad[1] = p->GetWidthIPad(); fPad[2] = TMath::Tan(TMath::DegToRad()*p->GetTiltingAngle()); fPad[3] = p->GetRow0() + p->GetAnodeWireOffset(); } //____________________________________________________________________ Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t tilt, Bool_t chgPos, Int_t ev) { // // Projective algorithm to attach clusters to seeding tracklets. The following steps are performed : // 1. Collapse x coordinate for the full detector plane // 2. truncated mean on y (r-phi) direction // 3. purge clusters // 4. truncated mean on z direction // 5. purge clusters // // Parameters // - chamber : pointer to tracking chamber container used to search the tracklet // - tilt : switch for tilt correction during road building [default true] // - chgPos : mark same[kFALSE] and opposite[kTRUE] sign tracks with respect to Bz field sign [default true] // - ev : event number for debug purposes [default = -1] // Output // - true : if tracklet found successfully. Failure can happend because of the following: // - // Detailed description // // We start up by defining the track direction in the xy plane and roads. The roads are calculated based // on tracking information (variance in the r-phi direction) and estimated variance of the standard // clusters (see AliTRDcluster::SetSigmaY2()) corrected for tilt (see GetCovAt()). From this the road is // BEGIN_LATEX // r_{y} = 3*#sqrt{12*(#sigma^{2}_{Trk}(y) + #frac{#sigma^{2}_{cl}(y) + tg^{2}(#alpha_{L})#sigma^{2}_{cl}(z)}{1+tg^{2}(#alpha_{L})})} // r_{z} = 1.5*L_{pad} // END_LATEX // // Author : Alexandru Bercuci // Debug : level = 2 for calibration // level = 3 for visualization in the track SR // level = 4 for full visualization including digit level const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); //the dynamic cast in GetRecoParam is slow, so caching the pointer to it if(!recoParam){ AliError("Tracklets can not be used without a valid RecoParam."); return kFALSE; } AliTRDcalibDB *calibration = AliTRDcalibDB::Instance(); if (!calibration) { AliError("No access to calibration data"); return kFALSE; } // Retrieve the CDB container class with the parametric likelihood const AliTRDCalTrkAttach *attach = calibration->GetAttachObject(); if (!attach) { AliError("No usable AttachClusters calib object."); return kFALSE; } // Initialize reco params for this tracklet // 1. first time bin in the drift region Int_t t0 = 14; Int_t kClmin = Int_t(recoParam->GetFindableClusters()*AliTRDtrackerV1::GetNTimeBins()); Int_t kTBmin = 4; Double_t sysCov[5]; recoParam->GetSysCovMatrix(sysCov); Double_t s2yTrk= fRefCov[0], s2yCl = 0., s2zCl = GetPadLength()*GetPadLength()/12., syRef = TMath::Sqrt(s2yTrk), t2 = GetTilt()*GetTilt(); //define roads const Double_t kroady = 3.; //recoParam->GetRoad1y(); const Double_t kroadz = GetPadLength() * recoParam->GetRoadzMultiplicator() + 1.; // define probing cluster (the perfect cluster) and default calibration Short_t sig[] = {0, 0, 10, 30, 10, 0,0}; AliTRDcluster cp(fDet, 6, 75, 0, sig, 0); if(fkReconstructor->IsHLT()) cp.SetRPhiMethod(AliTRDcluster::kCOG); if(!IsCalibrated()) Calibrate(); /* Int_t kroadyShift(0); Float_t bz(AliTrackerBase::GetBz()); if(TMath::Abs(bz)>2.){ if(bz<0.) kroadyShift = chgPos ? +1 : -1; else kroadyShift = chgPos ? -1 : +1; }*/ AliDebug(4, Form("\n syTrk[cm]=%4.2f dydxTrk[deg]=%+6.2f Chg[%c] rY[cm]=%4.2f rZ[cm]=%5.2f TC[%c]", syRef, TMath::ATan(fYref[1])*TMath::RadToDeg(), chgPos?'+':'-', kroady, kroadz, tilt?'y':'n')); Double_t phiTrk(TMath::ATan(fYref[1])), thtTrk(TMath::ATan(fZref[1])); // working variables const Int_t kNrows = 16; const Int_t kNcls = 3*kNclusters; // buffer size TObjArray clst[kNrows]; Bool_t blst[kNrows][kNcls]; Double_t cond[4], dx, dy, dz, yt, zt, zc[kNrows], xres[kNrows][kNcls], yres[kNrows][kNcls], zres[kNrows][kNcls], s2y[kNrows][kNcls]; Int_t idxs[kNrows][kNcls], ncl[kNrows], ncls = 0; memset(ncl, 0, kNrows*sizeof(Int_t)); memset(zc, 0, kNrows*sizeof(Double_t)); memset(idxs, 0, kNrows*kNcls*sizeof(Int_t)); memset(xres, 0, kNrows*kNcls*sizeof(Double_t)); memset(yres, 0, kNrows*kNcls*sizeof(Double_t)); memset(zres, 0, kNrows*kNcls*sizeof(Double_t)); memset(s2y, 0, kNrows*kNcls*sizeof(Double_t)); memset(blst, 0, kNrows*kNcls*sizeof(Bool_t)); //this is 8 times faster to memset than "memset(clst, 0, kNrows*kNcls*sizeof(AliTRDcluster*))" Double_t roady(0.), s2Mean(0.); Int_t ns2Mean(0); // Do cluster projection and pick up cluster candidates AliTRDcluster *c(NULL); AliTRDchamberTimeBin *layer(NULL); Bool_t kBUFFER = kFALSE; for (Int_t it = 0; it < kNtb; it++) { if(!(layer = chamber->GetTB(it))) continue; if(!Int_t(*layer)) continue; // get track projection at layers position dx = fX0 - layer->GetX(); yt = fYref[0] - fYref[1] * dx; zt = fZref[0] - fZref[1] * dx; // get standard cluster error corrected for tilt if selected cp.SetLocalTimeBin(it); cp.SetSigmaY2(0.02, fDiffT, fExB, dx, -1./*zt*/, fYref[1]); s2yCl = cp.GetSigmaY2() + sysCov[0]; if(!tilt) s2yCl = (s2yCl + t2*s2zCl)/(1.