/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.9 2000/12/13 10:33:49 coppedis Prints only if fDebug==1 Revision 1.8 2000/12/12 14:10:02 coppedis Correction suggested by M. Masera Revision 1.7 2000/11/30 17:23:47 coppedis Remove first corrector dipole and introduce digitization Revision 1.6 2000/11/22 11:33:10 coppedis Major code revision Revision 1.5 2000/10/02 21:28:20 fca Removal of useless dependecies via forward declarations Revision 1.3.2.1 2000/08/24 09:25:47 hristov Patch by P.Hristov: Bug in ZDC geometry corrected by E.Scomparin Revision 1.4 2000/08/24 09:23:59 hristov Bug in ZDC geometry corrected by E.Scomparin Revision 1.3 2000/07/12 06:59:16 fca Fixing dimension of hits array Revision 1.2 2000/07/11 11:12:34 fca Some syntax corrections for non standard HP aCC Revision 1.1 2000/07/10 13:58:01 fca New version of ZDC from E.Scomparin & C.Oppedisano Revision 1.7 2000/01/19 17:17:40 fca Revision 1.6 1999/09/29 09:24:35 fca Introduction of the Copyright and cvs Log */ /////////////////////////////////////////////////////////////////////////////// // // // Zero Degree Calorimeter // // This class contains the basic functions for the ZDC // // Functions specific to one particular geometry are // // contained in the derived classes // // // /////////////////////////////////////////////////////////////////////////////// // --- Standard libraries #include "stdio.h" // --- ROOT system #include #include #include #include #include #include // --- AliRoot classes #include "AliZDCv1.h" #include "AliZDCHit.h" #include "AliZDCDigit.h" #include "AliRun.h" #include "AliDetector.h" #include "AliMagF.h" #include "AliMC.h" #include "AliCallf77.h" #include "AliConst.h" #include "AliPDG.h" #include "TLorentzVector.h" ClassImp(AliZDCv1) /////////////////////////////////////////////////////////////////////////////// // // // Zero Degree Calorimeter version 1 // // // /////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________________________ AliZDCv1::AliZDCv1() : AliZDC() { // // Default constructor for Zero Degree Calorimeter // fMedSensF1 = 0; fMedSensF2 = 0; fMedSensZN = 0; fMedSensZP = 0; fMedSensGR = 0; fMedSensZEM = 0; fMedSensPI = 0; fNoShower = 0; } //_____________________________________________________________________________ AliZDCv1::AliZDCv1(const char *name, const char *title) : AliZDC(name,title) { // // Standard constructor for Zero Degree Calorimeter // fDigits = new TClonesArray("AliZDCDigit",1000); fMedSensF1 = 0; fMedSensF2 = 0; fMedSensZN = 0; fMedSensZP = 0; fMedSensGR = 0; fMedSensZEM = 0; fMedSensPI = 0; fNoShower = 0; } //_____________________________________________________________________________ void AliZDCv1::CreateGeometry() { // // Create the geometry for the Zero Degree Calorimeter version 1 //* Initialize COMMON block ZDC_CGEOM //* CreateBeamLine(); CreateZDC(); } //_____________________________________________________________________________ void AliZDCv1::CreateBeamLine() { Float_t angle; Float_t zq, conpar[9], elpar[3], tubpar[3]; Int_t im1, im2; Float_t zd1, zd2; Int_t *idtmed = fIdtmed->GetArray(); // -- Mother of the ZDC conpar[0] = 0.; conpar[1] = 360.; conpar[2] = 2.; conpar[3] = 805.; conpar[4] = 0.; conpar[5] = 55.; conpar[6] = 13060.; conpar[7] = 0.; conpar[8] = 55.; gMC->Gsvolu("ZDC ", "PCON", idtmed[10], conpar, 9); gMC->Gspos("ZDC ", 1, "ALIC", 0., 0., 0., 0, "ONLY"); // -- FIRST SECTION OF THE BEAM PIPE (from compensator dipole to // beginning of D1) zd1 = 1921.6; tubpar[0] = 6.3/2.; tubpar[1] = 6.7/2.; tubpar[2] = 3916.7/2.; gMC->Gsvolu("P001", "TUBE", idtmed[5], tubpar, 3); gMC->Gspos("P001", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); //-- SECOND SECTION OF THE BEAM PIPE (FROM THE END OF D1 TO THE BEGINNING OF // D2) //-- FROM MAGNETIC BEGINNING OG D1 TO MAGNETIC END OF D1 + 23.5 cm //-- Elliptic pipe zd1 = 6310.8-472.5; elpar[0] = 6.84/2.; elpar[1] = 5.86/2.; elpar[2] = 945./2.; // gMC->Gsvolu("E001", "ELTU", idtmed[5], elpar, 3); // gMC->Gspos("E001", 1, "ZDC ", 0., 0., elpar[2] + zd1, 0, "ONLY"); // elpar[0] = 6.44/2.; elpar[1] = 5.46/2.; elpar[2] = 945./2.; // gMC->Gsvolu("E002", "ELTU", idtmed[10], elpar, 3); // gMC->Gspos("E002", 1, "E001", 0., 0., 0., 0, "ONLY"); zd1 += 2.*elpar[2]; elpar[0] = 6.84/2.; elpar[1] = 5.86/2.; elpar[2] = 13.5/2.; // gMC->Gsvolu("E003", "ELTU", idtmed[5], elpar, 3); // gMC->Gspos("E002", 1, "ZDC ", 0., 0., elpar[2] + zd1, 0, "ONLY"); elpar[0] = 6.44/2.; elpar[1] = 5.46/2.; elpar[2] = 13.5/2.; // gMC->Gsvolu("E004", "ELTU", idtmed[10], elpar, 3); // gMC->Gspos("E004", 1, "E003", 0., 0., 0., 0, "ONLY"); zd1 += 2.*elpar[2]; conpar[0] = 25./2.; conpar[1] = 6.44/2.; conpar[2] = 6.84/2.; conpar[3] = 10./2.; conpar[4] = 10.4/2.; gMC->Gsvolu("C001", "CONE", idtmed[5], conpar, 5); gMC->Gspos("C001", 1, "ZDC ", 0., 0., conpar[0] + zd1, 0, "ONLY"); zd1 += 2.