/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /////////////////////////////////////////////////////////////////////////////// // // // Zero Degree Calorimeter // // This class contains the basic functions for the ZDCs; // // functions specific to one particular geometry are // // contained in the derived classes // // // /////////////////////////////////////////////////////////////////////////////// // --- ROOT system #include #include #include #include #include // --- AliRoot header files #include "AliDetector.h" #include "AliRawDataHeaderSim.h" #include "AliRawReader.h" #include "AliLoader.h" #include "AliRun.h" #include "AliMC.h" #include "AliLog.h" #include "AliDAQ.h" #include "AliZDC.h" #include "AliZDCHit.h" #include "AliZDCSDigit.h" #include "AliZDCDigit.h" #include "AliZDCDigitizer.h" #include "AliZDCRawStream.h" #include "AliZDCPedestals.h" #include "AliZDCCalib.h" #include "AliFstream.h" ClassImp(AliZDC) //_____________________________________________________________________________ AliZDC::AliZDC() : AliDetector(), fNoShower(0), fPedCalib(0), fCalibData(0), fZDCCalibFName("") { // // Default constructor for the Zero Degree Calorimeter base class // fIshunt = 1; fNhits = 0; fHits = 0; fDigits = 0; fNdigits = 0; } //_____________________________________________________________________________ AliZDC::AliZDC(const char *name, const char *title) : AliDetector(name,title), fNoShower (0), fPedCalib(0), fCalibData(0), fZDCCalibFName("") { // // Standard constructor for the Zero Degree Calorimeter base class // fIshunt = 1; fNhits = 0; fDigits = 0; fNdigits = 0; fHits = new TClonesArray("AliZDCHit",1000); gAlice->GetMCApp()->AddHitList(fHits); char sensname[5],senstitle[25]; sprintf(sensname,"ZDC"); sprintf(senstitle,"ZDC dummy"); SetName(sensname); SetTitle(senstitle); } //____________________________________________________________________________ AliZDC::~AliZDC() { // // ZDC destructor // fIshunt = 0; delete fPedCalib; delete fCalibData; } //_____________________________________________________________________________ AliZDC::AliZDC(const AliZDC& ZDC) : AliDetector("ZDC","ZDC"), fNoShower(ZDC.fNoShower), fPedCalib(ZDC.fPedCalib), fCalibData(ZDC.fCalibData), fZDCCalibFName(ZDC.fZDCCalibFName) { // copy constructor } //_____________________________________________________________________________ AliZDC& AliZDC::operator=(const AliZDC& ZDC) { // assignement operator if(this!=&ZDC){ fNoShower = ZDC.fNoShower; fPedCalib = ZDC.fPedCalib; fCalibData = ZDC.fCalibData; fZDCCalibFName = ZDC.fZDCCalibFName; } return *this; } //_____________________________________________________________________________ void AliZDC::AddHit(Int_t track, Int_t *vol, Float_t *hits) { // // Add a ZDC hit to the hit list. static Float_t trackTime=0., primKinEn=0., xImpact=0., yImpact=0., sFlag=0.; static Int_t pcPDGcode; AliZDCHit *newquad, *curprimquad; newquad = new AliZDCHit(fIshunt, track, vol, hits); TClonesArray &lhits = *fHits; if(fNhits==0){ // First hit -> setting flag for primary or secondary particle Int_t primary = gAlice->GetMCApp()->GetPrimary(track); // if(track != primary){ newquad->SetSFlag(1); // SECONDARY particle entering the ZDC } else if(track == primary){ newquad->SetSFlag(0); // PRIMARY particle entering the ZDC } sFlag = newquad->GetSFlag(); primKinEn = newquad->GetPrimKinEn(); xImpact = newquad->GetXImpact(); yImpact = newquad->GetYImpact(); pcPDGcode = newquad->GetPDGCode(); trackTime = newquad->GetTrackTOF(); } else{ newquad->SetPrimKinEn(primKinEn); newquad->SetXImpact(xImpact); newquad->SetYImpact(yImpact); newquad->SetSFlag(sFlag); newquad->SetPDGCode(pcPDGcode); newquad->SetTrackTOF(trackTime); } Int_t j; for(j=0; jPrint(""); // delete newquad; return; } } //Otherwise create a new hit new(lhits[fNhits]) AliZDCHit(*newquad); fNhits++; // Ch. debug //printf("\n\t New ZDC hit added! fNhits = %d\n", fNhits); //newquad->Print(""); delete newquad; } //____________________________________________________________________________ Float_t AliZDC::ZMin(void) const { // Minimum dimension of the ZDC module in z return -11600.; } //____________________________________________________________________________ Float_t AliZDC::ZMax(void) const { // Maximum dimension of the ZDC module in z return 11750.; } //_____________________________________________________________________________ void AliZDC::MakeBranch(Option_t *opt) { // // Create Tree branches for the ZDC // char branchname[10]; sprintf(branchname,"%s",GetName()); const char *cH = strstr(opt,"H"); if(cH && fLoader->TreeH()) { if (fHits) { fHits->Clear(); fNhits = 0; } else { fHits = new TClonesArray("AliZDCHit",1000); if (gAlice && gAlice->GetMCApp()) gAlice->GetMCApp()->AddHitList(fHits); } } AliDetector::MakeBranch(opt); } //_____________________________________________________________________________ void AliZDC::Hits2SDigits() { // Create summable digits from hits AliDebug(1,"\n AliZDC::Hits2SDigits() "); fLoader->LoadHits("read"); fLoader->LoadSDigits("recreate"); AliRunLoader* runLoader = fLoader->GetRunLoader(); AliZDCSDigit sdigit; AliZDCSDigit* psdigit = &sdigit; // Event loop for(Int_t iEvent = 0; iEvent < runLoader->GetNumberOfEvents(); iEvent++) { Float_t pmZNC[5], pmZPC[5], pmZNA[5], pmZPA[5], pmZEM1=0., pmZEM2=0.; for(Int_t i=0; i<4; i++) pmZNC[i] = pmZPC[i] = pmZNA[i] = pmZPA[i] = 0; runLoader->GetEvent(iEvent); TTree* treeH = fLoader->TreeH(); Int_t ntracks = (Int_t) treeH->GetEntries(); ResetHits(); // Tracks loop Int_t sector[2]; Float_t trackTime = 0.; for(Int_t itrack = 0; itrack < ntracks; itrack++) { treeH->GetEntry(itrack); for(AliZDCHit* zdcHit = (AliZDCHit*)FirstHit(-1); zdcHit; zdcHit = (AliZDCHit*)NextHit()) { sector[0] = zdcHit->GetVolume(0); sector[1] = zdcHit->GetVolume(1); if((sector[1] < 1) || (sector[1]>5)) { Error("Hits2SDigits", "sector[0] = %d, sector[1] = %d", sector[0], sector[1]); continue; } Float_t lightQ = zdcHit->GetLightPMQ(); Float_t lightC = zdcHit->GetLightPMC(); trackTime = zdcHit->GetTrackTOF(); // Signals from ZEM are delayed to arrive in time with ZDC signals if(sector[0] == 3) trackTime += 320; // Ch. debug //printf("\t det %d vol %d trackTOF %f lightQ %1.0f lightC %1.0f\n", // sector[0], sector[1], trackTime, lightQ, lightC); if(sector[0] == 1) { //ZNC pmZNC[0] += lightC; pmZNC[sector[1]] += lightQ; } else if(sector[0] == 2) { //ZPC pmZPC[0] += lightC; pmZPC[sector[1]] += lightQ; } else if(sector[0] == 3) { //ZEM if(sector[1] == 1) pmZEM1 += lightC; else pmZEM2 += lightQ; } if(sector[0] == 4) { //ZNA pmZNA[0] += lightC; pmZNA[sector[1]] += lightQ; } else if(sector[0] == 5) { //ZPA pmZPA[0] += lightC; pmZPA[sector[1]] += lightQ; } }//Hits loop }//Tracks loop // create the output tree fLoader->MakeTree("S"); TTree* treeS = fLoader->TreeS(); const Int_t kBufferSize = 4000; treeS->Branch(GetName(), "AliZDCSDigit", &psdigit, kBufferSize); // Create sdigits for ZNC sector[0] = 1; // Detector = ZNC for(Int_t j = 0; j < 5; j++) { sector[1] = j; if(pmZNC[j]>0){ new(psdigit) AliZDCSDigit(sector, pmZNC[j], trackTime); treeS->Fill(); // Ch. debug //printf("\t SDigit created: det %d quad %d pmZNC[%d] %1.0f trackTOF %f\n", // sector[0], sector[1], j, pmZNC[j], trackTime); } } // Create sdigits for ZPC sector[0] = 2; // Detector = ZPC for(Int_t j = 0; j < 5; j++) { sector[1] = j; // Towers PM ADCs if(pmZPC[j]>0){ new(psdigit) AliZDCSDigit(sector, pmZPC[j], trackTime); treeS->Fill(); // Ch. debug //printf("\t SDigit created: det %d quad %d pmZPC[%d] %1.0f trackTOF %f\n", // sector[0], sector[1], j, pmZPC[j], trackTime); } } // Create sdigits for ZEM sector[0] = 3; sector[1] = 1; // Detector = ZEM1 if(pmZEM1>0){ new(psdigit) AliZDCSDigit(sector, pmZEM1, trackTime); treeS->Fill(); // Ch. debug //printf("\t SDigit created: det %d quad %d pmZEM1 %1.0f trackTOF %f\n", // sector[0], sector[1], pmZEM1, trackTime); } sector[1] = 2; // Detector = ZEM2 if(pmZEM2>0){ new(psdigit) AliZDCSDigit(sector, pmZEM2, trackTime); treeS->Fill(); // Ch. debug //printf("\t SDigit created: det %d quad %d pmZEM2 %1.0f trackTOF %f\n", // sector[0], sector[1], pmZEM2, trackTime); } // Create sdigits for ZNA sector[0] = 4; // Detector = ZNA for(Int_t j = 0; j < 5; j++) { sector[1] = j; // Towers PM ADCs if(pmZNA[j]>0){ new(psdigit) AliZDCSDigit(sector, pmZNA[j], trackTime); treeS->Fill(); // Ch. debug //printf("\t SDigit created: det %d quad %d pmZNA[%d] %1.0f trackTOF %f\n", // sector[0], sector[1], j, pmZNA[j], trackTime); } } // Create sdigits for ZPA sector[0] = 5; // Detector = ZPA sector[1] = 0; // Common PM ADC for(Int_t j = 0; j < 5; j++) { sector[1] = j; // Towers PM ADCs if(pmZPA[j]>0){ new(psdigit) AliZDCSDigit(sector, pmZPA[j], trackTime); treeS->Fill(); // Ch. debug //printf("\t SDigit created: det %d quad %d pmZPA[%d] %1.0f trackTOF %f\n", // sector[0], sector[1], j, pmZPA[j], trackTime); } } // write the output tree fLoader->WriteSDigits("OVERWRITE"); } fLoader->UnloadHits(); fLoader->UnloadSDigits(); } //_____________________________________________________________________________ AliDigitizer* AliZDC::CreateDigitizer(AliRunDigitizer* manager) const { // Create the digitizer for ZDC return new AliZDCDigitizer(manager); } //_____________________________________________________________________________ void