/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /////////////////////////////////////////////////////////////////////////////// // // // AliZDCv1 --- ZDC geometry as designed in TDR (obsolete!) // // with the EM ZDC at 116 m from IP // // Just one set of ZDC is inserted, on the same side of the dimuon arm // // // /////////////////////////////////////////////////////////////////////////////// // --- Standard libraries #include "stdio.h" // --- ROOT system #include #include #include #include #include #include #include #include // --- AliRoot classes #include "AliConst.h" #include "AliDetector.h" #include "AliMagF.h" #include "AliPDG.h" #include "AliRun.h" #include "AliZDCHit.h" #include "AliZDCv1.h" #include "AliMC.h" ClassImp(AliZDCv1) //_____________________________________________________________________________ AliZDCv1::AliZDCv1() : AliZDC() { // // Default constructor for Zero Degree Calorimeter // fMedSensF1 = 0; fMedSensF2 = 0; fMedSensZN = 0; fMedSensZP = 0; fMedSensZEM = 0; fMedSensGR = 0; // fMedSensPI = 0; // fMedSensTDI = 0; Float_t kDimZEMPb = 0.15*(TMath::Sqrt(2.)); // z-dimension of the Pb slice Float_t kDimZEMAir = 0.001; // scotch Float_t kFibRadZEM = 0.0315; // External fiber radius (including cladding) Int_t kDivZEM[3] = {92, 0, 20}; // Divisions for EM detector Float_t kDimZEM0 = 2*kDivZEM[2]*(kDimZEMPb+kDimZEMAir+kFibRadZEM*(TMath::Sqrt(2.))); fZEMLength = kDimZEM0; } //_____________________________________________________________________________ AliZDCv1::AliZDCv1(const char *name, const char *title) : AliZDC(name,title) { // // Standard constructor for Zero Degree Calorimeter // // // Check that DIPO, ABSO, DIPO and SHIL is there (otherwise tracking is wrong!!!) AliModule *pipe=gAlice->GetModule("PIPE"); AliModule *abso=gAlice->GetModule("ABSO"); AliModule *dipo=gAlice->GetModule("DIPO"); AliModule *shil=gAlice->GetModule("SHIL"); if((!pipe) || (!abso) || (!dipo) || (!shil)) { Error("Constructor","ZDC needs PIPE, ABSO, DIPO and SHIL!!!\n"); exit(1); } fMedSensF1 = 0; fMedSensF2 = 0; fMedSensZN = 0; fMedSensZP = 0; fMedSensZEM = 0; fMedSensGR = 0; // fMedSensPI = 0; // fMedSensTDI = 0; // Parameters for light tables fNalfan = 90; // Number of Alfa (neutrons) fNalfap = 90; // Number of Alfa (protons) fNben = 18; // Number of beta (neutrons) fNbep = 28; // Number of beta (protons) Int_t ip,jp,kp; for(ip=0; ip<4; ip++){ for(kp=0; kpGetArray(); // -- Mother of the ZDCs (Vacuum PCON) conpar[0] = 0.; conpar[1] = 360.; conpar[2] = 2.; conpar[3] = 2000.; conpar[4] = 0.; conpar[5] = 55.; conpar[6] = 13060.; conpar[7] = 0.; conpar[8] = 55.; gMC->Gsvolu("ZDC ", "PCON", idtmed[11], conpar, 9); gMC->Gspos("ZDC ", 1, "ALIC", 0., 0., 0., 0, "ONLY"); // -- FIRST SECTION OF THE BEAM PIPE (from compensator dipole to // the beginning of D1) zd1 = 2000.; tubpar[0] = 6.3/2.; tubpar[1] = 6.7/2.; tubpar[2] = 3838.3/2.; gMC->Gsvolu("QT01", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT01", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); //-- SECOND SECTION OF THE BEAM PIPE (from the end of D1 to the // beginning of D2) //-- FROM MAGNETIC BEGINNING OF D1 TO MAGNETIC END OF D1 + 13.5 cm //-- Cylindrical pipe (r = 3.47) + conical flare // -> Beginning of D1 zd1 += 2.*tubpar[2]; tubpar[0] = 3.47; tubpar[1] = 3.47+0.2; tubpar[2] = 958.5/2.; gMC->Gsvolu("QT02", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT02", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += 2.*tubpar[2]; conpar[0] = 25./2.; conpar[1] = 6.44/2.; conpar[2] = 6.84/2.; conpar[3] = 10./2.; conpar[4] = 10.4/2.; gMC->Gsvolu("QC01", "CONE", idtmed[7], conpar, 5); gMC->Gspos("QC01", 1, "ZDC ", 0., 0., conpar[0] + zd1, 0, "ONLY"); zd1 += 2.*conpar[0]; tubpar[0] = 10./2.; tubpar[1] = 10.4/2.; tubpar[2] = 50./2.; gMC->Gsvolu("QT03", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT03", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2]*2.; tubpar[0] = 10./2.; tubpar[1] = 10.4/2.; tubpar[2] = 10./2.; gMC->Gsvolu("QT04", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT04", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; tubpar[0] = 10./2.; tubpar[1] = 10.4/2.; tubpar[2] = 3.16/2.; gMC->Gsvolu("QT05", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT05", 1, "ZDC ", 0., 0., tubpar[0] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; tubpar[0] = 10.0/2.; tubpar[1] = 10.4/2; tubpar[2] = 190./2.; gMC->Gsvolu("QT06", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT06", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; conpar[0] = 30./2.; conpar[1] = 10./2.; conpar[2] = 10.4/2.; conpar[3] = 20.6/2.; conpar[4] = 21./2.; gMC->Gsvolu("QC02", "CONE", idtmed[7], conpar, 5); gMC->Gspos("QC02", 1, "ZDC ", 0., 0., conpar[0] + zd1, 0, "ONLY"); zd1 += conpar[0] * 2.; tubpar[0] = 20.6/2.; tubpar[1] = 21./2.; tubpar[2] = 