+t2); if(TMath::Abs(it-12)<7){ s2Mean += cp.GetSigmaY2(); ns2Mean++;} // get estimated road in r-phi direction roady = TMath::Min(3.*TMath::Sqrt(12.*(s2yTrk + s2yCl)), kroady); AliDebug(5, Form("\n" " %2d xd[cm]=%6.3f yt[cm]=%7.2f zt[cm]=%8.2f\n" " syTrk[um]=%6.2f syCl[um]=%6.2f syClTlt[um]=%6.2f\n" " Ry[mm]=%f" , it, dx, yt, zt , 1.e4*TMath::Sqrt(s2yTrk), 1.e4*TMath::Sqrt(cp.GetSigmaY2()+sysCov[0]), 1.e4*TMath::Sqrt(s2yCl) , 1.e1*roady)); // get clusters from layer cond[0] = yt/*+0.5*kroadyShift*kroady*/; cond[2] = roady; cond[1] = zt; cond[3] = kroadz; Int_t n=0, idx[6]; layer->GetClusters(cond, idx, n, 6); for(Int_t ic = n; ic--;){ c = (*layer)[idx[ic]]; dx = fX0 - c->GetX(); yt = fYref[0] - fYref[1] * dx; zt = fZref[0] - fZref[1] * dx; dz = zt - c->GetZ(); dy = yt - (c->GetY() + (tilt ? (GetTilt() * dz) : 0.)); Int_t r = c->GetPadRow(); clst[r].AddAtAndExpand(c, ncl[r]); blst[r][ncl[r]] = kTRUE; idxs[r][ncl[r]] = idx[ic]; zres[r][ncl[r]] = dz/GetPadLength(); yres[r][ncl[r]] = dy; xres[r][ncl[r]] = dx; zc[r] = c->GetZ(); // TODO temporary solution to avoid divercences in error parametrization s2y[r][ncl[r]] = TMath::Min(c->GetSigmaY2()+sysCov[0], 0.025); AliDebug(5, Form(" -> dy[cm]=%+7.4f yc[cm]=%7.2f row[%d] idx[%2d]", dy, c->GetY(), r, ncl[r])); ncl[r]++; ncls++; if(ncl[r] >= kNcls) { AliWarning(Form("Cluster candidates row[%d] reached buffer limit[%d]. Some may be lost.", r, kNcls)); kBUFFER = kTRUE; break; } } if(kBUFFER) break; } if(ncls=2){ if(nrc==2){ if(zresRow[0]>zresRow[1]){ // swap Int_t itmp=idxRow[1]; idxRow[1] = idxRow[0]; idxRow[0] = itmp; Double_t dtmp=zresRow[1]; zresRow[1] = zresRow[0]; zresRow[0] = dtmp; } if(TMath::Abs(idxRow[1] - idxRow[0]) != 1){ SetErrorMsg(kAttachRowGap); AliDebug(2, Form("Rows attached not continuous. Select first candidate.\n" " row[%2d] Ncl[%2d] [cm]=%+8.2f row[%2d] Ncl[%2d] [cm]=%+8.2f", idxRow[0], ncl[idxRow[0]], zresRow[0], idxRow[1], idxRow[1]<0?0:ncl[idxRow[1]], zresRow[1])); nrc=1; idxRow[1] = -1; zresRow[1] = 999.; } } else { Int_t idx0[kNrows]; TMath::Sort(nrc, zresRow, idx0, kFALSE); nrc = 3; // select only maximum first 3 candidates Int_t iatmp[] = {-1, -1, -1}; Double_t datmp[] = {999., 999., 999.}; for(Int_t irc(0); irc[cm]=%+8.2f\n" "row[%2d] Ncl[%2d] [cm]=%+8.2f\n" "row[%2d] Ncl[%2d] [cm]=%+8.2f", idxRow[0], ncl[idxRow[0]], zresRow[0], idxRow[1], ncl[idxRow[1]], zresRow[1], idxRow[2], ncl[idxRow[2]], zresRow[2])); if(TMath::Abs(idxRow[0] - idxRow[2]) == 1){ // select second candidate AliDebug(2, "Solved ! Remove second candidate."); nrc = 2; idxRow[1] = idxRow[2]; zresRow[1] = zresRow[2]; // swap idxRow[2] = -1; zresRow[2] = 999.; // remove } else if(TMath::Abs(idxRow[1] - idxRow[2]) == 1){ if(ncl[idxRow[1]]+ncl[idxRow[2]] > ncl[idxRow[0]]){ AliDebug(2, "Solved ! Remove first candidate."); nrc = 2; idxRow[0] = idxRow[1]; zresRow[0] = zresRow[1]; // swap idxRow[1] = idxRow[2]; zresRow[1] = zresRow[2]; // swap } else { AliDebug(2, "Solved ! Remove second and third candidate."); nrc = 1; idxRow[1] = -1; zresRow[1] = 999.; // remove idxRow[2] = -1; zresRow[2] = 999.; // remove } } else { AliDebug(2, "Unsolved !!! Remove second and third candidate."); nrc = 1; idxRow[1] = -1; zresRow[1] = 999.; // remove idxRow[2] = -1; zresRow[2] = 999.; // remove } } else { // remove temporary candidate nrc = 2; idxRow[2] = -1; zresRow[2] = 999.; } } } AliDebug(4, Form("Sorted row candidates:\n" " row[%2d] Ncl[%2d] [cm]=%+8.2f row[%2d] Ncl[%2d] [cm]=%+8.2f" , idxRow[0], ncl[idxRow[0]], zresRow[0], idxRow[1], idxRow[1]<0?0:ncl[idxRow[1]], zresRow[1])); // initialize debug streamer TTreeSRedirector *pstreamer(NULL); if((recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 3 && fkReconstructor->IsDebugStreaming())|| AliTRDReconstructor::GetStreamLevel()>30) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); if(pstreamer){ // save config. for calibration TVectorD vdy[2], vdx[2], vs2[2]; for(Int_t jr(0); jrGetStreamLevel(AliTRDrecoParam::kTracker) > 4 ||AliTRDReconstructor::GetStreamLevel()>4){ Int_t idx(idxRow[1]); if(idx<0){ for(Int_t ir(0); ir0) continue; idx = ir; break; } } (*pstreamer) << "AttachClusters5" << "c0.=" << &clst[idxRow[0]] << "c1.