/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /////////////////////////////////////////////////////////////////////// // // // AliZDCv2 --- new ZDC geometry // // with the EM ZDC at about 10 m from IP // // Just one set of ZDC is inserted // // (on the same side of the dimuon arm realtive to IP) // // Compensator in ZDC geometry (Nov. 2004) // // // /////////////////////////////////////////////////////////////////////// // --- Standard libraries #include "stdio.h" // --- ROOT system #include #include #include #include #include #include #include #include #include // --- AliRoot classes #include "AliConst.h" #include "AliMagF.h" #include "AliRun.h" #include "AliZDCv2.h" #include "AliMC.h" class AliZDCHit; class AliPDG; class AliDetector; ClassImp(AliZDCv2) //_____________________________________________________________________________ AliZDCv2::AliZDCv2() : AliZDC() { // // Default constructor for Zero Degree Calorimeter // fMedSensF1 = 0; fMedSensF2 = 0; fMedSensZN = 0; fMedSensZP = 0; fMedSensZEM = 0; fMedSensGR = 0; } //_____________________________________________________________________________ AliZDCv2::AliZDCv2(const char *name, const char *title) : AliZDC(name,title) { // // Standard constructor for Zero Degree Calorimeter // // // Check that DIPO, ABSO, DIPO and SHIL is there (otherwise tracking is wrong!!!) AliModule* pipe=gAlice->GetModule("PIPE"); AliModule* abso=gAlice->GetModule("ABSO"); AliModule* dipo=gAlice->GetModule("DIPO"); AliModule* shil=gAlice->GetModule("SHIL"); if((!pipe) || (!abso) || (!dipo) || (!shil)) { Error("Constructor","ZDC needs PIPE, ABSO, DIPO and SHIL!!!\n"); exit(1); } fMedSensF1 = 0; fMedSensF2 = 0; fMedSensZN = 0; fMedSensZP = 0; fMedSensZEM = 0; fMedSensGR = 0; fMedSensPI = 0; fMedSensTDI = 0; // Parameters for light tables fNalfan = 90; // Number of Alfa (neutrons) fNalfap = 90; // Number of Alfa (protons) fNben = 18; // Number of beta (neutrons) fNbep = 28; // Number of beta (protons) Int_t ip,jp,kp; for(ip=0; ip<4; ip++){ for(kp=0; kpGetArray(); // -- Mother of the ZDCs (Vacuum PCON) // zd1 = 2092.; // (Without compensator in ZDC geometry) zd1 = 1921.6; conpar[0] = 0.; conpar[1] = 360.; conpar[2] = 2.; conpar[3] = -13500.; conpar[4] = 0.; conpar[5] = 55.; conpar[6] = -zd1; conpar[7] = 0.; conpar[8] = 55.; gMC->Gsvolu("ZDC ", "PCON", idtmed[11], conpar, 9); gMC->Gspos("ZDC ", 1, "ALIC", 0., 0., 0., 0, "ONLY"); // -- FIRST SECTION OF THE BEAM PIPE (from compensator dipole to // the beginning of D1) tubpar[0] = 6.3/2.; tubpar[1] = 6.7/2.; // From beginning of ZDC volumes to beginning of D1 tubpar[2] = (5838.3-zd1)/2.; gMC->Gsvolu("QT01", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT01", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QT01 TUBE pipe from z = %f to z= %f (D1 beg.)\n",-zd1,-2*tubpar[2]-zd1); //-- SECOND SECTION OF THE BEAM PIPE (from the end of D1 to the // beginning of D2) //-- FROM MAGNETIC BEGINNING OF D1 TO MAGNETIC END OF D1 + 13.5 cm //-- Cylindrical pipe (r = 3.47) + conical flare // -> Beginning of D1 zd1 += 2.*tubpar[2]; tubpar[0] = 3.47; tubpar[1] = 3.47+0.2; tubpar[2] = 958.5/2.; gMC->Gsvolu("QT02", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT02", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QT02 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1); zd1 += 2.*tubpar[2]; conpar[0] = 25./2.; conpar[1] = 10./2.; conpar[2] = 10.4/2.; conpar[3] = 6.44/2.; conpar[4] = 6.84/2.; gMC->Gsvolu("QC01", "CONE", idtmed[7], conpar, 5); gMC->Gspos("QC01", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QC01 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1); zd1 += 2.*conpar[0]; tubpar[0] = 10./2.; tubpar[1] = 10.4/2.; tubpar[2] = 50./2.; gMC->Gsvolu("QT03", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT03", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QT03 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1); zd1 += tubpar[2]*2.; tubpar[0] = 10./2.; tubpar[1] = 10.4/2.; tubpar[2] = 10./2.; gMC->Gsvolu("QT04", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT04", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QT04 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1); zd1 += tubpar[2] * 2.; tubpar[0] = 10./2.; tubpar[1] = 10.4/2.; tubpar[2] = 3.16/2.; gMC->Gsvolu("QT05", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT05", 1, "ZDC ", 0., 0., -tubpar[0]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QT05 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1); zd1 += tubpar[2] * 2.; tubpar[0] = 10.0/2.; tubpar[1] = 10.4/2; tubpar[2] = 190./2.; gMC->Gsvolu("QT06", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT06", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QT06 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1); zd1 += tubpar[2] * 2.; conpar[0] = 30./2.; conpar[1] = 20.6/2.; conpar[2] = 21./2.; conpar[3] = 10./2.; conpar[4] = 10.4/2.; gMC->Gsvolu("QC02", "CONE", idtmed[7], conpar, 5); gMC->Gspos("QC02", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QC02 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1); zd1 += conpar[0] * 2.; tubpar[0] = 20.6/2.; tubpar[1] = 21./2.; tubpar[2] = 450./2.; gMC->Gsvolu("QT07", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT07", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QT07 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1); zd1 += tubpar[2] * 2.; conpar[0] = 13.6/2.; conpar[1] = 25.4/2.; conpar[2] = 25.8/2.; conpar[3] = 20.6/2.; conpar[4] = 21./2.; gMC->Gsvolu("QC03", "CONE", idtmed[7], conpar, 5); gMC->Gspos("QC03", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QC03 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1); zd1 += conpar[0] * 2.; tubpar[0] = 25.4/2.; tubpar[1] = 25.8/2.; tubpar[2] = 205.8/2.; gMC->Gsvolu("QT08", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT08", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QT08 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1); zd1 += tubpar[2] * 2.; tubpar[0] = 50./2.; tubpar[1] = 50.4/2.; // QT09 is 10 cm longer to accomodate TDI tubpar[2] = 515.4/2.; gMC->Gsvolu("QT09", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT09", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QT09 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1); // --- Insert TDI (inside ZDC volume) boxpar[0] = 5.6; boxpar[1] = 5.6; boxpar[2] = 400./2.; gMC->Gsvolu("QTD1", "BOX ", idtmed[7], boxpar, 3); gMC->Gspos("QTD1", 1, "ZDC ", -3., 10.6, -tubpar[2]-zd1-56.3, 0, "ONLY"); gMC->Gspos("QTD1", 2, "ZDC ", -3., -10.6, -tubpar[2]-zd1-56.3, 0, "ONLY"); boxpar[0] = 0.2/2.; boxpar[1] = 5.6; boxpar[2] = 400./2.; gMC->Gsvolu("QTD2", "BOX ", idtmed[6], boxpar, 3); gMC->Gspos("QTD2", 1, "ZDC ", -8.6-boxpar[0], 0., -tubpar[2]-zd1-56.3, 0, "ONLY"); tubspar[0] = 10.5; // R = 10.5 cm------------------------------------------ tubspar[1] = 10.7; tubspar[2] = 400./2.; tubspar[3] = 360.-75.5; tubspar[4] = 75.5; gMC->Gsvolu("QTD3", "TUBS", idtmed[6], tubspar, 5); gMC->Gspos("QTD3", 1, "ZDC ", 0., 0., -tubpar[2]-zd1-56.3, 0, "ONLY"); // Ch.debug //printf("\n TDI volume from z = %f to z= %f\n",-tubpar[2]-zd1-56.3,-tubpar[2]-zd1-56.3-400.); zd1 += tubpar[2] * 2.; tubpar[0] = 50./2.; tubpar[1] = 50.4/2.; // QT10 is 10 cm shorter tubpar[2] = 690./2.; gMC->Gsvolu("QT10", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT10", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QT10 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1); zd1 += tubpar[2] * 2.; tubpar[0] = 50./2.; tubpar[1] = 50.4/2.; tubpar[2] = 778.5/2.; gMC->Gsvolu("QT11", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT11", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QT11 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1); zd1 += tubpar[2] * 2.; conpar[0] = 14.18/2.; conpar[1] = 55./2.; conpar[2] = 55.4/2.; conpar[3] = 50./2.; conpar[4] = 50.4/2.; gMC->Gsvolu("QC04", "CONE", idtmed[7], conpar, 5); gMC->Gspos("QC04", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QC04 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1); zd1 += conpar[0] * 2.; tubpar[0] = 55./2.; tubpar[1] = 55.4/2.; tubpar[2] = 730./2.; gMC->Gsvolu("QT12", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT12", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QT12 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1); zd1 += tubpar[2] * 2.; conpar[0] = 36.86/2.; conpar[1] = 68./2.; conpar[2] = 68.4/2.; conpar[3] = 55./2.; conpar[4] = 55.4/2.; gMC->Gsvolu("QC05", "CONE", idtmed[7], conpar, 5); gMC->Gspos("QC05", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QC05 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1); zd1 += conpar[0] * 2.; tubpar[0] = 68./2.; tubpar[1] = 68.4/2.; tubpar[2] = 927.3/2.; gMC->Gsvolu("QT13", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("QT13", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QT13 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1); zd1 += tubpar[2] * 2.; tubpar[0] = 0./2.; tubpar[1] = 68.4/2.; tubpar[2] = 0.2/2.; gMC->Gsvolu("QT14", "TUBE", idtmed[8], tubpar, 3); gMC->Gspos("QT14", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf("\n QT14 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1); zd1 += tubpar[2] * 2.; tubpar[0] = 0./2.; tubpar[1] = 6.4/2.; tubpar[2] = 0.2/2.; gMC->Gsvolu("QT15", "TUBE", idtmed[11], tubpar, 3); //-- Position QT15 inside QT14 gMC->Gspos("QT15", 1, "QT14", -7.7, 0., 0., 0, "ONLY"); gMC->Gsvolu("QT16", "TUBE", idtmed[11], tubpar, 3); //-- Position QT16 inside QT14 gMC->Gspos("QT16", 1, "QT14", 7.7, 0., 0., 0, "ONLY"); //-- BEAM PIPE BETWEEN END OF CONICAL PIPE AND BEGINNING OF D2 tubpar[0] = 6.4/2.; tubpar[1] = 6.8/2.; tubpar[2] = 680.8/2.; gMC->Gsvolu("QT17", "TUBE", idtmed[7], tubpar, 3); tubpar[0] = 6.4/2.; tubpar[1] = 6.8/2.; tubpar[2] = 680.8/2.; gMC->Gsvolu("QT18", "TUBE", idtmed[7], tubpar, 3); // -- ROTATE PIPES Float_t angle = 0.143*kDegrad; // Rotation angle //AliMatrix(im1, 90.+0.143, 0., 90., 90., 0.143, 0.); // x<0 gMC->Matrix(im1, 90.+0.143, 0., 90., 90., 0.143, 0.); // x<0 gMC->Gspos("QT17", 1, "ZDC ", TMath::Sin(angle) * 680.8/ 2. - 9.4, 0., -tubpar[2]-zd1, im1, "ONLY"); //AliMatrix(im2, 90.-0.143, 0., 90., 90., 0.143, 180.); // x>0 (ZP) gMC->Matrix(im2, 90.-0.143, 0., 90., 90., 0.143, 180.); // x>0 (ZP) gMC->Gspos("QT18", 1, "ZDC ", 9.7 - TMath::Sin(angle) * 680.8 / 2., 0., -tubpar[2]-zd1, im2, "ONLY"); // -- END OF BEAM PIPE VOLUME DEFINITION. // ---------------------------------------------------------------- // ---------------------------------------------------------------- // -- MAGNET DEFINITION -> LHC OPTICS 6.5 // ---------------------------------------------------------------- // -- COMPENSATOR DIPOLE (MBXW) zc = 1921.6; // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 4.5; tubpar[2] = 170./2.; gMC->Gsvolu("MBXW", "TUBE", idtmed[11], tubpar, 3); // -- YOKE tubpar[0] = 4.5; tubpar[1] = 55.; tubpar[2] = 170./2.; gMC->Gsvolu("YMBX", "TUBE", idtmed[13], tubpar, 3); gMC->Gspos("MBXW", 1, "ZDC ", 0., 0., -tubpar[2]-zc, 0, "ONLY"); gMC->Gspos("YMBX", 1, "ZDC ", 0., 0., -tubpar[2]-zc, 0, "ONLY"); // -- INNER TRIPLET zq = 2296.5; // -- DEFINE MQXL AND MQX QUADRUPOLE ELEMENT // -- MQXL // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 3.5; tubpar[2] = 637./2.; gMC->Gsvolu("MQXL", "TUBE", idtmed[11], tubpar, 3); // -- YOKE tubpar[0] = 3.5; tubpar[1] = 22.; tubpar[2] = 637./2.; gMC->Gsvolu("YMQL", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("MQXL", 1, "ZDC ", 0., 0., -tubpar[2]-zq, 0, "ONLY"); gMC->Gspos("YMQL", 1, "ZDC ", 0., 0., -tubpar[2]-zq, 0, "ONLY"); gMC->Gspos("MQXL", 2, "ZDC ", 0., 0., -tubpar[2]-zq-2430., 0, "ONLY"); gMC->Gspos("YMQL", 2, "ZDC ", 0., 0., -tubpar[2]-zq-2430., 0, "ONLY"); // -- MQX // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 3.5; tubpar[2] = 550./2.; gMC->Gsvolu("MQX ", "TUBE", idtmed[11], tubpar, 3); // -- YOKE tubpar[0] = 3.5; tubpar[1] = 22.; tubpar[2] = 550./2.; gMC->Gsvolu("YMQ ", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("MQX ", 1, "ZDC ", 0., 0., -tubpar[2]-zq-908.5, 0, "ONLY"); gMC->Gspos("YMQ ", 1, "ZDC ", 0., 0., -tubpar[2]-zq-908.5, 0, "ONLY"); gMC->Gspos("MQX ", 2, "ZDC ", 0., 0., -tubpar[2]-zq-1558.5, 0, "ONLY"); gMC->Gspos("YMQ ", 2, "ZDC ", 0., 0., -tubpar[2]-zq-1558.5, 0, "ONLY"); // -- SEPARATOR DIPOLE D1 zd1 = 5838.3; // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 6.94/2.; tubpar[2] = 945./2.; gMC->Gsvolu("MD1 ", "TUBE", idtmed[11], tubpar, 3); // -- Insert horizontal Cu plates inside D1 // -- (to simulate the vacuum chamber) boxpar[0] = TMath::Sqrt(tubpar[1]*tubpar[1]-(2.98+0.2)*(2.98+0.2)) - 0.05; boxpar[1] = 0.2/2.; boxpar[2] =945./2.; gMC->Gsvolu("MD1V", "BOX ", idtmed[6], boxpar, 3); gMC->Gspos("MD1V", 1, "MD1 ", 0., 2.98+boxpar[1], 0., 0, "ONLY"); gMC->Gspos("MD1V", 2, "MD1 ", 0., -2.98-boxpar[1], 0., 0, "ONLY"); // -- YOKE tubpar[0] = 0.; tubpar[1] = 110./2; tubpar[2] = 945./2.; gMC->Gsvolu("YD1 ", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("YD1 ", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); gMC->Gspos("MD1 ", 1, "YD1 ", 0., 0., 0., 0, "ONLY"); // -- DIPOLE D2 // --- LHC optics v6.4 zd2 = 12147.6; // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 7.5/2.; tubpar[2] = 945./2.; gMC->Gsvolu("MD2 ", "TUBE", idtmed[11], tubpar, 3); // -- YOKE tubpar[0] = 0.; tubpar[1] = 55.; tubpar[2] = 945./2.; gMC->Gsvolu("YD2 ", "TUBE", idtmed[7], tubpar, 3); gMC->Gspos("YD2 ", 1, "ZDC ", 0., 0., -tubpar[2]-zd2, 0, "ONLY"); gMC->Gspos("MD2 ", 1, "YD2 ", -9.4, 0., 0., 0, "ONLY"); gMC->Gspos("MD2 ", 2, "YD2 ", 9.4, 0., 0., 0, "ONLY"); // -- END OF MAGNET DEFINITION } //_____________________________________________________________________________ void AliZDCv2::CreateZDC() { // // Create the various ZDCs (ZN + ZP) // Float_t dimPb[6], dimVoid[6]; Int_t *idtmed = fIdtmed->GetArray(); // Parameters for hadronic calorimeters geometry // NB -> parameters used ONLY in CreateZDC() Float_t fGrvZN[3] = {0.03, 0.03, 50.}; // Grooves for neutron detector Float_t fGrvZP[3] = {0.04, 0.04, 75.}; // Grooves for proton detector Int_t fDivZN[3] = {11, 11, 0}; // Division for neutron detector Int_t fDivZP[3] = {7, 15, 0}; // Division for proton detector Int_t fTowZN[2] = {2, 2}; // Tower for neutron detector Int_t fTowZP[2] = {4, 1}; // Tower for proton detector // Parameters for EM calorimeter geometry // NB -> parameters used ONLY in CreateZDC() Float_t kDimZEMPb = 0.15*(TMath::Sqrt(2.)); // z-dimension of the Pb slice Float_t kFibRadZEM = 0.0315; // External fiber radius (including cladding) Int_t fDivZEM[3] = {92, 0, 20}; // Divisions for EM detector Float_t fDimZEM[6] = {fZEMLength, 3.5, 3.5, 45., 0., 0.}; // Dimensions of EM detector Float_t fFibZEM2 = fDimZEM[2]/TMath::Sin(fDimZEM[3]*kDegrad)-kFibRadZEM; Float_t fFibZEM[3] = {0., 0.0275, fFibZEM2}; // Fibers for EM calorimeter //-- Create calorimeters geometry // ------------------------------------------------------------------------------- //--> Neutron calorimeter (ZN) gMC->Gsvolu("ZNEU", "BOX ", idtmed[1], fDimZN, 3); // Passive material gMC->Gsvolu("ZNF1", "TUBE", idtmed[3], fFibZN, 3); // Active material gMC->Gsvolu("ZNF2", "TUBE", idtmed[4], fFibZN, 3); gMC->Gsvolu("ZNF3", "TUBE", idtmed[4], fFibZN, 3); gMC->Gsvolu("ZNF4", "TUBE", idtmed[3], fFibZN, 3); gMC->Gsvolu("ZNG1", "BOX ", idtmed[12], fGrvZN, 3); // Empty grooves gMC->Gsvolu("ZNG2", "BOX ", idtmed[12], fGrvZN, 3); gMC->Gsvolu("ZNG3", "BOX ", idtmed[12], fGrvZN, 3); gMC->Gsvolu("ZNG4", "BOX ", idtmed[12], fGrvZN, 3); // Divide ZNEU in towers (for hits purposes) gMC->Gsdvn("ZNTX", "ZNEU", fTowZN[0], 1); // x-tower gMC->Gsdvn("ZN1 ", "ZNTX", fTowZN[1], 2); // y-tower //-- Divide ZN1 in minitowers // fDivZN[0]= NUMBER OF FIBERS PER TOWER ALONG X-AXIS, // fDivZN[1]= NUMBER OF FIBERS PER TOWER ALONG Y-AXIS // (4 fibres per minitower) gMC->Gsdvn("ZNSL", "ZN1 ", fDivZN[1], 2); // Slices gMC->Gsdvn("ZNST", "ZNSL", fDivZN[0], 1); // Sticks // --- Position the empty grooves in the sticks (4 grooves per stick) Float_t dx = fDimZN[0] / fDivZN[0] / 4.; Float_t dy = fDimZN[1] / fDivZN[1] / 4.; gMC->Gspos("ZNG1", 1, "ZNST", 0.-dx, 0.+dy, 0., 0, "ONLY"); gMC->Gspos("ZNG2", 1, "ZNST", 0.+dx, 0.+dy, 0., 0, "ONLY"); gMC->Gspos("ZNG3", 1, "ZNST", 0.-dx, 0.-dy, 0., 0, "ONLY"); gMC->Gspos("ZNG4", 1, "ZNST", 0.+dx, 0.-dy, 0., 0, "ONLY"); // --- Position the fibers in the grooves gMC->Gspos("ZNF1", 1, "ZNG1", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ZNF2", 1, "ZNG2", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ZNF3", 1, "ZNG3", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ZNF4", 1, "ZNG4", 0., 0., 0., 0, "ONLY"); // --- Position the neutron calorimeter in ZDC // -- Rotation of ZDCs Int_t irotzdc; gMC->Matrix(irotzdc, 90., 180., 90., 90., 180., 0.); // gMC->Gspos("ZNEU", 1, "ZDC ", fPosZN[0], fPosZN[1], fPosZN[2]-fDimZN[2], irotzdc, "ONLY"); //Ch debug //printf("\n ZN -> %f < z < %f cm\n",fPosZN[2],fPosZN[2]-2*fDimZN[2]); // ------------------------------------------------------------------------------- //--> Proton calorimeter (ZP) gMC->Gsvolu("ZPRO", "BOX ", idtmed[2], fDimZP, 3); // Passive material gMC->Gsvolu("ZPF1", "TUBE", idtmed[3], fFibZP, 3); // Active material gMC->Gsvolu("ZPF2", "TUBE", idtmed[4], fFibZP, 3); gMC->Gsvolu("ZPF3", "TUBE", idtmed[4], fFibZP, 3); gMC->Gsvolu("ZPF4", "TUBE", idtmed[3], fFibZP, 3); gMC->Gsvolu("ZPG1", "BOX ", idtmed[12], fGrvZP, 3); // Empty grooves gMC->Gsvolu("ZPG2", "BOX ", idtmed[12], fGrvZP, 3); gMC->Gsvolu("ZPG3", "BOX ", idtmed[12], fGrvZP, 3); gMC->Gsvolu("ZPG4", "BOX ", idtmed[12], fGrvZP, 3); //-- Divide ZPRO in towers(for hits purposes) gMC->Gsdvn("ZPTX", "ZPRO", fTowZP[0], 1); // x-tower gMC->Gsdvn("ZP1 ", "ZPTX", fTowZP[1], 2); // y-tower //-- Divide ZP1 in minitowers // fDivZP[0]= NUMBER OF FIBERS ALONG X-AXIS PER MINITOWER, // fDivZP[1]= NUMBER OF FIBERS ALONG Y-AXIS PER MINITOWER // (4 fiber per minitower) gMC->Gsdvn("ZPSL", "ZP1 ", fDivZP[1], 2); // Slices gMC->Gsdvn("ZPST", "ZPSL", fDivZP[0], 1); // Sticks // --- Position the empty grooves in the sticks (4 grooves per stick) dx = fDimZP[0] / fTowZP[0] / fDivZP[0] / 2.; dy = fDimZP[1] / fTowZP[1] / fDivZP[1] / 2.; gMC->Gspos("ZPG1", 1, "ZPST", 0.-dx, 0.+dy, 0., 0, "ONLY"); gMC->Gspos("ZPG2", 1, "ZPST", 0.+dx, 0.+dy, 0., 0, "ONLY"); gMC->Gspos("ZPG3", 1, "ZPST", 0.-dx, 0.-dy, 0., 0, "ONLY"); gMC->Gspos("ZPG4", 1, "ZPST", 0.+dx, 0.-dy, 0., 0, "ONLY"); // --- Position the fibers in the grooves gMC->Gspos("ZPF1", 1, "ZPG1", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ZPF2", 1, "ZPG2", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ZPF3", 1, "ZPG3", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ZPF4", 1, "ZPG4", 0., 0., 0., 0, "ONLY"); // --- Position the proton calorimeter in ZDC gMC->Gspos("ZPRO", 1, "ZDC ", fPosZP[0], fPosZP[1], fPosZP[2]-fDimZP[2], irotzdc, "ONLY"); //Ch debug //printf("\n ZP -> %f < z < %f cm\n",fPosZP[2],fPosZP[2]-2*fDimZP[2]); // ------------------------------------------------------------------------------- // -> EM calorimeter (ZEM) gMC->Gsvolu("ZEM ", "PARA", idtmed[10], fDimZEM, 6); Int_t irot1, irot2; gMC->Matrix(irot1,0.,0.,90.,90.,-90.,0.); // Rotation matrix 1 gMC->Matrix(irot2,180.,0.,90.,fDimZEM[3]+90.,90.,fDimZEM[3]);// Rotation matrix 2 //printf("irot1 = %d, irot2 = %d \n", irot1, irot2); gMC->Gsvolu("ZEMF", "TUBE", idtmed[3], fFibZEM, 3); // Active material gMC->Gsdvn("ZETR", "ZEM ", fDivZEM[2], 1); // Tranches dimPb[0] = kDimZEMPb; // Lead slices dimPb[1] = fDimZEM[2]; dimPb[2] = fDimZEM[1]; //dimPb[3] = fDimZEM[3]; //controllare dimPb[3] = 90.-fDimZEM[3]; //originale dimPb[4] = 0.; dimPb[5] = 0.; gMC->Gsvolu("ZEL0", "PARA", idtmed[5], dimPb, 6); gMC->Gsvolu("ZEL1", "PARA", idtmed[5], dimPb, 6); gMC->Gsvolu("ZEL2", "PARA", idtmed[5], dimPb, 6); // --- Position the lead slices in the tranche Float_t zTran = fDimZEM[0]/fDivZEM[2]; Float_t zTrPb = -zTran+kDimZEMPb; gMC->Gspos("ZEL0", 1, "ZETR", zTrPb, 0., 0., 0, "ONLY"); gMC->Gspos("ZEL1", 1, "ZETR", kDimZEMPb, 0., 0., 0, "ONLY"); // --- Vacuum zone (to be filled with fibres) dimVoid[0] = (zTran-2*kDimZEMPb)/2.; dimVoid[1] = fDimZEM[2]; dimVoid[2] = fDimZEM[1]; dimVoid[3] = 90.-fDimZEM[3]; dimVoid[4] = 0.; dimVoid[5] = 0.; gMC->Gsvolu("ZEV0", "PARA", idtmed[10], dimVoid,6); gMC->Gsvolu("ZEV1", "PARA", idtmed[10], dimVoid,6); // --- Divide the vacuum slice into sticks along x axis gMC->Gsdvn("ZES0", "ZEV0", fDivZEM[0], 3); gMC->Gsdvn("ZES1", "ZEV1", fDivZEM[0], 3); // --- Positioning the fibers into the sticks gMC->Gspos("ZEMF", 1,"ZES0", 0., 0., 0., irot2, "ONLY"); gMC->Gspos("ZEMF", 1,"ZES1", 0., 0., 0., irot2, "ONLY"); // --- Positioning the vacuum slice into the tranche Float_t displFib = fDimZEM[1]/fDivZEM[0]; gMC->Gspos("ZEV0", 1,"ZETR", -dimVoid[0], 0., 0., 0, "ONLY"); gMC->Gspos("ZEV1", 1,"ZETR", -dimVoid[0]+zTran, 0., displFib, 0, "ONLY"); // --- Positioning the ZEM into the ZDC - rotation for 90 degrees // NB -> In AliZDCv2 ZEM is positioned in ALIC (instead of in ZDC) volume // beacause it's impossible to make a ZDC pcon volume to contain // both hadronics and EM calorimeters. gMC->Gspos("ZEM ", 1,"ALIC", -fPosZEM[0], fPosZEM[1], fPosZEM[2]+fDimZEM[0], irot1, "ONLY"); // Second EM ZDC (same side w.r.t. IP, just on the other side w.r.t. beam pipe) gMC->Gspos("ZEM ", 2,"ALIC", fPosZEM[0], fPosZEM[1], fPosZEM[2]+fDimZEM[0], irot1, "ONLY"); // --- Adding last slice at the end of the EM calorimeter Float_t zLastSlice = fPosZEM[2]+kDimZEMPb+2*fDimZEM[0]; gMC->Gspos("ZEL2", 1,"ALIC", fPosZEM[0], fPosZEM[1], zLastSlice, irot1, "ONLY"); //Ch debug //printf("\n ZEM lenght = %f cm\n",2*fZEMLength); //printf("\n ZEM -> %f < z < %f cm\n",fPosZEM[2],fPosZEM[2]+2*fZEMLength+zLastSlice+kDimZEMPb); } //_____________________________________________________________________________ void AliZDCv2::DrawModule() const { // // Draw a shaded view of the Zero Degree Calorimeter version 1 // // Set everything unseen gMC->Gsatt("*", "seen", -1); // // Set ALIC mother transparent gMC->Gsatt("ALIC","SEEN",0); // // Set the volumes visible gMC->Gsatt("ZDC ","SEEN",0); gMC->Gsatt("QT01","SEEN",1); gMC->Gsatt("QT02","SEEN",1); gMC->Gsatt("QT03","SEEN",1); gMC->Gsatt("QT04","SEEN",1); gMC->Gsatt("QT05","SEEN",1); gMC->Gsatt("QT06","SEEN",1); gMC->Gsatt("QT07","SEEN",1); gMC->Gsatt("QT08","SEEN",1); gMC->Gsatt("QT09","SEEN",1); gMC->Gsatt("QT10","SEEN",1); gMC->Gsatt("QT11","SEEN",1); gMC->Gsatt("QT12","SEEN",1); gMC->Gsatt("QT13","SEEN",1); gMC->Gsatt("QT14","SEEN",1); gMC->Gsatt("QT15","SEEN",1); gMC->Gsatt("QT16","SEEN",1); gMC->Gsatt("QT17","SEEN",1); gMC->Gsatt("QT18","SEEN",1); gMC->Gsatt("QC01","SEEN",1); gMC->Gsatt("QC02","SEEN",1); gMC->Gsatt("QC03","SEEN",1); gMC->Gsatt("QC04","SEEN",1); gMC->Gsatt("QC05","SEEN",1); gMC->Gsatt("QTD1","SEEN",1); gMC->Gsatt("QTD2","SEEN",1); gMC->Gsatt("QTD3","SEEN",1); gMC->Gsatt("MQXL","SEEN",1); gMC->Gsatt("YMQL","SEEN",1); gMC->Gsatt("MQX ","SEEN",1); gMC->Gsatt("YMQ ","SEEN",1); gMC->Gsatt("ZQYX","SEEN",1); gMC->Gsatt("MD1 ","SEEN",1); gMC->Gsatt("MD1V","SEEN",1); gMC->Gsatt("YD1 ","SEEN",1); gMC->Gsatt("MD2 ","SEEN",1); gMC->Gsatt("YD2 ","SEEN",1); gMC->Gsatt("ZNEU","SEEN",0); gMC->Gsatt("ZNF1","SEEN",0); gMC->Gsatt("ZNF2","SEEN",0); gMC->Gsatt("ZNF3","SEEN",0); gMC->Gsatt("ZNF4","SEEN",0); gMC->Gsatt("ZNG1","SEEN",0); gMC->Gsatt("ZNG2","SEEN",0); gMC->Gsatt("ZNG3","SEEN",0); gMC->Gsatt("ZNG4","SEEN",0); gMC->Gsatt("ZNTX","SEEN",0); gMC->Gsatt("ZN1 ","COLO",4); gMC->Gsatt("ZN1 ","SEEN",1); gMC->Gsatt("ZNSL","SEEN",0); gMC->Gsatt("ZNST","SEEN",0); gMC->Gsatt("ZPRO","SEEN",0); gMC->Gsatt("ZPF1","SEEN",0); gMC->Gsatt("ZPF2","SEEN",0); gMC->Gsatt("ZPF3","SEEN",0); gMC->Gsatt("ZPF4","SEEN",0); gMC->Gsatt("ZPG1","SEEN",0); gMC->Gsatt("ZPG2","SEEN",0); gMC->Gsatt("ZPG3","SEEN",0); gMC->Gsatt("ZPG4","SEEN",0); gMC->Gsatt("ZPTX","SEEN",0); gMC->Gsatt("ZP1 ","COLO",6); gMC->Gsatt("ZP1 ","SEEN",1); gMC->Gsatt("ZPSL","SEEN",0); gMC->Gsatt("ZPST","SEEN",0); gMC->Gsatt("ZEM ","COLO",7); gMC->Gsatt("ZEM ","SEEN",1); gMC->Gsatt("ZEMF","SEEN",0); gMC->Gsatt("ZETR","SEEN",0); gMC->Gsatt("ZEL0","SEEN",0); gMC->Gsatt("ZEL1","SEEN",0); gMC->Gsatt("ZEL2","SEEN",0); gMC->Gsatt("ZEV0","SEEN",0); gMC->Gsatt("ZEV1","SEEN",0); gMC->Gsatt("ZES0","SEEN",0); gMC->Gsatt("ZES1","SEEN",0); // gMC->Gdopt("hide", "on"); gMC->Gdopt("shad", "on"); gMC->Gsatt("*", "fill", 7); gMC->SetClipBox("."); gMC->SetClipBox("*", 0, 100, -100, 100, 12000, 16000); gMC->DefaultRange(); gMC->Gdraw("alic", 40, 30, 0, 488, 220, .07, .07); gMC->Gdhead(1111, "Zero Degree Calorimeter Version 1"); gMC->Gdman(18, 4, "MAN"); } //_____________________________________________________________________________ void AliZDCv2::CreateMaterials() { // // Create Materials for the Zero Degree Calorimeter // Float_t dens, ubuf[1], wmat[2], a[2], z[2]; // --- Store in UBUF r0 for nuclear radius calculation R=r0*A**1/3 // --- Tantalum -> ZN passive material ubuf[0] = 1.1; AliMaterial(1, "TANT", 180.95, 73., 16.65, .4, 11.9, ubuf, 1); // --- Tungsten // ubuf[0] = 1.11; // AliMaterial(1, "TUNG", 183.85, 74., 19.3, .35, 10.3, ubuf, 1); // --- Brass (CuZn) -> ZP passive material dens = 8.48; a[0] = 63.546; a[1] = 65.39; z[0] = 29.; z[1] = 30.; wmat[0] = .63; wmat[1] = .37; AliMixture(2, "BRASS ", a, z, dens, 2, wmat); // --- SiO2 dens = 2.64; a[0] = 28.086; a[1] = 15.9994; z[0] = 14.; z[1] = 8.; wmat[0] = 1.; wmat[1] = 2.; AliMixture(3, "SIO2 ", a, z, dens, -2, wmat); // --- Lead ubuf[0] = 1.12; AliMaterial(5, "LEAD", 207.19, 82., 11.35, .56, 18.5, ubuf, 1); // --- Copper ubuf[0] = 1.10; AliMaterial(6, "COPP", 63.54, 29., 8.96, 1.4, 0., ubuf, 1); // --- Iron (energy loss taken into account) ubuf[0] = 1.1; AliMaterial(7, "IRON0", 55.85, 26., 7.87, 1.76, 0., ubuf, 1); // --- Iron (no energy loss) ubuf[0] = 1.1; AliMaterial(8, "IRON1", 55.85, 26., 7.87, 1.76, 0., ubuf, 1); AliMaterial(13, "IRON2", 55.85, 26., 7.87, 1.76, 0., ubuf, 1); // --------------------------------------------------------- Float_t aResGas[3]={1.008,12.0107,15.9994}; Float_t zResGas[3]={1.,6.,8.}; Float_t wResGas[3]={0.28,0.28,0.44}; Float_t dResGas = 3.2E-14; // --- Vacuum (no magnetic field) AliMixture(10, "VOID", aResGas, zResGas, dResGas, 3, wResGas); //AliMaterial(10, "VOID", 1e-16, 1e-16, 1e-16, 1e16, 1e16, ubuf,0); // --- Vacuum (with magnetic field) AliMixture(11, "VOIM", aResGas, zResGas, dResGas, 3, wResGas); //AliMaterial(11, "VOIM", 1e-16, 1e-16, 1e-16, 1e16, 1e16, ubuf,0); // --- Air (no magnetic field) Float_t aAir[4]={12.0107,14.0067,15.9994,39.948}; Float_t zAir[4]={6.,7.,8.,18.}; Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827}; Float_t dAir = 1.20479E-3; // AliMixture(12, "Air $", aAir, zAir, dAir, 4, wAir); //AliMaterial(12, "Air $", 14.61, 7.3, .001205, 30420., 67500., ubuf, 0); // --- Definition of tracking media: // --- Tantalum = 1 ; // --- Brass = 2 ; // --- Fibers (SiO2) = 3 ; // --- Fibers (SiO2) = 4 ; // --- Lead = 5 ; // --- Copper = 6 ; // --- Iron (with energy loss) = 7 ; // --- Iron (without energy loss) = 8 ; // --- Vacuum (no field) = 10 // --- Vacuum (with field) = 11 // --- Air (no field) = 12 // **************************************************** // Tracking media parameters // Float_t epsil = 0.01; // Tracking precision, Float_t stmin = 0.01; // Min. value 4 max. step (cm) Float_t stemax = 1.; // Max. step permitted (cm) Float_t tmaxfd = 0.; // Maximum angle due to field (degrees) Float_t deemax = -1.; // Maximum fractional energy loss Float_t nofieldm = 0.; // Max. field value (no field) Float_t fieldm = 45.; // Max. field value (with field) Int_t isvol = 0; // ISVOL =0 -> not sensitive volume Int_t isvolActive = 1; // ISVOL =1 -> sensitive volume Int_t inofld = 0; // IFIELD=0 -> no magnetic field Int_t ifield =2; // IFIELD=2 -> magnetic field defined in AliMagFC.h // ***************************************************** AliMedium(1, "ZTANT", 1, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(2, "ZBRASS",2, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(3, "ZSIO2", 3, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(4, "ZQUAR", 3, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(5, "ZLEAD", 5, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(6, "ZCOPP", 6, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(7, "ZIRON", 7, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(8, "ZIRONN",8, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(10,"ZVOID",10, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(12,"ZAIR", 12, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); // AliMedium(11,"ZVOIM", 11, isvol, ifield, fieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(13,"ZIRONE",13, isvol, ifield, fieldm, tmaxfd, stemax, deemax, epsil, stmin); } //_____________________________________________________________________________ void AliZDCv2::AddAlignableVolumes() const { // // Create entries for alignable volumes associating the symbolic volume // name with the corresponding volume path. Needs to be syncronized with // eventual changes in the geometry. // Int_t modnum = 0; TString volpath1 = "ALIC_1/ZDC_1/ZNEU_1"; TString volpath2 = "ALIC_1/ZDC_1/ZPRO_1"; TString symname1="ZDC/NeutronZDC"; TString symname2="ZDC/ProtonZDC"; if(!gGeoManager->SetAlignableEntry(symname1.Data(),volpath1.Data())) AliFatal(Form("Alignable entry %s not created. Volume path %s not valid", symname1.Data(),volpath1.Data())); if(!gGeoManager->SetAlignableEntry(symname2.Data(),volpath2.Data())) AliFatal(Form("Alignable entry %s not created. Volume path %s not valid", symname2.Data(),volpath2.Data())); } //_____________________________________________________________________________ void AliZDCv2::Init() { InitTables(); Int_t i; Int_t *idtmed = fIdtmed->GetArray(); // Thresholds for showering in the ZDCs i = 1; //tantalum gMC->Gstpar(idtmed[i], "CUTGAM", .001); gMC->Gstpar(idtmed[i], "CUTELE", .001); gMC->Gstpar(idtmed[i], "CUTNEU", .01); gMC->Gstpar(idtmed[i], "CUTHAD", .01); i = 2; //brass gMC->Gstpar(idtmed[i], "CUTGAM", .001); gMC->Gstpar(idtmed[i], "CUTELE", .001); gMC->Gstpar(idtmed[i], "CUTNEU", .01); gMC->Gstpar(idtmed[i], "CUTHAD", .01); i = 5; //lead gMC->Gstpar(idtmed[i], "CUTGAM", .001); gMC->Gstpar(idtmed[i], "CUTELE", .001); gMC->Gstpar(idtmed[i], "CUTNEU", .01); gMC->Gstpar(idtmed[i], "CUTHAD", .01); // Avoid too detailed showering in TDI i = 6; //copper gMC->Gstpar(idtmed[i], "CUTGAM", .1); gMC->Gstpar(idtmed[i], "CUTELE", .1); gMC->Gstpar(idtmed[i], "CUTNEU", 1.); gMC->Gstpar(idtmed[i], "CUTHAD", 1.); // Avoid too detailed showering along the beam line i = 7; //iron with energy loss (ZIRON) gMC->Gstpar(idtmed[i], "CUTGAM", .1); gMC->Gstpar(idtmed[i], "CUTELE", .1); gMC->Gstpar(idtmed[i], "CUTNEU", 1.); gMC->Gstpar(idtmed[i], "CUTHAD", 1.); // Avoid too detailed showering along the beam line i = 8; //iron with energy loss (ZIRONN) gMC->Gstpar(idtmed[i], "CUTGAM", .1); gMC->Gstpar(idtmed[i], "CUTELE", .1); gMC->Gstpar(idtmed[i], "CUTNEU", 1.); gMC->Gstpar(idtmed[i], "CUTHAD", 1.); // Avoid too detailed showering along the beam line i = 13; //iron with energy loss (ZIRONN) gMC->Gstpar(idtmed[i], "CUTGAM", 1.); gMC->Gstpar(idtmed[i], "CUTELE", 1.); gMC->Gstpar(idtmed[i], "CUTNEU", 1.); gMC->Gstpar(idtmed[i], "CUTHAD", 1.); // Avoid interaction in fibers (only energy loss allowed) i = 3; //fibers (ZSI02) gMC->Gstpar(idtmed[i], "DCAY", 0.); gMC->Gstpar(idtmed[i], "MULS", 0.); gMC->Gstpar(idtmed[i], "PFIS", 0.); gMC->Gstpar(idtmed[i], "MUNU", 0.); gMC->Gstpar(idtmed[i], "LOSS", 1.); gMC->Gstpar(idtmed[i], "PHOT", 0.); gMC->Gstpar(idtmed[i], "COMP", 0.); gMC->Gstpar(idtmed[i], "PAIR", 0.); gMC->Gstpar(idtmed[i], "BREM", 0.); gMC->Gstpar(idtmed[i], "DRAY", 0.); gMC->Gstpar(idtmed[i], "ANNI", 0.); gMC->Gstpar(idtmed[i], "HADR", 0.); i = 4; //fibers (ZQUAR) gMC->Gstpar(idtmed[i], "DCAY", 0.); gMC->Gstpar(idtmed[i], "MULS", 0.); gMC->Gstpar(idtmed[i], "PFIS", 0.); gMC->Gstpar(idtmed[i], "MUNU", 0.); gMC->Gstpar(idtmed[i], "LOSS", 1.); gMC->Gstpar(idtmed[i], "PHOT", 0.); gMC->Gstpar(idtmed[i], "COMP", 0.); gMC->Gstpar(idtmed[i], "PAIR", 0.); gMC->Gstpar(idtmed[i], "BREM", 0.); gMC->Gstpar(idtmed[i], "DRAY", 0.); gMC->Gstpar(idtmed[i], "ANNI", 0.); gMC->Gstpar(idtmed[i], "HADR", 0.); // Avoid interaction in void i = 11; //void with field gMC->Gstpar(idtmed[i], "DCAY", 0.); gMC->Gstpar(idtmed[i], "MULS", 0.); gMC->Gstpar(idtmed[i], "PFIS", 0.); gMC->Gstpar(idtmed[i], "MUNU", 0.); gMC->Gstpar(idtmed[i], "LOSS", 0.); gMC->Gstpar(idtmed[i], "PHOT", 0.); gMC->Gstpar(idtmed[i], "COMP", 0.); gMC->Gstpar(idtmed[i], "PAIR", 0.); gMC->Gstpar(idtmed[i], "BREM", 0.); gMC->Gstpar(idtmed[i], "DRAY", 0.); gMC->Gstpar(idtmed[i], "ANNI", 0.); gMC->Gstpar(idtmed[i], "HADR", 0.); // fMedSensZN = idtmed[1]; // Sensitive volume: ZN passive material fMedSensZP = idtmed[2]; // Sensitive volume: ZP passive material fMedSensF1 = idtmed[3]; // Sensitive volume: fibres type 1 fMedSensF2 = idtmed[4]; // Sensitive volume: fibres type 2 fMedSensZEM = idtmed[5]; // Sensitive volume: ZEM passive material fMedSensTDI = idtmed[6]; // Sensitive volume: TDI Cu shield fMedSensPI = idtmed[7]; // Sensitive volume: beam pipes fMedSensGR = idtmed[12]; // Sensitive volume: air into the grooves } //_____________________________________________________________________________ void AliZDCv2::InitTables() { // // Read light tables for Cerenkov light production parameterization // Int_t k, j; char *lightfName1,*lightfName2,*lightfName3,*lightfName4, *lightfName5,*lightfName6,*lightfName7,*lightfName8; FILE *fp1, *fp2, *fp3, *fp4, *fp5, *fp6, *fp7, *fp8; // --- Reading light tables for ZN lightfName1 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362207s"); if((fp1 = fopen(lightfName1,"r")) == NULL){ printf("Cannot open file fp1 \n"); return; } lightfName2 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362208s"); if((fp2 = fopen(lightfName2,"r")) == NULL){ printf("Cannot open file fp2 \n"); return; } lightfName3 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362209s"); if((fp3 = fopen(lightfName3,"r")) == NULL){ printf("Cannot open file fp3 \n"); return; } lightfName4 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362210s"); if((fp4 = fopen(lightfName4,"r")) == NULL){ printf("Cannot open file fp4 \n"); return; } for(k=0; kExpandPathName("$ALICE_ROOT/ZDC/light22620552207s"); if((fp5 = fopen(lightfName5,"r")) == NULL){ printf("Cannot open file fp5 \n"); return; } lightfName6 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620552208s"); if((fp6 = fopen(lightfName6,"r")) == NULL){ printf("Cannot open file fp6 \n"); return; } lightfName7 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620552209s"); if((fp7 = fopen(lightfName7,"r")) == NULL){ printf("Cannot open file fp7 \n"); return; } lightfName8 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620552210s"); if((fp8 = fopen(lightfName8,"r")) == NULL){ printf("Cannot open file fp8 \n"); return; } for(k=0; k return if((gMC->CurrentMedium() == fMedSensPI) || (gMC->CurrentMedium() == fMedSensTDI)){ // If option NoShower is set -> StopTrack if(fNoShower==1) { if(gMC->CurrentMedium() == fMedSensPI) { knamed = gMC->CurrentVolName(); if(!strncmp(knamed,"YMQ",3)) fpLostIT += 1; if(!strncmp(knamed,"YD1",3)) fpLostD1 += 1; } else if(gMC->CurrentMedium() == fMedSensTDI){ // NB->Cu = TDI or D1 vacuum chamber knamed = gMC->CurrentVolName(); if(!strncmp(knamed,"MD1",3)) fpLostD1 += 1; if(!strncmp(knamed,"QTD",3)) fpLostTDI += 1; } printf("\n # of spectators lost in IT = %d\n",fpLostIT); printf("\n # of spectators lost in D1 = %d\n",fpLostD1); printf("\n # of spectators lost in TDI = %d\n\n",fpLostTDI); gMC->StopTrack(); } return; } if((gMC->CurrentMedium() == fMedSensZN) || (gMC->CurrentMedium() == fMedSensZP) || (gMC->CurrentMedium() == fMedSensGR) || (gMC->CurrentMedium() == fMedSensF1) || (gMC->CurrentMedium() == fMedSensF2) || (gMC->CurrentMedium() == fMedSensZEM)){ //Particle coordinates gMC->TrackPosition(s[0],s[1],s[2]); for(j=0; j<=2; j++) x[j] = s[j]; hits[0] = x[0]; hits[1] = x[1]; hits[2] = x[2]; // Determine in which ZDC the particle is knamed = gMC->CurrentVolName(); if(!strncmp(knamed,"ZN",2)) vol[0]=1; else if(!strncmp(knamed,"ZP",2)) vol[0]=2; else if(!strncmp(knamed,"ZE",2)) vol[0]=3; // Determine in which quadrant the particle is if(vol[0]==1){ //Quadrant in ZN // Calculating particle coordinates inside ZN xdet[0] = x[0]-fPosZN[0]; xdet[1] = x[1]-fPosZN[1]; // Calculating quadrant in ZN if(xdet[0]<=0.){ if(xdet[1]>=0.) vol[1]=1; else if(xdet[1]<0.) vol[1]=3; } else if(xdet[0]>0.){ if(xdet[1]>=0.) vol[1]=2; else if(xdet[1]<0.) vol[1]=4; } if((vol[1]!=1) && (vol[1]!=2) && (vol[1]!=3) && (vol[1]!=4)) printf("\n ZDC StepManager->ERROR in ZN!!! vol[1] = %d, xdet[0] = %f," "xdet[1] = %f\n",vol[1], xdet[0], xdet[1]); } else if(vol[0]==2){ //Quadrant in ZP // Calculating particle coordinates inside ZP xdet[0] = x[0]-fPosZP[0]; xdet[1] = x[1]-fPosZP[1]; if(xdet[0]>=fDimZP[0]) xdet[0]=fDimZP[0]-0.01; if(xdet[0]<=-fDimZP[0]) xdet[0]=-fDimZP[0]+0.01; // Calculating tower in ZP Float_t xqZP = xdet[0]/(fDimZP[0]/2.); for(int i=1; i<=4; i++){ if(xqZP>=(i-3) && xqZP<(i-2)){ vol[1] = i; break; } } if((vol[1]!=1) && (vol[1]!=2) && (vol[1]!=3) && (vol[1]!=4)) printf(" ZDC StepManager->ERROR in ZP!!! vol[1] = %d, xdet[0] = %f," "xdet[1] = %f\n",vol[1], xdet[0], xdet[1]); } // Quadrant in ZEM: vol[1] = 1 -> particle in 1st ZEM (placed at x = 8.5 cm) // vol[1] = 2 -> particle in 2nd ZEM (placed at x = -8.5 cm) else if(vol[0] == 3){ if(x[0]>0.){ vol[1] = 1; // Particle x-coordinate inside ZEM1 xdet[0] = x[0]-fPosZEM[0]; } else{ vol[1] = 2; // Particle x-coordinate inside ZEM2 xdet[0] = x[0]+fPosZEM[0]; } xdet[1] = x[1]-fPosZEM[1]; } // Store impact point and kinetic energy of the ENTERING particle if(gMC->IsTrackEntering()){ //Particle energy gMC->TrackMomentum(p[0],p[1],p[2],p[3]); hits[3] = p[3]; // Impact point on ZDC hits[4] = xdet[0]; hits[5] = xdet[1]; hits[6] = 0; hits[7] = 0; hits[8] = 0; hits[9] = 0; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); if(fNoShower==1){ if(vol[0]==1) fnDetected += 1; else if(vol[0]==2) fpDetected += 1; printf("\n # of nucleons in ZN = %d",fnDetected); printf("\n # of nucleons in ZP = %d\n\n",fpDetected); gMC->StopTrack(); return; } } // Charged particles -> Energy loss if((destep=gMC->Edep())){ if(gMC->IsTrackStop()){ gMC->TrackMomentum(p[0],p[1],p[2],p[3]); m = gMC->TrackMass(); ekin = p[3]-m; hits[9] = ekin; hits[7] = 0.; hits[8] = 0.; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } else{ hits[9] = destep; hits[7] = 0.; hits[8] = 0.; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } } } // *** Light production in fibres if((gMC->CurrentMedium() == fMedSensF1) || (gMC->CurrentMedium() == fMedSensF2)){ //Select charged particles if((destep=gMC->Edep())){ // Particle velocity Float_t beta = 0.; gMC->TrackMomentum(p[0],p[1],p[2],p[3]); Float_t ptot=TMath::Sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]); if(p[3] > 0.00001) beta = ptot/p[3]; else return; if(beta<0.67)return; else if((beta>=0.67) && (beta<=0.75)) ibeta = 0; else if((beta>0.75) && (beta<=0.85)) ibeta = 1; else if((beta>0.85) && (beta<=0.95)) ibeta = 2; else if(beta>0.95) ibeta = 3; // Angle between particle trajectory and fibre axis // 1 -> Momentum directions um[0] = p[0]/ptot; um[1] = p[1]/ptot; um[2] = p[2]/ptot; gMC->Gmtod(um,ud,2); // 2 -> Angle < limit angle Double_t alfar = TMath::ACos(ud[2]); Double_t alfa = alfar*kRaddeg; if(alfa>=110.) return; // ialfa = Int_t(1.+alfa/2.); // Distance between particle trajectory and fibre axis gMC->TrackPosition(s[0],s[1],s[2]); for(j=0; j<=2; j++){ x[j] = s[j]; } gMC->Gmtod(x,xdet,1); if(TMath::Abs(ud[0])>0.00001){ Float_t dcoeff = ud[1]/ud[0]; be = TMath::Abs((xdet[1]-dcoeff*xdet[0])/TMath::Sqrt(dcoeff*dcoeff+1.)); } else{ be = TMath::Abs(ud[0]); } ibe = Int_t(be*1000.+1); //if((vol[0]==1)) radius = fFibZN[1]; //else if((vol[0]==2)) radius = fFibZP[1]; //Looking into the light tables Float_t charge = gMC->TrackCharge(); if((vol[0]==1)) { // (1) ZN fibres if(ibe>fNben) ibe=fNben; out = charge*charge*fTablen[ibeta][ialfa][ibe]; nphe = gRandom->Poisson(out); // Ch. debug //if(ibeta==3) printf("\t %f \t %f \t %f\n",alfa, be, out); //printf("\t ibeta = %d, ialfa = %d, ibe = %d -> nphe = %d\n\n",ibeta,ialfa,ibe,nphe); if(gMC->CurrentMedium() == fMedSensF1){ hits[7] = nphe; //fLightPMQ hits[8] = 0; hits[9] = 0; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } else{ hits[7] = 0; hits[8] = nphe; //fLightPMC hits[9] = 0; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } } else if((vol[0]==2)) { // (2) ZP fibres if(ibe>fNbep) ibe=fNbep; out = charge*charge*fTablep[ibeta][ialfa][ibe]; nphe = gRandom->Poisson(out); if(gMC->CurrentMedium() == fMedSensF1){ hits[7] = nphe; //fLightPMQ hits[8] = 0; hits[9] = 0; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } else{ hits[7] = 0; hits[8] = nphe; //fLightPMC hits[9] = 0; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } } else if((vol[0]==3)) { // (3) ZEM fibres if(ibe>fNbep) ibe=fNbep; out = charge*charge*fTablep[ibeta][ialfa][ibe]; gMC->TrackPosition(s[0],s[1],s[2]); for(j=0; j<=2; j++){ xalic[j] = s[j]; } // z-coordinate from ZEM front face // NB-> fPosZEM[2]+fZEMLength = -1000.+2*10.3 = 979.69 cm z = -xalic[2]+fPosZEM[2]+2*fZEMLength-xalic[1]; // z = xalic[2]-fPosZEM[2]-fZEMLength-xalic[1]*(TMath::Tan(45.*kDegrad)); // printf("\n fPosZEM[2]+2*fZEMLength = %f", fPosZEM[2]+2*fZEMLength); guiEff = guiPar[0]*(guiPar[1]*z*z+guiPar[2]*z+guiPar[3]); out = out*guiEff; nphe = gRandom->Poisson(out); // printf(" out*guiEff = %f nphe = %d", out, nphe); if(vol[1] == 1){ hits[7] = 0; hits[8] = nphe; //fLightPMC (ZEM1) hits[9] = 0; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } else{ hits[7] = nphe; //fLightPMQ (ZEM2) hits[8] = 0; hits[9] = 0; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } } } } }