
TRD
Offline Software Writeup

Version 1.0, July 8, 2009

1

Contents

Introduction 3

Simulation 4
1.1 Geometry . 4

1.1.1 Readout Chambers . 4
1.1.2 Supermodules . 5
1.1.3 Material Budget and Weight . 6
1.1.4 Naming Conventions and Numbering Schemes 7
1.1.5 Pad Planes . 8

1.2 Hit Generation . 9
1.2.1 Energy loss . 9
1.2.2 Photons from transition radiation . 9
1.2.3 Track references . 10

1.3 Digitization . 10
1.3.1 Digitizer . 10
1.3.2 Simulation parameter . 12
1.3.3 Digits manager . 13
1.3.4 Data containers . 13
1.3.5 Zero suppression . 14

1.4 Raw Data Simulation . 14
1.5 Trigger Simulation . 14

1.5.1 MCM simulation . 15
1.5.2 TRAP configuration . 16
1.5.3 Tracklet classes . 16
1.5.4 GTU simulation . 17
1.5.5 CTP interface . 17

Reconstruction 18
2.1 Raw Data Reading . 18
2.2 Cluster Finding . 18

2.2.1 Cluster position reconstruction . 18
2.2.2 Cluster error parameterization . 21

2.3 The TRD tracklet . 24
2.3.1 Tracklet building . 25
2.3.2 Tracklet fitting . 25
2.3.3 Tracklet errors . 27
2.3.4 Tracklet dE/dx . 27
2.3.5 Tracklet PID . 28

2.4 Tracking . 29
2.4.1 Track propagation barrel . 29
2.4.2 Stand alone track finding . 31

Calibration 34
3.1 Database Entries . 34
3.2 DAQ Calibration . 35

3.2.1 Pedestal algorithm . 36

2

3.2.2 Drift velocity and timeoffset algorithm . 37
3.3 HLT Calibration . 37
3.4 Preprocessor . 39
3.5 Offline Calibration . 40

3.5.1 AliTRDCalibraVector container . 40
3.5.2 Additional method to calibrate the drift velocity 41
3.5.3 The calibration AliAnalysisTask . 42

Alignment 43
4.1 ??? . 43

Quality Assurance (QA) 44
5.1 ??? . 44

High Level Trigger (HLT) 45
6.1 ??? . 45

References 46

Introduction

This document is supposed to provide a description of the offline software components that
are specific to the TRD. It is an attempt to collect useful informations on the design and usage
of the TRD software, in order to facilitate newcomers the introduction to the code. The most
important classes and procedures are described and several examples and use cases are
given. However, this writeup is not meant to be a basic AliRoot introduction. For this purpose
the reader is referred to the general AliRoot users guide [1].

Simulation

1.1 Geometry

Author: C. Blume (blume@ikf.uni-frankfurt.de)

The TRD geometry, as implemented in AliTRDgeometry, consists of several components: The
readout chambers (ROC), the services, and the supermodule frame. All these parts are
placed inside the TRD mother volumes, which in turn are part of the space frame geometry
(AliFRAMEv2). Therefore, the space frame geometry has to be present to build the TRD geom-
etry. For each of the 18 supermodules one single mothervolume is provided (BTRDxx). This
allows to configure the TRD geometry in Config.C such that it only contains a subset of super-
modules in the total ALICE geometry via AliTRDgeometry::SetSMstatus(). An incomplete de-
tector setup, as it exists for first data taking, can thus be modelled. The class AliTRDgeometry
also serves as the central place to collect all geometry relevant numbers and the definitions
of various numbering schemes of detector components (e.g. sector numbers). However, all
geometric parameters that refer to the pad planes are compiled in AliTRDpadPlane.

1.1.1 Readout Chambers

Figure 1.1: A TRD read out chamber as implemented in the AliRoot geometry. The various material
layers are visible. Also, the MCMs on top of the chamber, as well as the cooling pipes are shown.

1.1 Geometry 5

All ROCs are modelled in the same way, only their dimensions vary. They consist of an
aluminum frame, which contains the material for the radiator and the gas of the drift region,
a Wacosit frame (whose material is represented by carbon), that surrounds the amplification
region, and the support structure, consisting of its aluminum frame, material for the read out
pads, back panel, and readout boards). The material inside the active parts of the chambers
(radiator, gas, wire planes, pad planes, glue, read out boards, etc.) is introduced by uniform
layers of the corresponding material, whose thicknesses were chosen such to result in the
correct radiation length. On top of the individual ROCs the multi chip modules (MCM) as well as
the cooling pipes and cables are placed. One obvious simplification, already visible in Fig. 1.1,
is that in the AliRoot geometry the pipes run straight across the chambers instead of following
the meandering path as in reality.

1.1.2 Supermodules

Figure 1.2: A TRD supermodule, as implemented in the AliRoot geometry. The left panel shows only
the support structures of the aluminum frame, together with some service elements. The right panel
shows a complete supermodule including some surrounding parts of the space frame.

The supermodule frames consist of the aluminum sheets on the sides, top, and bottom of a
supermodule together with the traversing support structures. The left panel of Fig. 1.2 shows
the structures that are implemented in the TRD geometry. Also, parts of the services like the
LV power bus bars and cooling arteries can be seen. Additional electronics equipment (e.g.
“Schütten-Box“) is represented by aluminum boxes that contain corresponding copper layers
to mimic the present material. The services also include e.g. gas distribution boxes, cooling
pipes, power and readout cables, and power connection panels. Part of the services extend
into the baby and the back frame. Therefore, additional mother volumes have been introduced
in order to accommodate this material. All supermodules have inserts of carbon fiber sheets in
the bottom part of the aluminum casing, for the ones in front of the PHOS detector (sectors 11–
15) also the top part includes carbon fiber inserts. The supermodules in the sectors 13–15 do
not contain any ROCs in the middle stack in order to provide the holes for the PHOS detector.
Instead, gas tubes of stainless steel have been built in. Generally, the TRD volumina start with
the letter “U”. The geometry is defined by the function AliTRDgeometry::CreateGeometry(),
which generates the TRD mother volumes (UTI1, UTI2, UTI3) and the volumes that consti-
tute a single ROC. This function in turn also calls AliTRDgeometry::CreateFrame() to cre-
ate the TRD support frame, AliTRDgeometry::CreateServices() to create the services, and
AliTRDgeometry::GroupChambers() which assembles the alignable volumes for a single ROC

6

(UTxx, where xx is the detector number DET-SEC, defined inside a single super module, see
below). The materials, together with their tracking parameters, that are assigned to the volu-
mina, are defined in AliTRD::CreateMaterials(). In the following table the most important
TRD volumina are described (xx = DET-SEC number):

Name Description
UTR1 TRD mothervolume for default supermodules
UTR2 TRD mothervolume for supermodules in front of PHOS
UTR3 As UTR2, but w/o middle stack
UTxx Top volume of a single ROC

Defines the alignable volume for a single ROC
UAxx Lower part of the ROCs, including drift volume and radiator
UDxx Amplification region
UFxx Back panel, including pad planes and PCB boards of readout electronics
UUxx Contains services on chambers (cooling, cables, DCS boards) and MCM chips

1.1.3 Material Budget and Weight

η
0 0.02 0.04 0.06 0.08 0.1 0.12

]° [φ

4

6

8

10

12

14

16

0.25

0.3

0.35

0.4

0.45
0X/X

Figure 1.3: The radiation length map in units of X/X0 in part of the active detector area of super
module 0 as a function of the pseudorapidity η and the azimuth angle φ, calculated from the geometry
in AliRoot. Visible are the positions of the MCMs and the cooling pipes as hot spots.

The volumina defining a ROC contain several layers that represent the different materials
present inside a chamber and which therefore define the material budget inside the sensitive
areas:

1.1 Geometry 7

Name Mother Material Description Thickness Density X/X0

[cm] [g/cm3] [%]
URMYxx UAxx Mylar Mylar layer on radiator (x2) 0.0015 1.39 0.005
URCBxx UAxx Carbon Carbon fiber mats (x2) 0.0055 1.75 0.023
URGLxx UAxx Araldite Glue on the fiber mats (x2) 0.0065 1.12 0.018
URRHxx UAxx Rohacell Sandwich structure (x2) 0.8 0.075 0.149
URFBxx UAxx PP Fiber mats inside radiator 3.186 0.068 0.490
UJxx UAxx Xe/CO2 The drift region 3.0 0.00495 0.167
UKxx UDxx Xe/CO2 The amplification region 0.7 0.00495 0.039
UWxx UKxx Copper Wire planes (x2) 0.00011 8.96 0.008
UPPDxx UFxx Copper Copper of pad plane 0.0025 8.96 0.174
UPPPxx UFxx G10 PCB of pad plane 0.0356 2.0 0.239
UPGLxx UFxx Araldite Glue on pad plane 0.0923 1.12 0.249

Araldite + additional glue (leaks) 0.0505 1.12 0.107
UPCBxx UFxx Carbon Carbon fiber mats (x2) 0.019 1.75 0.078
UPHCxx UFxx Aramide Honeycomb structure 2.0299 0.032 0.169
UPPCxx UFxx G10 PCB of readout boards 0.0486 2.0 0.326
UPRDxx UFxx Copper Copper of readout boards 0.0057 8.96 0.404
UPELxx UFxx Copper Electronics and cables 0.0029 8.96 0.202

This material budget has been adjusted to match the estimate given in [2], with the exception
of the glue layer in the back panel (UPGLxx), which has been made thicker to include all
the additional glue that has been applied to fix the gas leaks. Figure 1.3 shows the resulting
radiation length map in the active detector area for super module 0, which has only carbon fiber
inserts at the bottom and is thus one of the super modules with the largest material budget. It
is clearly visible that the MCMs and the cooling pipes introduce hot spots in X/X0. However,
after averaging over the shown area, the mean value is found to be 〈X/X0〉 = 24.7 %. For a
supermodule with carbon fiber inserts at the top and the bottom one finds 〈X/X0〉 = 23.8 %
and in the regions of the PHOS holes (i.e. in the middle stack of supermodules 13–15) it is only
〈X/X0〉 = 1.9 %.

The total weight of a single TRD super module in the AliRoot geometry, including all ser-
vices, is currently 1595kg, which is ca. 5% short of its real weight. A single ROC of the type
L0C1 with electronics and cooling pipes weighs 21.82kg.