*conpar[0]; tubpar[0] = 10./2.; tubpar[1] = 10.4/2.; tubpar[2] = 50./2.; gMC->Gsvolu("P002", "TUBE", idtmed[5], tubpar, 3); gMC->Gspos("P002", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; tubpar[0] = 10./2.; tubpar[1] = 10.4/2.; tubpar[2] = 10./2.; gMC->Gsvolu("P003", "TUBE", idtmed[5], tubpar, 3); gMC->Gspos("P003", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; tubpar[0] = 10./2.; tubpar[1] = 10.4/2.; tubpar[2] = 3.16/2.; gMC->Gsvolu("P004", "TUBE", idtmed[5], tubpar, 3); gMC->Gspos("P004", 1, "ZDC ", 0., 0., tubpar[0] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; tubpar[0] = 10.0/2.; tubpar[1] = 10.4/2; tubpar[2] = 190./2.; gMC->Gsvolu("P005", "TUBE", idtmed[5], tubpar, 3); gMC->Gspos("P005", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; conpar[0] = 30./2.; conpar[1] = 10./2.; conpar[2] = 10.4/2.; conpar[3] = 20.6/2.; conpar[4] = 21./2.; gMC->Gsvolu("P006", "CONE", idtmed[5], conpar, 5); gMC->Gspos("P006", 1, "ZDC ", 0., 0., conpar[0] + zd1, 0, "ONLY"); zd1 += conpar[0] * 2.; tubpar[0] = 20.6/2.; tubpar[1] = 21./2.; tubpar[2] = 450./2.; gMC->Gsvolu("P007", "TUBE", idtmed[5], tubpar, 3); gMC->Gspos("P007", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; conpar[0] = 13.6/2.; conpar[1] = 20.6/2.; conpar[2] = 21./2.; conpar[3] = 25.4/2.; conpar[4] = 25.8/2.; gMC->Gsvolu("P008", "CONE", idtmed[5], conpar, 5); gMC->Gspos("P008", 1, "ZDC ", 0., 0., conpar[0] + zd1, 0, "ONLY"); zd1 += conpar[0] * 2.; tubpar[0] = 25.4/2.; tubpar[1] = 25.8/2.; tubpar[2] = 205.8/2.; gMC->Gsvolu("P009", "TUBE", idtmed[5], tubpar, 3); gMC->Gspos("P009", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; tubpar[0] = 50./2.; tubpar[1] = 50.4/2.; tubpar[2] = 505.4/2.; gMC->Gsvolu("P010", "TUBE", idtmed[5], tubpar, 3); gMC->Gspos("P010", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; tubpar[0] = 50./2.; tubpar[1] = 50.4/2.; tubpar[2] = 700./2.; gMC->Gsvolu("P011", "TUBE", idtmed[5], tubpar, 3); gMC->Gspos("P011", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; tubpar[0] = 50./2.; tubpar[1] = 50.4/2.; tubpar[2] = 778.5/2.; gMC->Gsvolu("P012", "TUBE", idtmed[5], tubpar, 3); gMC->Gspos("P012", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; conpar[0] = 14.18/2.; conpar[1] = 50./2.; conpar[2] = 50.4/2.; conpar[3] = 55./2.; conpar[4] = 55.4/2.; gMC->Gsvolu("P013", "CONE", idtmed[5], conpar, 5); gMC->Gspos("P013", 1, "ZDC ", 0., 0., conpar[0] + zd1, 0, "ONLY"); zd1 += conpar[0] * 2.; tubpar[0] = 55./2.; tubpar[1] = 55.4/2.; tubpar[2] = 730./2.; gMC->Gsvolu("P014", "TUBE", idtmed[5], tubpar, 3); gMC->Gspos("P014", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; conpar[0] = 36.86/2.; conpar[1] = 55./2.; conpar[2] = 55.4/2.; conpar[3] = 68./2.; conpar[4] = 68.4/2.; gMC->Gsvolu("P015", "CONE", idtmed[5], conpar, 5); gMC->Gspos("P015", 1, "ZDC ", 0., 0., conpar[0] + zd1, 0, "ONLY"); zd1 += conpar[0] * 2.; tubpar[0] = 68./2.; tubpar[1] = 68.4/2.; tubpar[2] = 927.3/2.; gMC->Gsvolu("P016", "TUBE", idtmed[5], tubpar, 3); gMC->Gspos("P016", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; tubpar[0] = 0./2.; tubpar[1] = 68.4/2.; tubpar[2] = 0.2/2.; gMC->Gsvolu("P017", "TUBE", idtmed[8], tubpar, 3); gMC->Gspos("P017", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); zd1 += tubpar[2] * 2.; tubpar[0] = 0./2.; tubpar[1] = 5./2.; tubpar[2] = 0.2/2.; gMC->Gsvolu("Q017", "TUBE", idtmed[10], tubpar, 3); //-- Position Q017 inside P017 gMC->Gspos("Q017", 1, "P017", -7.7, 0., 0., 0, "ONLY"); tubpar[0] = 0./2.; tubpar[1] = 7./2.; tubpar[2] = 0.2/2.; gMC->Gsvolu("R017", "TUBE", idtmed[10], tubpar, 3); //-- Position R017 inside P017 gMC->Gspos("R017", 1, "P017", 7.7, 0., 0., 0, "ONLY"); //-- BEAM PIPE BETWEEN END OF CONICAL PIPE AND BEGINNING OF D2 tubpar[0] = 5./2.; tubpar[1] = 5.4/2.; tubpar[2] = 678./2.; gMC->Gsvolu("P018", "TUBE", idtmed[5], tubpar, 3); tubpar[0] = 7./2.; tubpar[1] = 7.4/2.; tubpar[2] = 678./2.; gMC->Gsvolu("P019", "TUBE", idtmed[5], tubpar, 3); // -- ROTATE PIPES AliMatrix(im1, 90.-0.071, 0., 90., 90., .071, 180.); angle = .071*kDegrad; gMC->Gspos("P018", 1, "ZDC ", TMath::Sin(angle) * 645. / 2. - 9.7 + TMath::Sin(angle) * 945. / 2., 0., tubpar[2] + zd1, im1, "ONLY"); AliMatrix(im2, 90.