/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /////////////////////////////////////////////////////////////////////////////// /// /// This is a class for reading the VZERO DDL raw data /// The format of the raw data corresponds to the one /// implemented in AliVZEROBuffer class. /// /////////////////////////////////////////////////////////////////////////////// #include "AliVZERORawStream.h" #include "AliRawReader.h" #include "AliLog.h" #include "AliDAQ.h" ClassImp(AliVZERORawStream) //_____________________________________________________________________________ AliVZERORawStream::AliVZERORawStream(AliRawReader* rawReader) : fTrigger(0), fTriggerMask(0), fPosition(-1), fRawReader(rawReader), fData(NULL) { // create an object to read VZERO raw data // // select the raw data corresponding to // the VZERO detector id fRawReader->Reset(); AliDebug(1,Form("Selecting raw data for detector %d",AliDAQ::DetectorID("VZERO"))); fRawReader->Select("VZERO"); // Initalize the containers for(Int_t i = 0; i < kNChannels; i++) { fTime[i] = fWidth[i] = 0; for(Int_t j = 0; j < kNEvOfInt; j++) { fADC[i][j] = 0; fIsInt[i][j] = fIsBB[i][j] = fIsBG[i][j] = kFALSE; } fBBScalers[i] = fBGScalers[i] = 0; for(Int_t j = 0; j < kNBunches; j++) { fChargeMB[i][j] = 0; fIsIntMB[i][j] = fIsBBMB[i][j] = fIsBGMB[i][j] = kFALSE; } } for(Int_t i = 0; i < kNScalers; i++) fScalers[i] = 0; for(Int_t i = 0; i < kNBunches; i++) fBunchNumbers[i] = 0; } //_____________________________________________________________________________ AliVZERORawStream::~AliVZERORawStream() { // destructor } //_____________________________________________________________________________ void AliVZERORawStream::Reset() { // reset raw stream params // Reinitalize the containers for(Int_t i = 0; i < kNChannels; i++) { fTime[i] = fWidth[i] = 0; for(Int_t j = 0; j < kNEvOfInt; j++) { fADC[i][j] = 0; fIsInt[i][j] = fIsBB[i][j] = fIsBG[i][j] = kFALSE; } fBBScalers[i] = fBGScalers[i] = 0; for(Int_t j = 0; j < kNBunches; j++) { fChargeMB[i][j] = 0; fIsIntMB[i][j] = fIsBBMB[i][j] = fIsBGMB[i][j] = kFALSE; } } for(Int_t i = 0; i < kNScalers; i++) fScalers[i] = 0; for(Int_t i = 0; i < kNBunches; i++) fBunchNumbers[i] = 0; fTrigger = fTriggerMask = 0; fPosition = -1; fData = NULL; if (fRawReader) fRawReader->Reset(); } //_____________________________________________________________________________ Bool_t AliVZERORawStream::Next() { // read next digit from the VZERO raw data stream // return kFALSE in case of error or no digits left if (fPosition >= 0) return kFALSE; if (!fRawReader->ReadNextData(fData)) return kFALSE; if (fRawReader->GetDataSize() == 0) return kFALSE; if (fRawReader->GetDataSize() != 5936) { fRawReader->AddFatalErrorLog(kRawDataSizeErr,Form("size %d != 5936",fRawReader->GetDataSize())); AliWarning(Form("Wrong VZERO raw data size: %d, expected 5936 bytes!",fRawReader->GetDataSize())); return kFALSE; } fPosition = 0; fTrigger = GetNextWord() & 0xffff; fTriggerMask = GetNextWord() & 0xffff; for(Int_t iScaler = 0; iScaler < kNScalers; iScaler++) fScalers[iScaler] = GetNextWord(); for(Int_t iBunch = 0; iBunch < kNBunches; iBunch++) fBunchNumbers[iBunch] = GetNextWord(); for (Int_t iCIU = 0; iCIU < 8; iCIU++) { // decoding of