1.1.4 Naming Conventions and Numbering Schemes

The numbering schemes and the orientations of coordinate systems generally follow the official
ALICE-TRD definition [3]. Therefore, the whole geometry is defined in the global ALICE coor-
dinate system. Inside the code we use the following nomenclature (see Fig. 1.4), which should
be used consistently throughout the TRD code:

Name Definition Range
SECTOR TRD sector in azimuth (i.e. one supermodule) 0–17
LAYER Layer inside a supermodule 0–5
STACK Division of a supermodule along z-direction 0–4
DET Single ROC in whole TRD 0–539
DET-SEC Single ROC in one super module 0–29

Due to the holes in front of the PHOS detector, naturally not all DET numbers correspond
to existing ROCs. A single ROC can thus be uniquely addressed by either using the three

8

0

1
2

345
6

7

8

9

10
11

12 13 14
15

16

17x

y φ

a) SECTOR#

0
1
2
3
4
5

x

y

φ

b) LAYER#

0 1 2 3 4

z

y
θ

c) STACK#

Figure 1.4: Illustration of the TRD numbering scheme for super modules, defined in the global ALICE
coordinate system: a) SECTOR number, b) LAYER number, c) STACK number.

numbers (LAYER, STACK, SECTOR) or the single DET number. The correspondence between
the two possibilities is defined as:

DET = LAYER + STACK×5 + SECTOR×5×4

Additionally, there is a number that is unique inside a given super module (i.e. sector) and
therefore has a range of 0 – 29:

DET-SEC = LAYER + STACK×5

The class AliTRDgeometry provides a set of functions that could/should be used to convert the
one into the other:

AliTRDgeometry::GetDetector(layer,stack,sector)
AliTRDgeometry::GetDetectorSec(layer,stack)
AliTRDgeometry::GetLayer(det)
AliTRDgeometry::GetStack(det)
AliTRDgeometry::GetSector(det)

1.1.5 Pad Planes

All geometric parameters relevant to the pad planes are handled via the class AliTRDpadPlane.
This comprises the dimensions of the pad planes and the pad themselves, the number of

1.2 Hit Generation 9

padrows, padcolumns, and their tilting angle. The initialization of the needed AliTRDpadPlane
objects is done in AliTRDgeometry::CreatePadPlaneArray(). The number of padrows can
be 12 (C0-type) or 16 (C1-type), the number of padcolumns is 144 in any case. Again, the
numbering convention follows the definition given in [3]. Thus, the padrow numbers in a given
pad plane increase from 0 to 11(15) with decreasing z-position, while the padcolumn numbers
increase from 0 to 144 with increasing φ angle (i.e. counter clockwise). The tilting angle of
the pads is 2 degrees, with alternating signs at different layers, beginning with +2 degrees for
layer 0. The class AliTRDpadPlane provides a variety of functions that allow to assign a pad
number (row/column) to signals generated at a given hit position and which are used during the
digitization process.

1.2 Hit Generation

Author: C. Blume (blume@ikf.uni-frankfurt.de)

In the case of the TRD a single hit corresponds to a cluster of electrons resulting from the
ionization of the detector gas. This ionization can be due to the normal energy loss process of
a charged particle or due to the absorption of a transition radiation (TR) photon. A single TRD
hit, as defined in AliTRDhit therefore contains the following data members:

fTrack Index of MC particle in kine tree
fX X-position of the hit in global coordinates
fY Y-position of the hit in global coordinates
fZ Z-position of the hit in global coordinates
fDetector Number of the ROC (DET number)
fQ Number of electrons created in the ionization step. Negative for TR hits
fTime Absolute time of the hit in μs. Needed for pile-up events

On top of this, it is also stored in the TObject bit field status word whether a hit is inside the drift
or the amplification region (see AliTRDhit::FromDrift()and AliTRDhit::FromAmplification()).
The creation of hits is steered by AliTRDv1::StepManager().

1.2.1 Energy loss

A charged particle, traversing the gas volume of the TRD chambers, will release charge pro-
portional to its specific energy loss. In the TRD code this process is implemented in
AliTRDv1::StepManager(). This implementation used a fixed step size. The standard value
here is 0.1 cm, but other values can be set via AliTRDv1::SetStepSize(). The energy de-
posited in a given step is then calculated by the chosen MC program (typically Geant3.21),
which after division by the ionization energy gives the number of electrons of the new hit. The
version 2) will also work for an Ar/CO2 mixture, which can be selected by
AliTRDSimParam::SetArgon().

1.2.2 Photons from transition radiation

Additionally to the hits from energy loss, also hits from the absorption of TR photons are gen-
erated. This is done in AliTRDv1::CreateTRhit(), which in turn is called by the chosen step
manager for electrons and positrons entering the entering the drift volume. The process con-
sists of two steps: first the number and energies of the TR photons have to be determined and
then their absorption position inside the gas volume has to be calculated. The correspond-
ing procedures, used by AliTRDv1::CreateTRhit(), are implemented in AliTRDsimTR(). This

10

class contains a parametrization of TR photons generated by a regular foil stack radiator [4].
This parametrization has been tuned such that the resulting spectrum matches the one of the
fiber radiator that used in reality. Since the TR production depends also on the momentum of
the electron, the parameters have been adjusted in several momentum bins. After a TR pho-
ton has been generated and put on the particle stack, it is assumed that it follows a straight
trajectory whose direction is determined by the momentum vector of the generating electron.
Since the emission angle for TR photons is very small (∼ 1/γ) this is a valid approximation. The
absorption length, which thus determines the TR hit position, is randomly chosen according to
the absorption cross sections in the gas mixture. These energy dependent cross sections are
also included in AliTRDsimTR.

1.2.3 Track references

The TRD simulation produces track references (AliTrackReference) each time a charged par-
ticle is entering the drift region and exiting the amplification region. These track references thus
provide information on the position where the MC particle was entering and existing the sensi-
tive region of a ROC, as well as on its momentum components at this positions. Also, the index
to the MC particle in the kinematic tree is stored so that the full MC history can be retrieved.

1.3 Digitization

Author: C. Blume (blume@ikf.uni-frankfurt.de)

The second step in the simulation chain is the translation of the hit information, i.e. position and
amount of deposited charge, into the final detector response that can be stored in digits objects
(AliTRDdigits):

fAmp Signal amplitude
fId Number of the ROC (DET number)
fIndexInList Track index
fRow Pad row number
fColumn Pad column number
fTime Time bin number

However, in practice AliTRDdigits is not used to store the digits information. Instead the data
containers described in 1.3.4 are used for this purpose. The digitization process includes as an
intermediate step between hit and digits the so-called summable digits, or sdigits:

HITS =⇒ SDIGITS =⇒ DIGITS

They sdigits contain the detector signals before discretization and the addition of noise and are
used to merge several events into a single one.

1.3.1 Digitizer

The class AliTRDdigitizer contains all the necessary procedures to convert hits into sdigits
and subsequently sdigits into digits. The standard sequence to produce sdigits, as would be
initiated by AliSimulation, is shown here:

1.3 Digitization 11

MakeDigits()

SortHits()

ConvertHits(det)

ConvertSignals(det)

Signal2SDigits(det)

TRD.SDigits.root

�

�

�

�

�

�det=0-539

The first function SortHits() sorts the simulated hits according to their DET number, so that
the digitization procedures can be called for a single ROCs in the following loop. The function
ConvertHits() does the conversion of the hit information into a detector signal. In this pro-
cedure each electron of a given hit is in principle followed along its path from the position of
the primary ionization towards the anode wire. The position of this electron can be modified by
diffusion in the gas (AliTRDdigitizer::Diffusion()), ExB effect (AliTRDdigitizer::ExB()),
and absorption (AliTRDdigitizer::Absorbtion(), off per default). The drift time of the elec-
trons is also modified according to their distance to the corresponding anode wire position
(AliTRDdigitizer::TimeStruct()), since the electric field lines are not uniform inside the
amplification region. This results in a non-isochronity of the drift time, which has been sim-
ulated with the GARFIELD program and the tabulated results of this simulation are used in
the digitizing process to adjust the drift times accordingly. Once the position and the drift
time of the electron at the anode wire plane are know, the signal induced on the pads can
be calculated. This involves three effects: the pad response, which distributes the charge on
several pads (AliTRDdigitizer::PadResponse()), the time response due to the slow ion drift
and the PASA response function, which distributes the charge onto the following time bins,
(AliTRDdigitizer::TimeResponse()), and the cross talk between neighboring pads AliTRD-
digitizer::CrossTalk()). At the end of this procedure, the charge seen by each pad in
each time bin is available. Also, the indices of maximally three MC particles in the kine tree
contributing to a given pad signal are stored, so that in a later analysis it can be tested which
particle generated what signal. As a next step the signals could either directly be converted into
DIGITS, or, which is the default procedure, they are stored as SDIGITIS. The corresponding
functions (AliTRDdigitizer::Signal2SDigits() and AliTRDdigitizer::Signal2ADC()) are
called from AliTRDdigitizer::ConvertSignals(), depending on the configuration. The func-
tion AliTRDdigitizer::Signal2SDigits() stores the signals as SDIGITS in data structures
of the type AliTRDarraySignal (see section 1.3.4).

If desired, the SDIGITS can now be added to the SDIGITS from other simulated events, e.g.
in order to embed a specific signal into a background event (AliTRDdigitizer::MergeSDigits()).
After this optional step, the SDIGITS are finally being converted into DIGITS. This process is
steered by the function (AliTRDdigitizer::ConvertSDigits()).

12

Exec()

SDigits2Digits()

MergeSDigits()

ConvertSDigits()

Signal2ADC(det)

TRD.Digits.root

�

�

�

�

�

�det=0-539

The essential step in the final SDIGITS =⇒ DIGITS conversion is performed by the function
AliTRDdigitizer::Signal2ADC(). Here pad signals, that are stored as floats, are finally trans-
lated into integer ADC values. This conversion involves a number of parameters: the pad cou-
pling and time coupling factors, the gain of the PASA and of the amplification at the anode wire,
and the input range and baseline of the ADCs. The coupling factors take into account that only
a fraction of the incoming signal is sampled in the digitization process. At this point also the
relative gain factors derived from the calibration procedures for a given dataset will be used to
distort the simulated data correspondingly. The noise is generated according to a Gaussian
distribution of a given width and added to the output. Finally, the converted signals are dis-
cretize into the ADC values of the defined resolution. At this stage also the zero suppression
mechanism is applied to the simulated ADC values (AliTRDdigitizer::ZS()), in order to re-
duce the output volume (see section 1.3.5). These DIGITS can then serve as input to the raw
data simulation (see section 1.4).

1.3.2 Simulation parameter

The parameters that are needed to configure the digitization, are either read from the OCDB
(e.g. calibration gain factors) or are taken from the parameter class AliTRDSimParam. This
class contains the default values of these parameters, but it can be configured in order to test
different scenarios. The following table lists the available parameters:

1.3 Digitization 13

Parameter Description Default value
fGasGain Gas gain at the anode wire 4000
fNoise Noise of the chamber readout 1250
fChipGain Gain of the PASA 12.4
fADCoutRange ADC output range (number of ADC channels) 1023 (10bit)
fADCinRange ADC input range (input charge) 2000 (2V)
fADCbaseline ADC intrinsic baseline in ADC channels 0
fElAttachProb Probability for electron attachment per meter 0
fPadCoupling Pad coupling factor 0.46
fTimeCoupling Time coupling factor 0.4
fDiffusionOn Switch for diffusion kTRUE
fElAttachOn Switch for electron attachment kFALSE
fTRFOn Switch for time response kTRUE
fCTOn Switch for cross talk kTRUE
fTimeStructOn Switch for time structure kTRUE
fPRFOn Switch for pad response kTRUE
fGasMixture Switch for gas mixture (0: Xe/CO2, 1: Ar/CO2) 0

1.3.3 Digits manager

Author: H. Leon Vargas (hleon@ikf.uni-frankfurt.de)

The class AliTRDdigitsManager handles arrays of data container objects in the form of ROOT’s
TObjArray. Its main functionality is that it provides setters and getters for the information of
each chamber.

Figure 1.5: Data containers used in the class AliTRDdigitsManager.

1.3.4 Data containers

During simulation different kinds of information are created and stored in various data con-
tainers depending on their characteristics. These containers were designed with the idea of
keeping the code as simple as possible and to ease its maintenance. The simulated signals or
sdigits for a given row, column and time bin of each detector, as generated by
AliTRDdigitizer::ConvertHits(), are stored in an object of the class AliTRDarraySignal.
This class stores the data in an array of floating point values. In this case, the compression
method takes as an argument a threshold. All the values equal or below that threshold will be
set to zero during compression. The threshold can take any value greater or equal to zero. The
sdigits data is used during event merging.

In the simulation the information about the particles that generated the hits (index in kine
tree) is stored for each detector in an object of the class AliTRDarrayDictionary. In this case

14

the information is stored in an array of integer values, which is initialized to -1.
In the digitizer, the signals stored in the sdigits are converted afterwards into ADC values

and kept in objects of the class AliTRDarrayADC. This class saves the ADC values in an array
of short values. The ADC range uses only the first 9 bits, bits 10 to 12 are used to set the
pad status. An uncompressed object of the class AliTRDarrayADC should only contain values
that are equal or greater than -1, because the compression algorithm of this class uses all the
other negative values in the range of the short data type. The value -1 in the data array is used
in the simulation to indicate where an ADC value was “zero suppressed”. This is done in this
way so we are be able to discriminate between real zeroes and suppressed zeroes. For the
details of the use of pad status refer to the method AliTRDarrayADC::SetPadStatus() in the
implementation file of this class.

1.3.5 Zero suppression

Author: H. Leon Vargas (hleon@ikf.uni-frankfurt.de)

The zero suppression algorithm was applied at the end of digitization in order to decrease the
size of the digits file. The code is implemented in the class AliTRDmcmSim. This algorithm is
based on testing three conditions on the ADC values of three neighboring pads as seen in
Fig. 1.6 (for more information see the Data Indication subsection in the TRAP User Manual).
The conditions are the following:

1) Peak center detection:

ADC-1(t) ≤ ADC(t) ≥ ADC+1(t)

2) Cluster:

ADC-1(t)+ADC(t)+ADC+1(t) > Threshold

3) Absolute Large Peak:

ADC(t) > Threshold

If a given combination of these conditions is not fulfilled, the value ADC(t) is suppressed.
The algorithm runs over all ADC values.

Figure 1.6: Zero suppression code.

1.4 Raw Data Simulation

1.5 Trigger Simulation

Author: J. Klein (jklein@physi.uni-heidelberg.de)

1.5 Trigger Simulation 15

digitized
values

digital
filtering

tracklet
calculation

global
trackingHits

AliTRDmcmSim
AliTRDdigitzer

Figure 1.7: Overview of the trigger simulation

The trigger generation chain of the TRD can be simulated within AliRoot as well. It contains
several stages as in the real hardware (s. Fig. 1.7).

For each event the hits in the active volume are converted to digitized signals in the AliTRD-
digitizer. The digital processing as done in the TRAP is simulated in its method
RunDigitalProcessing() calling the MCM simulation (in AliTRDmcmSim) which implements the
filters, zero-suppression and tracklet calculation. Here the same integer arithmetics is used as
in the real TRAP. The trigger-relevant preprocessed data, i.e. the tracklets, are stored using a
dedicated loader. From there they are accessed by the GTU simulation which runs the stack-
wise tracking. The individual stages are discussed in more detail in the following sections.

1.5.1 MCM simulation

The MCM simulation is contained in AliTRDmcmSim. This class mimics the digital part of an
MCM. It can be used for the simulation after digitization has been performed.

Internally, an object of AliTRDmcmSim can hold the data of 21 ADC channels both raw and
filtered. After the instantiation Init() has to be called to define the position of the MCM. Then,
the data can be fed using either of the following methods:

SetData(Int t iadc, Int t *adc)
Set the data for the given ADC channel iadc from an array adc containing the data for all
timebins.

SetData(Int t iadc, Int t it, Int t adc)
Set the data for the given ADC channel iadc and timebin it to the value adc.

SetData(AliTRDarrayADC *adcArray)
Set the data for the whole MCM from the digits array pointed to by adcArray.

LoadMCM(AliRunLoader *rl, Int t det, Int t rob, Int t mcm)
This method automatically initializes the MCM for the specified location and loads the
relevant data via the runloader pointed by rl.

After loading of the data the processing stages can be run individually:

Filter()
The pedestal, gain and tail cancellation filters are run on the currently loaded raw data.
The filter settings (including bypasses) are used as configured in the TRAP (s. 1.5.2).
The unfiltered raw data is kept such that it is possible to rerun Filter(), e.g. with different
settings.

Tracklet()
The tracklet calculation operates on the filtered data (which is identical to the unfiltered

16

data if Filter() was not called). First, the hits are calculated and the fit registers filled.
Subsequently, the straight line fits for the four most promising tracklets are calculated.

ZSMapping()
This methods performs the zero-suppression which can be based on different criteria (to
be configured in the TRAP).

The results of the MCM simulation can be accessed in different ways:

WriteData(AliTRDarrayADC *digits)
Hereby, the data are written to the pointed digits array. It is part of the TRAP configuration
whether raw or filtered data is written (EBSF).

ProduceRawStream(UInt t *buf, Int t bufsize, UInt t iEv)
Produce the raw data stream for this MCM as it will appear in the raw data of the half-
chamber.

ProduceTrackletStream(UInt t *buf, Int t bufsize)
Produce the raw stream of tracklets as they appear in raw data.

StoreTracklets()
The tracklets are stored via the runloader. This has to be called explicitly, otherwise the
tracklets will not be written.

1.5.2 TRAP configuration

The TRAP configuration is kept in AliTRDtrapConfig which is implemented as singleton. After
obtaining a pointer to the class by a call to AliTRDtrapConfig::Instance() values can be
changed and read by:

SetTrapReg(TrapReg t reg, Int t value, Int t det, Int t rob, Int t mcm)
This sets the given TRAP register given as the abbreviation from the TRAP manual with
preceding ’k’ (enum) to the given value. If you specify det, rob or mcm the values are
changed for individual MCMs. Not specified the setting is applied globally.

GetTrapReg(TrapReg t reg, Int t det, Int t rob, Int t mcm)
This method gets the current value of the given TRAP registers. If the values are set
individually for different MCMs you have to pass det, rob and mcm. Otherwise, these
parameters can be omitted.

PrintTrapReg(TrapReg t reg, Int t det, Int t rob, Int t mcm)
It is similar to the preceding method but prints the information to stdout.

The calculated tracklets can be stored by a call to AliTRDmcmSim::StoreTracklets().

1.5.3 Tracklet classes

In order to unify the different sources of tracklets, e.g. real data or simulation, all implemen-
tations of tracklets derive from the abstract base class AliTRDtrackletBase. The following
implementations are currently in use:

AliTRDtrackletWord
This class is meant to represent the information as really available from the FEE, i.e. only
a 32-bit word and the information on the detector it was produced on.

1.5 Trigger Simulation 17

AliTRDtrackletMCM
Tracklets of this type are produced in the MCM simulation and contain additional MC
information.

AliTRDtrackletGTU This class is used during the GTU tracking and contains a pointer to a
tracklet and information assigned to it during the global tracking.

1.5.4 GTU simulation

The simulation of the TRD global tracking on tracklets is steered by AliTRDgtuSim. This class
provides all the interface. The following classes are involved:

AliTRDgtuParam
This class contains or generates the relevant parameters used for the GTU tracking.

AliTRDgtuTMU
This class holds the actual tracking algorithm as it runs in one Track Matching Unit (TMU)
which corresponds to one stack.

The GTU simulation can be run by calling AliTRDgtuSim::RunGTU(AliLoader *loader,
AliESDEvent *esd) where loader points to the TRD loader and esd to an ESD event. The
latter can be omitted in which case the output is not written to the ESD. The tracklets are
automatically retrieved via the loader and the found tracks of type AliTRDtrackGTU are in-
ternally stored in a tree for which a getter exists to access. If a pointer to an AliESDEvent
is given, the tracks are also written to the ESD (as AliESDTrdTrack). For this the method
AliTRDtrackGTU::CreateTrdTrack() is used which creates the AliESDTrdTrack (with reduced
information compared to AliTRDtrackGTU).

1.5.5 CTP interface

The interface to the central trigger is defined in AliTRDTrigger. This class is called automati-
cally during simulation and produces the trigger inputs for TRD (in CreateInputs()). They are
only considered if they are part of the used trigger configuration (e.g. GRP/CTP/p-p.cfg).

The actual trigger generation has to be contained in Trigger(). Currently, the GTU sim-
ulation is run from here using the previously calculated tracklets. The generated tracks are
stored and the trigger inputs are propagated to CTP. Which trigger classes make use of the
TRD inputs has to be defined in the trigger configuration.

Reconstruction

Author: A. Bercuci (A.Bercuci@gsi.de)

2.1 Raw Data Reading

2.2 Cluster Finding

2.2.1 Cluster position reconstruction 1

Author: A. Bercuci (A.Bercuci@gsi.de)
Calculation of cluster position in the radial direction in local chamber coordinates (with
respect to the anode wire position) is using the following parameters:
t0 - calibration aware trigger delay [μs]
vd - drift velocity in the detector region of the cluster [cm/μs]
z - distance to the anode wire [cm]. By default average over the drift cell width
q & xq - array of charges and cluster positions from previous clusters in the tracklet [a.u.]

The estimation of the radial position is based on calculating the drift time and the drift
velocity at the point of estimation. The drift time can be estimated according to the expression:

tdrift = tbin − t0 − tcause(x) − tTC(qi−1, qi−2, ...) (2.1)

where t0 is the delay of the trigger signal. tcause is the causality delay between ionization
electrons hitting the anode and the registration of the mean signal by the electronics - due to
the rising time of the TRF. A second order correction here comes from the fact that the time
spreading of charge at anode is the convolution of TRF with the diffusion and thus cross-talk
between clusters before and after local clusters changes with drift length. tTC is the residual
charge from previous (in time) clusters due to residual tails after tail cancellation. This tends to
push cluster forward and depends on the magnitude of their charge.

The drift velocity varies with the drift length (and distance to anode wire) as described by
cell structure simulation. Thus one, in principle, can calculate iteratively the drift length from
the expression:

x = tdrift(x) ∗ vdrift(x) (2.2)

In practice we use a numerical approach (see AliTRDcluster::GetXcorr()and Figure 2.8 left)
to correct for anisochronity obtained from a MC comparison (see AliTRDclusterResolution-
::ProcessSigma() for the implementation). Also the calibration of the 0th approximation (no
x dependence) for tcause is obtained from MC comparisons and is impossible to disentangle in
real life from trigger delay.

For the calculation of the r − φ offset of the cluster from the middle of the center pad three
methods are implemented:

- Center of Gravity (COG) see AliTRDcluster::GetDYcog()

- Look-up Table (LUT) see AliTRDcluster::GetDYlut()

- Gaussian shape (GAUS) see AliTRDcluster::GetDYgauss()

1The procedures described in this section are implemented in the functions AliTRDcluster::GetXloc(),
AliTRDcluster::GetYloc(), AliTRDcluster::GetSX() and AliTRDcluster::GetSY().

2.2 Cluster Finding 19

Mon Jun 8 14:47:13 2009 [cm]driftx
0 0.5 1 1.5 2 2.5 3

m
]

μ
 [

co
rr

x

-1500

-1000

-500

0

500

1000

Mon Jun 8 15:04:59 2009
 [pad width]

center
y

-0.4 -0.2 0 0.2 0.4

m
]

μ
 [

co
rr

y

-80

-60

-40

-20

0

20

40

60

80

100

Figure 2.8: Correction of the radial and r − φ position of the TRD cluster.

In addition for the case of LUT method position corrections are also applied (see AliTRDcluster-
::GetYcorr() and Figure 2.8 right).

One may calculate the r − φ offset, based on the Gaussian approximation of the PRF, from
the signals qi−1, qi and qi+1 in the 3 adjacent pads by:

y =
1

w1 + w2

[
w1

(
y0 − W

2
+

s2

W
ln

qi

qi−1

)
+ w2

(
y0 +

W

2
+

s2

W
ln

qi+1

qi

)]
(2.3)

where W is the pad width, y0 is the position of the middle of the center pad and s2 is given by

s2 = s2
0 + s2

diff (x,B) +
tan2(φ − αL) ∗ l2

12
(2.4)

with s0 being the PRF for 0 drift and track incidence φ equal to the Lorentz angle αL and the
diffusion term being described by:

sdiff (x,B) =
DL

√
x

1 + (ωτ2)
(2.5)

with x being the drift length. The weights w1 and w2 are taken to be q2
i−1 and q2

i+1 respectively.

Determination of shifts by comparing with MC

The resolution of the cluster corrected for pad tilt with respect to MC in the r−φ (measuring)
plane can be expressed by:

Δy = w − yMC(xcl) (2.6)

w = y
′
cl + h ∗ (zMC(xcl) − zcl) (2.7)

yMC(xcl) = y0 − dy/dx ∗ xcl (2.8)

zMC(xcl) = z0 − dz/dx ∗ xcl (2.9)

y
′
cl = ycl − xcl ∗ tan(αL) (2.10)

20

where xcl is the drift length attached to a cluster, ycl is the r − φ coordinate of the cluster
measured by charge sharing on adjacent pads and y0 and z0 are MC reference points (as
example the track references at entrance/exit of a chamber). If we suppose that both r − φ (y)
and radial (x) coordinate of the clusters are affected by errors we can write

xcl = x∗
cl + δx (2.11)

ycl = y∗cl + δy (2.12)

where the starred components are the corrected values. Thus by definition the following quan-
tity

Δy∗ = w∗ − yMC(x∗
cl) (2.13)

has 0 average over all dependency. Using this decomposition we can write:

< Δy >=< Δy∗ > + < δx ∗ (dy/dx − h ∗ dz/dx) + δy − δx ∗ tan(αL) > (2.14)

which can be transformed to the following linear dependence:

< Δy >=< δx > ∗(dy/dx − h ∗ dz/dx)+ < δy − δx ∗ tan(αL) > (2.15)

if expressed as function of dy/dx − h ∗ dz/dx. Furtheremore this expression can be plotted for
various clusters i.e. we can explicitely introduce the diffusion (xcl) and drift cell - anisochronity
(zcl) dependences. From plotting this dependence and linear fitting it with:

< Δy >= a(xcl, zcl) ∗ (dy/dx − h ∗ dz/dx) + b(xcl, zcl) (2.16)

the systematic shifts will be given by:

δx(xcl, zcl) = a(xcl, zcl) (2.17)

δy(xcl, zcl) = b(xcl, zcl) + a(xcl, zcl) ∗ tan(αL) (2.18)

In Figure 2.9 left there is an example of such dependency.

Figure 2.9: Linear relation to estimate radial and r − φ cluster shifts and error.

The occurance of the radial shift is due to the following conditions:

2.2 Cluster Finding 21

- The approximation of a constant drift velocity over the drift length (larger drift velocities
close to the cathode wire plane).

- The superposition of charge tails in the amplification region (first clusters appear to be
located at the anode wire).

- The superposition of charge tails in the drift region (shift towards anode wire).

- Diffusion effects which convolute with the TRF thus enlarging it.

- Approximate knowledge of the TRF (approximate measuring in test beam conditions).

The numerical results for ideal simulations for the radial are displayed in Figure 2.8.

The representation of dy = f(ycen, xdrift|layer, φ = tan(αL)) can be also used to estimate
the systematic shift in the r − φ coordinate resulting from an imperfection in the cluster shape
parameterization. From Eq. 2.14 with φ = tan(αL) one gets:

< Δy > = < δx > ∗(tan(αL) − h ∗ dz/dx)+ < δy − δx ∗ tan(αL) > (2.19)

< Δy > (ycen) = −h∗ < δx > (xdrift, qcl) ∗ dz/dx + δy(ycen, ...) (2.20)

where all dependences are made explicit. This last expression can be used in two ways:

- By average on the dz/dx we can determine directly dy (the method implemented here -
see Figure 2.8 right).

- By plotting as a function of dzdx one can determine both dx and dy components in an
independent method.

The occurance of the r − φ shift is due to the following conditions:

- Approximate model for cluster shape (LUT).

- Rounding-up problems.

2.2.2 Cluster error parametrization 2

Author: A. Bercuci (A.Bercuci@gsi.de)

The error of TRD cluster is represented by the variance in the r−φ and radial direction. For
the z direction the error is simply given by:

σ2
z = L2

pad/12 (2.21)

The parameters on which the r − φ error parameterization depends are:

- s2 - variance due to PRF width for the case of Gauss model. Replaced by parameteriza-
tion in case of LUT.

- dt - transversal diffusion coefficient.

- e × B - tangens of Lorentz angle.

2The procedures described in this section are implemented in the functions AliTRDcluster::SetSigmaY2(),
AliTRDclusterResolution::ProcessCharge(), AliTRDclusterResolution::ProcessCenterPad(),
AliTRDclusterResolution::ProcessSigma() and AliTRDclusterResolution::ProcessMean().

22

- x-drift length - with respect to the anode wire.

- z-offset from the anode wire.

- tan(p) - local tangens of the track momentum azimuthal angle.

The ingredients from which the error is computed are:

- PRF (charge sharing on adjacent pads) - see AliTRDcluster::GetSYprf().

- Diffusion (dependence with drift length and [2nd order] distance to anode wire) (see
AliTRDcluster::GetSYdrift()).

- Charge of the cluster (complex dependence on gain and tail cancellation) - see (AliTRD-
cluster::GetSYcharge()).

- Lorentz angle (dependence on the drift length and [2nd order] distance to anode wire) -
see AliTRDcluster::GetSX().

- Track angle (superposition of charges on the anode wire) (see AliTRDseedV1::Fit()).

- Projection of radial (x) error on r − φ due to fixed value assumed in tracking for x - see
AliTRDseedV1::Fit().

The last 2 contributions to cluster error can be estimated only during tracking when the track
angle is known (tan(p)). For this reason the errors (and optional position) of TRD clusters are
recalculated during tracking and thus clusters attached to tracks might differ from bare clusters.

Taking into account all contributions one can write the the TRD cluster error parameteriza-
tion as:

σ2
y = (σdiff ∗Gauss(0, sly)+δσ(q))2+tan2(αL)∗σ2

x+tan2(φ−αL)∗σ2
x+[tan(φ−αL)∗tan(αL)∗x]2/12

(2.22)
From this formula one can deduce that the simplest calibration method for PRF and diffusion
contributions is by measuring resolution at B = 0 T and φ = 0. To disentangle further the two
remaining contributions one has to represent s2 as a function of drift length.

In the Gaussian model the diffusion contribution can be expressed as:

σ2
y = σ2

PRF +
xδ2

t

(1 + tan(αL))2
(2.23)

thus resulting the PRF contribution. For the case of the LUT model both contributions have to
be determined from the fit (see AliTRDclusterResolution::ProcessCenterPad() for details).

Parameterization with respect to the distance to the middle of the center pad

If φ = αL in Eq. 2.22 one gets the following expression:

σ2
y = σ2

y|B=0 + tan2(αL) ∗ σ2
x (2.24)

where we have explicitely marked the remaining term in case of absence of magnetic field.
Thus one can use the previous equation to estimate sy for B = 0 and than by comparing in
magnetic field conditions one can get the sx. This is a simplified method to determine the error
parameterization for sx and sy as compared to the one implemented in ProcessSigma(). For
more details on cluster error parameterization please see also AliTRDcluster::SetSigmaY2().