+0.071, 0., 90., 90., .071, 0.); gMC->Gspos("P019", 1, "ZDC ", 9.7 - TMath::Sin(angle) * 645. / 2., 0., tubpar[2] + zd1, im2, "ONLY"); // -- END OF BEAM PIPE VOLUME DEFINITION. MAGNET DEFINITION FOLLOWS // (LHC OPTICS 6) // -- COMPENSATOR DIPOLE (MBXW) // GAP (VACUUM WITH MAGNETIC FIELD) // tubpar[0] = 0.; // tubpar[1] = 4.5; // tubpar[2] = 340./2.; // gMC->Gsvolu("MBXW", "TUBE", idtmed[11], tubpar, 3); // gMC->Gspos("MBXW", 1, "ZDC ", 0., 0., tubpar[2] + 805., 0, "ONLY"); // -- YOKE (IRON WITHOUT MAGNETIC FIELD) // tubpar[0] = 4.5; // tubpar[1] = 55.; // tubpar[2] = 340./2.; // gMC->Gsvolu("YMBX", "TUBE", idtmed[5], tubpar, 3); // gMC->Gspos("YMBX", 1, "ZDC ", 0., 0., tubpar[2] + 805., 0, "ONLY"); // -- COMPENSATOR DIPOLE (MCBWA) // GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 4.5; tubpar[2] = 170./2.; gMC->Gsvolu("MCBW", "TUBE", idtmed[11], tubpar, 3); gMC->Gspos("MCBW", 1, "ZDC ", 0., 0., tubpar[2] + 1921.6, 0, "ONLY"); // -- YOKE (IRON WITHOUT MAGNETIC FIELD) tubpar[0] = 4.5; tubpar[1] = 55.; tubpar[2] = 170./2.; gMC->Gsvolu("YMCB", "TUBE", idtmed[5], tubpar, 3); gMC->Gspos("YMCB", 1, "ZDC ", 0., 0., tubpar[2] + 1921.6, 0, "ONLY"); // -- INNER TRIPLET zq = 2300.; // -- DEFINE MQXL AND MQX QUADRUPOLE ELEMENT // MQXL // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 3.5; tubpar[2] = 630./2.; gMC->Gsvolu("MQXL", "TUBE", idtmed[11], tubpar, 3); // -- YOKE tubpar[0] = 3.5; tubpar[1] = 22.; tubpar[2] = 630./2.; gMC->Gsvolu("YMQL", "TUBE", idtmed[5], tubpar, 3); gMC->Gspos("MQXL", 1, "ZDC ", 0., 0., tubpar[2] + zq, 0, "ONLY"); gMC->Gspos("YMQL", 1, "ZDC ", 0., 0., tubpar[2] + zq, 0, "ONLY"); gMC->Gspos("MQXL", 2, "ZDC ", 0., 0., tubpar[2] + zq + 2430., 0, "ONLY"); gMC->Gspos("YMQL", 2, "ZDC ", 0., 0., tubpar[2] + zq + 2430., 0, "ONLY"); // -- MQX // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 3.5; tubpar[2] = 550./2.; gMC->Gsvolu("MQX ", "TUBE", idtmed[11], tubpar, 3); // -- YOKE tubpar[0] = 3.5; tubpar[1] = 22.; tubpar[2] = 550./2.; gMC->Gsvolu("YMQ ", "TUBE", idtmed[5], tubpar, 3); gMC->Gspos("MQX ", 1, "ZDC ", 0., 0., tubpar[2] + zq + 880., 0, "ONLY"); gMC->Gspos("YMQ ", 1, "ZDC ", 0., 0., tubpar[2] + zq + 880., 0, "ONLY"); gMC->Gspos("MQX ", 2, "ZDC ", 0., 0., tubpar[2] + zq + 1530., 0, "ONLY"); gMC->Gspos("YMQ ", 2, "ZDC ", 0., 0., tubpar[2] + zq + 1530., 0, "ONLY"); // -- SEPARATOR DIPOLE D1 zd1 = 5838.3; // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 7.5/2.; tubpar[2] = 945./2.; gMC->Gsvolu("D1 ", "TUBE", idtmed[11], tubpar, 3); // -- YOKE tubpar[0] = 0.; tubpar[1] = 110./2; tubpar[2] = 945./2.; gMC->Gsvolu("YD1 ", "TUBE", idtmed[5], tubpar, 3); gMC->Gspos("YD1 ", 1, "ZDC ", 0., 0., tubpar[2] + zd1, 0, "ONLY"); gMC->Gspos("D1 ", 1, "YD1 ", 0., 0., 0., 0, "ONLY"); // -- DIPOLE D2 zd2 = 12147.6; // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 7.5/2.; tubpar[2] = 945./2.; gMC->Gsvolu("D2 ", "TUBE", idtmed[11], tubpar, 3); // -- YOKE tubpar[0] = 0.; tubpar[1] = 55.; tubpar[2] = 945./2.; gMC->Gsvolu("YD2 ", "TUBE", idtmed[5], tubpar, 3); gMC->Gspos("YD2 ", 1, "ZDC ", 0., 0., tubpar[2] + zd2, 0, "ONLY"); gMC->Gspos("D2 ", 1, "YD2 ", -9.7, 0., 0., 0, "ONLY"); gMC->Gspos("D2 ", 2, "YD2 ", 9.7, 0., 0., 0, "ONLY"); // -- END OF MAGNET DEFINITION } //_____________________________________________________________________________ void AliZDCv1::CreateZDC() { Int_t *idtmed = fIdtmed->GetArray(); Int_t irot1, irot2; Float_t DimPb[6], DimVoid[6]; //-- Create calorimeters geometry //--> Neutron calorimeter (ZN) gMC->Gsvolu("ZNEU", "BOX ", idtmed[1], fDimZN, 3); // Passive material gMC->Gsvolu("ZNF1", "TUBE", idtmed[3], fFibZN, 3); // Active material gMC->Gsvolu("ZNF2", "TUBE", idtmed[4], fFibZN, 3); gMC->Gsvolu("ZNF3", "TUBE", idtmed[4], fFibZN, 3); gMC->Gsvolu("ZNF4", "TUBE", idtmed[3], fFibZN, 3); gMC->Gsvolu("ZNG1", "BOX ", idtmed[12], fGrvZN, 3); // Empty grooves gMC->Gsvolu("ZNG2", "BOX ", idtmed[12], fGrvZN, 3); gMC->Gsvolu("ZNG3", "BOX ", idtmed[12], fGrvZN, 3); gMC->Gsvolu("ZNG4", "BOX ", idtmed[12], fGrvZN, 3); // Divide ZNEU in towers (for hits purposes) gMC->Gsdvn("ZNTX", "ZNEU", fTowZN[0], 1); // x-tower gMC->Gsdvn("ZN1 ", "ZNTX", fTowZN[1], 2); // y-tower //-- Divide ZN1 in minitowers // fDivZN[0]= NUMBER OF FIBERS PER TOWER ALONG X-AXIS, // fDivZN[1]= NUMBER OF FIBERS PER TOWER ALONG Y-AXIS // (4 fibres per minitower) gMC->Gsdvn("ZNSL", "ZN1 ", fDivZN[1], 2); // Slices gMC->Gsdvn("ZNST", "ZNSL", fDivZN[0], 1); // Sticks // --- Position the empty grooves in the sticks (4 grooves per stick) Float_t dx = fDimZN[0] / fDivZN[0] / 4.; Float_t dy = fDimZN[1] / fDivZN[1] / 4.; gMC->Gspos("ZNG1", 1, "ZNST", 0.-dx, 0.+dy, 0., 0, "ONLY"); gMC->Gspos("ZNG2", 1, "ZNST", 0.+dx, 0.+dy, 0., 0, "ONLY"); gMC->Gspos("ZNG3", 1, "ZNST", 0.-dx, 0.-dy, 0., 0, "ONLY"); gMC->Gspos("ZNG4", 1, "ZNST", 0.+dx, 0.