/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.7 2000/01/19 17:17:40 fca Revision 1.6 1999/09/29 09:24:35 fca Introduction of the Copyright and cvs Log */ #include #include #include #include "AliGenZDC.h" #include "AliConst.h" #include "AliPDG.h" #include "AliRun.h" ClassImp(AliGenZDC) //_____________________________________________________________________________ AliGenZDC::AliGenZDC() :AliGenerator() { // // Default constructor // fIpart = 0; } //_____________________________________________________________________________ AliGenZDC::AliGenZDC(Int_t npart) :AliGenerator(npart) { // // Standard constructor // fName = "AliGenZDC"; fTitle = "Generation of Test Particles for ZDCs"; fIpart = kNeutron; fCosx = 0.; fCosy = 0.; fCosz = 1.; fPseudoRapidity = 0.; fFermiflag = 1; // LHC values for beam divergence and crossing angle fBeamDiv = 0.000032; fBeamCrossAngle = 0.0001; fBeamCrossPlane = 2; } //_____________________________________________________________________________ void AliGenZDC::Init() { printf(" Initializing AliGenZDC\n"); printf(" Fermi flag = %d, Beam Divergence = %f, Crossing Angle " "= %f, Crossing Plane = %d\n\n", fFermiflag, fBeamDiv, fBeamCrossAngle, fBeamCrossPlane); //Initialize Fermi momentum distributions for Pb-Pb FermiTwoGaussian(207.,82.,fPp,fProbintp,fProbintn); } //_____________________________________________________________________________ void AliGenZDC::Generate() { // // Generate one trigger (n or p) // Double_t mass, pLab[3], balp0, balp[3], ddp[3], dddp0, dddp[3]; Float_t ptot = fPMin; Int_t nt; if(fPseudoRapidity==0.){ pLab[0] = ptot*fCosx; pLab[1] = ptot*fCosy; pLab[2] = ptot*fCosz; } else{ Float_t scang = 2*TMath::ATan(TMath::Exp(-(fPseudoRapidity))); pLab[0] = -ptot*TMath::Sin(scang); pLab[1] = 0.; pLab[2] = ptot*TMath::Cos(scang); } for(Int_t i=0; i<=2; i++){ fP[i] = pLab[i]; } // Beam divergence and crossing angle if(fBeamDiv!=0.) {BeamDivCross(0,fBeamDiv,fBeamCrossAngle,fBeamCrossPlane,pLab);} if(fBeamCrossAngle!=0.) {BeamDivCross(1,fBeamDiv,fBeamCrossAngle,fBeamCrossPlane,pLab);} // If required apply the Fermi momentum if(fFermiflag==1){ if((fIpart==kProton) || (fIpart==kNeutron)){ ExtractFermi(fIpart,fPp,fProbintp,fProbintn,ddp); } if(fIpart==kProton) {mass = 0.93956563;} if(fIpart==kNeutron) {mass = 0.93827231;} // printf(" pLABx = %f pLABy = %f pLABz = %f \n",pLab[0],pLab[1],pLab[2]); for(Int_t i=0; i<=2; i++){ balp[i] = -pLab[i]; } balp0 = TMath::Sqrt(pLab[0]*pLab[0]+pLab[1]*pLab[1]+pLab[2]*pLab[2]+mass*mass); for(Int_t i=0; i<=2; i++){ dddp[i] = ddp[i]; } dddp0 = TMath::Sqrt(dddp[0]*dddp[0]+dddp[1]*dddp[1]+dddp[2]*dddp[2]+mass*mass); TVector3 b(balp[0]/balp0, balp[1]/balp0, balp[2]/balp0); TLorentzVector pFermi(dddp[0], dddp[1], dddp[2], dddp0); // printf(" pmu -> pLABx = %f pLABy = %f pLABz = %f E = %f\n", // balp[0],balp[1],balp[2],balp0); // printf(" Beta -> bx = %f by = %f bz = %f\n", b[0], b[1], b[2]); // printf(" pFermi -> px = %f, py = %f, pz = %f\n", pFermi[0], pFermi[1], pFermi[2]); pFermi.Boost(b); // printf(" Boosted momentum -> px = %f, py = %f, pz = %f\n", // pFermi[0], pFermi[1], pFermi[2]); for(Int_t i=0; i<=2; i++){ fBoostP[i] = pFermi[i]; } } Float_t polar[3] = {0,0,0}; gAlice->SetTrack(fTrackIt,-1,fIpart,fBoostP,fOrigin.GetArray(),polar,0, "Primary",nt); } //_____________________________________________________________________________ void AliGenZDC::FermiTwoGaussian(Double_t A, Float_t Z, Double_t* fPp, Double_t* fProbintp, Double_t* fProbintn) { // // Momenta distributions according to the "double-gaussian" // distribution (Ilinov) - equal for protons and neutrons // // printf(" Initialization of Fermi momenta distribution\n"); fProbintp[0] = 0; fProbintn[0] = 0; Double_t sig1 = 0.113; Double_t sig2 = 0.250; Double_t alfa = 0.18*(TMath::Power((A/12.),(Float_t)1/3)); Double_t xk = (2*k2PI)/((1.+alfa)*(TMath::Power(k2PI,1.5))); for(Int_t i=1; i<=200; i++){ Double_t p = i*0.005; fPp[i] = p; // printf(" fPp[%d] = %f\n",i,fPp[i]); Double_t e1 = (p*p)/(2.*sig1*sig1); Double_t e2 = (p*p)/(2.*sig2*sig2); Double_t f1 = TMath::Exp(-(e1)); Double_t f2 = TMath::Exp(-(e2)); Double_t probp = xk*p*p*(f1/(TMath::Power(sig1,3.))+ alfa*f2/(TMath::Power(sig2,3.)))*0.005; // printf(" probp = %f\n",probp); fProbintp[i] = fProbintp[i-1] + probp; fProbintn[i] = fProbintp[i]; // printf(" fProbintp[%d] = %f, fProbintp[%d] = %f\n",i,fProbintp[i],i,fProbintn[i]); } } //_____________________________________________________________________________ void AliGenZDC::ExtractFermi(Int_t id, Double_t* fPp, Double_t* fProbintp, Double_t* fProbintn, Double_t* ddp) { // // Compute Fermi momentum for spectator nucleons // Int_t i; Float_t xx = gRandom->Rndm(); if(id==kProton){ for(i=0; i<=200; i++){ if((xx>=fProbintp[i-1]) && (xx=fProbintn[i-1]) && (xxRndm()); Float_t cost = (1.-2.*(gRandom->Rndm())); Float_t tet = TMath::ACos(cost); ddp[0] = pext*TMath::Sin(tet)*TMath::Cos(phi); ddp[1] = pext*TMath::Sin(tet)*TMath::Sin(phi); ddp[2] = pext*cost; } //_____________________________________________________________________________ void AliGenZDC::BeamDivCross(Int_t icross, Float_t fBeamDiv, Float_t fBeamCrossAngle, Int_t fBeamCrossPlane, Double_t* pLab) { Double_t tetpart, fipart, tetdiv, fidiv, angleSum[2], tetsum, fisum, dplab[3]; Double_t rvec; Double_t pmq = 0.; for(int i=0; i<=2; i++){ dplab[i] = pLab[i]; pmq = pmq+pLab[i]*pLab[i]; } Double_t pmod = TMath::Sqrt(pmq); // printf(" pmod = %f\n",pmod); // printf(" icross = %d, fBeamDiv = %f\n",icross,fBeamDiv); if(icross==0){ rvec = gRandom->Gaus(0.0,1.0); tetdiv = fBeamDiv * TMath::Abs(rvec); fidiv = (gRandom->Rndm())*k2PI; } else if(icross==1){ if(fBeamCrossPlane==0.){ tetdiv = 0.; fidiv = 0.; } else if(fBeamCrossPlane==1.){ tetdiv = fBeamCrossAngle; fidiv = 0.; } else if(fBeamCrossPlane==2.){ tetdiv = fBeamCrossAngle; fidiv = k2PI/4.; } } // printf(" tetdiv = %f, fidiv = %f\n",tetdiv,fidiv); tetpart = TMath::ATan(TMath::Sqrt(dplab[0]*dplab[0]+dplab[1]*dplab[1])/dplab[2]); if(dplab[1]!=0. || dplab[0]!=0.){ fipart = TMath::ATan2(dplab[1],dplab[0]); } else{ fipart = 0.; } if(fipart<0.) {fipart = fipart+k2PI;} // printf(" tetpart = %f, fipart = %f\n",tetpart,fipart); tetdiv = tetdiv*kRaddeg; fidiv = fidiv*kRaddeg; tetpart = tetpart*kRaddeg; fipart = fipart*kRaddeg; AddAngle(tetpart,fipart,tetdiv,fidiv,angleSum); tetsum = angleSum[0]; fisum = angleSum[1]; // printf(" tetsum = %f, fisum = %f\n",tetsum,fisum); tetsum = tetsum*kDegrad; fisum = fisum*kDegrad; pLab[0] = pmod*TMath::Sin(tetsum)*TMath::Cos(fisum); pLab[1] = pmod*TMath::Sin(tetsum)*TMath::Sin(fisum); pLab[2] = pmod*TMath::Cos(tetsum); // printf(" pLab[0] = %f pLab[1] = %f pLab[2] = %f \n\n", // pLab[0],pLab[1],pLab[2]); for(Int_t i=0; i<=2; i++){ fDivP[i] = pLab[i]; } } //_____________________________________________________________________________ void AliGenZDC::AddAngle(Double_t theta1, Double_t phi1, Double_t theta2, Double_t phi2, Double_t* angleSum) { Double_t temp, conv, cx, cy, cz, ct1, st1, ct2, st2, cp1, sp1, cp2, sp2; Double_t rtetsum, tetsum, fisum; temp = -1.; conv = 180./TMath::ACos(temp); ct1 = TMath::Cos(theta1/conv); st1 = TMath::Sin(theta1/conv); cp1 = TMath::Cos(phi1/conv); sp1 = TMath::Sin(phi1/conv); ct2 = TMath::Cos(theta2/conv); st2 = TMath::Sin(theta2/conv); cp2 = TMath::Cos(phi2/conv); sp2 = TMath::Sin(phi2/conv); cx = ct1*cp1*st2*cp2+st1*cp1*ct2-sp1*st2*sp2; cy = ct1*sp1*st2*cp2+st1*sp1*ct2+cp1*st2*sp2; cz = ct1*ct2-st1*st2*cp2; rtetsum = TMath::ACos(cz); tetsum = conv*rtetsum; if(tetsum==0. || tetsum==180.){ fisum = 0.; return; } temp = cx/TMath::Sin(rtetsum); if(temp>1.) temp=1.; if(temp<-1.) temp=-1.; fisum = conv*TMath::ACos(temp); if(cy<0) {fisum = 360.-fisum;} // printf(" AddAngle -> tetsum = %f, fisum = %f\n",tetsum, fisum); angleSum[0] = tetsum; angleSum[1] = fisum; }