2.2 Cluster Finding 23

Parameterization with respect to drift length and distance to the anode wire

As the r − φ coordinate is the only one which is measured by the TRD detector we have
to rely on it to estimate both the radial (x) and r − φ (y) errors. This method is based on
the following assumptions. The measured error in the y direction is the sum of the intrinsic
contribution of the r−φ measurement with the contribution of the radial measurement - because
x is not a parameter of Alice track model (Kalman).

σ2|y = σ2
y∗ + σ2

x∗ (2.25)

In the general case

σ2
y∗ = σ2

y + tan2(αL)σ2
xdrift

(2.26)

σ2
x∗ = tan2(φ − αL) ∗ (σ2

xdrift
+ σ2

x0
+ tan2(αL) ∗ x2/12) (2.27)

where we have explicitely show the Lorentz angle correction on y and the projection of radial
component on the y direction through the track angle in the bending plane (φ). Also we have
shown that the radial component in the last equation has two terms, the drift and the misalign-
ment (x0). For ideal geometry or known misalignment one can solve the equation

σ2|y = tan2(φ − αL) ∗ (σ2
x + tan2(αL) ∗ x2/12) + [σ2

y + tan2(αL)σ2
x] (2.28)

by fitting a straight line:

σ2|y = a(xcl, zcl) ∗ tan2(φ − αL) + b(xcl, zcl) (2.29)

the error parameterization will be given by:

σx(xcl, zcl) =
√

a(xcl, zcl) − tan2(αL) ∗ x2/12 (2.30)

σy(xcl, zcl) =
√

b(xcl, zcl) − σ2
x(xcl, zcl) ∗ tan2(αL) (2.31)

In Figure 2.9 left, there is an example of such dependency.
The error parameterization obtained by this method are implemented in the functions AliTRD-

cluster::GetSX() and AliTRDcluster::GetSYdrift().
An independent method to determine sy as a function of drift length (see AliTRDcluster-

Resolution::ProcessCenterPad()) is to plot cluster resolution as a function of drift length at
φ = αL as seen in Eq. 2.24. Thus one can use directly the previous equation to estimate sy for
B = 0 and than by comparing in magnetic field conditions one can get the sx.

One has to keep in mind that while the first method returns the mean sy over the distance
to the middle of center pad (ycenter) distribution the second method returns the *STANDARD*
value at ycenter = 0 (maximum). To recover the standard value one has to solve the obvious
equation:

σSTANDARD
y =

< σy >∫
sexp(s2/σ)ds

(2.32)

with ”< sy >” being the value calculated in first method and ”sigma” the width of the sy distribu-
tion calculated in the second.

Parameterization with respect to cluster charge

In Eq. 2.24 one can explicitely write:

σy|B=0 = σdiff ∗ Gauss(0, sly) + δσ(q) (2.33)

24

which further can be simplified to:

< σy|B=0 > (q) = < σy > +δσ(q) (2.34)

< σy > =
∫

f(q)σydq (2.35)

The results for sy and f(q) are displayed in Fig. 2.10: The function has to extended to accom-

Tue Jun 9 17:31:32 2009
 [cm]driftx

0 0.5 1 1.5 2 2.5 3
m

]
μ

 [xσ
1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

Tue Jun 9 17:33:01 2009
 [cm]driftx

0.5 1 1.5 2 2.5 3

m
]

μ
 [yσ

0

20

40

60

80

100

120

140

160

180

200

Figure 2.10: Cluster error parameterization for different components.

modate gain calibration scaling and errors.

2.3 The TRD tracklet

Author: A. Bercuci (A.Bercuci@gsi.de)

The tracking in TRD can be done in two major ways:

- Track prolongation from TPC.

2.3 The TRD tracklet 25

- Stand alone track finding.

The first mode is the main tracking mode for all barrel tracks while the second is used to peak-
up track segments fully contained in the TRD fiducial volume like conversions. Another feature
of the TRD tracking besides the relative high thickness (conversions) is the spatial correlation of
the signals in the radial direction due to residual tails in the cluster signals. This feature asked
for an intermediate step between clusters and tracks, the tracklets. The TRD tracklets are linear
fits of the clusters from one chamber. They are implemented in the class AliTRDseedV1 and
they represent the core of the TRD offline reconstruction. In the following the tracklets will be
described independently of the framework in which they are living (tracking) in the sections
2.3.1, 2.3.2 and 2.3.3 and than their usage will be outlined in the barrel (section 2.4.1) and
stand alone tracking (section 2.4.2).

2.3.1 Tracklet building - Attaching clusters to tracklet 1

Projective algorithm to attach clusters to seeding tracks. The following steps are performed:

- Collapse x coordinate for the full detector along track direction dydx.

- Truncated mean on y (r − φ) direction.

- Purge clusters.

- Truncated mean on z direction.

- Purge clusters.

Optionally one can use the z, dz/dx information from the seeding track to correct for tilting.
We start up by defining the track direction in the xy plane and roads. The roads are calcu-

lated based on tracking information (variance in the r − φ direction) and estimated variance of
the standard clusters (see AliTRDcluster::SetSigmaY2()) corrected for tilt (see GetCovAt()).
From this the road is:

ry = 3 ∗
√

12 ∗ (σ2
Trk(y) +

σ2
cl(y) + tan2(αL)σ2

cl(z)
1 + tan2(αL)

) (2.36)

rz = 1.5 ∗ Lpad (2.37)

2.3.2 Tracklet fitting2

Fit in the xy plane

The fit is performed to estimate the y position of the tracklet and the track angle in the
bending plane. The clusters are represented in the chamber coordinate system (with respect to
the anode wire - see AliTRDtrackerV1::FollowBackProlongation() on how this is set). The
x and y position of the cluster and also their variances are known from clusterizer level (see
AliTRDcluster::GetXloc(), AliTRDcluster::GetYloc(), AliTRDcluster::GetSX() and
AliTRDcluster::GetSY()). If a Gaussian approximation is used to calculate y coordinate of
the cluster the position is recalculated taking into account the track angle.

Since errors are calculated only in the y directions, radial errors (x direction) are mapped to
y by projection i.e.

σx|y = tan(φ)σx (2.38)

1The procedures described in this section are implemented in the function AliTRDseedV1::AttachClusters().
2The procedures described in this section are implemented in the function AliTRDseedV1::Fit().

26

and also by the Lorentz angle correction.

Fit in the xz plane

The ”fit” is performed to estimate the radial position (x direction) where pad row cross hap-
pens. If no pad row crossing the z position is taken from geometry and radial position is taken
from the xy fit (see below).

There are two methods to estimate the radial position of the pad row cross:
1. leading cluster radial position: Here the lower part of the tracklet is considered and the last
cluster registered (at radial x0) on this segment is chosen to mark the pad row crossing. The
error of the z estimate is given by :

σz = tan(θ)Δxx0/
√

12 (2.39)

The systematic errors for this estimation are generated by the following sources: - no charge
sharing between pad rows is considered (sharp cross) - missing cluster at row cross (noise
peak-up, under-threshold signal etc.).
2. charge fit over the crossing point: Here the full energy deposit along the tracklet is considered
to estimate the position of the crossing by a fit in the qx plane. The errors in the q directions
are parameterized as σq = q2. The systematic errors for this estimation are generated by the
following sources:

- No general model for the qx dependence.

- Physical fluctuations of the charge deposit.

- Gain calibration dependence.

Estimation of the radial position of the tracklet

For pad row cross the radial position is taken from the xz fit (see above). Otherwise it is
taken as the interpolation point of the tracklet i.e. the point where the error in y of the fit is
minimum. The error in the y direction of the tracklet is (see AliTRDseedV1::GetCovAt()):

σy = σ2
y0

+ 2x cov(y0, dy/dx) + σ2
dy/dx (2.40)

and thus the radial position is:

x = −cov(y0, dy/dx)/σ2
dy/dx (2.41)

Estimation of tracklet position error

The error in y direction is the error of the linear fit at the radial position of the tracklet while
in the z direction is given by the cluster error or pad row cross error. In case of no pad row
cross this is given by:

σy = σ2
y0

− 2cov2(y0, dy/dx)/σ2
dy/dx + σ2

dy/dx (2.42)

σz = Lpad/
√

12 (2.43)

For pad row cross the full error is calculated at the radial position of the crossing (see above)
and the error in z by the width of the crossing region - being a matter of parameterization.

σz = tan(θ)Δxx0/
√

12 (2.44)

In case of no tilt correction (default in the barrel tracking) the tilt is taken into account by the
rotation of the covariance matrix. See AliTRDseedV1::GetCovAt() or 2.3.3 for details.

2.3 The TRD tracklet 27

2.3.3 Tracklet errors3

In general, for the linear transformation

Y = TxXT (2.45)

the error propagation has the general form

CY = TxCXT T
x (2.46)

We apply this formula 2 times. First to calculate the covariance of the tracklet at point x we
consider:

Tx = (1 x) (2.47)

X = (y0 dy/dx) (2.48)

CX =
(

V ar(y0) Cov(y0, dy/dx)
Cov(y0, dy/dx) V ar(dy/dx)

)
(2.49)

and secondly to take into account the tilt angle

Tα =
(

cos(α) sin(α)
−sin(α) cos(α)

)
(2.50)

X = (y z) (2.51)

CX =
(

V ar(y) 0
0 V ar(z)

)
(2.52)

using simple trigonometric one can write for this last case

CY =
1

1 + tan2 α

(
σ2

y + tan2(α)σ2
z tan(α)(σ2

z − σ2
y)

tan(α)(σ2
z − σ2

y) σ2
z + tan2(α)σ2

y

)
(2.53)

which can be approximated for small alphas (2 deg) with

CY =
(

σ2
y (σ2

z − σ2
y) tan(α)

((σ2
z − σ2

y) tan(α) σ2
z

)
(2.54)

before applying the tilt rotation we also apply systematic uncertainties to the tracklet position
which can be tuned from outside via the AliTRDrecoParam::SetSysCovMatrix(). They might
account for extra misalignment/miscalibration uncertainties.

2.3.4 Energy loss calculations4

Using the linear approximation of the track inside one TRD chamber (TRD tracklet) the charge
per unit length can be written as:

dq

dl
(x) =

qc

dx(x) ∗
√

1 + (dy
dx)2fit + (dz

dx)2ref

(2.55)

where qc is the total charge collected in the current time bin and dx is the length of the time bin
(see Fig. 2.11 right). The representation of charge deposit used for PID differs thus in principle
from the measured dQ/dt distribution (see Fig. 2.11 left) The following correction are applied:

3The procedures described in this section are implemented in the function AliTRDseedV1::GetCovAt().
4The procedures described in this section are implemented in the function AliTRDseedV1::CookdEdx() and

AliTRDseedV1::GetdQdl().

28

Wed Jun 10 16:55:47 2009
 [100*ns]driftt

0 5 10 15 20

<d
Q

/d
t>

 [a
.u

.]

20

40

60

80

100

120

140

160

180

 [cm]driftx
0 0.5 1 1.5 2 2.5 3

<d
Q

/d
l>

 [a
.u

./c
m

]

0

200

400

600

800

1000

1200

1400

1600

1800
Particle Species

electron

muon

pion

kaon

proton

Figure 2.11: Energy loss measurement on the tracklet as a function of drift time [left] and respectively
drift length [right] for different particle species.

- Charge: pad row cross corrections [diffusion and TRF asymmetry] TODO.

- dx: anisochronity.

Due to the anisochronity of the TRD detector drift velocity varies as function of drift length and
distance to the anode wire. Thus

dx(x) = dx(inf) + δx(x, z) (2.56)

= dt ∗ vinf
d + δx(x, z) (2.57)

the dependence of δx can be found in Fig. 2.8.

2.3.5 Particle identification5

Retrieve the PID probabilities for e±, μ±, K±, π± and p± from the OCDB according to tracklet
information:

- Estimated momentum at tracklet reference point.

- dE/dx measurements.

- Tracklet length.

- TRD layer.

According to the steering settings specified in the reconstruction one of the following methods
are used.

- Neural Network [default] - option ”nn”.

- 2D Likelihood - option ”!nn”.

2.4 Tracking 29

Tue Jun 23 19:25:15 2009
p (GeV/c)

-110×5 1 2 3 4 5 6 7 8 910

π∈

-310

-210

PID Method
2D LQ
NN
ESD

p (GeV/c)
-110×5 1 2 3 4 5 6 7 8 910

th
re

sh
ol

d
(%

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.12: Pion efficiency capability of the TRD for tracks with 6 tracklets as a function of momentum
[left] and the corresponding threshold value for selecting 90% of electrons [right] for the two methods
used.

At track level the PID information is calculated by delegating the function of the tracklets.
The number of tracklets used is also computed. The tracklet information are considered in-
dependent. For the moment no global track measurement of PID is performed as for exam-
ple to estimate bremsstrahlung probability based on global χ2 of the track. The status bit
AliESDtrack::kTRDpid is set during the call of AliTRDtrackV1::UpdateESDtrack(). The PID
performance of the TRD for tracks with 6 tacklets is displayed in Fig. 2.12.

2.4 Tracking

Author: A. Bercuci (A.Bercuci@gsi.de)

The tracking procedures in TRD are responsible to attach clusters to tracks and to esti-
mate/update the track parameters accordingly. The main class involved in this procedure is
AliTRDtrackerV1 and the helper classes AliTRDcluster, AliTRDseedV1 and AliTRDtrackV1.
Additionally, information from AliTRDrecoParam is mandatory to select the proper setup of the
reconstruction.

2.4.1 Track propagation in barrel tracking1

Propagate the ESD tracks from TPC to TOF detectors and building of the TRD track. For
building a TRD track an ESD track is used as seed. The informations obtained on the TRD track
(measured points, covariance, PID, etc.) are than used to update the corresponding ESD track.

5The procedures described in this section are implemented in the function AliTRDtrackV1::CookPID() and
AliTRDseedV1::CookPID().

1The procedures described in this section are implemented in the function
AliTRDtrackerV1::PropagateBack().

30

Each track seed is first propagated to the geometrical limit of the TRD detector. Its prolongation
is searched in the TRD and if corresponding clusters are found tracklets are constructed out of
them (see AliTRDseedV1::AttachClusters()) and the track is updated. Otherwise the ESD
track is left unchanged.

The following steps are performed:

1. Selection of tracks based on the variance in the y − z plane.

2. Propagation to the geometrical limit of the TRD volume. If track propagation fails the
AliESDtrack::kTRDStop is set.

3. Prolongation inside the fiducial volume (see AliTRDtrackerV1::FollowBackProlonga-
tion()) and marking the following status bits:

AliESDtrack::kTRDin Tracks enters the TRD fiducial volume.
AliESDtrack::kTRDStop Tracks fails propagation.
AliESDtrack::kTRDbackup Tracks fulfills the χ2 conditions and qualifies for refitting.

4. Writting to friends, PID, MC label, quality etc. Setting the status bit AliESDtrack::kTRDout.

5. Propagation to TOF. If track propagation fails the AliESDtrack::kTRDStop is set.

TRD Tracklet initialization and Kalman fit2

Starting from the arbitrary radial position of the track this is extrapolated through the 6 TRD
layers. The following steps are being performed for each layer:

1. Propagate track to the entrance of the next chamber:

- Get chamber limits in the radial direction.

- Check crossing sectors.

- Check track inclination.

- Check track prolongation against boundary conditions (see exclusion boundaries on
AliTRDgeometry::IsOnBoundary()).

2. Build tracklet (see AliTRDseed::AttachClusters() for details) for this layer if needed. If
only the Kalman filter is needed and tracklets are already linked to the track this step is
skipped.

3. Fit tracklet using the information from the Kalman filter.

4. Propagate and update track at reference radial position of the tracklet.

5. Register tracklet with the tracker and track. Update pulls monitoring.

During the propagation a bit map is filled detailing the status of the track in each TRD
chamber.

2The procedures described in this section are implemented in the function
AliTRDtrackerV1::FollowBackProlongation().

2.4 Tracking 31

AliTRDtrackV1::kProlongation Track prolongation failed.
AliTRDtrackV1::kPropagation Track prolongation failed.
AliTRDtrackV1::kAdjustSector Failed during sector crossing.
AliTRDtrackV1::kSnp Too large bending.
AliTRDtrackV1::kTrackletInit Fail to initialize tracklet.
AliTRDtrackV1::kUpdate Fail to attach clusters or fit the tracklet.
AliTRDtrackV1::kUnknown Anything which is not covered before.

By default the status of the track before first TRD update is saved.

2.4.2 Stand alone track finding3

Seeding tracklets and build candidate TRD tracks. The procedure is used during barrel tracking
to account for tracks which are either missed by TPC prolongation or are conversions inside the
TRD volume. For stand alone tracking the procedure is used to estimate all tracks measured
by TRD.

TRD track finding4

The following steps are performed:

1. Build seeding layers by collapsing all time bins from each of the four seeding chambers
along the radial coordinate. See AliTRDtrackingChamber::GetSeedingLayer() for de-
tails. The chambers selection for seeding is described in AliTRDtrackerV1::Clusters2-
TracksStack().

2. By using the seeding clusters from the seeding layer (step 1) build combinatorics using
the following algorithm:

- For each seeding cluster in the lower seeding layer find.

- All seeding clusters in the upper seeding layer inside a road defined by a given φ
angle. The angle is calculated on the minimum pt of tracks from the main vertex,
accessible by the stand alone tracker.

- For each pair of two extreme seeding clusters select middle upper cluster using
roads defined externally by the reco params.

- Select last seeding cluster as the nearest to the linear approximation of the track de-
scribed by the first three seeding clusters. The implementation of the road calculation
and cluster selection can be found in the functions AliTRDchamberTimeBin::Build-
Cond() and AliTRDchamberTimeBin::GetClusters().

3. Helix fit to the set of eeding clusters (see AliTRDtrackerFitter::FitRieman(AliTRD-
cluster**)). No tilt correction is performed at this level

4. Initialize seeding tracklets in the seeding chambers.

5. Filter 0: χ2 cut on the y and z directions. The threshold is set externally by the reco
params.

3The procedures described in this section are implemented in the function
AliTRDtrackerV1::Clusters2TracksStack().

4The procedures described in this section are implemented in the function AliTRDtrackerV1::MakeSeeds().

32

6. Attach (true) clusters to seeding tracklets (see AliTRDseedV1::AttachClusters()) and
fit tracklet (see AliTRDseedV1::Fit()). The number of used clusters used by current
seeds should not exceed ... (25).

7. Filter 1: Check if all 4 seeding tracklets are correctly constructed.

8. Helix fit to the clusters from the seeding tracklets with tilt correction. Refit tracklets using
the new approximation of the track. The model of the Riemann tilt fit is based on solving
simultaneously the equations:

R2 = (x − x0)2 + (y∗ − y0)2 (2.58)

y∗ = y − tan(h)(z − zt) (2.59)

zt = z0 + dzdx ∗ (x − xr) (2.60)

with (x, y, z) the coordinate of the cluster, (x0, y0, z0) the coordinate of the center of the
Riemann circle, R its radius, xr a constant reference radial position in the middle of the
TRD stack and dzdx the slope of the track in the x − z plane. Using the following trans-
formations

t = 1/(x2 + y2) (2.61)

u = 2 ∗ x ∗ t (2.62)

v = 2 ∗ tan(h) ∗ t (2.63)

w = 2 ∗ tan(h) ∗ (x − xr) ∗ t (2.64)

one gets the following linear equation

a + b ∗ u + c ∗ t + d ∗ v + e ∗ w = 2 ∗ (y + tan(h) ∗ z) ∗ t (2.65)

where the coefficients have the following meaning

a = −1/y0 (2.66)

b = x0/y0 (2.67)

c = (R2 − x2
0 − y2

0)/y0 (2.68)

d = z0 (2.69)

e = dz/dx (2.70)

The error calculation for the free term is thus

σ = 2 ∗
√

σ2
y(tilt corr...) + tan2(h) ∗ σ2

z ∗ t (2.71)

From this simple model one can compute χ2 estimates and a rough approximation of 1/pt

from the curvature according to the formula:

C = 1/R = a/(1 + b2 + c ∗ a) (2.72)

9. Filter 2: Calculate likelihood of the track (see AliTRDtrackerV1::CookLikelihood()).
The following quantities are checked against the Riemann fit:

- Position resolution in y.

- Angular resolution in the bending plane.

- Likelihood of the number of clusters attached to the tracklet.

2.4 Tracking 33

10. Extrapolation of the helix fit to the other 2 chambers *non seeding* chambers:

- Initialization of extrapolation tracklets with the fit parameters.

- Attach clusters to extrapolated tracklets.