-dy, 0., 0, "ONLY"); // --- Position the fibers in the grooves gMC->Gspos("ZNF1", 1, "ZNG1", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ZNF2", 1, "ZNG2", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ZNF3", 1, "ZNG3", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ZNF4", 1, "ZNG4", 0., 0., 0., 0, "ONLY"); // --- Position the neutron calorimeter in ZDC gMC->Gspos("ZNEU", 1, "ZDC ", fPosZN[0], fPosZN[1], fPosZN[2] + fDimZN[2], 0, "ONLY"); //--> Proton calorimeter (ZP) gMC->Gsvolu("ZPRO", "BOX ", idtmed[2], fDimZP, 3); // Passive material gMC->Gsvolu("ZPF1", "TUBE", idtmed[3], fFibZP, 3); // Active material gMC->Gsvolu("ZPF2", "TUBE", idtmed[4], fFibZP, 3); gMC->Gsvolu("ZPF3", "TUBE", idtmed[4], fFibZP, 3); gMC->Gsvolu("ZPF4", "TUBE", idtmed[3], fFibZP, 3); gMC->Gsvolu("ZPG1", "BOX ", idtmed[12], fGrvZP, 3); // Empty grooves gMC->Gsvolu("ZPG2", "BOX ", idtmed[12], fGrvZP, 3); gMC->Gsvolu("ZPG3", "BOX ", idtmed[12], fGrvZP, 3); gMC->Gsvolu("ZPG4", "BOX ", idtmed[12], fGrvZP, 3); //-- Divide ZPRO in towers(for hits purposes) gMC->Gsdvn("ZPTX", "ZPRO", fTowZP[0], 1); // x-tower gMC->Gsdvn("ZP1 ", "ZPTX", fTowZP[1], 2); // y-tower //-- Divide ZP1 in minitowers // fDivZP[0]= NUMBER OF FIBERS ALONG X-AXIS PER MINITOWER, // fDivZP[1]= NUMBER OF FIBERS ALONG Y-AXIS PER MINITOWER // (4 fiber per minitower) gMC->Gsdvn("ZPSL", "ZP1 ", fDivZP[1], 2); // Slices gMC->Gsdvn("ZPST", "ZPSL", fDivZP[0], 1); // Sticks // --- Position the empty grooves in the sticks (4 grooves per stick) dx = fDimZP[0] / fTowZP[0] / fDivZP[0] / 2.; dy = fDimZP[1] / fTowZP[1] / fDivZP[1] / 2.; gMC->Gspos("ZPG1", 1, "ZPST", 0.-dx, 0.+dy, 0., 0, "ONLY"); gMC->Gspos("ZPG2", 1, "ZPST", 0.+dx, 0.+dy, 0., 0, "ONLY"); gMC->Gspos("ZPG3", 1, "ZPST", 0.-dx, 0.-dy, 0., 0, "ONLY"); gMC->Gspos("ZPG4", 1, "ZPST", 0.+dx, 0.-dy, 0., 0, "ONLY"); // --- Position the fibers in the grooves gMC->Gspos("ZPF1", 1, "ZPG1", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ZPF2", 1, "ZPG2", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ZPF3", 1, "ZPG3", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ZPF4", 1, "ZPG4", 0., 0., 0., 0, "ONLY"); // --- Position the proton calorimeter in ZDC gMC->Gspos("ZPRO", 1, "ZDC ", fPosZP[0], fPosZP[1], fPosZP[2] + fDimZP[2], 0, "ONLY"); //--> EM calorimeter (ZEM) gMC->Gsvolu("ZEM ", "PARA", idtmed[10], fDimZEM, 6); gMC->Matrix(irot1,0.,0.,90.,90.,90.,180.); // Rotation matrix 1 gMC->Matrix(irot2,180.,0.,90.,fDimZEM[3]+90.,90.,fDimZEM[3]); // Rotation matrix 2 // printf("irot1 = %d, irot2 = %d \n", irot1, irot2); gMC->Gsvolu("ZEMF", "TUBE", idtmed[3], fFibZEM, 3); // Active material gMC->Gsdvn("ZETR", "ZEM ", fDivZEM[2], 1); // Tranches DimPb[0] = fDimZEMPb; // Lead slices DimPb[1] = fDimZEM[2]; DimPb[2] = fDimZEM[1]; DimPb[3] = 90.-fDimZEM[3]; DimPb[4] = 0.; DimPb[5] = 0.; gMC->Gsvolu("ZEL0", "PARA", idtmed[6], DimPb, 6); gMC->Gsvolu("ZEL1", "PARA", idtmed[6], DimPb, 6); gMC->Gsvolu("ZEL2", "PARA", idtmed[6], DimPb, 6); // --- Position the lead slices in the tranche Float_t zTran = fDimZEM[0]/fDivZEM[2]; Float_t zTrPb = -zTran+fDimZEMPb; gMC->Gspos("ZEL0", 1, "ZETR", zTrPb, 0., 0., 0, "ONLY"); gMC->Gspos("ZEL1", 1, "ZETR", fDimZEMPb, 0., 0., 0, "ONLY"); // --- Vacuum zone (to be filled with fibres) DimVoid[0] = (zTran-2*fDimZEMPb)/2.; DimVoid[1] = fDimZEM[2]; DimVoid[2] = fDimZEM[1]; DimVoid[3] = 90.-fDimZEM[3]; DimVoid[4] = 0.; DimVoid[5] = 0.; gMC->Gsvolu("ZEV0", "PARA", idtmed[10], DimVoid,6); gMC->Gsvolu("ZEV1", "PARA", idtmed[10], DimVoid,6); // --- Divide the vacuum slice into sticks along x axis gMC->Gsdvn("ZES0", "ZEV0", fDivZEM[0], 3); gMC->Gsdvn("ZES1", "ZEV1", fDivZEM[0], 3); // --- Positioning the fibers into the sticks gMC->Gspos("ZEMF", 1,"ZES0", 0., 0., 0., irot2, "ONLY"); gMC->Gspos("ZEMF", 1,"ZES1", 0., 0., 0., irot2, "ONLY"); // --- Positioning the vacuum slice into the tranche Float_t DisplFib = fDimZEM[1]/fDivZEM[0]; gMC->Gspos("ZEV0", 1,"ZETR", -DimVoid[0], 0., 0., 0, "ONLY"); gMC->Gspos("ZEV1", 1,"ZETR", -DimVoid[0]+zTran, 0., DisplFib, 0, "ONLY"); // --- Positioning the ZEM into the ZDC - rotation for 90 degrees gMC->Gspos("ZEM ", 1,"ZDC ", fPosZEM[0], fPosZEM[1], fPosZEM[2], irot1, "ONLY"); // --- Adding last slice at the end of the EM calorimeter Float_t zLastSlice = fPosZEM[2]+fDimZEMPb+fDimZEM[0]; gMC->Gspos("ZEL2", 1,"ZDC ", fPosZEM[0], fPosZEM[1], zLastSlice, irot1, "ONLY"); } //_____________________________________________________________________________ void AliZDCv1::DrawModule() { // // Draw a shaded view of the Zero Degree Calorimeter version 1 // // Set everything unseen gMC->Gsatt("*", "seen", -1); // // Set ALIC mother transparent gMC->Gsatt("ALIC","SEEN",0); // // Set the volumes visible gMC->Gsatt("ZDC ","SEEN",0); gMC->Gsatt("P001","SEEN",1); gMC->Gsatt("E001","SEEN",1); gMC->Gsatt("E002","SEEN",1); gMC->Gsatt("E003","SEEN",1); gMC->Gsatt("E004","SEEN",1); gMC->Gsatt("C001","SEEN",1); gMC->Gsatt("P002","SEEN",1); gMC->Gsatt("P003","SEEN",1); gMC->Gsatt("P004","SEEN",1); gMC->Gsatt("P005","SEEN",1); gMC->Gsatt("P006","SEEN",1); gMC->Gsatt("P007","SEEN",1); gMC->Gsatt("P008","SEEN",1); gMC->Gsatt("P009","SEEN",1); gMC->Gsatt("P010","SEEN",1); gMC->Gsatt("P011","SEEN",1); gMC->Gsatt("P012","SEEN",1); gMC->Gsatt("P013","SEEN",1); gMC->Gsatt("P014","SEEN",1); gMC->Gsatt("P015","SEEN",1); gMC->Gsatt("P016","SEEN",1); gMC->Gsatt("P017","SEEN",1); gMC->Gsatt("Q017","SEEN",1); gMC->Gsatt("R017","SEEN",1); gMC->Gsatt("P018","SEEN",1); gMC->Gsatt("P019","SEEN",1); // gMC->Gsatt("MBXW","SEEN",1); // gMC->Gsatt("YMBX","SEEN",1); gMC->Gsatt("MCBW","SEEN",1); gMC->Gsatt("YMCB","SEEN",1); gMC->Gsatt("MQXL","SEEN",1); gMC->Gsatt("YMQL","SEEN",1); gMC->Gsatt("MQX ","SEEN",1); gMC->Gsatt("YMQ ","SEEN",1); gMC->Gsatt("D1 ","SEEN",1); gMC->Gsatt("YD1 ","SEEN",1); gMC->Gsatt("D2 ","SEEN",1); gMC->Gsatt("YD2 ","SEEN",1); gMC->Gsatt("ZNEU","SEEN",0); gMC->Gsatt("ZNF1","SEEN",0); gMC->Gsatt("ZNF2","SEEN",0); gMC->Gsatt("ZNF3","SEEN",0); gMC->Gsatt("ZNF4","SEEN",0); gMC->Gsatt("ZNG1","SEEN",0); gMC->Gsatt("ZNG2","SEEN",0); gMC->Gsatt("ZNG3","SEEN",0); gMC->Gsatt("ZNG4","SEEN",0); gMC->Gsatt("ZNTX","SEEN",0); gMC->Gsatt("ZN1 ","COLO",2); gMC->Gsatt("ZN1 ","SEEN",1); gMC->Gsatt("ZNSL","SEEN",0); gMC->Gsatt("ZNST","SEEN",0); gMC->Gsatt("ZPRO","SEEN",0); gMC->Gsatt("ZPF1","SEEN",0); gMC->Gsatt("ZPF2","SEEN",0); gMC->Gsatt("ZPF3","SEEN",0); gMC->Gsatt("ZPF4","SEEN",0); gMC->Gsatt("ZPG1","SEEN",0); gMC->Gsatt("ZPG2","SEEN",0); gMC->Gsatt("ZPG3","SEEN",0); gMC->Gsatt("ZPG4","SEEN",0); gMC->Gsatt("ZPTX","SEEN",0); gMC->Gsatt("ZP1 ","COLO",2); gMC->Gsatt("ZP1 ","SEEN",1); gMC->Gsatt("ZPSL","SEEN",0); gMC->Gsatt("ZPST","SEEN",0); gMC->Gsatt("ZEM ","COLO",2); gMC->Gsatt("ZEM ","SEEN",1); gMC->Gsatt("ZEMF","SEEN",0); gMC->Gsatt("ZETR","SEEN",0); gMC->Gsatt("ZEL0","SEEN",0); gMC->Gsatt("ZEL1","SEEN",0); gMC->Gsatt("ZEL2","SEEN",0); gMC->Gsatt("ZEV0","SEEN",0); gMC->Gsatt("ZEV1","SEEN",0); gMC->Gsatt("ZES0","SEEN",0); gMC->Gsatt("ZES1","SEEN",0); // gMC->Gdopt("hide", "on"); gMC->Gdopt("shad", "on"); gMC->Gsatt("*", "fill", 7); gMC->SetClipBox("."); gMC->SetClipBox("*", 0, 100, -100, 100, 12000, 16000); gMC->DefaultRange(); gMC->Gdraw("alic", 40, 30, 0, 488, 220, .07, .07); gMC->Gdhead(1111, "Zero Degree Calorimeter Version 1"); gMC->Gdman(18, 4, "MAN"); } //_____________________________________________________________________________ void AliZDCv1::CreateMaterials() { // // Create Materials for the Zero Degree Calorimeter // // Origin : E. Scomparin Int_t *idtmed = fIdtmed->GetArray(); Float_t dens, ubuf[1], wmat[2], a[2], z[2], epsil=0.001, stmin=0.01; Int_t i, isvolActive, isvol, inofld; Float_t fieldm = gAlice->Field()->Max(); Float_t tmaxfd=gAlice->Field()->Max(); Int_t isxfld = gAlice->Field()->Integ(); Float_t deemax=-1; Float_t stemax; // --- Store in UBUF r0 for nuclear radius calculation R=r0*A**1/3 // --- Tantalum -> ZN passive material ubuf[0] = 1.1; AliMaterial(1, "TANT", 180.95, 73., 16.65, .4, 11.9, ubuf, 1); // --- Tungsten // ubuf[0] = 1.11; // AliMaterial(1, "TUNG", 183.85, 74., 19.3, .35, 10.3, ubuf, 1); // --- Brass (CuZn) -> ZP passive material dens = 8.48; a[0] = 63.546; a[1] = 65.39; z[0] = 29.; z[1] = 30.; wmat[0] = .63; wmat[1] = .37; AliMixture(2, "BRASS ", a, z, dens, 2, wmat); // --- SiO2 dens = 2.64; a[0] = 28.086; a[1] = 15.9994; z[0] = 14.; z[1] = 8.; wmat[0] = 1.; wmat[1] = 2.; AliMixture(3, "SIO2 ", a, z, dens, -2, wmat); // --- Lead ubuf[0] = 1.12; AliMaterial(5, "LEAD", 207.19, 82., 11.35, .56, 18.5, ubuf, 1); // --- Copper // ubuf[0] = 1.1; // AliMaterial(7, "COPP", 63.54, 29., 8.96, 1.4, 0., ubuf, 1); // --- Iron (energy loss taken into account) ubuf[0] = 1.1; AliMaterial(6, "IRON", 55.85, 26., 7.87, 1.76, 0., ubuf, 1); // --- Iron (no energy loss) ubuf[0] = 1.1; AliMaterial(7, "IRON", 55.85, 26., 7.87, 1.76, 0., ubuf, 1); // --- Vacuum (no magnetic field) AliMaterial(10, "VOID", 1e-16, 1e-16, 1e-16, 1e16, 1e16, ubuf,0); // --- Vacuum (with magnetic field) AliMaterial(11, "VOIM", 1e-16, 1e-16, 1e-16, 1e16, 1e16, ubuf,0); // --- Air (no magnetic field) AliMaterial(12, "Air $", 14.61, 7.3, .001205, 30420., 67500., ubuf, 0); // --- Definition of tracking media: // --- Tantalum = 1 ; // --- Brass = 2 ; // --- Fibers (SiO2) = 3 ; // --- Fibers (SiO2) = 4 ; // --- Lead = 5 ; // --- Iron (with energy loss) = 6 ; // --- Iron (without energy loss) = 7 ; // --- Vacuum (no field) = 10 // --- Vacuum (with field) = 11 // --- Air (no field) = 12 // --- Tracking media parameters epsil = .01; stemax = 1.; isvol = 0; isvolActive = 1; inofld = 0; fieldm = 0.; AliMedium(1, "ZTANT", 1, isvolActive, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); // AliMedium(1, "ZW", 1, isvolActive, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(2, "ZBRASS", 2, isvolActive, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(3, "ZSIO2", 3, isvolActive, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(4, "ZQUAR", 3, isvolActive, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(6, "ZLEAD", 5, isvolActive, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); // AliMedium(7, "ZCOPP", 7, isvolActive, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(5, "ZIRON", 6, isvolActive, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(8, "ZIRONN", 7, isvol, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(10, "ZVOID", 10, isvol, inofld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(12, "ZAIR", 12, 0, inofld, fieldm, tmaxfd, stemax,deemax, epsil, stmin); fieldm = 45.; AliMedium(11, "ZVOIM", 11, isvol, isxfld, fieldm, tmaxfd, stemax, deemax, epsil, stmin); // Thresholds for showering in the ZDCs i = 1; gMC->Gstpar(idtmed[i], "CUTGAM", .001); gMC->Gstpar(idtmed[i], "CUTELE", .001); gMC->Gstpar(idtmed[i], "CUTNEU", .01); gMC->Gstpar(idtmed[i], "CUTHAD", .01); i = 2; gMC->Gstpar(idtmed[i], "CUTGAM", .001); gMC->Gstpar(idtmed[i], "CUTELE", .001); gMC->Gstpar(idtmed[i], "CUTNEU", .01); gMC->Gstpar(idtmed[i], "CUTHAD", .01); i = 6; gMC->Gstpar(idtmed[i], "CUTGAM", .001); gMC->Gstpar(idtmed[i], "CUTELE", .001); gMC->Gstpar(idtmed[i], "CUTNEU", .01); gMC->Gstpar(idtmed[i], "CUTHAD", .01); // Avoid too detailed showering along the beam line i = 5; gMC->Gstpar(idtmed[i], "CUTGAM", .1); gMC->Gstpar(idtmed[i], "CUTELE", .1); gMC->Gstpar(idtmed[i], "CUTNEU", 1.); gMC->Gstpar(idtmed[i], "CUTHAD", 1.); // Avoid interaction in fibers (only energy loss allowed) i = 3; gMC->Gstpar(idtmed[i], "DCAY", 0.); gMC->Gstpar(idtmed[i], "MULS", 0.); gMC->Gstpar(idtmed[i], "PFIS", 0.); gMC->Gstpar(idtmed[i], "MUNU", 0.); gMC->Gstpar(idtmed[i], "LOSS", 1.); gMC->Gstpar(idtmed[i], "PHOT", 0.); gMC->Gstpar(idtmed[i], "COMP", 0.); gMC->Gstpar(idtmed[i], "PAIR", 0.); gMC->Gstpar(idtmed[i], "BREM", 0.); gMC->Gstpar(idtmed[i], "DRAY", 0.); gMC->Gstpar(idtmed[i], "ANNI", 0.); gMC->Gstpar(idtmed[i], "HADR", 0.); i = 4; gMC->Gstpar(idtmed[i], "DCAY", 0.); gMC->Gstpar(idtmed[i], "MULS", 0.); gMC->Gstpar(idtmed[i], "PFIS", 0.); gMC->Gstpar(idtmed[i], "MUNU", 0.); gMC->Gstpar(idtmed[i], "LOSS", 1.); gMC->Gstpar(idtmed[i], "PHOT", 0.); gMC->Gstpar(idtmed[i], "COMP", 0.); gMC->Gstpar(idtmed[i], "PAIR", 0.); gMC->Gstpar(idtmed[i], "BREM", 0.); gMC->Gstpar(idtmed[i], "DRAY", 0.); gMC->Gstpar(idtmed[i], "ANNI", 0.); gMC->Gstpar(idtmed[i], "HADR", 0.); // Avoid interaction in void i = 10; gMC->Gstpar(idtmed[i], "DCAY", 0.); gMC->Gstpar(idtmed[i], "MULS", 0.); gMC->Gstpar(idtmed[i], "PFIS", 0.); gMC->Gstpar(idtmed[i], "MUNU", 0.); gMC->Gstpar(idtmed[i], "LOSS", 0.); gMC->Gstpar(idtmed[i], "PHOT", 0.); gMC->Gstpar(idtmed[i], "COMP", 0.); gMC->Gstpar(idtmed[i], "PAIR", 0.); gMC->Gstpar(idtmed[i], "BREM", 0.); gMC->Gstpar(idtmed[i], "DRAY", 0.); gMC->Gstpar(idtmed[i], "ANNI", 0.); gMC->Gstpar(idtmed[i], "HADR", 0.); // fMedSensF1 = idtmed[3]; // Sensitive volume: fibres type 1 fMedSensF2 = idtmed[4]; // Sensitive volume: fibres type 2 fMedSensZN = idtmed[1]; // Sensitive volume: ZN passive material fMedSensZP = idtmed[2]; // Sensitive volume: ZP passive material fMedSensZEM = idtmed[6]; // Sensitive volume: ZEM passive material fMedSensGR = idtmed[12]; // Sensitive volume: air into the grooves fMedSensPI = idtmed[5]; // Sensitive volume: beam pipes } //_____________________________________________________________________________ void AliZDCv1::Init() { InitTables(); } //_____________________________________________________________________________ void AliZDCv1::InitTables() { Int_t k, j; //Initialize parameters for light tables and read them fNalfan = 90; fNalfap = 90; fNben = 18; fNbep = 28; char *lightfName1,*lightfName2,*lightfName3,*lightfName4, *lightfName5,*lightfName6,*lightfName7,*lightfName8; FILE *fp1, *fp2, *fp3, *fp4, *fp5, *fp6, *fp7, *fp8; lightfName1 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620362207s"); if((fp1 = fopen(lightfName1,"r")) == NULL){ printf("Cannot open file fp1 \n"); return; } lightfName2 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620362208s"); if((fp2 = fopen(lightfName2,"r")) == NULL){ printf("Cannot open file fp2 \n"); return; } lightfName3 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620362209s"); if((fp3 = fopen(lightfName3,"r")) == NULL){ printf("Cannot open file fp3 \n"); return; } lightfName4 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620362210s"); if((fp4 = fopen(lightfName4,"r")) == NULL){ printf("Cannot open file fp4 \n"); return; } // printf(" --- Reading light tables for ZN \n"); for(k=0; kExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620552207s"); if((fp5 = fopen(lightfName5,"r")) == NULL){ printf("Cannot open file fp5 \n"); return; } lightfName6 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620552208s"); if((fp6 = fopen(lightfName6,"r")) == NULL){ printf("Cannot open file fp6 \n"); return; } lightfName7 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620552209s"); if((fp7 = fopen(lightfName7,"r")) == NULL){ printf("Cannot open file fp7 \n"); return; } lightfName8 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620552210s"); if((fp8 = fopen(lightfName8,"r")) == NULL){ printf("Cannot open file fp8 \n"); return; } // printf(" --- Reading light tables for ZP and ZEM \n"); for(k=0; k Det = %d, Quad = %d, Light = %d\n", Det, Quad, Light); } Int_t j,i; for(i=0; i<3; i++){ for(j=0; j<5; j++){ fPedMean[i][j] = 50.; fPedSigma[i][j] = 10.; fPMGain[i][j] = 10000000.; } } fADCRes = 0.00000064; // ADC Resolution: 250 fC/ADCch Float_t Ped = gRandom->Gaus(fPedMean[Det-1][Quad],fPedSigma[Det-1][Quad]); Int_t ADCch = Int_t(Light*fPMGain[Det-1][Quad]*fADCRes+Ped); if(fDebug == 1){ printf(" Ped = %f, ADCch = %d\n", Ped, ADCch); } return ADCch; } //_____________________________________________________________________________ void AliZDCv1::Hits2Digits(Int_t ntracks) { // Creation of the digits from hits if(fDigits!=0) fDigits->Clear(); else fDigits = new TClonesArray ("AliZDCDigit",1000); char branchname[10]; sprintf(branchname,"%s",GetName()); gAlice->TreeD()->Branch(branchname,&fDigits, fBufferSize); gAlice->TreeD()->GetEvent(0); AliZDCDigit *newdigit; AliZDCHit *hit; Int_t PMCZN = 0, PMCZP = 0, PMQZN[4], PMQZP[4], PMZEM = 0; Int_t i; for(i=0; i<4; i++){ PMQZN[i] =0; PMQZP[i] =0; } Int_t itrack = 0; for(itrack=0; itrackResetHits(); gAlice->TreeH()->GetEvent(itrack); for(i=0; iGetEntries(); i++){ hit = (AliZDCHit*)fHits->At(i); Int_t det = hit->GetVolume(0); Int_t quad = hit->GetVolume(1); Int_t lightQ = Int_t(hit->GetLightPMQ()); Int_t lightC = Int_t(hit->GetLightPMC()); if(fDebug == 1) printf(" \n itrack = %d, fNhits = %d, det = %d, quad = %d," "lightC = %d lightQ = %d\n", itrack, fNhits, det, quad, lightC, lightQ); if(det == 1){ //ZN PMCZN = PMCZN + lightC; PMQZN[quad-1] = PMQZN[quad-1] + lightQ; } if(det == 2){ //ZP PMCZP = PMCZP + lightC; PMQZP[quad-1] = PMQZP[quad-1] + lightQ; } if(det == 3){ //ZEM PMZEM = PMZEM + lightC; } } // Hits loop if(fDebug == 1){ printf("\n PMCZN = %d, PMQZN[0] = %d, PMQZN[1] = %d, PMQZN[2] = %d, PMQZN[3] = %d\n" , PMCZN, PMQZN[0], PMQZN[1], PMQZN[2], PMQZN[3]); printf("\n PMCZP = %d, PMQZP[0] = %d, PMQZP[1] = %d, PMQZP[2] = %d, PMQZP[3] = %d\n" , PMCZP, PMQZP[0], PMQZP[1], PMQZP[2], PMQZP[3]); printf("\n PMZEM = %d\n", PMZEM); } // ------------------------------------ Hits2Digits // Digits for ZN newdigit = new AliZDCDigit(1, 0, Digitize(1, 0, PMCZN)); new((*fDigits)[fNdigits]) AliZDCDigit(*newdigit); fNdigits++; delete newdigit; Int_t j; for(j=0; j<4; j++){ newdigit = new AliZDCDigit(1, j+1, Digitize(1, j+1, PMQZN[j])); new((*fDigits)[fNdigits]) AliZDCDigit(*newdigit); fNdigits++; delete newdigit; } // Digits for ZP newdigit = new AliZDCDigit(2, 0, Digitize(2, 0, PMCZP)); new((*fDigits)[fNdigits]) AliZDCDigit(*newdigit); fNdigits++; delete newdigit; Int_t k; for(k=0; k<4; k++){ newdigit = new AliZDCDigit(2, k+1, Digitize(2, k+1, PMQZP[k])); new((*fDigits)[fNdigits]) AliZDCDigit(*newdigit); fNdigits++; delete newdigit; } // Digits for ZEM newdigit = new AliZDCDigit(3, 0, Digitize(3, 0, PMZEM)); new((*fDigits)[fNdigits]) AliZDCDigit(*newdigit); fNdigits++; delete newdigit; } // Tracks loop gAlice->TreeD()->Fill(); gAlice->TreeD()->Write(0,TObject::kOverwrite); if(fDebug == 1){ printf("\n Event Digits -----------------------------------------------------\n"); fDigits->Print(""); } } //_____________________________________________________________________________ void AliZDCv1::MakeBranch(Option_t *opt) { // // Create a new branch in the current Root Tree // AliDetector::MakeBranch(opt); char branchname[10]; sprintf(branchname,"%s",GetName()); char *cD = strstr(opt,"D"); if (fDigits && gAlice->TreeD() && cD) { gAlice->TreeD()->Branch(branchname,&fDigits, fBufferSize); printf("* AliZDCv1::MakeBranch * Making Branch %s for digits\n\n",branchname); } } //_____________________________________________________________________________ void AliZDCv1::StepManager() { // // Routine called at every step in the Zero Degree Calorimeters // Int_t j; Int_t vol[2], ibeta=0, ialfa, ibe, nphe; Float_t x[3], xdet[3], destep, hits[10], m, ekin, um[3], ud[3], be, radius, out; TLorentzVector s, p; const char *knamed; if((gMC->GetMedium() == fMedSensZN) || (gMC->GetMedium() == fMedSensZP) || (gMC->GetMedium() == fMedSensGR) || (gMC->GetMedium() == fMedSensF1) || (gMC->GetMedium() == fMedSensF2) || (gMC->GetMedium() == fMedSensZEM) || (gMC->GetMedium() == fMedSensPI)){ // If particle interacts with beam pipe -> return if(gMC->GetMedium() == fMedSensPI){ // If option NoShower is set -> StopTrack if(fNoShower==1) gMC->StopTrack(); return; } //Particle coordinates gMC->TrackPosition(s); for(j=0; j<=2; j++){ x[j] = s[j]; } hits[0] = x[0]; hits[1] = x[1]; hits[2] = x[2]; // Determine in which ZDC the particle is knamed = gMC->CurrentVolName(); if(!strncmp(knamed,"ZN",2))vol[0]=1; if(!strncmp(knamed,"ZP",2))vol[0]=2; if(!strncmp(knamed,"ZE",2))vol[0]=3; // Determine in which quadrant the particle is //Quadrant in ZN if(vol[0]==1){ xdet[0] = x[0]-fPosZN[0]; xdet[1] = x[1]-fPosZN[1]; if((xdet[0]<=0.) && (xdet[1]>=0.)) vol[1]=1; if((xdet[0]>0.) && (xdet[1]>0.)) vol[1]=2; if((xdet[0]<0.) && (xdet[1]<0.)) vol[1]=3; if((xdet[0]>0.) && (xdet[1]<0.)) vol[1]=4; } //Quadrant in ZP if(vol[0]==2){ xdet[0] = x[0]-fPosZP[0]; xdet[1] = x[1]-fPosZP[1]; if(xdet[0]>fDimZP[0])xdet[0]=fDimZP[0]-0.01; if(xdet[0]<-fDimZP[0])xdet[0]=-fDimZP[0]+0.01; Float_t xqZP = xdet[0]/(fDimZP[0]/2); for(int i=1; i<=4; i++){ if(xqZP>=(i-3) && xqZP<(i-2)){ vol[1] = i; break; } } } //ZEM has only 1 quadrant if(vol[0] == 3){ vol[1] = 1; xdet[0] = x[0]-fPosZEM[0]; xdet[1] = x[1]-fPosZEM[1]; // printf("x %f %f xdet %f %f\n",x[0],x[1],xdet[0],xdet[1]); } // if(vol[1]>4){ // printf("\n-> Det. %d Quad. %d \n", vol[0], vol[1]); // printf("x %f %f xdet %f %f\n",x[0],x[1],xdet[0],xdet[1]);} // Store impact point and kinetic energy of the ENTERING particle // Int_t Curtrack = gAlice->CurrentTrack(); // Int_t Prim = gAlice->GetPrimary(Curtrack); // printf ("Primary: %d, Current Track: %d \n", Prim, Curtrack); // if(Curtrack==Prim){ if(gMC->IsTrackEntering()){ //Particle energy gMC->TrackMomentum(p); // printf("p[0] = %f, p[1] = %f, p[2] = %f, p[3] = %f \n", // p[0], p[1], p[2], p[3]); hits[3] = p[3]; // Impact point on ZDC hits[4] = xdet[0]; hits[5] = xdet[1]; hits[6] = 0; hits[7] = 0; hits[8] = 0; hits[9] = 0; // Int_t PcID = gMC->TrackPid(); // printf("Pc ID -> %d\n",PcID); AddHit(gAlice->CurrentTrack(), vol, hits); if(fNoShower==1){ gMC->StopTrack(); return; } } // } // Charged particles -> Energy loss if((destep=gMC->Edep())){ if(gMC->IsTrackStop()){ gMC->TrackMomentum(p); m = gMC->TrackMass(); ekin = p[3]-m; if(ekin<0.) printf("ATTENTION!!!!!!!!!!!!!!! -> ekin = %f <0 (?)",ekin); hits[9] = ekin; hits[7] = 0.; hits[8] = 0.; AddHit(gAlice->CurrentTrack(), vol, hits); } else{ hits[9] = destep; hits[7] = 0.; hits[8] = 0.; AddHit(gAlice->CurrentTrack(), vol, hits); } // printf(" -> Charged particle -> Dep. E = %f eV \n",hits[8]); } // printf(" \n"); } // *** Light production in fibres if((gMC->GetMedium() == fMedSensF1) || (gMC->GetMedium() == fMedSensF2)){ //Select charged particles if((destep=gMC->Edep())){ // printf(" -> CHARGED particle!!! \n"); // Particle velocity gMC->TrackMomentum(p); Float_t ptot=TMath::Sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]); Float_t beta = ptot/p[3]; // Int_t pcID = gMC->TrackPid(); // printf(" Pc %d in quadrant %d -> beta = %f \n", pcID, vol[1], beta); if(beta<0.67) return; if((beta>=0.67) && (beta<=0.75)) ibeta = 0; if((beta>0.75) && (beta<=0.85)) ibeta = 1; if((beta>0.85) && (beta<=0.95)) ibeta = 2; // if((beta>0.95) && (beta<=1.00)) ibeta = 3; if(beta>0.95) ibeta = 3; // Angle between particle trajectory and fibre axis // 1 -> Momentum directions um[0] = p[0]/ptot; um[1] = p[1]/ptot; um[2] = p[2]/ptot; gMC->Gmtod(um,ud,2); // 2 -> Angle < limit angle Double_t alfar = TMath::ACos(ud[2]); Double_t alfa = alfar*kRaddeg; if(alfa>=110.) return; ialfa = Int_t(1.+alfa/2.); // Distance between particle trajectory and fibre axis gMC->TrackPosition(s); for(j=0; j<=2; j++){ x[j] = s[j]; } gMC->Gmtod(x,xdet,1); if(TMath::Abs(ud[0])>0.00001){ Float_t dcoeff = ud[1]/ud[0]; be = TMath::Abs((xdet[1]-dcoeff*xdet[0])/TMath::Sqrt(dcoeff*dcoeff+1.)); } else{ be = TMath::Abs(ud[0]); } if((vol[0]==1)) radius = fFibZN[1]; if((vol[0]==2)) radius = fFibZP[1]; ibe = Int_t(be*1000.+1); //Looking into the light tables Float_t charge = gMC->TrackCharge(); // (1) ZN if((vol[0]==1)) { if(ibe>fNben) ibe=fNben; out = charge*charge*fTablen[ibeta][ialfa][ibe]; nphe = gRandom->Poisson(out); if(gMC->GetMedium() == fMedSensF1){ hits[7] = nphe; //fLightPMQ hits[8] = 0; hits[9] = 0; AddHit(gAlice->CurrentTrack(), vol, hits); } else{ hits[7] = 0; hits[8] = nphe; //fLightPMC hits[9] = 0; AddHit(gAlice->CurrentTrack(), vol, hits); } } // (2) ZP if((vol[0]==2)) { if(ibe>fNbep) ibe=fNbep; out = charge*charge*fTablep[ibeta][ialfa][ibe]; nphe = gRandom->Poisson(out); if(gMC->GetMedium() == fMedSensF1){ hits[7] = nphe; //fLightPMQ hits[8] = 0; hits[9] = 0; AddHit(gAlice->CurrentTrack(), vol, hits); } else{ hits[7] = 0; hits[8] = nphe; //fLightPMC hits[9] = 0; AddHit(gAlice->CurrentTrack(), vol, hits); } } // (3) ZEM if((vol[0]==3)) { if(ibe>fNbep) ibe=fNbep; out = charge*charge*fTablep[ibeta][ialfa][ibe]; nphe = gRandom->Poisson(out); hits[7] = nphe; //fLightPMQ hits[8] = 0; hits[9] = 0; AddHit(gAlice->CurrentTrack(), vol, hits); } } } }