one Channel Interface Unit numbered iCIU - there are 8 channels per CIU (and 8 CIUs) : for (Int_t iChannel_Offset = iCIU*8; iChannel_Offset < (iCIU*8)+8; iChannel_Offset=iChannel_Offset+4) { for(Int_t iChannel = iChannel_Offset; iChannel < iChannel_Offset+4; iChannel++) { for(Int_t iEvOfInt = 0; iEvOfInt < kNEvOfInt; iEvOfInt++) { UShort_t data = GetNextShort(); fADC[iChannel][iEvOfInt] = data & 0x3ff; fIsInt[iChannel][iEvOfInt] = (data >> 10) & 0x1; } } for(Int_t iEvOfInt = 0; iEvOfInt < kNEvOfInt; iEvOfInt=iEvOfInt+2) { UShort_t data = GetNextShort(); for(Int_t iChannel = iChannel_Offset; iChannel < iChannel_Offset+4; iChannel++) { fIsBB[iChannel][iEvOfInt] = (data >> 2*iChannel) & 0x1; fIsBG[iChannel][iEvOfInt] = (data >> 2*iChannel+1) & 0x1; fIsBB[iChannel][iEvOfInt+1] = (data >> (8+ 2*iChannel)) & 0x1; fIsBG[iChannel][iEvOfInt+1] = (data >> (8+ 2*iChannel+1)) & 0x1; } } GetNextShort(); for(Int_t iChannel = iChannel_Offset; iChannel < iChannel_Offset+4; iChannel++) { for(Int_t iBunch = 0; iBunch < kNBunches; iBunch++) { UShort_t data = GetNextShort(); fChargeMB[iChannel][iBunch] = data & 0x3ff; fIsIntMB[iChannel][iBunch] = (data >> 10) & 0x1; } } for(Int_t iBunch = 0; iBunch < kNBunches; iBunch=iBunch+2) { UShort_t data = GetNextShort(); for(Int_t iChannel = iChannel_Offset; iChannel < iChannel_Offset+4; iChannel++) { fIsBBMB[iChannel][iBunch] = (data >> 2*iBunch) & 0x1; fIsBGMB[iChannel][iBunch] = (data >> 2*iBunch+1) & 0x1; fIsBBMB[iChannel][iBunch+1] = (data >> (8+2*iBunch)) & 0x1; fIsBGMB[iChannel][iBunch+1] = (data >> (8+2*iBunch+1)) & 0x1; } } GetNextShort(); for(Int_t iChannel = iChannel_Offset; iChannel < iChannel_Offset+4; iChannel++) { fBBScalers[iChannel] = ((ULong64_t)GetNextWord()) << 32; fBBScalers[iChannel] |= GetNextWord(); fBGScalers[iChannel] = ((ULong64_t)GetNextWord()) << 32; fBGScalers[iChannel] |= GetNextWord(); } } for(Int_t iChannel = iCIU*8; iChannel < (iCIU*8) + 8; iChannel++) { UInt_t time = GetNextWord(); fTime[iChannel] = time & 0xfff; fWidth[iChannel] = (time >> 12) & 0x7f; // HPTDC used in pairing mode } // End of decoding of one CIU card // printf("Number of bytes used at end of reading CIU card number %d %d \n\n", iCIU+1, fPosition); } // end of decoding the eight CIUs return kTRUE; } //_____________________________________________________________________________ UInt_t AliVZERORawStream::GetNextWord() { // This method returns the next 32 bit word // inside the raw data payload. // The method is supposed to be endian (platform) // independent. if (!fData || fPosition < 0) AliFatal("Raw data payload buffer is not yet initialized !"); UInt_t word = 0; word |= fData[fPosition++]; word |= fData[fPosition++] << 8; word |= fData[fPosition++] << 16; word |= fData[fPosition++] << 24; return word; } //_____________________________________________________________________________ UShort_t AliVZERORawStream::GetNextShort() { // This method returns the next 16 bit word // inside the raw data payload. // The method is supposed to be endian (platform) // independent. if (!fData || fPosition < 0) AliFatal("Raw data payload buffer is not yet initialized !"); UShort_t word = 0; word |= fData[fPosition++]; word |= fData[fPosition++] << 8; return word; }