- Helix fit of tracklets

11. Improve seeding tracklets quality by reassigning clusters based on the last parameters of
the track (see AliTRDtrackerV1::ImproveSeedQuality() for details).

12. Helix fit of all 6 seeding tracklets and χ2 calculation

13. Hyperplane fit and track quality calculation (see AliTRDtrackerFitter::FitHyperplane()
for details.

14. Cooking labels for tracklets. Should be done only for MC.

15. Register seeds.

34

Calibration

Author: R. Bailhache (rbailhache@ikf.uni-frankfurt.de)

3.1 Database Entries

A local database with default parameters can be found in the AliRoot installation directory. The
official database is in Alien under the directory /alice/data/〈year〉/〈LHCPeriod〉/OCDB. The
calibration objects are stored in root files named according to their run validity range, their ver-
sion and subversion number. For the TRD they are in the subdirectory $AliRoot/OCDB/TRD/Calib
and correspond to a perfect TRD detector. The parameters are listed in Tab.3.1.
They are related to the calibration of:

Parameter Description Number of Data type Unit Default value
channels

ChamberGainFactor Mean gas gain 540 Float − 1.0
per chamber

LocalGainFactor Gas gain 1181952 UShort − 1.0
per pad 1181952 UShort − 1.0

ChamberVdrift Mean drift velocity 540 Float cm/μs 1.5
per chamber 540 Float cm/μs 1.5

LocalVdrift Drift velocity 1181952 UShort − 1.0
per pad 1181952 UShort − 1.0

ChamberT0 Minimum timeoffset 540 Float timebin 0.0
in the chamber 540 Float timebin 0.0

LocalT0 Timeoffset 1181952 UShort timebin 0.0
per pad

PRFWidth Width of the PRF 1181952 UShort pad width 0.515 (layer 0)
per pad 0.502 (layer 1)

0.491 (layer 2)
0.481 (layer 3)
0.471 (layer 4)
0.463 (layer 5)

DetNoise Scale factor 540 Float − 0.1
PadNoise Noise 1181952 UShort ADC 12

per pad counts
PadStatus Status 1181952 char − −

per pad

Table 3.1: Entries in the database

• the gas gain: ChamberGainFactor and LocalGainFactor

• the electron drift velocity: ChamberVdrift and LocalVdrift

3.2 DAQ Calibration 35

• the timeoffset: ChamberT0 and LocalT0

• the width of the Pad Response Function: PRFWidth

• the noise per channel: DetNoise, PadNoise and PadStatus.

To save disk space the values per pad are stored in UShort (2 Bytes) format in AliTRDCal-
ROC objects, one per chamber, that are members of a general AliTRDCalPad object. The final
constants have a numerical precision of 10−4. They are computed by multiplication (gain, drift
velocity and noise) or addition (timeoffset) of the detector and pad coefficients. From the pad
noise level a status is determined for each pad (masked, bridgedleft, bridgedright, read by
the second MCM, not connected). One example macro (AliTRDCreate.C) to produce a local
database is given in the $AliRoot/TRD/Macros directory.
During the simulation of the detector response and the reconstruction of the events the param-
eters are used to compute the amplitude of the signal and its position inside the detector. The
database has to be first choosen with the help of the AliCDBManager. The parameters are then
called by an AliTRDcalibDB instance. The macro $AliRoot/TRD/Macros/ReadCDD.C shows
how to read a local database and plot the gas gain or drift velocity as function of the detector
number or pad number.

3.2 DAQ Calibration

Calibration procedures are performed online during data-taking on different systems. The prin-
cipal role of the Data AcQuisition System is to build the events and archive the data to perma-
nent storage tapes. In addition it also provides an efficient access to the data. Nevertheless the
complete reconstruction of the events with tracks is not available. Two algorithms are executed
on DAQ for the TRD: a pedestal algorithm and an algorithm for the drift velocity and timeoffset.
They are implemented as rpm packages, that can be easily built inside AliRoot compiled with
the DATE software [5]. The outputs of the algorithms are stored in root files and put on the
DAQ File Exchange Server (FXS). At the end of the run they are picked up by the so called
SHUTTLE and further processed in the Preprocessor to fill finally the OCDB.

Signal [ADC counts]

0
5

10
15

20
Pad number 0

500
1000

1500
2000

2500

N
b

 o
f

en
tr

ie
s

0

5000

10000

15000

20000

25000

Figure 3.13: 2D histogram of the detector 0 (SM 0, S0, L0) with the ADC value distributions around
the baseline (10 ADC counts) for each pad (PEDESTAL run 34510).

36

3.2.1 Pedestal algorithm

During a pedestal run empty events without zero suppression are taken with the TRD alone and
a random trigger. They are used to determine the noise in ADC counts of each pad. The algo-
rithm can be found in the TRDPEDESTALda.cxx file of the AliRoot TRD directory. It is executed
on the Local Data Concentrators (LDCs), which are part of the dataflow and gives access to
sub-events. The TRD has three LDCs corresponding to the following blocks of supermodules
(SMs):

• 0-1-2-9-10-11

• 3-4-5-12-13-14

• 6-7-8-15-16-17

Three algorithms are therefore executed in parallel during a PEDESTAL run for a full installed
TRD. After about 100 events, the data-taking stops automatically and a 2D histogram is filled
for each chamber with the ADC amplitude distributions around the baseline for each pad. Such
a histogram is shown in Fig.3.13 for chamber 0 (SM 0 Stack 0 Layer 0). The chambers should

z (cm)
−300 −200 −100 0 100 200 300

y
(c

m
)

−40

−30

−20

−10

0

10

20

30

40

0.8

0.9

1

1.1

1.2

1.3

1.4
SM 0 Plane 0

z (cm)
−300 −200 −100 0 100 200 300

y
(c

m
)

−40

−30

−20

−10

0

10

20

30

40

0.8

0.9

1

1.1

1.2

1.3

1.4
SM 0 Plane 1

z (cm)
−300 −200 −100 0 100 200 300

y
(c

m
)

−40

−20

0

20

40

0.8

0.9

1

1.1

1.2

1.3

1.4
SM 0 Plane 2

z (cm)
−300 −200 −100 0 100 200 300

y
(c

m
)

−40

−20

0

20

40

0.8

0.9

1

1.1

1.2

1.3

1.4
SM 0 Plane 3

z (cm)
−300 −200 −100 0 100 200 300

y
(c

m
)

−40

−20

0

20

40

0.8

0.9

1

1.1

1.2

1.3

1.4
SM 0 Plane 4

z (cm)
−300 −200 −100 0 100 200 300

y
(c

m
)

−40

−20

0

20

40

0.8

0.9

1

1.1

1.2

1.3

1.4
SM 0 Plane 5

Figure 3.14: Noise in the six planes of SM 0 (PEDESTAL run 38125). The five stacks in each layer are
in the z direction.

be so configured that the data is without zero suppression otherwise an error message appears
on the DAQ online Logbook. The container class is called AliTRDCalibPadStatus and allows
to further fit the distributions with a Gaussian to determine the baseline and noise of each
pad. The function is called AliTRDCalibPadStatus::AnalyseHisto(). In Fig.3.14 the noise
in SM 0 is plotted for the PEDESTAL run 38125. It shows stripe patterns of higher noise in
the z-direction (beam direction) correlated to the static pad capacitance of the pad plane. The
noise distributions has to be first corrected for the expected noise variations induced by the
pad capacitance before a status can be given to each pad. This is not done on the DAQ
but just before storing the parameters inside the Offline Condition Database (OCDB) in the
Preprocessor.

3.3 HLT Calibration 37

3.2.2 Drift velocity and timeoffset algorithm

The drift velocity and timeoffset are calibrated with physics events, pp or PbPb collisions. The
algorithm is called TRDVDRIFTda.cxx and can be found in the AliRoot TRD directory. It is
executed on a dedicated monitoring server, which is not part of the dataflow and gives access
to full events of the TRD. The physics events are used to fill continuously during data-taking an
average pulse height for each detector. They are stored in a TProfile2D, which is a member of
a AliTRDCalibraFillHisto object. The TProfile2D is written at the end of the run in a root
file put on the DAQ FXS.

s]μ
Time [

0 0.5 1
1.5 2

2.5Calibration group number
0

100
200

300
400

500

<P
H

>
[a

.u
.]

0
20
40
60
80

100
120
140
160
180
200

Figure 3.15: 2D histogram containing the average pulse height distributions of each calibration group
(here detector), produced with decalibrated simulated pp events.

Fig.3.15 shows an output TProfile2D obtained from simulated decalibrated pp collisions at
14 TeV. The first peak in time corresponds to the amplification region, where the contributions
of ionization electrons, which come from both sides of the anode wire plane, are overlapping.
The flat plateau results from the electrons in the drift region. The tail is caused by the Time Re-
sponse Function. From this average signal as function of time the drift velocity and timeoffset
can be extracted by fit procedures. This last step is performed in the Preprocessor.
Since no tracking is available on DAQ, a simple tracklet finder is used. It was optimized for a low
charged particle multiplicity environment. The algorithm looks for a maximum of the signal am-
plitudes in the chamber after integration over all timebins. The average pulse height is then filled
for a spot of two pad rows (z direction) and four pad columns (rφ direction) around the maxi-
mum. Further details can be found in the function AliTRDCalibraFillHisto::ProcessEventDAQ.

3.3 HLT Calibration

The High Level Trigger has the big advantage to provide an online reconstruction of the events.
The idea is then to run the calibration procedures in a transparent way, independent whether
online or offline. The same function
AliTRDCalibraFillHisto::UpdateHistogramsV1(AliTRDtrackV1 *t) is used to fill the dE/dx

38

distributions (gain), the average pulse height (drift velocity and timeoffset) and the Pad Re-
sponse Function for each detector in respectively one TH2I and two TProfile2Ds. The calibra-
tion is nevertheless done per chamber, whereas by integrating statistics it will be possible to
get the gain, drift velocity and timeoffset distributions inside the chambers offline. Therefore the
class AliTRDCalibraFillHisto contains a flag (fIsHLT) to avoid extra calculations not needed
at the detector level.

Deposited charge [a.u]

0
50 100

150 200 250
300Calibration group number

0
100

200
300

400
500

C
ou

nt
s

0

100

200

300

400

500

600

700

Figure 3.16: A 2D histogram containing the dE/dx distributions of each detector. These were produced
with decalibrated simulated pp events.