=" << &clst[idx] << "\n"; } } //======================================================================================= // Analyse cluster topology Double_t f[kNcls], // likelihood factors for segments r[2][kNcls], // d(dydx) of tracklet candidate with respect to track xm[2][kNcls], // mean ym[2][kNcls], // mean sm[2][kNcls], // mean s[2][kNcls], // sigma_y p[2][kNcls], // prob of Gauss q[2][kNcls]; // charge/segment memset(f, 0, kNcls*sizeof(Double_t)); Int_t index[2][kNcls], n[2][kNcls]; memset(n, 0, 2*kNcls*sizeof(Int_t)); Int_t mts(0), nts[2] = {0, 0}; // no of tracklet segments in row AliTRDpadPlane *pp(AliTRDtransform::Geometry().GetPadPlane(fDet)); AliTRDtrackletOflHelper helper; Int_t lyDet(AliTRDgeometry::GetLayer(fDet)); for(Int_t jr(0), n0(0); jrCookLikelihood(chgPos, lyDet, fPt, phiTrk, n[jr][its], ym[jr][its]/*sRef*/, r[jr][its]*TMath::RadToDeg(), s[jr][its]/sm[jr][its]); } } AliDebug(4, Form(" Tracklet candidates: row[%2d] = %2d row[%2d] = %2d:", idxRow[0], nts[0], idxRow[1], nts[1])); if(AliLog::GetDebugLevel("TRD", "AliTRDseedV1")>3){ for(Int_t jr(0); jrGetStreamLevel(AliTRDrecoParam::kTracker) > 2 && fkReconstructor->IsDebugStreaming()) || AliTRDReconstructor::GetStreamLevel()>2 ) ) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); if(pstreamer){ // save config. for calibration TVectorD vidx, vn, vx, vy, vr, vs, vsm, vp, vf; vidx.ResizeTo(ncl[idxRow[0]]+(idxRow[1]<0?0:ncl[idxRow[1]])); vn.ResizeTo(mts); vx.ResizeTo(mts); vy.ResizeTo(mts); vr.ResizeTo(mts); vs.ResizeTo(mts); vsm.ResizeTo(mts); vp.ResizeTo(mts); vf.ResizeTo(mts); for(Int_t jr(0), jts(0), jc(0); jr1) TMath::Sort(nts[0], f, idx2); Int_t is(idx2[0]); // seed index Int_t idxTrklt[kNcls], kts(0), nTrklt(n[0][is]); Double_t fTrklt(f[is]), rTrklt(r[0][is]), yTrklt(ym[0][is]), sTrklt(s[0][is]), smTrklt(sm[0][is]), xTrklt(xm[0][is]), pTrklt(p[0][is]), qTrklt(q[0][is]); memset(idxTrklt, 0, kNcls*sizeof(Int_t)); // check seed idx2[0] exit if not found if(f[is]<1.e-2){ AliDebug(1, Form("Seed seg[%d] row[%2d] n[%2d] f[%f]<0.01.", is, idxRow[0], n[0][is], f[is])); SetErrorMsg(kAttachClAttach); if(!pstreamer && ( (recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 1 && fkReconstructor->IsDebugStreaming()) || AliTRDReconstructor::GetStreamLevel()>1 ) ) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); if(pstreamer){ UChar_t stat(0); if(IsKink()) SETBIT(stat, 1); if(IsStandAlone()) SETBIT(stat, 2); if(IsRowCross()) SETBIT(stat, 3); SETBIT(stat, 4); // set error bit TVectorD vidx; vidx.ResizeTo(1); vidx[0] = is; (*pstreamer) << "AttachClusters2" << "stat=" << stat << "ev=" << ev << "chg=" << chgPos << "det=" << fDet << "x0=" << fX0 << "y0=" << fYref[0] << "z0=" << fZref[0] << "phi=" << phiTrk << "tht=" << thtTrk << "pt=" << fPt << "s2Trk=" << s2yTrk << "s2Cl=" << s2Mean << "idx=" << &vidx << "n=" << nTrklt << "f=" << fTrklt << "x=" << xTrklt << "y=" << yTrklt << "r=" << rTrklt << "s=" << sTrklt << "sm=" << smTrklt << "p=" << pTrklt << "q=" << qTrklt << "\n"; } return kFALSE; } AliDebug(2, Form("Seed seg[%d] row[%2d] n[%2d] dy[%f] r[%+5.2f] s[%+5.2f] f[%5.3f] q[%6.2f]", is, idxRow[0], n[0][is], ym[0][is], r[0][is]*TMath::RadToDeg(), s[0][is]/sm[0][is], f[is], q[0][is])); // save seeding segment in the helper idxTrklt[kts++] = is; helper.Init(pp, &clst[idxRow[0]], index[0], is); AliTRDtrackletOflHelper test; // helper to test segment expantion Float_t rcLikelihood(0.); SetBit(kRowCross, kFALSE); Double_t dyRez[kNcls]; Int_t idx3[kNcls]; //========================================================= // Define filter parameters from OCDB Int_t kNSgmDy[2]; attach->GetNsgmDy(kNSgmDy[0], kNSgmDy[1]); Float_t kLikeMinRelDecrease[2]; attach->GetLikeMinRelDecrease(kLikeMinRelDecrease[0], kLikeMinRelDecrease[1]); Float_t kRClikeLimit(attach->GetRClikeLimit()); //========================================================= // Try attaching next segments from first row (if any) if(nts[0]>1){ Int_t jr(0), ir(idxRow[jr]); // organize secondary sgms. in decreasing order of their distance from seed memset(dyRez, 0, nts[jr]*sizeof(Double_t)); for(Int_t jts(1); jts kNSgmDy[jr]*smTrklt){ AliDebug(2, Form("Reject seg[%d] row[%2d] n[%2d] dy[%f] > %d*s[%f].", its, idxRow[jr], n[jr][its], dyRez[its], kNSgmDy[jr], kNSgmDy[jr]*smTrklt)); continue; } test = helper; Int_t n0 = test.Expand(&clst[ir], index[jr], its); Double_t rt, dyt, st, xt, smt, pt, qt, ft; Int_t n1 = test.GetRMS(rt, dyt, st, fX0/*xt*/); pt = Double_t(n1)/n0; smt = test.GetSyMean(); qt = test.GetQ()/TMath::Sqrt(1. + fYref[1]*fYref[1] + fZref[1]*fZref[1]); xt = fX0; // correct position Double_t dxm= fX0 - xt; yt = fYref[0] - fYref[1]*dxm; zt = fZref[0] - fZref[1]*dxm; // correct tracklet fit for tilt dyt+= GetTilt()*(zt - zc[idxRow[0]]); rt += GetTilt() * fZref[1]; // correct tracklet fit for track position/inclination dyt = yt - dyt; rt = (rt - fYref[1])/(1+rt*fYref[1]); // report inclination in radians rt = TMath::ATan(rt); ft = (n0>=2) ? attach->CookLikelihood(chgPos, lyDet, fPt, phiTrk, n0, dyt/*sRef*/, rt*TMath::RadToDeg(), st/smt) : 0.; Bool_t kAccept(ft>=fTrklt*(1.-kLikeMinRelDecrease[jr])); AliDebug(2, Form("%s seg[%d] row[%2d] n[%2d] dy[%f] r[%+5.2f] s[%+5.2f] f[%f] < %4.2f*F[%f].", (kAccept?"Adding":"Reject"), its, idxRow[jr], n0, dyt, rt*TMath::RadToDeg(), st/smt, ft, 1.-kLikeMinRelDecrease[jr], fTrklt*(1.-kLikeMinRelDecrease[jr]))); if(kAccept){ idxTrklt[kts++] = its; nTrklt = n0; fTrklt = ft; rTrklt = rt; yTrklt = dyt; sTrklt = st; smTrklt= smt; xTrklt = xt; pTrklt = pt; qTrklt = qt; helper.Expand(&clst[ir], index[jr], its); } } } //========================================================= // Try attaching next segments from second row (if any) if(nts[1] && (rcLikelihood = zresRow[0]/zresRow[1]) > kRClikeLimit){ // organize secondaries in decreasing order of their distance from seed Int_t jr(1), ir(idxRow[jr]); memset(dyRez, 0, nts[jr]*sizeof(Double_t)); Double_t rot(TMath::Tan(r[0][is])); for(Int_t jts(0); jts kNSgmDy[jr]*smTrklt){ AliDebug(2, Form("Reject seg[%d] row[%2d] n[%2d] dy[%f] > %d*s[%f].", its, idxRow[jr], n[jr][its], dyRez[its], kNSgmDy[jr], kNSgmDy[jr]*smTrklt)); continue; } test = helper; Int_t n0 = test.Expand(&clst[ir], index[jr], its); Double_t rt, dyt, st, xt, smt, pt, qt, ft; Int_t n1 = test.GetRMS(rt, dyt, st, fX0/*xt*/); pt = Double_t(n1)/n0; smt = test.GetSyMean(); qt = test.GetQ()/TMath::Sqrt(1. + fYref[1]*fYref[1] + fZref[1]*fZref[1]); xt = fX0; // correct position Double_t dxm= fX0 - xt; yt = fYref[0] - fYref[1]*dxm; zt = fZref[0] - fZref[1]*dxm; // correct tracklet fit for tilt dyt+= GetTilt()*(zt - zc[idxRow[0]]); rt += GetTilt() * fZref[1]; // correct tracklet fit for track position/inclination dyt = yt - dyt; rt = (rt - fYref[1])/(1+rt*fYref[1]); // report inclination in radians rt = TMath::ATan(rt); ft = (n0>=2) ? attach->CookLikelihood(chgPos, lyDet, fPt, phiTrk, n0, dyt/*sRef*/, rt*TMath::RadToDeg(), st/smt) : 0.; Bool_t kAccept(ft>=fTrklt*(1.-kLikeMinRelDecrease[jr])); AliDebug(2, Form("%s seg[%d] row[%2d] n[%2d] dy[%f] r[%+5.2f] s[%+5.2f] f[%f] < %4.2f*F[%f].", (kAccept?"Adding":"Reject"), its, idxRow[jr], n0, dyt, rt*TMath::RadToDeg(), st/smt, ft, 1.-kLikeMinRelDecrease[jr], fTrklt*(1.-kLikeMinRelDecrease[jr]))); if(kAccept){ idxTrklt[kts++] = its; nTrklt = n0; fTrklt = ft; rTrklt = rt; yTrklt = dyt; sTrklt = st; smTrklt= smt; xTrklt = xt; pTrklt = pt; qTrklt = qt; helper.Expand(&clst[ir], index[jr], its); SetBit(kRowCross, kTRUE); // mark pad row crossing } } } // clear local copy of clusters for(Int_t ir(0); irGetStreamLevel(AliTRDrecoParam::kTracker) > 1 && fkReconstructor->IsDebugStreaming()) || AliTRDReconstructor::GetStreamLevel()>1 ) ) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); if(pstreamer){ UChar_t stat(0); if(IsKink()) SETBIT(stat, 1); if(IsStandAlone()) SETBIT(stat, 2); if(IsRowCross()) SETBIT(stat, 3); TVectorD vidx; vidx.ResizeTo(kts); for(Int_t its(0); itsGetEntriesFast())){ AliError("Cluster candidates missing !!!"); SetErrorMsg(kAttachClAttach); return kFALSE; } for(Int_t ic(0); icAt(ic))) continue; Int_t it(c->GetPadTime()), jr(Int_t(helper.GetRow() != c->GetPadRow())), idx(it+kNtb*jr); if(fClusters[idx]){ AliDebug(1, Form("Multiple clusters/tb for D[%03d] Tb[%02d] Row[%2d]", fDet, it, c->GetPadRow())); continue; // already booked } // TODO proper indexing of clusters !! fIndexes[idx] = chamber->GetTB(it)->GetGlobalIndex(idxs[idxRow[jr]][ic]); fClusters[idx] = c; nc++; } AliDebug(2, Form("Clusters Found[%2d] Attached[%2d] RC[%c]", nselected, nc, IsRowCross()?'y':'n')); // number of minimum numbers of clusters expected for the tracklet if (nc < kClmin){ AliDebug(1, Form("NOT ENOUGH CLUSTERS %d ATTACHED TO THE TRACKLET [min %d] FROM FOUND %d.", nc, kClmin, ncls)); SetErrorMsg(kAttachClAttach); return kFALSE; } SetN(nc); // Load calibration parameters for this tracklet //Calibrate(); // calculate dx for time bins in the drift region (calibration aware) Float_t x[2] = {0.,0.}; Int_t tb[2]={0,0}; for (Int_t it = t0, irp=0; irp<2 && it < AliTRDtrackerV1::GetNTimeBins(); it++) { if(!fClusters[it]) continue; x[irp] = fClusters[it]->GetX(); tb[irp] = fClusters[it]->GetLocalTimeBin(); irp++; } Int_t dtb = tb[1] - tb[0]; fdX = dtb ? (x[0] - x[1]) / dtb : 0.15; return kTRUE; } //____________________________________________________________ void AliTRDseedV1::Bootstrap(const AliTRDReconstructor *rec) { // Fill in all derived information. It has to be called after recovery from file or HLT. // The primitive data are // - list of clusters // - detector (as the detector will be removed from clusters) // - position of anode wire (fX0) - temporary // - track reference position and direction // - momentum of the track // - time bin length [cm] // // A.Bercuci Oct 30th 2008 // fkReconstructor = rec; AliTRDgeometry g; SetPadPlane(g.GetPadPlane(fDet)); //fSnp = fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]); //fTgl = fZref[1]; Int_t n = 0, nshare = 0, nused = 0; AliTRDcluster **cit = &fClusters[0]; for(Int_t ic = kNclusters; ic--; cit++){ if(!(*cit)) return; n++; if((*cit)->IsShared()) nshare++; if((*cit)->IsUsed()) nused++; } SetN(n); SetNUsed(nused); SetNShared(nshare); Fit(); CookLabels(); GetProbability(); } //____________________________________________________________________ Bool_t AliTRDseedV1::Fit(UChar_t opt) { // // Linear fit of the clusters attached to the tracklet // // Parameters : // - opt : switch for tilt pad correction of cluster y position. Options are // 0 no correction [default] // 1 full tilt correction [dz/dx and z0] // 2 pseudo tilt correction [dz/dx from pad-chamber geometry] // // Output : // True if successful // // Detailed description // // Fit in the xy plane // // The fit is performed to estimate the y position of the tracklet and the track // angle in the bending plane. The clusters are represented in the chamber coordinate // system (with respect to the anode wire - see AliTRDtrackerV1::FollowBackProlongation() // on how this is set). The x and y position of the cluster and also their variances // are known from clusterizer level (see AliTRDcluster::GetXloc(), AliTRDcluster::GetYloc(), // AliTRDcluster::GetSX() and AliTRDcluster::GetSY()). // If gaussian approximation is used to calculate y coordinate of the cluster the position // is recalculated taking into account the track angle. The general formula to calculate the // error of cluster position in the gaussian approximation taking into account diffusion and track // inclination is given for TRD by: // BEGIN_LATEX // #sigma^{2}_{y} = #sigma^{2}_{PRF} + #frac{x#delta_{t}^{2}}{(1+tg(#alpha_{L}))^{2}} + #frac{x^{2}tg^{2}(#phi-#alpha_{L})tg^{2}(#alpha_{L})}{12} // END_LATEX // // Since errors are calculated only in the y directions, radial errors (x direction) are mapped to y // by projection i.e. // BEGIN_LATEX // #sigma_{x|y} = tg(#phi) #sigma_{x} // END_LATEX // and also by the lorentz angle correction // // Fit in the xz plane // // The "fit" is performed to estimate the radial position (x direction) where pad row cross happens. // If no pad row crossing the z position is taken from geometry and radial position is taken from the xy // fit (see below). // // There are two methods to estimate the radial position of the pad row cross: // 1. leading cluster radial position : Here the lower part of the tracklet is considered and the last // cluster registered (at radial x0) on this segment is chosen to mark the pad row crossing. The error // of the z estimate is given by : // BEGIN_LATEX // #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12 // END_LATEX // The systematic errors for this estimation are generated by the following sources: // - no charge sharing between pad rows is considered (sharp cross) // - missing cluster at row cross (noise peak-up, under-threshold signal etc.). // // 2. charge fit over the crossing point : Here the full energy deposit along the tracklet is considered // to estimate the position of the crossing by a fit in the qx plane. The errors in the q directions are // parameterized as s_q = q^2. The systematic errors for this estimation are generated by the following sources: // - no general model for the qx dependence // - physical fluctuations of the charge deposit // - gain calibration dependence // // Estimation of the radial position of the tracklet // // For pad row cross the radial position is taken from the xz fit (see above). Otherwise it is taken as the // interpolation point of the tracklet i.e. the point where the error in y of the fit is minimum. The error // in the y direction of the tracklet is (see AliTRDseedV1::GetCovAt()): // BEGIN_LATEX // #sigma_{y} = #sigma^{2}_{y_{0}} + 2xcov(y_{0}, dy/dx) + #sigma^{2}_{dy/dx} // END_LATEX // and thus the radial position is: // BEGIN_LATEX // x = - cov(y_{0}, dy/dx)/#sigma^{2}_{dy/dx} // END_LATEX // // Estimation of tracklet position error // // The error in y direction is the error of the linear fit at the radial position of the tracklet while in the z // direction is given by the cluster error or pad row cross error. In case of no pad row cross this is given by: // BEGIN_LATEX // #sigma_{y} = #sigma^{2}_{y_{0}} - 2cov^{2}(y_{0}, dy/dx)/#sigma^{2}_{dy/dx} + #sigma^{2}_{dy/dx} // #sigma_{z} = Pad_{length}/12 // END_LATEX // For pad row cross the full error is calculated at the radial position of the crossing (see above) and the error // in z by the width of the crossing region - being a matter of parameterization. // BEGIN_LATEX // #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12 // END_LATEX // In case of no tilt correction (default in the barrel tracking) the tilt is taken into account by the rotation of // the covariance matrix. See AliTRDseedV1::GetCovAt() for details. // // Author // A.Bercuci if(!fkReconstructor){ AliError("The tracklet needs the reconstruction setup. Please initialize by SetReconstructor()."); return kFALSE; } if(!IsCalibrated()) Calibrate(); if(opt>2){ AliWarning(Form("Option [%d] outside range [0, 2]. Using default",opt)); opt=0; } const Int_t kClmin = 8; const Float_t kScalePulls = 10.; // factor to scale y pulls - NOT UNDERSTOOD // get track direction Double_t y0 = fYref[0]; Double_t dydx = fYref[1]; Double_t z0 = fZref[0]; Double_t dzdx = fZref[1]; AliTRDtrackerV1::AliTRDLeastSquare fitterY; AliTRDtrackerV1::AliTRDLeastSquare fitterZ; // book cluster information Double_t qc[kNclusters], xc[kNclusters], yc[kNclusters], zc[kNclusters], sy[kNclusters]; Bool_t tilt(opt==1) // full tilt correction ,pseudo(opt==2) // pseudo tilt correction ,rc(IsRowCross()) // row cross candidate ,kDZDX(IsPrimary());// switch dzdx calculation for barrel primary tracks Int_t n(0); // clusters used in fit AliTRDcluster *c(NULL), *cc(NULL), **jc = &fClusters[0]; const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); //the dynamic cast in GetRecoParam is slow, so caching the pointer to it const Char_t *tcName[]={"NONE", "FULL", "HALF"}; AliDebug(2, Form("Options : TC[%s] dzdx[%c]", tcName[opt], kDZDX?'Y':'N')); for (Int_t ic=0; icIsInChamber()) continue; // compute pseudo tilt correction if(kDZDX){ fZfit[0] = c->GetZ(); if(rc){ for(Int_t kc=AliTRDseedV1::kNtb; kcIsInChamber()) continue; fZfit[0] += cc->GetZ(); fZfit[0] *= 0.5; break; } } fZfit[1] = fZfit[0]/fX0; if(rc){ fZfit[0] += fZfit[1]*0.5*AliTRDgeometry::CdrHght(); fZfit[1] = fZfit[0]/fX0; } kDZDX=kFALSE; } // TODO use this information to adjust cluster error parameterization // Float_t w = 1.; // if(c->GetNPads()>4) w = .5; // if(c->GetNPads()>5) w = .2; // cluster charge qc[n] = TMath::Abs(c->GetQ()); // pad row of leading xc[n] = fX0 - c->GetX(); // Recalculate cluster error based on tracking information c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], -1./*zcorr?zt:-1.*/, dydx); c->SetSigmaZ2(fPad[0]*fPad[0]/12.); // for HLT sy[n] = TMath::Sqrt(c->GetSigmaY2()); yc[n] = recoParam->UseGAUS() ? c->GetYloc(y0, sy[n], GetPadWidth()): c->GetY(); zc[n] = c->GetZ(); //optional r-phi correction //printf(" n[%2d] yc[%7.5f] ", n, yc[n]); Float_t correction(0.); if(tilt) correction = fPad[2]*(xc[n]*dzdx + zc[n] - z0); else if(pseudo) correction = fPad[2]*(xc[n]*fZfit[1] + zc[n]-fZfit[0]); yc[n]-=correction; //printf("corr(%s%s)[%7.5f] yc1[%7.5f]\n", (tilt?"TC":""), (zcorr?"PC":""), correction, yc[n]); AliDebug(5, Form(" tb[%2d] dx[%6.3f] y[%6.2f+-%6.3f]", c->GetLocalTimeBin(), xc[n], yc[n], sy[n])); fitterY.AddPoint(&xc[n], yc[n], sy[n]); if(rc) fitterZ.AddPoint(&xc[n], qc[n]*(ic AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght()){ AliDebug(1, Form("Ref radial position ouside chamber x[%5.2f].", fX)); SetErrorMsg(kFitFailedY); return kFALSE; } /* // THE LEADING CLUSTER METHOD for z fit Float_t xMin = fX0; Int_t ic=n=kNclusters-1; jc = &fClusters[ic]; AliTRDcluster *c0 =0x0, **kc = &fClusters[kNtb-1]; for(; ic>kNtb; ic--, --jc, --kc){ if((c0 = (*kc)) && c0->IsInChamber() && (xMin>c0->GetX())) xMin = c0->GetX(); if(!(c = (*jc))) continue; if(!c->IsInChamber()) continue; zc[kNclusters-1] = c->GetZ(); fX = fX0 - c->GetX(); } fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.; // Error parameterization fS2Z = fdX*fZref[1]; fS2Z *= fS2Z; fS2Z *= 0.2887; // 1/sqrt(12)*/ // fit QZ if(opt!=1 && IsRowCross()){ if(!fitterZ.Eval()) SetErrorMsg(kFitFailedZ); if(!HasError(kFitFailedZ) && TMath::Abs(fitterZ.GetFunctionParameter(1))>1.e-10){ // TODO - one has to recalculate xy fit based on // better knowledge of z position // Double_t x = -fitterZ.GetFunctionParameter(0)/fitterZ.GetFunctionParameter(1); // Double_t z0 = .5*(zc[0]+zc[n-1]); // fZfit[0] = z0 + fZfit[1]*x; // fZfit[1] = fZfit[0]/fX0; // redo fit on xy plane } // temporary external error parameterization fS2Z = 0.05+0.4*TMath::Abs(fZref[1]); fS2Z *= fS2Z; // TODO correct formula //fS2Z = sigma_x*TMath::Abs(fZref[1]); } else { //fZfit[0] = zc[0] + dzdx*0.5*AliTRDgeometry::CdrHght(); fS2Z = GetPadLength()*GetPadLength()/12.; } return kTRUE; } //____________________________________________________________________ Bool_t AliTRDseedV1::FitRobust(AliTRDpadPlane *pp, TGeoHMatrix *mDet, Float_t bz, Int_t chg, Int_t opt) { // // Linear fit of the clusters attached to the tracklet // The fit is performed in local chamber coordinates (27.11.2013) to take into account correctly the misalignment // Also the pad row cross is checked here and some background is removed // // Author // A.Bercuci TTreeSRedirector *pstreamer(NULL); const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); if( (recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 3 && fkReconstructor->IsDebugStreaming()) || AliTRDReconstructor::GetStreamLevel()>3 ) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker); // factor to scale y pulls. // ideally if error parametrization correct this is 1. //Float_t lyScaler = 1./(AliTRDgeometry::GetLayer(fDet)+1.); Float_t kScalePulls = 1.; AliTRDcalibDB *calibration = AliTRDcalibDB::Instance(); if(!calibration){ AliWarning("No access to calibration data"); } else { // Retrieve the CDB container class with the parametric likelihood const AliTRDCalTrkAttach *attach = calibration->GetAttachObject(); if(!attach){ AliWarning("No usable AttachClusters calib object."); } else { //kScalePulls = attach->GetScaleCov();//*lyScaler; } // Retrieve chamber status SetChmbGood(calibration->IsChamberGood(fDet)); if(!IsChmbGood()) kScalePulls*=10.; } AliTRDCommonParam *cp = AliTRDCommonParam::Instance(); Double_t freq(cp?cp->GetSamplingFrequency():10.); // evaluate locally z and dzdx from TRD only information if(EstimatedCrossPoint(pp, bz)<0.) return kFALSE; //printf("D%03d RC[%c] dzdx[%f %f] opt[%d]\n", fDet, IsRowCross()?'y':'n', fZref[1], fZfit[1], opt); Double_t //xchmb = 0.5 * AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick(), //zchmb = 0.5 * (pp->GetRow0() + pp->GetRowEnd()), z0(0.5 * (pp->GetRow0() + pp->GetRowEnd()) + fZfit[0]), DZ(pp->GetRow0() - pp->GetRowEnd() - pp->GetAnodeWireOffset() + fZfit[0]), z, d(-1.); Double_t xc[kNclusters], yc[kNclusters], dz(0.), dzdx(0.), s2dz(0.), s2dzdx(0.), sy[kNclusters], s2x((8.33e-2/freq/freq+1.56e-2)*fVD*fVD), // error of 1tb + error of mean time (TRF) t2(fPad[2]*fPad[2]), loc[3]={0.}; Int_t n(0), // clusters used in fit row[]={-1, -1};// pad row spanned by the tracklet Double_t ycorr(UnbiasY(IsRowCross(), bz)), kS2Ycorr(recoParam->GetS2Ycorr(IsRowCross(), chg>0)); AliTRDcluster *c(NULL), **jc = &fClusters[0]; for(Int_t ic=0; icIsInChamber()) continue; if(row[0]<0){ row[0] = c->GetPadRow(); z = pp->GetRowPos(row[0]) - 0.5*pp->GetRowSize(row[0]); switch(opt){ case 0: // no dz correction (only for RC tracklet) and dzdx from chamber position assuming primary dzdx = IsRowCross()?fZfit[1]:0.; s2dzdx= IsRowCross()?GetS2DZDX(dzdx):0.; dz = IsRowCross()?(z - z0):0.; s2dz = IsRowCross()?fS2Z:0.; break; case 1: // dz correction only for RC tracklet and dzdx from reference dzdx = fZref[1]; dz = IsRowCross()?(z - z0):0.; break; case 2: // full z correction (z0 & dzdx from reference) dzdx = fZref[1]; dz = c->GetZ()-fZref[0]; break; default: AliError(Form("Wrong option fit %d !", opt)); break; } } //Use local cluster coordinates //A.Bercuci 27.11.13/30.06.14 Double_t trk[] = {c->GetX(), c->GetY(), c->GetZ()}; mDet->MasterToLocal(trk, loc); xc[n] = AliTRDgeometry::AnodePos()-loc[0]; //c->GetXloc(fT0, fVD); // c->GetX(); yc[n] = loc[1]; //c->GetYloc(pp->GetColPos(col) + .5*cs, fS2PRF, cs) - xc[n]*fExB; //c->GetY(); yc[n]-= fPad[2]*(dz+xc[n]*dzdx); yc[n]-= ycorr; if(IsRowCross()){ // estimate closest distance to anode wire d = DZ-xc[n]*dzdx; d -= ((Int_t)(2 * d)) / 2.0; if (d > 0.25) d = 0.5 - d; } // recalculate cluster error from knowledge of the track inclination in the bending plane // and eventually distance to anode wire c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], d, fYref[1]); s2x = c->GetSX(c->GetLocalTimeBin(), d); s2x*=s2x; sy[n] = c->GetSigmaY2()>0?(TMath::Min(Double_t(c->GetSigmaY2()), 6.4e-3)):6.4e-3; sy[n]+= t2*(s2dz+xc[n]*xc[n]*s2dzdx+dzdx*dzdx*s2x); sy[n] = TMath::Sqrt(sy[n]); n++; } for(Int_t ic=kNtb; icIsInChamber()) continue; if(row[1]<0){ row[1] = c->GetPadRow(); z = pp->GetRowPos(row[1]) - 0.5*pp->GetRowSize(row[1]); switch(opt){ case 0: // no dz correction (only for RC tracklet) and dzdx from chamber position assuming primary //dzdx = fZfit[1]; dz = z - z0; break; case 1: // dz correction only for RC tracklet and dzdx from reference //dzdx = fZref[1]; dz = z - z0; break; case 2: // full z correction (z0 & dzdx from reference) //dzdx = fZref[1]; dz = c->GetZ()-fZref[0]; break; default: AliError(Form("Wrong option fit %d !", opt)); break; } } //Use local cluster coordinates - the code should be identical with AliTRDtransform::Transform() !!! //A.Bercuci 27.11.13 Double_t trk[] = {c->GetX(), c->GetY(), c->GetZ()}; mDet->MasterToLocal(trk, loc); xc[n] = AliTRDgeometry::AnodePos()-loc[0]; //c->GetXloc(fT0, fVD); // c->GetX(); yc[n] = loc[1]; //c->GetYloc(pp->GetColPos(col) + .5*cs, fS2PRF, cs) - xc[n]*fExB; //c->GetY(); yc[n]-= fPad[2]*(dz+xc[n]*dzdx); yc[n]-= ycorr; d = DZ-xc[n]*dzdx; d -= ((Int_t)(2 * d)) / 2.0; if (d > 0.25) d = 0.5 - d; c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], d, fYref[1]); s2x = c->GetSX(c->GetLocalTimeBin(), d); s2x*=s2x; sy[n] = c->GetSigmaY2()>0?(TMath::Min(Double_t(c->GetSigmaY2()), 6.4e-3)):6.4e-3; sy[n]+= t2*(s2dz+xc[n]*xc[n]*s2dzdx+dzdx*dzdx*s2x); sy[n] = TMath::Sqrt(sy[n]); n++; } UChar_t status(0); // the ref radial position is set close to the minimum of // the y variance of the tracklet fX = 0.;//set reference to anode wire Double_t par[3] = {0.,0.,fX}, cov[3]; if(!AliTRDtrackletOflHelper::Fit(n, xc, yc, sy, par, 1.5, cov)){ AliDebug(1, Form("Tracklet fit failed D[%03d].", fDet)); SetErrorMsg(kFitCl); return kFALSE; } fYfit[0] = par[0] - fX * par[1]; fYfit[1] = -par[1]; //printf(" yfit: %f [%f] x[%e] dydx[%f]\n", fYfit[0], par[0], fX, par[1]); // store covariance fCov[0] = kS2Ycorr*cov[0]; // variance of y0 fCov[1] = kScalePulls*cov[2]; // covariance of y0, dydx fCov[2] = kScalePulls*cov[1]; // variance of dydx // check radial position Float_t xs=fX+.5*AliTRDgeometry::CamHght(); if(xs < 0. || xs > AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght()){ AliDebug(1, Form("Ref radial position x[%5.2f] ouside D[%3d].", fX, fDet)); SetErrorMsg(kFitFailedY); return kFALSE; } if(!IsRowCross()){ Double_t padEffLength(fPad[0] - TMath::Abs(dzdx)); fS2Z = padEffLength*padEffLength/12.; } AliDebug(2, Form("[I] x[cm]=%6.2f y[cm]=%+5.2f z[cm]=%+6.2f dydx[deg]=%+5.2f", GetX(), GetY(), GetZ(), TMath::ATan(fYfit[1])*TMath::RadToDeg())); if(pstreamer){ Float_t x= fX0 -fX, y = GetY(), yt = fYref[0]-fX*fYref[1]; SETBIT(status, 2); TVectorD vcov(3); vcov[0]=cov[0];vcov[1]=cov[1];vcov[2]=cov[2]; Double_t sm(0.), chi2(0.), tmp, dy[kNclusters]; for(Int_t ic(0); icLocalToMaster(loc, trk); fX0 = trk[0]; fY = trk[1]; fZ = trk[2]; return; // if(!IsRowCross()){/*fZfit[1] *= 1.09;*/ return;} // // recalculate local z coordinate assuming primary track for row cross tracklets // Double_t zoff(fZ-fZfit[0]); // no alignment aware ! // //printf("SetXYZ : zoff[%f] zpp[%f]\n", zoff, zpp); // fZfit[0] = fX0*fZfit[1] - zoff; // // recalculate tracking coordinates based on the new z coordinate // loc[2] = fZfit[0]; // mDet->LocalToMaster(loc, trk); // fX0 = trk[0]; // fY = trk[1]; // fZ = trk[2];//-zcorr[stk]; //fZfit[1] = /*(IsRowCross()?1.05:1.09)**/fZ/(fX0-fS2Y); } //___________________________________________________________________ void AliTRDseedV1::Print(Option_t *o) const { // // Printing the seedstatus // AliInfo(Form("Det[%3d] X0[%7.2f] Pad{L[%5.2f] W[%5.2f] Tilt[%+6.2f]}", fDet, fX0, GetPadLength(), GetPadWidth(), GetTilt())); AliInfo(Form("N[%2d] Nused[%2d] Nshared[%2d] [%d]", GetN(), GetNUsed(), GetNShared(), fN)); AliInfo(Form("FLAGS : RC[%c] Kink[%c] SA[%c]", IsRowCross()?'y':'n', IsKink()?'y':'n', IsStandAlone()?'y':'n')); AliInfo(Form("CALIB PARAMS : T0[%5.2f] Vd[%5.2f] s2PRF[%5.2f] ExB[%5.2f] Dl[%5.2f] Dt[%5.2f]", fT0, fVD, fS2PRF, fExB, fDiffL, fDiffT)); Double_t cov[3], x=GetX(); GetCovAt(x, cov); AliInfo(" | x[cm] | y[cm] | z[cm] | dydx | dzdx |"); AliInfo(Form("Fit | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | ----- |", x, GetY(), TMath::Sqrt(cov[0]), GetZ(), TMath::Sqrt(cov[2]), fYfit[1])); AliInfo(Form("Ref | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | %5.2f |", x, fYref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[0]), fZref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[2]), fYref[1], fZref[1])); AliInfo(Form("P / Pt [GeV/c] = %f / %f", GetMomentum(), fPt)); if(IsStandAlone()) AliInfo(Form("C Rieman / Vertex [1/cm] = %f / %f", fC[0], fC[1])); AliInfo(Form("dEdx [a.u.] = %f / %f / %f / %f / %f/ %f / %f / %f", fdEdx[0], fdEdx[1], fdEdx[2], fdEdx[3], fdEdx[4], fdEdx[5], fdEdx[6], fdEdx[7])); AliInfo(Form("PID = %5.3f / %5.3f / %5.3f / %5.3f / %5.3f", fProb[0], fProb[1], fProb[2], fProb[3], fProb[4])); if(strcmp(o, "a")!=0) return; AliTRDcluster* const* jc = &fClusters[0]; for(int ic=0; icPrint(o); } } //___________________________________________________________________ Bool_t AliTRDseedV1::IsEqual(const TObject *o) const { // Checks if current instance of the class has the same essential members // as the given one if(!o) return kFALSE; const AliTRDseedV1 *inTracklet = dynamic_cast(o); if(!inTracklet) return kFALSE; for (Int_t i = 0; i < 2; i++){ if ( fYref[i] != inTracklet->fYref[i] ) return kFALSE; if ( fZref[i] != inTracklet->fZref[i] ) return kFALSE; } if ( TMath::Abs(fS2Y - inTracklet->fS2Y)>1.e-10 ) return kFALSE; if ( TMath::Abs(GetTilt() - inTracklet->GetTilt())>1.e-10 ) return kFALSE; if ( TMath::Abs(GetPadLength() - inTracklet->GetPadLength())>1.e-10 ) return kFALSE; for (Int_t i = 0; i < kNclusters; i++){ // if ( fX[i] != inTracklet->GetX(i) ) return kFALSE; // if ( fY[i] != inTracklet->GetY(i) ) return kFALSE; // if ( fZ[i] != inTracklet->GetZ(i) ) return kFALSE; if ( fIndexes[i] != inTracklet->fIndexes[i] ) return kFALSE; } // if ( fUsable != inTracklet->fUsable ) return kFALSE; for (Int_t i=0; i < 2; i++){ if ( fYfit[i] != inTracklet->fYfit[i] ) return kFALSE; if ( fZfit[i] != inTracklet->fZfit[i] ) return kFALSE; if ( fLabels[i] != inTracklet->fLabels[i] ) return kFALSE; } /* if ( fMeanz != inTracklet->GetMeanz() ) return kFALSE; if ( fZProb != inTracklet->GetZProb() ) return kFALSE;*/ if ( fN != inTracklet->fN ) return kFALSE; //if ( fNUsed != inTracklet->fNUsed ) return kFALSE; //if ( fFreq != inTracklet->GetFreq() ) return kFALSE; //if ( fNChange != inTracklet->GetNChange() ) return kFALSE; if ( TMath::Abs(fC[0] - inTracklet->fC[0])>1.e-10 ) return kFALSE; //if ( fCC != inTracklet->GetCC() ) return kFALSE; if ( TMath::Abs(fChi2 - inTracklet->fChi2)>1.e-10 ) return kFALSE; // if ( fChi2Z != inTracklet->GetChi2Z() ) return kFALSE; if ( fDet != inTracklet->fDet ) return kFALSE; if ( TMath::Abs(fPt - inTracklet->fPt)>1.e-10 ) return kFALSE; if ( TMath::Abs(fdX - inTracklet->fdX)>1.e-10 ) return kFALSE; for (Int_t iCluster = 0; iCluster < kNclusters; iCluster++){ AliTRDcluster *curCluster = fClusters[iCluster]; AliTRDcluster *inCluster = inTracklet->fClusters[iCluster]; if (curCluster && inCluster){ if (! curCluster->IsEqual(inCluster) ) { curCluster->Print(); inCluster->Print(); return kFALSE; } } else { // if one cluster exists, and corresponding // in other tracklet doesn't - return kFALSE if(curCluster || inCluster) return kFALSE; } } return kTRUE; }