AliZDC::Digits2Raw() { // Convert ZDC digits to raw data // Format: 24 int values -> ZN1(C+Q1-4), ZP1(C+Q1-4), ZEM1, ZEM2, ZN(C+Q1-4), ZP2(C+Q1-4), 2 Ref PMs // + 24 int values for the corresponding out of time channels // For the CAEN module V965 we have an Header, the Data Words and an End Of Block // 12 channels x 2 gain chains read from 1st ADC module // 12 channels x 2 gain chains read from 2nd ADC module // 12 channels x 2 gain chains read from 3rd ADC module (o.o.t.) // 12 channels x 2 gain chains read from 4rth ADC module (o.o.t.) // const int knADCData1=24, knADCData2=24; // In principle the 2 numbers can be different! UInt_t lADCHeader1; UInt_t lADCHeader2; UInt_t lADCData1[knADCData1]; UInt_t lADCData2[knADCData2]; UInt_t lADCData3[knADCData1]; UInt_t lADCData4[knADCData2]; // UInt_t lADCEndBlock; // load the digits fLoader->LoadDigits("read"); AliZDCDigit digit; AliZDCDigit* pdigit = &digit; TTree* treeD = fLoader->TreeD(); if(!treeD) return; treeD->SetBranchAddress("ZDC", &pdigit); //printf("\t AliZDC::Digits2Raw -> TreeD has %d entries\n",(Int_t) treeD->GetEntries()); // Fill data array // ADC header UInt_t lADCHeaderGEO = 0; UInt_t lADCHeaderCRATE = 0; UInt_t lADCHeaderCNT1 = knADCData1; UInt_t lADCHeaderCNT2 = knADCData2; lADCHeader1 = lADCHeaderGEO << 27 | 0x1 << 25 | lADCHeaderCRATE << 16 | lADCHeaderCNT1 << 8 ; lADCHeader2 = lADCHeaderGEO << 27 | 0x1 << 25 | lADCHeaderCRATE << 16 | lADCHeaderCNT2 << 8 ; // ADC data word UInt_t lADCDataGEO = lADCHeaderGEO; // UInt_t lADCDataValue1[knADCData1]; UInt_t lADCDataValue2[knADCData2]; UInt_t lADCDataValue3[knADCData1]; UInt_t lADCDataValue4[knADCData2]; // UInt_t lADCDataOvFlw1[knADCData1]; UInt_t lADCDataOvFlw2[knADCData2]; UInt_t lADCDataOvFlw3[knADCData1]; UInt_t lADCDataOvFlw4[knADCData2]; // for(Int_t i=0; iGetEntries(); iDigit++){ treeD->GetEntry(iDigit); if(!pdigit) continue; //digit.Print(""); // *** ADC data Int_t index=0; if(digit.GetSector(1)!=5){ // ZDC signal channels // *** ADC1 (ZN1, ZP1, ZEM1,2) or ADC3 (ZN1, ZP1, ZEM1,2 o.o.t.) if(digit.GetSector(0)==1 || digit.GetSector(0)==2 || digit.GetSector(0)==3){ if(digit.GetSector(0)==1 || digit.GetSector(0)==2){ index = (digit.GetSector(0)-1) + 4*digit.GetSector(1); // ZN1 or ZP1 lADCDataChannel = 8*(digit.GetSector(0)-1) + digit.GetSector(1); } else if(digit.GetSector(0)==3){ // ZEM 1,2 index = 20 + (digit.GetSector(1)-1); lADCDataChannel = 5 + 8*(digit.GetSector(1)-1); } // /*printf("\t AliZDC::Digits2Raw -> idig%d det %d quad %d index %d, ADCch %d ADCVal[%d, %d]\n", iDigit,digit.GetSector(0),digit.GetSector(1),index,lADCDataChannel, digit.GetADCValue(0),digit.GetADCValue(1));// Ch. debug */ // if(iDigit 2047) lADCDataOvFlw1[index] = 1; lADCDataValue1[index+2] = digit.GetADCValue(1); // Low gain ADC ch. if(lADCDataValue1[index+2] > 2047) lADCDataOvFlw1[index+2] = 1; lADCData1[index] = lADCDataGEO << 27 | 0x1 << 24 | lADCDataChannel << 17 | lADCDataOvFlw1[index] << 12 | (lADCDataValue1[index] & 0xfff); lADCData1[index+2] = lADCDataGEO << 27 | 0x1 << 24 | lADCDataChannel << 17 | 0x1 << 16 | lADCDataOvFlw1[index+2] << 12 | (lADCDataValue1[index+2] & 0xfff); } else{ // *** Out-of-time signals lADCDataValue3[index] = digit.GetADCValue(0); // High gain ADC ch. if(lADCDataValue3[index] > 2047) lADCDataOvFlw3[index] = 1; lADCDataValue3[index+2] = digit.GetADCValue(1); // Low gain ADC ch. if(lADCDataValue3[index+2] > 2047) lADCDataOvFlw3[index+2] = 1; lADCData3[index] = lADCDataGEO << 27 | lADCDataChannel << 17 | lADCDataOvFlw3[index] << 12 | (lADCDataValue3[index] & 0xfff); lADCData3[index+2] = lADCDataGEO << 27 | lADCDataChannel << 17 | 0x1 << 16 | lADCDataOvFlw3[index+2] << 12 | (lADCDataValue3[index+2] & 0xfff); } } // *** ADC2 (ZN2, ZP2) or ADC4 (ZN2, ZP2 o.o.t.) else if(digit.GetSector(0)==4 || digit.GetSector(0)==5){ index = (digit.GetSector(0)-4) + 4*digit.GetSector(1); // ZN2 or ZP2 lADCDataChannel = 8*(digit.GetSector(0)-4) + digit.GetSector(1); // /*printf("\t AliZDC::Digits2Raw -> idig%d det %d quad %d index %d, ADCch %d ADCVal[%d, %d]\n", iDigit,digit.GetSector(0),digit.GetSector(1),index,lADCDataChannel, digit.GetADCValue(0),digit.GetADCValue(1));// Ch. debug */ // if(iDigit 2047) lADCDataOvFlw2[index] = 1; lADCDataValue2[index+2] = digit.GetADCValue(1); if(lADCDataValue2[index+2] > 2047) lADCDataOvFlw2[index+2] = 1; // lADCData2[index] = lADCDataGEO << 27 | lADCDataChannel << 17 | lADCDataOvFlw2[index] << 12 | (lADCDataValue2[index] & 0xfff); lADCData2[index+2] = lADCDataGEO << 27 | lADCDataChannel << 17 | 0x1 << 16 | lADCDataOvFlw2[index+2] << 12 | (lADCDataValue2[index+2] & 0xfff); } else{ // *** Out-of-time signals lADCDataValue4[index] = digit.GetADCValue(0); if(lADCDataValue4[index] > 2047) lADCDataOvFlw4[index] = 1; lADCDataValue4[index+2] = digit.GetADCValue(1); if(lADCDataValue4[index+2] > 2047) lADCDataOvFlw4[index+2] = 1; // lADCData4[index] = lADCDataGEO << 27 | lADCDataChannel << 17 | lADCDataOvFlw4[index] << 12 | (lADCDataValue4[index] & 0xfff); lADCData4[index+2] = lADCDataGEO << 27 | lADCDataChannel << 17 | 0x1 << 16 | lADCDataOvFlw4[index+2] << 12 | (lADCDataValue4[index+2] & 0xfff); } } } // *** ADC2 (Reference PTMs) or ADC4 (Reference PTMs o.o.t.) else if(digit.GetSector(1)==5){ index = 20 + (digit.GetSector(0)-1)/3; lADCDataChannel = 5 + 8*(digit.GetSector(0)-1)/3; // /*printf("\t AliZDC::Digits2Raw -> idig%d det %d quad %d index %d, ADCch %d ADCVal[%d, %d]\n", iDigit,digit.GetSector(0),digit.GetSector(1),index,lADCDataChannel, digit.GetADCValue(0),digit.GetADCValue(1));// Ch. debug */ // if(iDigit 2047) lADCDataOvFlw2[index] = 1; lADCDataValue2[index+2] = digit.GetADCValue(1); if(lADCDataValue2[index+2] > 2047) lADCDataOvFlw2[index+2] = 1; // lADCData2[index] = lADCDataGEO << 27 | lADCDataChannel << 17 | lADCDataOvFlw2[index] << 12 | (lADCDataValue2[index] & 0xfff); lADCData2[index+2] = lADCDataGEO << 27 | lADCDataChannel << 17 | 0x1 << 16 | lADCDataOvFlw2[index+2] << 12 | (lADCDataValue2[index+2] & 0xfff); } else{ // *** Out-of-time signals lADCDataValue4[index] = digit.GetADCValue(0); if(lADCDataValue4[index] > 2047) lADCDataOvFlw4[index] = 1; lADCDataValue4[index+2] = digit.GetADCValue(1); if(lADCDataValue4[index+2] > 2047) lADCDataOvFlw4[index+2] = 1; // lADCData4[index] = lADCDataGEO << 27 | lADCDataChannel << 17 | lADCDataOvFlw4[index] << 12 | (lADCDataValue4[index] & 0xfff); lADCData4[index+2] = lADCDataGEO << 27 | lADCDataChannel << 17 | 0x1 << 16 | lADCDataOvFlw4[index+2] << 12 | (lADCDataValue4[index+2] & 0xfff); } } if((index<0) || (index>23)) { Error("Digits2Raw", "sector[0] = %d, sector[1] = %d", digit.GetSector(0), digit.GetSector(1)); continue; } } // /* for(Int_t i=0;iGetEventNrInRun(); // lADCEndBlock = lADCEndBlockGEO << 27 | 0x1 << 26 | lADCEndBlockEvCount; //printf("\t AliZDC::Digits2Raw -> ADCEndBlock = %d\n",lADCEndBlock); // open the output file char fileName[30]; strcpy(fileName,AliDAQ::DdlFileName("ZDC",0)); AliFstream* file = new AliFstream(fileName); // write the DDL data header AliRawDataHeaderSim header; header.fSize = sizeof(header) + sizeof(lADCHeader1) + sizeof(lADCData1) + sizeof(lADCEndBlock) + sizeof(lADCHeader2) + sizeof(lADCData2) + sizeof(lADCEndBlock) + sizeof(lADCHeader1) + sizeof(lADCData3) + sizeof(lADCEndBlock) + sizeof(lADCHeader2) + sizeof(lADCData4) + sizeof(lADCEndBlock); // /*printf("sizeof header = %d, ADCHeader1 = %d, ADCData1 = %d, ADCEndBlock = %d\n", sizeof(header),sizeof(lADCHeader1),sizeof(lADCData1),sizeof(lADCEndBlock)); printf("sizeof header = %d, ADCHeader2 = %d, ADCData2 = %d, ADCEndBlock = %d\n", sizeof(header),sizeof(lADCHeader2),sizeof(lADCData2),sizeof(lADCEndBlock)); */ // header.SetAttribute(0); // valid data file->WriteBuffer((char*)(&header), sizeof(header)); // write the raw data and close the file file->WriteBuffer((char*) &lADCHeader1, sizeof (lADCHeader1)); file->WriteBuffer((char*)(lADCData1), sizeof(lADCData1)); file->WriteBuffer((char*) &lADCEndBlock, sizeof(lADCEndBlock)); file->WriteBuffer((char*) &lADCHeader2, sizeof (lADCHeader2)); file->WriteBuffer((char*)(lADCData2), sizeof(lADCData2)); file->WriteBuffer((char*) &lADCEndBlock, sizeof(lADCEndBlock)); file->WriteBuffer((char*) &lADCHeader1, sizeof (lADCHeader1)); file->WriteBuffer((char*)(lADCData3), sizeof(lADCData3)); file->WriteBuffer((char*) &lADCEndBlock, sizeof(lADCEndBlock)); file->WriteBuffer((char*) &lADCHeader2, sizeof (lADCHeader2)); file->WriteBuffer((char*)(lADCData4), sizeof(lADCData4)); file->WriteBuffer((char*) &lADCEndBlock, sizeof(lADCEndBlock)); delete file; // unload the digits fLoader->UnloadDigits(); } //_____________________________________________________________________________ Bool_t AliZDC::Raw2SDigits(AliRawReader* rawReader) { // Convert ZDC raw data to Sdigits AliLoader* loader = (AliRunLoader::Instance())->GetLoader("ZDCLoader"); if(!loader) { AliError("no ZDC loader found"); return kFALSE; } // // Event loop Int_t iEvent = 0; while(rawReader->NextEvent()){ (AliRunLoader::Instance())->GetEvent(iEvent++); // Create the output digit tree TTree* treeS = loader->TreeS(); if(!treeS){ loader->MakeTree("S"); treeS = loader->TreeS(); } // AliZDCSDigit sdigit; AliZDCSDigit* psdigit = &sdigit; const Int_t kBufferSize = 4000; treeS->Branch("ZDC", "AliZDCSDigit", &psdigit, kBufferSize); // AliZDCRawStream rawStream(rawReader); Int_t sector[2], resADC, rawADC, corrADC, nPheVal; Int_t jcount = 0; while(rawStream.Next()){ if(rawStream.IsADCDataWord()){ //For the moment only in-time SDigits are foreseen (1st 48 raw values) if(jcount < 48){ for(Int_t j=0; j<2; j++) sector[j] = rawStream.GetSector(j); rawADC = rawStream.GetADCValue(); resADC = rawStream.GetADCGain(); //printf("\t RAw2SDigits raw%d -> RawADC[%d, %d, %d] read\n", // jcount, sector[0], sector[1], rawADC); // corrADC = rawADC - Pedestal(sector[0], sector[1], resADC); if(corrADC<0) corrADC=0; nPheVal = ADCch2Phe(sector[0], sector[1], corrADC, resADC); // //printf("\t \t -> SDigit[%d, %d, %d] created\n", // sector[0], sector[1], nPheVal); // new(psdigit) AliZDCSDigit(sector, (Float_t) nPheVal, 0.); treeS->Fill(); jcount++; } }//IsADCDataWord }//rawStream.Next // write the output tree fLoader->WriteSDigits("OVERWRITE"); fLoader->UnloadSDigits(); }//Event loop return kTRUE; } //_____________________________________________________________________________ Int_t AliZDC::Pedestal(Int_t Det, Int_t Quad, Int_t Res) const { // Returns a pedestal for detector det, PM quad, channel with res. // // Getting calibration object for ZDC set AliCDBManager *man = AliCDBManager::Instance(); AliCDBEntry *entry = man->Get("ZDC/Calib/Pedestals"); AliZDCPedestals *calibPed = (AliZDCPedestals*) entry->GetObject(); // if(!calibPed){ printf("\t No calibration object found for ZDC!"); return -1; } // Int_t index=0, kNch=24; if(Quad!=5){ if(Det==1) index = Quad+kNch*Res; // ZN1 else if(Det==2) index = Quad+5+kNch*Res; // ZP1 else if(Det==3) index = Quad+9+kNch*Res; // ZEM else if(Det==4) index = Quad+12+kNch*Res; // ZN2 else if(Det==5) index = Quad+17+kNch*Res; // ZP2 } else index = (Det-1)/3+22+kNch*Res; // Reference PMs // // Float_t meanPed = calibPed->GetMeanPed(index); Float_t pedWidth = calibPed->GetMeanPedWidth(index); Float_t pedValue = gRandom->Gaus(meanPed,pedWidth); // //printf("\t AliZDC::Pedestal - det(%d, %d) - Ped[%d] = %d\n",Det, Quad, index,(Int_t) pedValue); // Chiara debugging! return (Int_t) pedValue; } //_____________________________________________________________________________ Int_t AliZDC::ADCch2Phe(Int_t Det, Int_t Quad, Int_t ADCVal, Int_t Res) const { // Evaluation of the no. of phe produced Float_t pmGain[6][5]; Float_t resADC[2]; for(Int_t j = 0; j < 5; j++){ pmGain[0][j] = 50000.; pmGain[1][j] = 100000.; pmGain[2][j] = 100000.; pmGain[3][j] = 50000.; pmGain[4][j] = 100000.; pmGain[5][j] = 100000.; } // ADC Caen V965 resADC[0] = 0.0000008; // ADC Resolution high gain: 200 fC/adcCh resADC[1] = 0.0000064; // ADC Resolution low gain: 25 fC/adcCh // Int_t nPhe = (Int_t) (ADCVal * pmGain[Det-1][Quad] * resADC[Res]); // //printf("\t AliZDC::ADCch2Phe -> det(%d, %d) - ADC %d phe %d\n",Det,Quad,ADCVal,nPhe); return nPhe; } //______________________________________________________________________ void AliZDC::SetTreeAddress(){ // Set branch address for the Trees. if(fLoader->TreeH() && (fHits == 0x0)) fHits = new TClonesArray("AliZDCHit",1000); AliDetector::SetTreeAddress(); }