Fig.3.16 shows one example of a TH2I histogram, where the dE/dx distributions of each
detector is stored for pp collisions at 14 TeV. No minimal pT cut was applied on the TRD tracks.
Assuming that the charged particles are uniformy distributed over the TRD chambers, the po-
sition of the Most Probable Value of the dE/dx distribution is used to calibrate the gain.
At the beginning of each run, a local copy of the OCDB is updated on the HLT cluster: the HCDB
(HLT Condition Database). The last set of calibration objects are used to reconstruct the events.
The gain correction preformed during the tracking has to be taken into account when filling the
dE/dx distributions. That is why the calibration algorithm has to know which database was used
during the reconstruction. The TRD HLT code can be found in the HLT/TRD subdirectory of the
AliRoot installation. The calibration is implemented as an AliHLTTRDCalibrationComponent,
whose members are an AliCDBManager together with the path for the current database used,
and an AliTRDCalibraFillHisto object. The main functions are:

• AliHLTCalibrationComponent::InitCalibration, where the TH2I and TProfile2Ds are
created.

• AliHLTCalibrationComponent::ProcessCalibration, where the function
AliTRDCalibraFillHisto::UpdateHistogramsV1(AliTRDtrackV1 *t) is called to fill the
histograms.

• AliHLTCalibrationComponent::FormOutput, which returns a TObjArray with the his-
tograms.

The histograms are shipped at the end of each run to the HLT File Exchange Server to be
picked up by the SHUTTLE and further processed by the Preprocessor, exactly as the data
from the calibration on DAQ.

3.4 Preprocessor 39

3.4 Preprocessor

The online systems, like the Detector Control System (DCS), the DAQ and the HLT, are pro-
tected from outside by a firewall. A special framework, called the SHUTTLE, has been de-
velopped to retrieve offline data in the online systems or store relevant information from the
online systems in the OCDB. The SHUTTLE has access to the DCS, DAQ and HLT FXS. At
the end of each run the reference data, outputs of the calibration algorithms on DAQ and HLT,
are retrieved and further processed to determine the calibration constants (gain, drift velocity,
timeoffset and width of the Pad Response Function). The reference data are finally stored in
the Grid reference Data Base, whereas the results of the fit procedures are stored in the OCDB.
The code is contained in the AliTRDPreprocessor class. The Process function is executed for
the run types: PEDESTAL, STANDALONE, DAQ and PHYSICS.

• The PEDESTAL run are dedicated to the calibration of the noise on DAQ. Only the output
of the DAQ pedestal algorithm is retrieved at the SHUTTLE. From the noise and baseline
of each pad, a pad status is determined. Disconnected pads are recognizable by a small
noise. Bridged pads have the same noise and baseline. The noise and padstatus of
the previous pedestal run in the OCDB are taken for half chambers, which were not On.
Finally the database entries DetNoise, PadNoise and PadStatus are populated in the
OCDB. More informations can be found in the function
AliTRDPreprocessor::ExtractPedestals.

• The STANDALONE runs are used to check the data integrity or the correlated noise. The
data are taken with the TRD alone and a random trigger. Only the DCS data are retrieved.

• The DAQ run are test runs for the DAQ people. Only the DCS data are retrieved.

• The PHYSICS run are global runs including more than one detector and different trigger
clusters. They are used for the calibration of the gain, driftvelocity and timeoffset, and
width of the PRF. Therefore the output of the calibration algorihms running on HLT are
retrieved. If the procedure is not successful the output of the driftvelocity/timeoffset al-
gorithm on DAQ is also retrieved. The reference data, the histograms, are fitted using an
ALiTRDCalibraFit instance:

– AliTRDCalibraFit::AnalyseCH(const TH2I *ch) determines the MPVs of the dE/dx
distributions and compares them to a reference value.

– AliTRDCalibraFit::AnalysePH(const TProfile2D *ph) fits the average pulse height
and determines the position of the amplification region peak and the end of the drift
region for each chamber. Knowing the length of the drift region one can deduce the
drift velocity. The amplification peak gives also information on the timeoffset.

– AliTRDCalibraFit::AnalysePRFMarianFit(const TProfile2D *prf) determines
the spread of the clusters as function of azimuthal angle of the track. The minimum
gives the width of the PRF.

The results of each fit procedure are stored in a TObjArray of
AliTRDCalibraFit::AliTRDFitInfo objects, one per chamber, which is a member of
the AliTRDCalibraFit instance. The functions AliTRDCalibratFit::CreateDetObject*
and ::CreatePadObject* allow to create from the TObjArray the final calibration objects,
that have to be put in the OCDB.

Tab.3.2 summarizes the tasks executed by the prepocessor for each run type. The DCS data
points are measurements of the currents, voltages, temperatures and other variables of the

40

run type DCS data points DCS FXS DAQ FXS HLT FXS
temperatures electronic calibration DA calibration DA

voltages, etc · · · configuration noise/(vdE/t0) g/(vdE/t0)/σPRF

DAQ yes yes no no

PEDESTAL no no yes (noise) no

STANDALONE yes yes no no

PHYSICS yes yes yes (vdE/t0) yes

Table 3.2: Tasks performed by the TRD preprocessor for every run type.

chambers as function of time. They are saved in the DCS Archive DB during the run and made
available at the SHUTTLE by AMANDA.

3.5 Offline Calibration

The offline calibration of the gain, driftvelocity/timeoffset and width of the PRF is meant to
improve the first calibration online. It follows the following steps:

• Fill reference data (the dE/dx distributions, the average pulse heights · · ·) during the
reconstruction of the events offline.

• Store the reference data in root files in AliEn.

• Merge the reference data of different runs and/or calibration groups.

• Fit the reference data to extract the calibration constants and create the calibration ob-
jects.

• Store the calibration objects according to their run validity in the OCDB.

The calibration procedure is not performed per detector anymore but per pad, at least for the
first step, the filling of the reference data. Depending on the available statics the reference data
of different pads (calibration groups) can be merged together to determine a mean calibration
coefficient over these pads.

3.5.1 AliTRDCalibraVector container

The high granularity of the calibration, with a total number of 1181952 pads, implies that the
size of the reference data has to be reduced to the strict minimum needed.

reference data Number of size
for calibration groups in MB

gain 1181952 225
driftvelocity/timeoffset 1181952 271

PRF 131328 200
All together 696

Table 3.3: Size of the AliTRDCalibraVector object for a given granularity.

3.5 Offline Calibration 41

The TH2I and TProfile2D objects are not a good option anymore. Therefore a container
class, AliTRDCalibraVector, was developped. The TH2I corresponds to an array of UShort
(2 Bytes) for the number of entries in each bin, the TProfile2D to an array of UShort for the
number of entries in each bin and two arrays of Float for the sum of the weights and the sum
of the squared weights in each bin. The mean value and its error are computed per hand in
the functions AliTRDCalibraVector::UpdateVector*, where the object is filled with new data.
The size of the AliTRDCalibraVector object is summarized in Tab.3.3.

3.5.2 Additional method to calibrate the drift velocity

In addition an other method is available for the calibration of the drift velocity. It is based on
the comparison of the slope of the TRD tracklet in the azimuthal plane xy with the φ angle of
the global track. It can be shown that the slope dy/dt of a TRD tracklet depends linearly on its
global track parameters, tan(φ)+ (dz/dx) tan(βtilt) [6]. The slope parameter is the drift velocity
in the electric field direction, whereas the constant gives the tangent of the Lorentz angle. If
the TRD tracklet crosses two different pads in the z direction (the beam direction), the relation
is not true anymore. Therefore such tracklets are rejected in the calibration procedure. The
reference data are a TObjArray of one TH2F histogram for each detector.

tan(phi)+(dz/dx)tan(beta)
-1.5 -1 -0.5 0 0.5 1

d
y/

d
t

-1.5

-1

-0.5

0

0.5

1

1.5

2

track on one pad row

track crossing two pad rows

Figure 3.17: The correlation between dy/dt and tan(φ) + (dz/dx) tan(βtilt) for the reconstructed track
in one chamber. The tracks crossing at least two pad rows are in red crosses and those crossing one
pad row in blue points.

Fig.3.17 shows one example of such a histogram. They are filled in the function
AliTRDCalibraFillHisto: :UpdateHistogramsV1(AliTRDtrackV1 *t), like the reference data
for other calibration constants, if the flag fLinearFitterDebugOn is true.
The histograms are stored in the container class,
AliTRDCalibraVdriftLinearFit, for which a Merge and Add function have been implemented.
In a second step, the AliTRDCalibraVdriftLinearFit objects can be merged together for dif-
ferent runs. In a third step, the TH2F histograms are fitted in the function
AliTRDCalibraVdriftLinearFit::FillPEArray. The result parameters are members of the
AliTRDCalibraVdriftLinearFit object, as well as their error coming from the fit procedures.

42

Finally the AliTRDCalibraVdriftLinearFitobject is passed to an AliTRDCalibraFit instance
through the function AliTRDCalibraFit::AnalyseLinearFitters, in which the Lorentz angle
is computed from the fit parameters and stored together with the drift velocity in a TObjArray,
member of the AliTRDCalibraFit instance. As for the other calibration constants the functions
AliTRDCalibratFit::CreateDetObject* and ::CreatePadObject* allows to create the final
calibration objects, that have to be put in the OCDB. Since the Lorentz angle is not a OCDB
entries, it is only used for debugging.

3.5.3 The calibration AliAnalysisTask

The reference data of the calibration are filled in an AliAnalysisTask during the reconstruction
or after the reconstruction. Since it needs some informations only stored in the AliESDfriends,
they have to be written if one wants to run the calibration. This will be the case only for TRD
track above a given pT since the size of the events is otherwise to big.

Alignment

4.1 ???

Quality Assurance (QA)

5.1 ???

High Level Trigger (HLT)

6.1 ???

References

[1] The ALICE Offline Bible
http://aliceinfo.cern.ch/export/sites/AlicePortal/Offline/galleries/Download/OfflineDownload/
OfflineBible.pdf.

[2] C. Adler, Radiation length of the ALICE TRD

[3] D. Emschermann, Numbering Convention for the ALICE TRD Detector.,
http://www.physi.uni-heidelberg.de/d̃emscher/alice/numbering/more/TRD numbering v04.pdf.

[4] M. Castellano et al., Comp. Phys. Comm. 55, 431 (1988), Comp. Phys. Comm. 61, 395
(1990),

[5] K. Schossmaier et al., The Alice Data Acquisition and Test Environment DATE V5,
CHEP06.

[6] R. Bailhache, Calibration of the ALICE Transition Radiation Detector and a study of Z 0 and
heavy quark production in pp collisions at the LHC, PhD thesis, University of Darmstadt
(Germany), 2009.