450./2.; gMC->Gsvolu("QT07", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT07", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; conpar[0] = 13.6/2.; conpar[1] = 20.6/2.; conpar[2] = 21./2.; conpar[3] = 25.4/2.; conpar[4] = 25.8/2.; gMC->Gsvolu("QC03", "CONE", idtmed[7], conpar, 5); gMC->Gspos("QC03", 1, "ZDC ", 0., 0., conpar[0] + zd1, 0, "ONLY"); zd1 += conpar[0] * 2.; tubpar[0] = 25.4/2.; tubpar[1] = 25.8/2.; tubpar[2] = 205.8/2.; gMC->Gsvolu("QT08", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT08", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; tubpar[0] = 50./2.; tubpar[1] = 50.4/2.; // QT09 is 10 cm longer to accomodate TDI tubpar[2] = 515.4/2.; gMC->Gsvolu("QT09", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT09", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); // --- Insert TDI (inside ZDC volume) boxpar[0] = 5.6; boxpar[1] = 5.6; boxpar[2] = 400./2.; gMC->Gsvolu("QTD1", "BOX ", idtmed[7], boxpar, 3); gMC->Gspos("QTD1", 1, "ZDC ", 3., 10.6, tubpar[2] + zd1 + 56.3, 0, "ONLY"); gMC->Gspos("QTD1", 2, "ZDC ", 3., -10.6, tubpar[2] + zd1 + 56.3, 0, "ONLY"); boxpar[0] = 0.2/2.; boxpar[1] = 5.6; boxpar[2] = 400./2.; gMC->Gsvolu("QTD2", "BOX ", idtmed[6], boxpar, 3); gMC->Gspos("QTD2", 1, "ZDC ", 8.6+boxpar[0], 0., tubpar[2] + zd1 + 56.3, 0, "ONLY"); // tubspar[0] = 6.2; // R = 6.2 cm---------------------------------------- // tubspar[1] = 6.4; // tubspar[2] = 400./2.; // tubspar[3] = 180.-62.5; // tubspar[4] = 180.+62.5; tubspar[0] = 10.5; // R = 10.5 cm------------------------------------------ tubspar[1] = 10.7; tubspar[2] = 400./2.; tubspar[3] = 180.-75.5; tubspar[4] = 180.+75.5; gMC->Gsvolu("QTD3", "TUBS", idtmed[6], tubspar, 5); gMC->Gspos("QTD3", 1, "ZDC ", 0., 0., tubpar[2] + zd1 + 56.3, 0, "ONLY"); zd1 += tubpar[2] * 2.; tubpar[0] = 50./2.; tubpar[1] = 50.4/2.; // QT10 is 10 cm shorter tubpar[2] = 690./2.; gMC->Gsvolu("QT10", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT10", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; tubpar[0] = 50./2.; tubpar[1] = 50.4/2.; tubpar[2] = 778.5/2.; gMC->Gsvolu("QT11", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT11", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; conpar[0] = 14.18/2.; conpar[1] = 50./2.; conpar[2] = 50.4/2.; conpar[3] = 55./2.; conpar[4] = 55.4/2.; gMC->Gsvolu("QC04", "CONE", idtmed[7], conpar, 5); gMC->Gspos("QC04", 1, "ZDC ", 0., 0., conpar[0] + zd1, 0, "ONLY"); zd1 += conpar[0] * 2.; tubpar[0] = 55./2.; tubpar[1] = 55.4/2.; tubpar[2] = 730./2.; gMC->Gsvolu("QT12", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT12", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; conpar[0] = 36.86/2.; conpar[1] = 55./2.; conpar[2] = 55.4/2.; conpar[3] = 68./2.; conpar[4] = 68.4/2.; gMC->Gsvolu("QC05", "CONE", idtmed[7], conpar, 5); gMC->Gspos("QC05", 1, "ZDC ", 0., 0., conpar[0] + zd1, 0, "ONLY"); zd1 += conpar[0] * 2.; tubpar[0] = 68./2.; tubpar[1] = 68.4/2.; tubpar[2] = 927.3/2.; gMC->Gsvolu("QT13", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT13", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; tubpar[0] = 0./2.; tubpar[1] = 68.4/2.; tubpar[2] = 0.2/2.; gMC->Gsvolu("QT14", "TUBE", idtmed[8], tubpar, 3); gMC->Gspos("QT14", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; tubpar[0] = 0./2.; tubpar[1] = 6.4/2.; tubpar[2] = 0.2/2.; gMC->Gsvolu("QT15", "TUBE", idtmed[11], tubpar, 3); //-- Position QT15 inside QT14 gMC->Gspos("QT15", 1, "QT14", -7.7, 0., 0., 0, "ONLY"); tubpar[0] = 0./2.; tubpar[1] = 6.4/2.; tubpar[2] = 0.2/2.; gMC->Gsvolu("QT16", "TUBE", idtmed[11], tubpar, 3); //-- Position QT16 inside QT14 gMC->Gspos("QT16", 1, "QT14", 7.7, 0., 0., 0, "ONLY"); //-- BEAM PIPE BETWEEN END OF CONICAL PIPE AND BEGINNING OF D2 tubpar[0] = 6.4/2.; tubpar[1] = 6.8/2.; tubpar[2] = 680.8/2.; gMC->Gsvolu("QT17", "TUBE", idtmed[7], tubpar, 3); tubpar[0] = 6.4/2.; tubpar[1] = 6.8/2.; tubpar[2] = 680.8/2.; gMC->Gsvolu("QT18", "TUBE", idtmed[7], tubpar, 3); // -- ROTATE PIPES Float_t angle = 0.143*kDegrad; AliMatrix(im1, 90.-0.143, 0., 90., 90., 0.143, 180.); gMC->Gspos("QT17", 1, "ZDC ", TMath::Sin(angle) * 680.8/ 2. - 9.4, 0., tubpar[2] + zd1, im1, "ONLY"); AliMatrix(im2, 90.+0.143, 0., 90., 90., 0.143, 0.); gMC->Gspos("QT18", 1, "ZDC ", 9.7 - TMath::Sin(angle) * 680.8 / 2., 0., tubpar[2] + zd1, im2, "ONLY"); // -- END OF BEAM PIPE VOLUME DEFINITION. // ---------------------------------------------------------------- // -- MAGNET DEFINITION -> LHC OPTICS 6.2 (preliminary version) // ---------------------------------------------------------------- // Replaced by the muon dipole // ---------------------------------------------------------------- // -- COMPENSATOR DIPOLE (MBXW) // GAP (VACUUM WITH MAGNETIC FIELD) // tubpar[0] = 0.; // tubpar[1] = 4.5; // tubpar[2] = 340./2.; // gMC->Gsvolu("MBXW", "TUBE", idtmed[11], tubpar, 3); // gMC->Gspos("MBXW", 1, "ZDC ", 0., 0., tubpar[2] + 805., 0, "ONLY"); // -- YOKE (IRON WITHOUT MAGNETIC FIELD) // tubpar[0] = 4.5; // tubpar[1] = 55.; // tubpar[2] = 340./2.; // gMC->Gsvolu("YMBX", "TUBE", idtmed[7], tubpar, 3); // gMC->Gspos("YMBX", 1, "ZDC ", 0., 0., tubpar[2] + 805., 0, "ONLY"); // ---------------------------------------------------------------- // Replaced by the second dipole // ---------------------------------------------------------------- // -- COMPENSATOR DIPOLE (MCBWA) // GAP (VACUUM WITH MAGNETIC FIELD) // tubpar[0] = 0.; // tubpar[1] = 4.5; // tubpar[2] = 170./2.; // gMC->Gsvolu("MCBW", "TUBE", idtmed[11], tubpar, 3); // gMC->Gspos("MCBW", 1, "ZDC ", 0., 0., tubpar[2] + 1921.6, 0, "ONLY"); // -- YOKE (IRON WITHOUT MAGNETIC FIELD) // tubpar[0] = 4.5; // tubpar[1] = 55.; // tubpar[2] = 170./2.; // gMC->Gsvolu("YMCB", "TUBE", idtmed[7], tubpar, 3); // gMC->Gspos("YMCB", 1, "ZDC ", 0., 0., tubpar[2] + 1921.6, 0, "ONLY"); // -- INNER TRIPLET zq = 2296.5; // -- DEFINE MQXL AND MQX QUADRUPOLE ELEMENT // MQXL // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 3.5; tubpar[2] = 637./2.; gMC->Gsvolu("MQXL", "TUBE", idtmed[11], tubpar, 3); // -- YOKE tubpar[0] = 3.5; tubpar[1] = 22.; tubpar[2] = 637./2.; gMC->Gsvolu("YMQL", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("MQXL", 1, "ZDC ", 0., 0., tubpar[2] + zq, 0, "ONLY"); gMC->Gspos("YMQL", 1, "ZDC ", 0., 0., tubpar[2] + zq, 0, "ONLY"); gMC->Gspos("MQXL", 2, "ZDC ", 0., 0., tubpar[2] + zq + 2430., 0, "ONLY"); gMC->Gspos("YMQL", 2, "ZDC ", 0., 0., tubpar[2] + zq + 2430., 0, "ONLY"); // -- MQX // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 3.5; tubpar[2] = 550./2.; gMC->Gsvolu("MQX ", "TUBE", idtmed[11], tubpar, 3); // -- YOKE tubpar[0] = 3.5; tubpar[1] = 22.; tubpar[2] = 550./2.; gMC->Gsvolu("YMQ ", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("MQX ", 1, "ZDC ", 0., 0., tubpar[2] + zq + 883.5, 0, "ONLY"); gMC->Gspos("YMQ ", 1, "ZDC ", 0., 0., tubpar[2] + zq + 883.5, 0, "ONLY"); gMC->Gspos("MQX ", 2, "ZDC ", 0., 0., tubpar[2] + zq + 1533.5, 0, "ONLY"); gMC->Gspos("YMQ ", 2, "ZDC ", 0., 0., tubpar[2] + zq + 1533.5, 0, "ONLY"); // -- SEPARATOR DIPOLE D1 zd1 = 5838.3; // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 6.94/2.; tubpar[2] = 945./2.; gMC->Gsvolu("MD1 ", "TUBE", idtmed[11], tubpar, 3); // -- Insert horizontal Cu plates inside D1 // -- (to simulate the vacuum chamber) boxpar[0] = TMath::Sqrt(tubpar[1]*tubpar[1]-(2.98+0.2)*(2.98+0.2)); boxpar[1] = 0.2/2.; boxpar[2] =945./2.; gMC->Gsvolu("MD1V", "BOX ", idtmed[6], boxpar, 3); gMC->Gspos("MD1V", 1, "MD1 ", 0., 2.98+boxpar[1], 0., 0, "ONLY"); gMC->Gspos("MD1V", 2, "MD1 ", 0., -2.98-boxpar[1], 0., 0, "ONLY"); // -- YOKE tubpar[0] = 0.; tubpar[1] = 110./2; tubpar[2] = 945./2.; gMC->Gsvolu("YD1 ", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("YD1 ", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); gMC->Gspos("MD1 ", 1, "YD1 ", 0., 0., 0., 0, "ONLY"); // -- DIPOLE D2 zd2 = 12147.6; // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 7.5/2.; tubpar[2] = 945./2.; gMC->Gsvolu("MD2 ", "TUBE", idtmed[11], tubpar, 3); // -- YOKE tubpar[0] = 0.; tubpar[1] = 55.; tubpar[2] = 945./2.; gMC->Gsvolu("YD2 ", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("YD2 ", 1, "ZDC ", 0., 0., tubpar[2] + zd2, 0, "ONLY"); gMC->Gspos("MD2 ", 1, "YD2 ", -9.4, 0., 0., 0, "ONLY"); gMC->Gspos("MD2 ", 2, "YD2 ", 9.4, 0., 0., 0, "ONLY"); // -- END OF MAGNET DEFINITION } //_____________________________________________________________________________ void AliZDCv1::CreateZDC() { // // Create the various ZDCs (ZN + ZP) // Float_t dimPb[6], dimVoid[6]; Int_t *idtmed = fIdtmed->GetArray(); // Parameters for hadronic calorimeters geometry // NB -> parameters used ONLY in CreateZDC() Float_t fDimZN[3] = {3.52, 3.52, 50.}; // Dimensions of neutron detector Float_t fGrvZN[3] = {0.03, 0.03, 50.}; // Grooves for neutron detector Float_t fGrvZP[3] = {0.04, 0.04, 75.}; // Grooves for proton detector Int_t fDivZN[3] = {11, 11, 0}; // Division for neutron detector Int_t fDivZP[3] = {7, 15, 0}; // Division for proton detector Int_t fTowZN[2] = {2, 2}; // Tower for neutron detector Int_t fTowZP[2] = {4, 1}; // Tower for proton detector // Parameters for EM calorimeter geometry // NB -> parameters used ONLY in CreateZDC() Float_t fDimZEMPb = 0.15*(TMath::Sqrt(2.)); // z-dimension of the Pb slice Float_t fDimZEMAir = 0.001; // scotch Float_t fFibRadZEM = 0.0315; // External fiber radius (including cladding) Int_t fDivZEM[3] = {92, 0, 20}; // Divisions for EM detector Float_t fDimZEM0 = 2*fDivZEM[2]*(fDimZEMPb+fDimZEMAir+fFibRadZEM*(TMath::Sqrt(2.))); Float_t fDimZEM[6] = {fDimZEM0, 3.5, 3.5, 45., 0., 0.}; // Dimensions of EM detector Float_t fFibZEM2 = fDimZEM[2]/TMath::Sin(fDimZEM[3]*kDegrad)-fFibRadZEM; Float_t fFibZEM[3] = {0., 0.0275, fFibZEM2}; // Fibers for EM calorimeter //-- Create calorimeters geometry // ------------------------------------------------------------------------------- //--> Neutron calorimeter (ZN) gMC->Gsvolu("ZNEU", "BOX ", idtmed[1], fDimZN, 3); // Passive material gMC->Gsvolu("ZNF1", "TUBE", idtmed[3], fFibZN, 3); // Active material gMC->Gsvolu("ZNF2", "TUBE", idtmed[4], fFibZN, 3); gMC->Gsvolu("ZNF3", "TUBE", idtmed[4], fFibZN, 3); gMC->Gsvolu("ZNF4", "TUBE", idtmed[3], fFibZN, 3); gMC->Gsvolu("ZNG1", "BOX ", idtmed[12], fGrvZN, 3); // Empty grooves gMC->Gsvolu("ZNG2", "BOX ", idtmed[12], fGrvZN, 3); gMC->Gsvolu("ZNG3", "BOX ", idtmed[12], fGrvZN, 3); gMC->Gsvolu("ZNG4", "BOX ", idtmed[12], fGrvZN, 3); // Divide ZNEU in towers (for hits purposes) gMC->Gsdvn("ZNTX", "ZNEU", fTowZN[0], 1); // x-tower gMC->Gsdvn("ZN1 ", "ZNTX", fTowZN[1], 2); // y-tower //-- Divide ZN1 in minitowers // fDivZN[0]= NUMBER OF FIBERS PER TOWER ALONG X-AXIS, // fDivZN[1]= NUMBER OF FIBERS PER TOWER ALONG Y-AXIS // (4 fibres per minitower) gMC->Gsdvn("ZNSL", "ZN1 ", fDivZN[1], 2); // Slices gMC->Gsdvn("ZNST", "ZNSL", fDivZN[0], 1); // Sticks // --- Position the empty grooves in the sticks (4 grooves per stick) Float_t dx = fDimZN[0] / fDivZN[0] / 4.; Float_t dy = fDimZN[1] / fDivZN[1] / 4.; gMC->Gspos("ZNG1", 1, "ZNST", 0.-dx, 0.+dy, 0., 0, "ONLY"); gMC->Gspos("ZNG2", 1, "ZNST", 0.+dx, 0.+dy, 0., 0, "ONLY"); gMC->Gspos("ZNG3", 1, "ZNST", 0.-dx, 0.-dy, 0., 0, "ONLY"); gMC->Gspos("ZNG4", 1, "ZNST", 0.+dx, 0.-dy, 0., 0, "ONLY"); // --- Position the fibers in the grooves gMC->Gspos("ZNF1", 1, "ZNG1", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ZNF2", 1, "ZNG2", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ZNF3", 1, "ZNG3", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ZNF4", 1, "ZNG4", 0., 0., 0., 0, "ONLY"); // --- Position the neutron calorimeter in ZDC gMC->Gspos("ZNEU", 1, "ZDC ", fPosZN[0], fPosZN[1], fPosZN[2] + fDimZN[2], 0, "ONLY"); // ------------------------------------------------------------------------------- //--> Proton calorimeter (ZP) gMC->Gsvolu("ZPRO", "BOX ", idtmed[2], fDimZP, 3); // Passive material gMC->Gsvolu("ZPF1", "TUBE", idtmed[3], fFibZP, 3); // Active material gMC->Gsvolu("ZPF2", "TUBE", idtmed[4], fFibZP, 3); gMC->Gsvolu("ZPF3", "TUBE", idtmed[4], fFibZP, 3); gMC->Gsvolu("ZPF4", "TUBE", idtmed[3], fFibZP, 3); gMC->Gsvolu("ZPG1", "BOX ", idtmed[12], fGrvZP, 3); // Empty grooves gMC->Gsvolu("ZPG2", "BOX ", idtmed[12], fGrvZP, 3); gMC->Gsvolu("ZPG3", "BOX ", idtmed[12], fGrvZP, 3); gMC->Gsvolu("ZPG4", "BOX ", idtmed[12], fGrvZP, 3); //-- Divide ZPRO in towers(for hits purposes) gMC->Gsdvn("ZPTX", "ZPRO", fTowZP[0], 1); // x-tower gMC->Gsdvn("ZP1 ", "ZPTX", fTowZP[1], 2); // y-tower //-- Divide ZP1 in minitowers // fDivZP[0]= NUMBER OF FIBERS ALONG X-AXIS PER MINITOWER, // fDivZP[1]= NUMBER OF FIBERS ALONG Y-AXIS PER MINITOWER // (4 fiber per minitower) gMC->Gsdvn("ZPSL", "ZP1 ", fDivZP[1], 2); // Slices gMC->Gsdvn("ZPST", "ZPSL", fDivZP[0], 1); // Sticks // --- Position the empty grooves in the sticks (4 grooves per stick) dx = fDimZP[0] / fTowZP[0] / fDivZP[0] / 2.; dy = fDimZP[1] / fTowZP[1] / fDivZP[1] / 2.; gMC->Gspos("ZPG1", 1, "ZPST", 0.-dx, 0.+dy, 0., 0, "ONLY"); gMC->Gspos("ZPG2", 1, "ZPST", 0.+dx, 0.+dy, 0., 0, "ONLY"); gMC->Gspos("ZPG3", 1, "ZPST", 0.-dx, 0.-dy, 0., 0, "ONLY"); gMC->Gspos("ZPG4", 1, "ZPST", 0.+dx, 0.-dy, 0., 0, "ONLY"); // --- Position the fibers in the grooves gMC->Gspos("ZPF1", 1, "ZPG1", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ZPF2", 1, "ZPG2", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ZPF3", 1, "ZPG3", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ZPF4", 1, "ZPG4", 0., 0., 0., 0, "ONLY"); // --- Position the proton calorimeter in ZDC gMC->Gspos("ZPRO", 1, "ZDC ", fPosZP[0], fPosZP[1], fPosZP[2] + fDimZP[2], 0, "ONLY"); // ------------------------------------------------------------------------------- // -> EM calorimeter (ZEM) gMC->Gsvolu("ZEM ", "PARA", idtmed[10], fDimZEM, 6); Int_t irot1, irot2; gMC->Matrix(irot1,0.,0.,90.,90.,90.,180.); // Rotation matrix 1 gMC->Matrix(irot2,180.,0.,90.,fDimZEM[3]+90.,90.,fDimZEM[3]); // Rotation matrix 2 // printf("irot1 = %d, irot2 = %d \n", irot1, irot2); gMC->Gsvolu("ZEMF", "TUBE", idtmed[3], fFibZEM, 3); // Active material gMC->Gsdvn("ZETR", "ZEM ", fDivZEM[2], 1); // Tranches dimPb[0] = fDimZEMPb; // Lead slices dimPb[1] = fDimZEM[2]; dimPb[2] = fDimZEM[1]; dimPb[3] = 90.-fDimZEM[3]; dimPb[4] = 0.; dimPb[5] = 0.; gMC->Gsvolu("ZEL0", "PARA", idtmed[5], dimPb, 6); gMC->Gsvolu("ZEL1", "PARA", idtmed[5], dimPb, 6); gMC->Gsvolu("ZEL2", "PARA", idtmed[5], dimPb, 6); // --- Position the lead slices in the tranche Float_t zTran = fDimZEM[0]/fDivZEM[2]; Float_t zTrPb = -zTran+fDimZEMPb; gMC->Gspos("ZEL0", 1, "ZETR", zTrPb, 0., 0., 0, "ONLY"); gMC->Gspos("ZEL1", 1, "ZETR", fDimZEMPb, 0., 0., 0, "ONLY"); // --- Vacuum zone (to be filled with fibres) dimVoid[0] = (zTran-2*fDimZEMPb)/2.; dimVoid[1] = fDimZEM[2]; dimVoid[2] = fDimZEM[1]; dimVoid[3] = 90.-fDimZEM[3]; dimVoid[4] = 0.; dimVoid[5] = 0.; gMC->Gsvolu("ZEV0", "PARA", idtmed[10], dimVoid,6); gMC->Gsvolu("ZEV1", "PARA", idtmed[10], dimVoid,6); // --- Divide the vacuum slice into sticks along x axis gMC->Gsdvn("ZES0", "ZEV0", fDivZEM[0], 3); gMC->Gsdvn("ZES1", "ZEV1", fDivZEM[0], 3); // --- Positioning the fibers into the sticks gMC->Gspos("ZEMF", 1,"ZES0", 0., 0., 0., irot2, "ONLY"); gMC->Gspos("ZEMF", 1,"ZES1", 0., 0., 0., irot2, "ONLY"); // --- Positioning the vacuum slice into the tranche Float_t displFib = fDimZEM[1]/fDivZEM[0]; gMC->Gspos("ZEV0", 1,"ZETR", -dimVoid[0], 0., 0., 0, "ONLY"); gMC->Gspos("ZEV1", 1,"ZETR", -dimVoid[0]+zTran, 0., displFib, 0, "ONLY"); // --- Positioning the ZEM into the ZDC - rotation for 90 degrees gMC->Gspos("ZEM ", 1,"ZDC ", fPosZEM[0], fPosZEM[1], fPosZEM[2], irot1, "ONLY"); // --- Adding last slice at the end of the EM calorimeter Float_t zLastSlice = fPosZEM[2]+fDimZEMPb+fDimZEM[0]; gMC->Gspos("ZEL2", 1,"ZDC ", fPosZEM[0], fPosZEM[1], zLastSlice, irot1, "ONLY"); } //_____________________________________________________________________________ void AliZDCv1::DrawModule() const { // // Draw a shaded view of the Zero Degree Calorimeter version 1 // // Set everything unseen gMC->Gsatt("*", "seen", -1); // // Set ALIC mother transparent gMC->Gsatt("ALIC","SEEN",0); // // Set the volumes visible gMC->Gsatt("ZDC ","SEEN",0); gMC->Gsatt("QT01","SEEN",1); gMC->Gsatt("QT02","SEEN",1); gMC->Gsatt("QT03","SEEN",1); gMC->Gsatt("QT04","SEEN",1); gMC->Gsatt("QT05","SEEN",1); gMC->Gsatt("QT06","SEEN",1); gMC->Gsatt("QT07","SEEN",1); gMC->Gsatt("QT08","SEEN",1); gMC->Gsatt("QT09","SEEN",1); gMC->Gsatt("QT10","SEEN",1); gMC->Gsatt("QT11","SEEN",1); gMC->Gsatt("QT12","SEEN",1); gMC->Gsatt("QT13","SEEN",1); gMC->Gsatt("QT14","SEEN",1); gMC->Gsatt("QT15","SEEN",1); gMC->Gsatt("QT16","SEEN",1); gMC->Gsatt("QT17","SEEN",1); gMC->Gsatt("QT18","SEEN",1); gMC->Gsatt("QC01","SEEN",1); gMC->Gsatt("QC02","SEEN",1); gMC->Gsatt("QC03","SEEN",1); gMC->Gsatt("QC04","SEEN",1); gMC->Gsatt("QC05","SEEN",1); gMC->Gsatt("QTD1","SEEN",1); gMC->Gsatt("QTD2","SEEN",1); gMC->Gsatt("QTD3","SEEN",1); gMC->Gsatt("MQXL","SEEN",1); gMC->Gsatt("YMQL","SEEN",1); gMC->Gsatt("MQX ","SEEN",1); gMC->Gsatt("YMQ ","SEEN",1); gMC->Gsatt("ZQYX","SEEN",1); gMC->Gsatt("MD1 ","SEEN",1); gMC->Gsatt("MD1V","SEEN",1); gMC->Gsatt("YD1 ","SEEN",1); gMC->Gsatt("MD2 ","SEEN",1); gMC->Gsatt("YD2 ","SEEN",1); gMC->Gsatt("ZNEU","SEEN",0); gMC->Gsatt("ZNF1","SEEN",0); gMC->Gsatt("ZNF2","SEEN",0); gMC->Gsatt("ZNF3","SEEN",0); gMC->Gsatt("ZNF4","SEEN",0); gMC->Gsatt("ZNG1","SEEN",0); gMC->Gsatt("ZNG2","SEEN",0); gMC->Gsatt("ZNG3","SEEN",0); gMC->Gsatt("ZNG4","SEEN",0); gMC->Gsatt("ZNTX","SEEN",0); gMC->Gsatt("ZN1 ","COLO",4); gMC->Gsatt("ZN1 ","SEEN",1); gMC->Gsatt("ZNSL","SEEN",0); gMC->Gsatt("ZNST","SEEN",0); gMC->Gsatt("ZPRO","SEEN",0); gMC->Gsatt("ZPF1","SEEN",0); gMC->Gsatt("ZPF2","SEEN",0); gMC->Gsatt("ZPF3","SEEN",0); gMC->Gsatt("ZPF4","SEEN",0); gMC->Gsatt("ZPG1","SEEN",0); gMC->Gsatt("ZPG2","SEEN",0); gMC->Gsatt("ZPG3","SEEN",0); gMC->Gsatt("ZPG4","SEEN",0); gMC->Gsatt("ZPTX","SEEN",0); gMC->Gsatt("ZP1 ","COLO",6); gMC->Gsatt("ZP1 ","SEEN",1); gMC->Gsatt("ZPSL","SEEN",0); gMC->Gsatt("ZPST","SEEN",0); gMC->Gsatt("ZEM ","COLO",7); gMC->Gsatt("ZEM ","SEEN",1); gMC->Gsatt("ZEMF","SEEN",0); gMC->Gsatt("ZETR","SEEN",0); gMC->Gsatt("ZEL0","SEEN",0); gMC->Gsatt("ZEL1","SEEN",0); gMC->Gsatt("ZEL2","SEEN",0); gMC->Gsatt("ZEV0","SEEN",0); gMC->Gsatt("ZEV1","SEEN",0); gMC->Gsatt("ZES0","SEEN",0); gMC->Gsatt("ZES1","SEEN",0); // gMC->Gdopt("hide", "on"); gMC->Gdopt("shad", "on"); gMC->Gsatt("*", "fill", 7); gMC->SetClipBox("."); gMC->SetClipBox("*", 0, 100, -100, 100, 12000, 16000); gMC->DefaultRange(); gMC->Gdraw("alic", 40, 30, 0, 488, 220, .07, .07); gMC->Gdhead(1111, "Zero Degree Calorimeter Version 1"); gMC->Gdman(18, 4, "MAN"); } //_____________________________________________________________________________ void AliZDCv1::CreateMaterials() { // // Create Materials for the Zero Degree Calorimeter // Int_t *idtmed = fIdtmed->GetArray(); Float_t dens, ubuf[1], wmat[2], a[2], z[2], deemax = -1; Int_t i; // --- Store in UBUF r0 for nuclear radius calculation R=r0*A**1/3 // --- Tantalum -> ZN passive material ubuf[0] = 1.1; AliMaterial(1, "TANT", 180.95, 73., 16.65, .4, 11.9, ubuf, 1); // --- Tungsten // ubuf[0] = 1.11; // AliMaterial(1, "TUNG", 183.85, 74., 19.3, .35, 10.3, ubuf, 1); // --- Brass (CuZn) -> ZP passive material dens = 8.48; a[0] = 63.546; a[1] = 65.39; z[0] = 29.; z[1] = 30.; wmat[0] = .63; wmat[1] = .37; AliMixture(2, "BRASS ", a, z, dens, 2, wmat); // --- SiO2 dens = 2.64; a[0] = 28.086; a[1] = 15.9994; z[0] = 14.; z[1] = 8.; wmat[0] = 1.; wmat[1] = 2.; AliMixture(3, "SIO2 ", a, z, dens, -2, wmat); // --- Lead ubuf[0] = 1.12; AliMaterial(5, "LEAD", 207.19, 82., 11.35, .56, 18.5, ubuf, 1); // --- Copper ubuf[0] = 1.10; AliMaterial(6, "COPP", 63.54, 29., 8.96, 1.4, 0., ubuf, 1); // --- Iron (energy loss taken into account) ubuf[0] = 1.1; AliMaterial(7, "IRON", 55.85, 26., 7.87, 1.76, 0., ubuf, 1); // --- Iron (no energy loss) ubuf[0] = 1.1; AliMaterial(8, "IRON", 55.85, 26., 7.87, 1.76, 0., ubuf, 1); // --- Vacuum (no magnetic field) AliMaterial(10, "VOID", 1e-16, 1e-16, 1e-16, 1e16, 1e16, ubuf,0); // --- Vacuum (with magnetic field) AliMaterial(11, "VOIM", 1e-16, 1e-16, 1e-16, 1e16, 1e16, ubuf,0); // --- Air (no magnetic field) AliMaterial(12, "Air $", 14.61, 7.3, .001205, 30420., 67500., ubuf, 0); // --- Definition of tracking media: // --- Tantalum = 1 ; // --- Brass = 2 ; // --- Fibers (SiO2) = 3 ; // --- Fibers (SiO2) = 4 ; // --- Lead = 5 ; // --- Copper = 6 ; // --- Iron (with energy loss) = 7 ; // --- Iron (without energy loss) = 8 ; // --- Vacuum (no field) = 10 // --- Vacuum (with field) = 11 // --- Air (no field) = 12 // --- Tracking media parameters Float_t epsil = .01, stmin=0.01, stemax = 1.; // Int_t isxfld = gAlice->Field()->Integ(); // Float_t fieldm = gAlice->Field()->Max(); Float_t fieldm = 0., tmaxfd = 0.; Int_t ifield = 0, isvolActive = 1, isvol = 0, inofld = 0; AliMedium(1, "ZTANT", 1, isvolActive, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); // AliMedium(1, "ZW", 1, isvolActive, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(2, "ZBRASS",2, isvolActive, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(3, "ZSIO2", 3, isvolActive, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(4, "ZQUAR", 3, isvolActive, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(5, "ZLEAD", 5, isvolActive, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); // AliMedium(6, "ZCOPP", 6, isvolActive, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); // AliMedium(7, "ZIRON", 7, isvolActive, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(6, "ZCOPP", 6, isvol, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(7, "ZIRON", 7, isvol, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(8, "ZIRONN",8, isvol, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(10,"ZVOID",10, isvol, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(12,"ZAIR", 12, 0, inofld, fieldm, tmaxfd, stemax,deemax, epsil, stmin); ifield =2; fieldm = 45.; AliMedium(11, "ZVOIM", 11, isvol, ifield, fieldm, tmaxfd, stemax, deemax, epsil, stmin); } //_____________________________________________________________________________ void AliZDCv1::Init() { InitTables(); Int_t *idtmed = fIdtmed->GetArray(); Int_t i; // Thresholds for showering in the ZDCs i = 1; //tantalum gMC->Gstpar(idtmed[i], "CUTGAM", .001); gMC->Gstpar(idtmed[i], "CUTELE", .001); gMC->Gstpar(idtmed[i], "CUTNEU", .01); gMC->Gstpar(idtmed[i], "CUTHAD", .01); i = 2; //brass gMC->Gstpar(idtmed[i], "CUTGAM", .001); gMC->Gstpar(idtmed[i], "CUTELE", .001); gMC->Gstpar(idtmed[i], "CUTNEU", .01); gMC->Gstpar(idtmed[i], "CUTHAD", .01); i = 5; //lead gMC->Gstpar(idtmed[i], "CUTGAM", .001); gMC->Gstpar(idtmed[i], "CUTELE", .001); gMC->Gstpar(idtmed[i], "CUTNEU", .01); gMC->Gstpar(idtmed[i], "CUTHAD", .01); // Avoid too detailed showering in TDI i = 6; //copper gMC->Gstpar(idtmed[i], "CUTGAM", .1); gMC->Gstpar(idtmed[i], "CUTELE", .1); gMC->Gstpar(idtmed[i], "CUTNEU", 1.); gMC->Gstpar(idtmed[i], "CUTHAD", 1.); // Avoid too detailed showering along the beam line i = 7; //iron with energy loss (ZIRON) gMC->Gstpar(idtmed[i], "CUTGAM", .1); gMC->Gstpar(idtmed[i], "CUTELE", .1); gMC->Gstpar(idtmed[i], "CUTNEU", 1.); gMC->Gstpar(idtmed[i], "CUTHAD", 1.); // Avoid too detailed showering along the beam line i = 8; //iron with energy loss (ZIRONN) gMC->Gstpar(idtmed[i], "CUTGAM", .1); gMC->Gstpar(idtmed[i], "CUTELE", .1); gMC->Gstpar(idtmed[i], "CUTNEU", 1.); gMC->Gstpar(idtmed[i], "CUTHAD", 1.); // Avoid interaction in fibers (only energy loss allowed) i = 3; //fibers (ZSI02) gMC->Gstpar(idtmed[i], "DCAY", 0.); gMC->Gstpar(idtmed[i], "MULS", 0.); gMC->Gstpar(idtmed[i], "PFIS", 0.); gMC->Gstpar(idtmed[i], "MUNU", 0.); gMC->Gstpar(idtmed[i], "LOSS", 1.); gMC->Gstpar(idtmed[i], "PHOT", 0.); gMC->Gstpar(idtmed[i], "COMP", 0.); gMC->Gstpar(idtmed[i], "PAIR", 0.); gMC->Gstpar(idtmed[i], "BREM", 0.); gMC->Gstpar(idtmed[i], "DRAY", 0.); gMC->Gstpar(idtmed[i], "ANNI", 0.); gMC->Gstpar(idtmed[i], "HADR", 0.); i = 4; //fibers (ZQUAR) gMC->Gstpar(idtmed[i], "DCAY", 0.); gMC->Gstpar(idtmed[i], "MULS", 0.); gMC->Gstpar(idtmed[i], "PFIS", 0.); gMC->Gstpar(idtmed[i], "MUNU", 0.); gMC->Gstpar(idtmed[i], "LOSS", 1.); gMC->Gstpar(idtmed[i], "PHOT", 0.); gMC->Gstpar(idtmed[i], "COMP", 0.); gMC->Gstpar(idtmed[i], "PAIR", 0.); gMC->Gstpar(idtmed[i], "BREM", 0.); gMC->Gstpar(idtmed[i], "DRAY", 0.); gMC->Gstpar(idtmed[i], "ANNI", 0.); gMC->Gstpar(idtmed[i], "HADR", 0.); // Avoid interaction in void i = 11; //void with field gMC->Gstpar(idtmed[i], "DCAY", 0.); gMC->Gstpar(idtmed[i], "MULS", 0.); gMC->Gstpar(idtmed[i], "PFIS", 0.); gMC->Gstpar(idtmed[i], "MUNU", 0.); gMC->Gstpar(idtmed[i], "LOSS", 0.); gMC->Gstpar(idtmed[i], "PHOT", 0.); gMC->Gstpar(idtmed[i], "COMP", 0.); gMC->Gstpar(idtmed[i], "PAIR", 0.); gMC->Gstpar(idtmed[i], "BREM", 0.); gMC->Gstpar(idtmed[i], "DRAY", 0.); gMC->Gstpar(idtmed[i], "ANNI", 0.); gMC->Gstpar(idtmed[i], "HADR", 0.); // fMedSensZN = idtmed[1]; // Sensitive volume: ZN passive material fMedSensZP = idtmed[2]; // Sensitive volume: ZP passive material fMedSensF1 = idtmed[3]; // Sensitive volume: fibres type 1 fMedSensF2 = idtmed[4]; // Sensitive volume: fibres type 2 fMedSensZEM = idtmed[5]; // Sensitive volume: ZEM passive material // fMedSensTDI = idtmed[6]; // Sensitive volume: TDI Cu shield // fMedSensPI = idtmed[7]; // Sensitive volume: beam pipes fMedSensGR = idtmed[12]; // Sensitive volume: air into the grooves } //_____________________________________________________________________________ void AliZDCv1::InitTables() { // // Read light tables for Cerenkov light production parameterization // Int_t k, j; char *lightfName1,*lightfName2,*lightfName3,*lightfName4, *lightfName5,*lightfName6,*lightfName7,*lightfName8; FILE *fp1, *fp2, *fp3, *fp4, *fp5, *fp6, *fp7, *fp8; // --- Reading light tables for ZN lightfName1 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362207s"); if((fp1 = fopen(lightfName1,"r")) == NULL){ printf("Cannot open file fp1 \n"); return; } lightfName2 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362208s"); if((fp2 = fopen(lightfName2,"r")) == NULL){ printf("Cannot open file fp2 \n"); return; } lightfName3 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362209s"); if((fp3 = fopen(lightfName3,"r")) == NULL){ printf("Cannot open file fp3 \n"); return; } lightfName4 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362210s"); if((fp4 = fopen(lightfName4,"r")) == NULL){ printf("Cannot open file fp4 \n"); return; } for(k=0; kExpandPathName("$ALICE_ROOT/ZDC/light22620552207s"); if((fp5 = fopen(lightfName5,"r")) == NULL){ printf("Cannot open file fp5 \n"); return; } lightfName6 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620552208s"); if((fp6 = fopen(lightfName6,"r")) == NULL){ printf("Cannot open file fp6 \n"); return; } lightfName7 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620552209s"); if((fp7 = fopen(lightfName7,"r")) == NULL){ printf("Cannot open file fp7 \n"); return; } lightfName8 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620552210s"); if((fp8 = fopen(lightfName8,"r")) == NULL){ printf("Cannot open file fp8 \n"); return; } for(k=0; kCurrentMedium() == fMedSensZN) || (gMC->CurrentMedium() == fMedSensZP) || (gMC->CurrentMedium() == fMedSensGR) || (gMC->CurrentMedium() == fMedSensF1) || (gMC->CurrentMedium() == fMedSensF2) || (gMC->CurrentMedium() == fMedSensZEM)){ // --- This part is for no shower developement in beam pipe and TDI // (gMC->CurrentMedium() == fMedSensPI) || (gMC->CurrentMedium() == fMedSensTDI)){ // If particle interacts with beam pipe -> return // if((gMC->CurrentMedium() == fMedSensPI) || (gMC->CurrentMedium() == fMedSensTDI)){ // If option NoShower is set -> StopTrack // if(fNoShower==1) { // if(gMC->CurrentMedium() == fMedSensPI) { // knamed = gMC->CurrentVolName(); // if((!strncmp(knamed,"MQ",2)) || (!strncmp(knamed,"YM",2))) fpLostIT += 1; // if((!strncmp(knamed,"MD1",3))|| (!strncmp(knamed,"YD1",2))) fpLostD1 += 1; // } // if(gMC->CurrentMedium() == fMedSensTDI) fpLostTDI += 1; // gMC->StopTrack(); // printf("\n # of p lost in Inner Triplet = %d\n",fpLostIT); // printf("\n # of p lost in D1 = %d\n",fpLostD1); // printf("\n # of p lost in TDI = %d\n",fpLostTDI); // } // return; // } //Particle coordinates gMC->TrackPosition(s); for(j=0; j<=2; j++){ x[j] = s[j]; } hits[0] = x[0]; hits[1] = x[1]; hits[2] = x[2]; // Determine in which ZDC the particle is knamed = gMC->CurrentVolName(); if(!strncmp(knamed,"ZN",2)){ vol[0]=1; } else if(!strncmp(knamed,"ZP",2)){ vol[0]=2; } else if(!strncmp(knamed,"ZE",2)){ vol[0]=3; } // Determine in which quadrant the particle is if(vol[0]==1){ //Quadrant in ZN xdet[0] = x[0]-fPosZN[0]; xdet[1] = x[1]-fPosZN[1]; if((xdet[0]<=0.) && (xdet[1]>=0.)) vol[1]=1; if((xdet[0]>0.) && (xdet[1]>0.)) vol[1]=2; if((xdet[0]<0.) && (xdet[1]<0.)) vol[1]=3; if((xdet[0]>0.) && (xdet[1]<0.)) vol[1]=4; } else if(vol[0]==2){ //Quadrant in ZP xdet[0] = x[0]-fPosZP[0]; xdet[1] = x[1]-fPosZP[1]; if(xdet[0]>fDimZP[0])xdet[0]=fDimZP[0]-0.01; if(xdet[0]<-fDimZP[0])xdet[0]=-fDimZP[0]+0.01; Float_t xqZP = xdet[0]/(fDimZP[0]/2); for(int i=1; i<=4; i++){ if(xqZP>=(i-3) && xqZP<(i-2)){ vol[1] = i; break; } } } else if(vol[0] == 3){ //ZEM has only 1 quadrant vol[1] = 1; xdet[0] = x[0]-fPosZEM[0]; xdet[1] = x[1]-fPosZEM[1]; } // Store impact point and kinetic energy of the ENTERING particle // if(Curtrack==Prim){ if(gMC->IsTrackEntering()){ //Particle energy gMC->TrackMomentum(p); hits[3] = p[3]; // Impact point on ZDC hits[4] = xdet[0]; hits[5] = xdet[1]; hits[6] = 0; hits[7] = 0; hits[8] = 0; hits[9] = 0; // Int_t PcID = gMC->TrackPid(); // printf("Pc ID -> %d\n",PcID); AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); if(fNoShower==1){ // fpDetected += 1; gMC->StopTrack(); // printf("\n # of detected p = %d\n",fpDetected); return; } } // } // Curtrack IF // Charged particles -> Energy loss if((destep=gMC->Edep())){ if(gMC->IsTrackStop()){ gMC->TrackMomentum(p); m = gMC->TrackMass(); ekin = p[3]-m; hits[9] = ekin; hits[7] = 0.; hits[8] = 0.; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } else{ hits[9] = destep; hits[7] = 0.; hits[8] = 0.; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } // printf(" Dep. E = %f \n",hits[9]); } }// NB -> Questa parentesi (chiude il primo IF) io la sposterei al fondo!??? // *** Light production in fibres if((gMC->CurrentMedium() == fMedSensF1) || (gMC->CurrentMedium() == fMedSensF2)){ //Select charged particles if((destep=gMC->Edep())){ // Particle velocity gMC->TrackMomentum(p); Float_t ptot=TMath::Sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]); Float_t beta = ptot/p[3]; if(beta<0.67){ return; } else if((beta>=0.67) && (beta<=0.75)){ ibeta = 0; } if((beta>0.75) && (beta<=0.85)){ ibeta = 1; } if((beta>0.85) && (beta<=0.95)){ ibeta = 2; } if(beta>0.95){ ibeta = 3; } // Angle between particle trajectory and fibre axis // 1 -> Momentum directions um[0] = p[0]/ptot; um[1] = p[1]/ptot; um[2] = p[2]/ptot; gMC->Gmtod(um,ud,2); // 2 -> Angle < limit angle Double_t alfar = TMath::ACos(ud[2]); Double_t alfa = alfar*kRaddeg; if(alfa>=110.) return; ialfa = Int_t(1.+alfa/2.); // Distance between particle trajectory and fibre axis gMC->TrackPosition(s); for(j=0; j<=2; j++){ x[j] = s[j]; } gMC->Gmtod(x,xdet,1); if(TMath::Abs(ud[0])>0.00001){ Float_t dcoeff = ud[1]/ud[0]; be = TMath::Abs((xdet[1]-dcoeff*xdet[0])/TMath::Sqrt(dcoeff*dcoeff+1.)); } else{ be = TMath::Abs(ud[0]); } if((vol[0]==1)){ radius = fFibZN[1]; } else if((vol[0]==2)){ radius = fFibZP[1]; } ibe = Int_t(be*1000.+1); //Looking into the light tables Float_t charge = gMC->TrackCharge(); if((vol[0]==1)) { // (1) ZN fibres if(ibe>fNben) ibe=fNben; out = charge*charge*fTablen[ibeta][ialfa][ibe]; nphe = gRandom->Poisson(out); // printf("ZN --- ibeta = %d, ialfa = %d, ibe = %d" // " -> out = %f, nphe = %d\n", ibeta, ialfa, ibe, out, nphe); if(gMC->CurrentMedium() == fMedSensF1){ hits[7] = nphe; //fLightPMQ hits[8] = 0; hits[9] = 0; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } else{ hits[7] = 0; hits[8] = nphe; //fLightPMC hits[9] = 0; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } } else if((vol[0]==2)) { // (2) ZP fibres if(ibe>fNbep) ibe=fNbep; out = charge*charge*fTablep[ibeta][ialfa][ibe]; nphe = gRandom->Poisson(out); // printf("ZP --- ibeta = %d, ialfa = %d, ibe = %d" // " -> out = %f, nphe = %d\n", ibeta, ialfa, ibe, out, nphe); if(gMC->CurrentMedium() == fMedSensF1){ hits[7] = nphe; //fLightPMQ hits[8] = 0; hits[9] = 0; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } else{ hits[7] = 0; hits[8] = nphe; //fLightPMC hits[9] = 0; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } } else if((vol[0]==3)) { // (3) ZEM fibres if(ibe>fNbep) ibe=fNbep; out = charge*charge*fTablep[ibeta][ialfa][ibe]; gMC->TrackPosition(s); for(j=0; j<=2; j++){ xalic[j] = s[j]; } // z-coordinate from ZEM front face // NB-> fPosZEM[2]+fZEMLength = -1000.+2*10.3 = 979.69 cm z = -xalic[2]+fPosZEM[2]+2*fZEMLength-xalic[1]; // z = xalic[2]-fPosZEM[2]-fZEMLength-xalic[1]*(TMath::Tan(45.*kDegrad)); // printf("\n fPosZEM[2]+2*fZEMLength = %f", fPosZEM[2]+2*fZEMLength); guiEff = guiPar[0]*(guiPar[1]*z*z+guiPar[2]*z+guiPar[3]); // printf("\n xalic[0] = %f xalic[1] = %f xalic[2] = %f z = %f \n", // xalic[0],xalic[1],xalic[2],z); out = out*guiEff; nphe = gRandom->Poisson(out); // printf(" out*guiEff = %f nphe = %d", out, nphe); // printf("ZEM --- ibeta = %d, ialfa = %d, ibe = %d" // " -> out = %f, nphe = %d\n", ibeta, ialfa, ibe, out, nphe); hits[7] = 0; hits[8] = nphe; //fLightPMC hits[9] = 0; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } } } }