/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /////////////////////////////////////////////////////////////////////////////// // // // Zero Degree Calorimeter // // This class contains the basic functions for the ZDCs; // // functions specific to one particular geometry are // // contained in the derived classes // // // /////////////////////////////////////////////////////////////////////////////// // --- ROOT system #include #include #include #include #include #include // --- AliRoot header files #include "AliDetector.h" #include "AliZDC.h" #include "AliZDCHit.h" #include "AliZDCSDigit.h" #include "AliZDCDigit.h" #include "AliZDCDigitizer.h" #include "AliZDCRawStream.h" #include "AliZDCCalibData.h" #include "AliRawDataHeader.h" #include "AliLoader.h" #include "AliRun.h" #include "AliMC.h" #include "AliLog.h" #include "AliDAQ.h" ClassImp(AliZDC) AliZDC *gAliZDC; //_____________________________________________________________________________ AliZDC::AliZDC() : AliDetector(), fNoShower (0), fCalibData (0) { // // Default constructor for the Zero Degree Calorimeter base class // fIshunt = 1; fNhits = 0; fHits = 0; fDigits = 0; fNdigits = 0; } //_____________________________________________________________________________ AliZDC::AliZDC(const char *name, const char *title) : AliDetector(name,title), fNoShower (0), fCalibData (0) { // // Standard constructor for the Zero Degree Calorimeter base class // fIshunt = 1; fNhits = 0; fDigits = 0; fNdigits = 0; fHits = new TClonesArray("AliZDCHit",1000); gAlice->GetMCApp()->AddHitList(fHits); char sensname[5],senstitle[25]; sprintf(sensname,"ZDC"); sprintf(senstitle,"ZDC dummy"); SetName(sensname); SetTitle(senstitle); gAliZDC = this; } //____________________________________________________________________________ AliZDC::~AliZDC() { // // ZDC destructor // fIshunt = 0; gAliZDC = 0; delete fCalibData; } //_____________________________________________________________________________ AliZDC::AliZDC(const AliZDC& ZDC) : AliDetector("ZDC","ZDC") { // copy constructor fNoShower = ZDC.fNoShower; fCalibData = ZDC.fCalibData; fZDCCalibFName = ZDC.fZDCCalibFName; } //_____________________________________________________________________________ AliZDC& AliZDC::operator=(const AliZDC& ZDC) { // assignement operator if(this!=&ZDC){ fNoShower = ZDC.fNoShower; fCalibData = ZDC.fCalibData; fZDCCalibFName = ZDC.fZDCCalibFName; } return *this; } //_____________________________________________________________________________ void AliZDC::AddHit(Int_t track, Int_t *vol, Float_t *hits) { // // Add a ZDC hit to the hit list. // -> We make use of 2 array of hits: // [1] fHits (the usual one) that contains hits for each PRIMARY // [2] fStHits that contains hits for each EVENT and is used to // obtain digits at the end of each event // static Float_t primKinEn, xImpact, yImpact, sFlag; AliZDCHit *newquad, *curprimquad; newquad = new AliZDCHit(fIshunt, track, vol, hits); TClonesArray &lhits = *fHits; if(fNhits==0){ // First hit -> setting flag for primary or secondary particle Int_t primary = gAlice->GetMCApp()->GetPrimary(track); if(track != primary){ newquad->SetSFlag(1); // SECONDARY particle entering the ZDC } else if(track == primary){ newquad->SetSFlag(0); // PRIMARY particle entering the ZDC } sFlag = newquad->GetSFlag(); primKinEn = newquad->GetPrimKinEn(); xImpact = newquad->GetXImpact(); yImpact = newquad->GetYImpact(); } else{ newquad->SetPrimKinEn(primKinEn); newquad->SetXImpact(xImpact); newquad->SetYImpact(yImpact); newquad->SetSFlag(sFlag); } Int_t j; for(j=0; jGetEnergy() != 0. || newquad->GetLightPMC() != 0. || newquad->GetLightPMQ() != 0.){ printf("\n\t --- Equal hits found\n"); curprimquad->Print(""); newquad->Print(""); printf("\t --- Det. %d, Quad. %d: X = %f, E = %f, LightPMC = %f, LightPMQ = %f\n", curprimquad->GetVolume(0),curprimquad->GetVolume(1),curprimquad->GetXImpact(), curprimquad->GetEnergy(), curprimquad->GetLightPMC(), curprimquad->GetLightPMQ()); }*/ // delete newquad; return; } } //Otherwise create a new hit new(lhits[fNhits]) AliZDCHit(*newquad); fNhits++; // CH. debug /*printf("\n\t New ZDC hit added! fNhits = %d\n", fNhits); printf("\t Det. %d, Quad.t %d: X = %f, E = %f, LightPMC = %f, LightPMQ = %f\n", newquad->GetVolume(0),newquad->GetVolume(1),newquad->GetXImpact(), newquad->GetEnergy(), newquad->GetLightPMC(), newquad->GetLightPMQ()); */ delete newquad; } //_____________________________________________________________________________ void AliZDC::BuildGeometry() { // // Build the ROOT TNode geometry for event display // in the Zero Degree Calorimeter // This routine is dummy for the moment // TNode *node, *top; TBRIK *brik; const int kColorZDC = kBlue; // top=gAlice->GetGeometry()->GetNode("alice"); // ZDC brik = new TBRIK("S_ZDC","ZDC box","void",300,300,5); top->cd(); node = new TNode("ZDC","ZDC","S_ZDC",0,0,600,""); node->SetLineColor(kColorZDC); fNodes->Add(node); } //____________________________________________________________________________ Float_t AliZDC::ZMin(void) const { // Minimum dimension of the ZDC module in z return -11600.; } //____________________________________________________________________________ Float_t AliZDC::ZMax(void) const { // Maximum dimension of the ZDC module in z return -11750.; } //_____________________________________________________________________________ void AliZDC::MakeBranch(Option_t *opt) { // // Create Tree branches for the ZDC // char branchname[10]; sprintf(branchname,"%s",GetName()); const char *cH = strstr(opt,"H"); if (cH && fLoader->TreeH()) fHits = new TClonesArray("AliZDCHit",1000); AliDetector::MakeBranch(opt); } //_____________________________________________________________________________ void AliZDC::Hits2SDigits() { // Create summable digits from hits AliDebug(1,"\n Entering AliZDC::Hits2Digits() "); fLoader->LoadHits("read"); fLoader->LoadSDigits("recreate"); AliRunLoader* runLoader = fLoader->GetRunLoader(); AliZDCSDigit sdigit; AliZDCSDigit* psdigit = &sdigit; // Event loop for (Int_t iEvent = 0; iEvent < runLoader->GetNumberOfEvents(); iEvent++) { Float_t pmCZN = 0, pmCZP = 0, pmQZN[4], pmQZP[4], pmZEM1 = 0, pmZEM2 = 0; for (Int_t i = 0; i < 4; i++) pmQZN[i] = pmQZP[i] = 0; runLoader->GetEvent(iEvent); TTree* treeH = fLoader->TreeH(); Int_t ntracks = (Int_t) treeH->GetEntries(); ResetHits(); // Tracks loop Int_t sector[2]; for (Int_t itrack = 0; itrack < ntracks; itrack++) { treeH->GetEntry(itrack); for (AliZDCHit* zdcHit = (AliZDCHit*)FirstHit(-1); zdcHit; zdcHit = (AliZDCHit*)NextHit()) { sector[0] = zdcHit->GetVolume(0); sector[1] = zdcHit->GetVolume(1); if ((sector[1] < 1) || (sector[1] > 4)) { Error("Hits2SDigits", "sector[0] = %d, sector[1] = %d", sector[0], sector[1]); continue; } Float_t lightQ = zdcHit->GetLightPMQ(); Float_t lightC = zdcHit->GetLightPMC(); if (sector[0] == 1) { //ZN pmCZN += lightC; pmQZN[sector[1]-1] += lightQ; } else if (sector[0] == 2) { //ZP pmCZP += lightC; pmQZP[sector[1]-1] += lightQ; } else if (sector[0] == 3) { //ZEM if (sector[1] == 1) pmZEM1 += lightC; else pmZEM2 += lightQ; } }//Hits loop } // create the output tree fLoader->MakeTree("S"); TTree* treeS = fLoader->TreeS(); const Int_t kBufferSize = 4000; treeS->Branch(GetName(), "AliZDCSDigit", &psdigit, kBufferSize); // Create sdigits for ZN sector[0] = 1; // Detector = ZN sector[1] = 0; // Common PM ADC new(psdigit) AliZDCSDigit(sector, pmCZN); if (pmCZN > 0) treeS->Fill(); for (Int_t j = 0; j < 4; j++) { sector[1] = j+1; // Towers PM ADCs new(psdigit) AliZDCSDigit(sector, pmQZN[j]); if (pmQZN[j] > 0) treeS->Fill(); } // Create sdigits for ZP sector[0] = 2; // Detector = ZP sector[1] = 0; // Common PM ADC new(psdigit) AliZDCSDigit(sector, pmCZP); if (pmCZP > 0) treeS->Fill(); for (Int_t j = 0; j < 4; j++) { sector[1] = j+1; // Towers PM ADCs new(psdigit) AliZDCSDigit(sector, pmQZP[j]); if (pmQZP[j] > 0) treeS->Fill(); } // Create sdigits for ZEM sector[0] = 3; sector[1] = 1; // Detector = ZEM1 new(psdigit) AliZDCSDigit(sector, pmZEM1); if (pmZEM1 > 0) treeS->Fill(); sector[1] = 2; // Detector = ZEM2 new(psdigit) AliZDCSDigit(sector, pmZEM2); if (pmZEM2 > 0) treeS->Fill(); // write the output tree fLoader->WriteSDigits("OVERWRITE"); } fLoader->UnloadHits(); fLoader->UnloadSDigits(); } //_____________________________________________________________________________ AliDigitizer* AliZDC::CreateDigitizer(AliRunDigitizer* manager) const { // Create the digitizer for ZDC return new AliZDCDigitizer(manager); } //_____________________________________________________________________________ void AliZDC::Digits2Raw() { // Convert ZDC digits to raw data // Format: 22 interger values -> ZN1 (C+Q1-4), ZP1 (C+Q1-4), ZEM1, 2, ZN (C+Q1-4), ZP2 (C+Q1-4)) // For the CAEN module V965 we have an header, the Data Words and an End Of Block // 24 channels read on 1st ADC module, 20 channels read on 2nd ADC module const int knADCData1=24, knADCData2=20; UInt_t lADCHeader1; UInt_t lADCData1[knADCData1]; // UInt_t lADCHeader2; UInt_t lADCData2[knADCData2]; // UInt_t lADCEndBlock; // load the digits fLoader->LoadDigits("read"); AliZDCDigit digit; AliZDCDigit* pdigit = &digit; TTree* treeD = fLoader->TreeD(); if (!treeD) return; treeD->SetBranchAddress("ZDC", &pdigit); //printf("\t AliZDC::Digits2raw -> TreeD has %d entries\n",(Int_t) treeD->GetEntries()); //digit.Print(""); // Ch. debug // Fill data array // ADC header UInt_t lADCHeaderGEO = 0; UInt_t lADCHeaderCRATE = 0; UInt_t lADCHeaderCNT1 = knADCData1; UInt_t lADCHeaderCNT2 = knADCData2; lADCHeader1 = lADCHeaderGEO << 27 | 0x1 << 25 | lADCHeaderCRATE << 16 | lADCHeaderCNT1 << 8 ; // lADCHeader2 = lADCHeaderGEO << 27 | 0x1 << 25 | lADCHeaderCRATE << 16 | lADCHeaderCNT2 << 8 ; //printf("\t lADCHeader1 = %x, lADCHeader2 = %x\n",lADCHeader1, lADCHeader2); // ADC data word UInt_t lADCDataGEO = lADCHeaderGEO; UInt_t lADCDataValue1[knADCData1]; UInt_t lADCDataValue2[knADCData2]; UInt_t lADCDataOvFlw1[knADCData1]; UInt_t lADCDataOvFlw2[knADCData2]; for(Int_t i = 0; iGetEntries(); iDigit++) { treeD->GetEntry(iDigit); if (!pdigit) continue; //ADC data Int_t index1 = 0, index2 = 0; // ADC #1 (ZN1, ZP1, ZEM1,2) if(digit.GetSector(0)==1 || digit.GetSector(0)==2 || digit.GetSector(0)==3){ if(digit.GetSector(0)==1 || digit.GetSector(0)==2){ index1 = (digit.GetSector(0)-1) + digit.GetSector(1)*4; // ZN1 or ZP1 lADCDataChannel = (digit.GetSector(0)-1)*8 + digit.GetSector(1); } else if(digit.GetSector(0)==3){ // ZEM 1,2 index1 = 20 + (digit.GetSector(1)-1); lADCDataChannel = 5 + (digit.GetSector(1)-1)*8; } // /*printf("\t AliZDC::Digits2raw -> det %d, quad %d, index = %d, ADCch = %d\n", digit.GetSector(0),digit.GetSector(1),index1,lADCDataChannel);// Ch. debug */ // lADCDataValue1[index1] = digit.GetADCValue(0); // High gain ADC ch. if(lADCDataValue1[index1] > 2047) lADCDataOvFlw1[index1] = 1; lADCDataValue1[index1+2] = digit.GetADCValue(1); // Low gain ADC ch. if(lADCDataValue1[index1+2] > 2047) lADCDataOvFlw1[index1+2] = 1; lADCData1[index1] = lADCDataGEO << 27 | lADCDataChannel << 17 | lADCDataOvFlw1[index1] << 12 | (lADCDataValue1[index1] & 0xfff); lADCData1[index1+2] = lADCDataGEO << 27 | lADCDataChannel << 17 | 0x1 << 16 | lADCDataOvFlw1[index1+2] << 12 | (lADCDataValue1[index1+2] & 0xfff); } // ADC #2 (ZN2, ZP2) else if(digit.GetSector(0)==4 || digit.GetSector(0)==5){ index2 = (digit.GetSector(0)-4) + digit.GetSector(1)*4; // ZN2 or ZP2 lADCDataChannel = (digit.GetSector(0)-4)*8 + digit.GetSector(1); // /*printf("\t AliZDC::Digits2raw -> det %d, quad %d, index = %d, ADCch = %d\n", digit.GetSector(0),digit.GetSector(1),index1,lADCDataChannel); // Ch. debug */ // lADCDataValue2[index2] = digit.GetADCValue(0); if (lADCDataValue2[index2] > 2047) lADCDataOvFlw2[index2] = 1; lADCDataValue2[index2+2] = digit.GetADCValue(1); if (lADCDataValue2[index2+2] > 2047) lADCDataOvFlw2[index2+2] = 1; // lADCData2[index2] = lADCDataGEO << 27 | lADCDataChannel << 17 | lADCDataOvFlw2[index2] << 12 | (lADCDataValue2[index2] & 0xfff); lADCData2[index2+2] = lADCDataGEO << 27 | lADCDataChannel << 17 | 0x1 << 16 | lADCDataOvFlw2[index2+2] << 12 | (lADCDataValue2[index2+2] & 0xfff); } if((index1<0) || (index1>23)) { Error("Digits2Raw", "sector[0] = %d, sector[1] = %d", digit.GetSector(0), digit.GetSector(1)); continue; } if((index2<0) || (index2>19)) { Error("Digits2Raw", "sector[0] = %d, sector[1] = %d", digit.GetSector(0), digit.GetSector(1)); continue; } } //for(Int_t i=0;i<24;i++) printf("\t ADCData1[%d] = %x\n",i,lADCData1[i]); //for(Int_t i=0;i<20;i++) printf("\t ADCData2[%d] = %x\n",i,lADCData2[i]); // End of Block UInt_t lADCEndBlockGEO = lADCHeaderGEO; UInt_t lADCEndBlockEvCount = gAlice->GetEventNrInRun(); lADCEndBlock = lADCEndBlockGEO << 27 | 0x1 << 26 | lADCEndBlockEvCount; //printf("\t ADCEndBlock = %d\n",lADCEndBlock); // open the output file char fileName[30]; strcpy(fileName,AliDAQ::DdlFileName("ZDC",0)); #ifndef __DECCXX ofstream file(fileName, ios::binary); #else ofstream file(fileName); #endif // write the DDL data header AliRawDataHeader header; header.fSize = sizeof(header) + sizeof(lADCHeader1) + sizeof(lADCData1) + sizeof(lADCEndBlock)+ sizeof(lADCHeader2) + sizeof(lADCData2) + sizeof(lADCEndBlock); /*printf("sizeof header = %d, ADCHeader1 = %d, ADCData1 = %d, ADCEndBlock = %d\n", sizeof(header),sizeof(lADCHeader1),sizeof(lADCData1),sizeof(lADCEndBlock)); printf("sizeof header = %d, ADCHeader2 = %d, ADCData2 = %d, ADCEndBlock = %d\n", sizeof(header),sizeof(lADCHeader2),sizeof(lADCData2),sizeof(lADCEndBlock));*/ header.SetAttribute(0); // valid data file.write((char*)(&header), sizeof(header)); // write the raw data and close the file file.write((char*) &lADCHeader1, sizeof (lADCHeader1)); file.write((char*)(lADCData1), sizeof(lADCData1)); file.write((char*) &lADCEndBlock, sizeof(lADCEndBlock)); file.write((char*) &lADCHeader2, sizeof (lADCHeader2)); file.write((char*)(lADCData2), sizeof(lADCData2)); file.write((char*) &lADCEndBlock, sizeof(lADCEndBlock)); file.close(); // unload the digits fLoader->UnloadDigits(); } //______________________________________________________________________ void AliZDC::SetTreeAddress(){ // Set branch address for the Trees. // Inputs: // none. // Outputs: // none. // Return: // none. if (fLoader->TreeH() && (fHits == 0x0)) fHits = new TClonesArray("AliZDCHit",1000); AliDetector::SetTreeAddress(); } //Calibration methods (by Alberto Colla) //________________________________________________________________ void AliZDC::CreateCalibData() { // //if (fCalibData) delete fCalibData; // delete previous version fCalibData = new AliZDCCalibData(GetName()); } //________________________________________________________________ void AliZDC::WriteCalibData(Int_t option) { // const int kCompressLevel = 9; char* fnam = GetZDCCalibFName(); if (!fnam || fnam[0]=='\0') { fnam = gSystem->ExpandPathName("$(ALICE)/$(ALICE_LEVEL)/data/AliZDCCalib.root"); Warning("WriteCalibData","No File Name is provided, using default %s",fnam); } TFile* cdfile = TFile::Open(fnam,"UPDATE","",kCompressLevel); // Writes Calibration Data to current directory. // User MUST take care of corresponding file opening and ->cd()... !!! // By default, the object is overwritten. Use 0 option for opposite. if (option) option = TObject::kOverwrite; if (fCalibData) fCalibData->Write(0,option); else if (fCalibData) fCalibData->Write(0,option); cdfile->Close(); delete cdfile; } //________________________________________________________________ void AliZDC::LoadCalibData() { // char* fnam = GetZDCCalibFName(); if (!fnam || fnam[0]=='\0') return; if (!gAlice->IsFileAccessible(fnam)) { Error("LoadCalibData","ZDC Calibration Data file is not accessible, %s",fnam); exit(1); } TFile* cdfile = TFile::Open(fnam); // Loads Calibration Data from current directory. // User MUST take care of corresponding file opening and ->cd()...!!! // if (fCalibData) delete fCalibData; // delete previous version TString dtname = "Calib_"; dtname += GetName(); fCalibData = (AliZDCCalibData*) gDirectory->Get(dtname.Data()); if (!fCalibData) { Error("LoadCalibData","No Calibration data found for %s",GetName()); exit(1); } cdfile->Close(); delete cdfile; } //Calibration methods (by Alberto Colla)