/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /////////////////////////////////////////////////////////////////////// // // // AliZDCv4 --- new ZDC geometry // // with both ZDC arms geometry implemented // // // /////////////////////////////////////////////////////////////////////// // --- Standard libraries #include "stdio.h" // --- ROOT system #include #include #include #include #include #include #include #include #include #include #include #include #include // --- AliRoot classes #include "AliLog.h" #include "AliConst.h" #include "AliMagF.h" #include "AliRun.h" #include "AliZDCv4.h" #include "AliMC.h" #include "AliMCParticle.h" class AliZDCHit; class AliPDG; class AliDetector; ClassImp(AliZDCv4) //_____________________________________________________________________________ AliZDCv4::AliZDCv4() : AliZDC(), fMedSensF1(0), fMedSensF2(0), fMedSensZP(0), fMedSensZN(0), fMedSensZEM(0), fMedSensGR(0), fMedSensPI(0), fMedSensTDI(0), fMedSensVColl(0), fMedSensLumi(0), fNalfan(0), fNalfap(0), fNben(0), fNbep(0), fZEMLength(0), fpLostITC(0), fpLostD1C(0), fpcVCollC(0), fpDetectedC(0), fnDetectedC(0), fpLostITA(0), fpLostD1A(0), fpLostTDI(0), fpcVCollA(0), fpDetectedA(0), fnDetectedA(0), fVCollSideCAperture(7./2.), fVCollSideCApertureNeg(7./2.), fVCollSideCCentreY(0.), fTCDDAperturePos(2.0), fTCDDApertureNeg(2.2), fTDIAperturePos(5.5), fTDIApertureNeg(5.5), fLumiLength(15.) { // // Default constructor for Zero Degree Calorimeter // for(Int_t i=0; i<3; i++){ fDimZN[i] = fDimZP[i] = 0.; fPosZNC[i] = fPosZNA[i] = fPosZPC[i]= fPosZPA[i] = fPosZEM[i] = 0.; fFibZN[i] = fFibZP[i] = 0.; } } //_____________________________________________________________________________ AliZDCv4::AliZDCv4(const char *name, const char *title) : AliZDC(name,title), fMedSensF1(0), fMedSensF2(0), fMedSensZP(0), fMedSensZN(0), fMedSensZEM(0), fMedSensGR(0), fMedSensPI(0), fMedSensTDI(0), fMedSensVColl(0), fMedSensLumi(0), fNalfan(90), fNalfap(90), fNben(18), fNbep(28), fZEMLength(0), fpLostITC(0), fpLostD1C(0), fpcVCollC(0), fpDetectedC(0), fnDetectedC(0), fpLostITA(0), fpLostD1A(0), fpLostTDI(0), fpcVCollA(0), fpDetectedA(0), fnDetectedA(0), fVCollSideCAperture(7./2.), fVCollSideCApertureNeg(7./2.), fVCollSideCCentreY(0.), fTCDDAperturePos(2.0), fTCDDApertureNeg(2.2), fTDIAperturePos(5.5), fTDIApertureNeg(5.5), fLumiLength(15.) { // // Standard constructor for Zero Degree Calorimeter // // // Check that DIPO, ABSO, DIPO and SHIL is there (otherwise tracking is wrong!!!) AliModule* pipe=gAlice->GetModule("PIPE"); AliModule* abso=gAlice->GetModule("ABSO"); AliModule* dipo=gAlice->GetModule("DIPO"); AliModule* shil=gAlice->GetModule("SHIL"); if((!pipe) || (!abso) || (!dipo) || (!shil)) { Error("Constructor","ZDC needs PIPE, ABSO, DIPO and SHIL!!!\n"); exit(1); } // Int_t ip,jp,kp; for(ip=0; ip<4; ip++){ for(kp=0; kpMatrix(irotpipe1,90.-1.0027,0.,90.,90.,1.0027,180.); TVirtualMC::GetMC()->Matrix(irotpipe2,90.+1.0027,0.,90.,90.,1.0027,0.); Int_t *idtmed = fIdtmed->GetArray(); Double_t dx=0., dy=0., dz=0.; Double_t thx=0., thy=0., thz=0.; Double_t phx=0., phy=0., phz=0.; TGeoMedium *medZDCFe = gGeoManager->GetMedium("ZDC_ZIRONT"); TGeoMedium *medZDCvoid = gGeoManager->GetMedium("ZDC_ZVOID"); //////////////////////////////////////////////////////////////// // // // SIDE C - RB26 (dimuon side) // // // //////////////////////////////////////////////////////////////// if(!fOnlyZEM){ // -- Mother of the ZDCs (Vacuum PCON) zd1 = 1921.6; conpar[0] = 0.; conpar[1] = 360.; conpar[2] = 2.; conpar[3] = -13500.; conpar[4] = 0.; conpar[5] = 55.; conpar[6] = -zd1; conpar[7] = 0.; conpar[8] = 55.; TVirtualMC::GetMC()->Gsvolu("ZDCC", "PCON", idtmed[10], conpar, 9); TVirtualMC::GetMC()->Gspos("ZDCC", 1, "ALIC", 0., 0., 0., 0, "ONLY"); // -- BEAM PIPE from compensator dipole to the beginning of D1) tubpar[0] = 6.3/2.; tubpar[1] = 6.7/2.; // From beginning of ZDC volumes to beginning of D1 tubpar[2] = (5838.3-zd1)/2.; TVirtualMC::GetMC()->Gsvolu("QT01", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QT01", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf(" QT01 TUBE pipe from z = %1.2f to z = %1.2f (D1 begin)\n",-zd1,-2*tubpar[2]-zd1); //-- BEAM PIPE from the end of D1 to the beginning of D2) //-- FROM MAGNETIC BEGINNING OF D1 TO MAGNETIC END OF D1 //-- Cylindrical pipe (r = 3.47) + conical flare // -> Beginning of D1 zd1 += 2.*tubpar[2]; tubpar[0] = 6.94/2.; tubpar[1] = 7.34/2.; tubpar[2] = (6909.8-zd1)/2.; TVirtualMC::GetMC()->Gsvolu("QT02", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QT02", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf(" QT02 TUBE pipe from z = %1.2f to z = %1.2f (D1 magnetic end)\n",-zd1,-2*tubpar[2]-zd1); zd1 += 2.*tubpar[2]; tubpar[0] = 8./2.; tubpar[1] = 8.6/2.; tubpar[2] = (6958.3-zd1)/2.; TVirtualMC::GetMC()->Gsvolu("QT0B", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QT0B", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf(" QT0B TUBE pipe from z = %1.2f to z = %1.2f \n",-zd1,-2*tubpar[2]-zd1); zd1 += 2.*tubpar[2]; tubpar[0] = 9./2.; tubpar[1] = 9.6/2.; tubpar[2] = (7022.8-zd1)/2.; TVirtualMC::GetMC()->Gsvolu("QT03", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QT03", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf(" QT03 TUBE pipe from z = %1.2f to z = %1.2f (D1 end)\n",-zd1,-2*tubpar[2]-zd1); zd1 += 2.*tubpar[2]; conpar[0] = 39.2/2.; conpar[1] = 18./2.; conpar[2] = 18.6/2.; conpar[3] = 9./2.; conpar[4] = 9.6/2.; TVirtualMC::GetMC()->Gsvolu("QC01", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QC01", 1, "ZDCC", 0., 0., -conpar[0]-zd1, 0, "ONLY"); // Ch.debug //printf(" QC01 CONE pipe from z = %1.2f to z= %1.2f (VCTCQ-I)\n",-zd1,-2*conpar[0]-zd1); zd1 += conpar[0] * 2.; // ****************************************************** // N.B.-> according to last vacuum layout // private communication by D. Macina, mail 27/1/2009 // updated to new ZDC installation (Janiary 2012) // ****************************************************** // 2nd section of VCTCQ+VAMTF+TCLIA+VAMTF+1st part of VCTCP Float_t totLength1 = 160.8 + 78. + 148. + 78. + 9.3; // tubpar[0] = 18.6/2.; tubpar[1] = 7.6/2.; tubpar[2] = totLength1/2.; // TVirtualMC::GetMC()->Gsvolu("QE01", "ELTU", idtmed[7], tubpar, 3); // temporary replace with a scaled tube (AG) TGeoTube *tubeQE01 = new TGeoTube(0.,tubpar[0],tubpar[2]); TGeoScale *scaleQE01 = new TGeoScale(1., tubpar[1]/tubpar[0], 1.); TGeoScaledShape *sshapeQE01 = new TGeoScaledShape(tubeQE01, scaleQE01); new TGeoVolume("QE01", sshapeQE01, gGeoManager->GetMedium(idtmed[7])); tubpar[0] = 18.0/2.; tubpar[1] = 7.0/2.; tubpar[2] = totLength1/2.; // TVirtualMC::GetMC()->Gsvolu("QE02", "ELTU", idtmed[10], tubpar, 3); // temporary replace with a scaled tube (AG) TGeoTube *tubeQE02 = new TGeoTube(0.,tubpar[0],tubpar[2]); TGeoScale *scaleQE02 = new TGeoScale(1., tubpar[1]/tubpar[0], 1.); TGeoScaledShape *sshapeQE02 = new TGeoScaledShape(tubeQE02, scaleQE02); new TGeoVolume("QE02", sshapeQE02, gGeoManager->GetMedium(idtmed[10])); TVirtualMC::GetMC()->Gspos("QE01", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QE02", 1, "QE01", 0., 0., 0., 0, "ONLY"); // Ch.debug //printf(" QE01 ELTU from z = %1.2f to z = %1.2f (VCTCQ-II+VAMTF+TCLIA+VAMTF+VCTCP-I)\n",-zd1,-2*tubpar[2]-zd1); // TCLIA collimator jaws (defined ONLY if fVCollAperture<3.5!) if(fVCollSideCAperture<3.5){ boxpar[0] = 5.4/2.; boxpar[1] = (3.5-fVCollSideCAperture-fVCollSideCCentreY-0.7)/2.; if(boxpar[1]<0.) boxpar[1]=0.; boxpar[2] = 124.4/2.; printf(" AliZDCv4 -> C side injection collimator jaws: apertures +%1.2f/-%1.2f center %1.2f [cm]\n", fVCollSideCAperture, fVCollSideCApertureNeg,fVCollSideCCentreY); TVirtualMC::GetMC()->Gsvolu("QCVC" , "BOX ", idtmed[13], boxpar, 3); TVirtualMC::GetMC()->Gspos("QCVC", 1, "QE02", -boxpar[0], fVCollSideCAperture+fVCollSideCCentreY+boxpar[1], -totLength1/2.+160.8+78.+148./2., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QCVC", 2, "QE02", -boxpar[0], -fVCollSideCApertureNeg+fVCollSideCCentreY-boxpar[1], -totLength1/2.+160.8+78.+148./2., 0, "ONLY"); } zd1 += tubpar[2] * 2.; // 2nd part of VCTCP conpar[0] = 31.5/2.; conpar[1] = 21.27/2.; conpar[2] = 21.87/2.; conpar[3] = 18.0/2.; conpar[4] = 18.6/2.; TVirtualMC::GetMC()->Gsvolu("QC02", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QC02", 1, "ZDCC", 0., 0., -conpar[0]-zd1, 0, "ONLY"); // Ch.debug //printf(" QC02 CONE pipe from z = %1.2f to z= %1.2f (VCTCP-II)\n",-zd1,-2*conpar[0]-zd1); zd1 += conpar[0] * 2.; // 3rd section of VCTCP+VCDWC+VMLGB //Float_t totLenght2 = 9.2 + 530.5+40.; Float_t totLenght2 = (8373.3-zd1); tubpar[0] = 21.2/2.; tubpar[1] = 21.9/2.; tubpar[2] = totLenght2/2.; TVirtualMC::GetMC()->Gsvolu("QT04", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QT04", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf(" QT04 TUBE pipe from z = %1.2f to z= %1.2f (VCTCP-III)\n",-zd1,-2*tubpar[2]-zd1); zd1 += tubpar[2] * 2.; // First part of VCTCD // skewed transition cone from ID=212.7 mm to ID=797 mm conpar[0] = 121./2.; conpar[1] = 79.7/2.; conpar[2] = 81.3/2.; conpar[3] = 21.27/2.; conpar[4] = 21.87/2.; TVirtualMC::GetMC()->Gsvolu("QC03", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QC03", 1, "ZDCC", 0., 0., -conpar[0]-zd1, 0, "ONLY"); // Ch.debug //printf(" QC03 CONE pipe from z = %1.2f to z = %1.2f (VCTCD-I)\n",-zd1,-2*conpar[0]-zd1); zd1 += 2.*conpar[0]; // VCDGB + 1st part of VCTCH // Modified according to 2012 ZDC installation tubpar[0] = 79.7/2.; tubpar[1] = 81.3/2.; tubpar[2] = (5*475.2+97.-136)/2.; TVirtualMC::GetMC()->Gsvolu("QT05", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QT05", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf(" QT05 TUBE pipe from z = %1.2f to z = %1.2f (VCDGB+VCTCH-I)\n",-zd1,-2*tubpar[2]-zd1); zd1 += 2.*tubpar[2]; // 2nd part of VCTCH // Transition from ID=797 mm to ID=196 mm: // in order to simulate the thin window opened in the transition cone // we divide the transition cone in three cones: // (1) 8 mm thick (2) 3 mm thick (3) the third 8 mm thick // (1) 8 mm thick conpar[0] = 9.09/2.; // 15 degree conpar[1] = 74.82868/2.; conpar[2] = 76.42868/2.; // thickness 8 mm conpar[3] = 79.7/2.; conpar[4] = 81.3/2.; // thickness 8 mm TVirtualMC::GetMC()->Gsvolu("QC04", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QC04", 1, "ZDCC", 0., 0., -conpar[0]-zd1, 0, "ONLY"); // Ch.debug //printf(" QC04 CONE pipe from z = %1.2f to z = %1.2f (VCTCH-II)\n",-zd1,-2*conpar[0]-zd1); zd1 += 2.*conpar[0]; // (2) 3 mm thick conpar[0] = 96.2/2.; // 15 degree conpar[1] = 23.19588/2.; conpar[2] = 23.79588/2.; // thickness 3 mm conpar[3] = 74.82868/2.; conpar[4] = 75.42868/2.; // thickness 3 mm TVirtualMC::GetMC()->Gsvolu("QC05", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QC05", 1, "ZDCC", 0., 0., -conpar[0]-zd1, 0, "ONLY"); // Ch.debug //printf(" QC05 CONE pipe from z = %1.2f to z = %1.2f (VCTCH-III)\n",-zd1,-2*conpar[0]-zd1); zd1 += 2.*conpar[0]; // (3) 8 mm thick conpar[0] = 6.71/2.; // 15 degree conpar[1] = 19.6/2.; conpar[2] = 21.2/2.;// thickness 8 mm conpar[3] = 23.19588/2.; conpar[4] = 24.79588/2.;// thickness 8 mm TVirtualMC::GetMC()->Gsvolu("QC06", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QC06", 1, "ZDCC", 0., 0., -conpar[0]-zd1, 0, "ONLY"); // Ch.debug //printf(" QC06 CONE pipe from z = %1.2f to z = %1.2f (VCTCH-III)\n",-zd1,-2*conpar[0]-zd1); zd1 += 2.*conpar[0]; // VMZAR (5 volumes) tubpar[0] = 20.2/2.; tubpar[1] = 20.6/2.; tubpar[2] = 2.15/2.; TVirtualMC::GetMC()->Gsvolu("QT06", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QT06", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf(" QT06 TUBE pipe from z = %1.2f to z = %1.2f (VMZAR-I)\n",-zd1,-2*tubpar[2]-zd1); zd1 += 2.*tubpar[2]; conpar[0] = 6.9/2.; conpar[1] = 23.9/2.; conpar[2] = 24.3/2.; conpar[3] = 20.2/2.; conpar[4] = 20.6/2.; TVirtualMC::GetMC()->Gsvolu("QC07", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QC07", 1, "ZDCC", 0., 0., -conpar[0]-zd1, 0, "ONLY"); // Ch.debug //printf(" QC07 CONE pipe from z = %1.2f to z = %1.2f (VMZAR-II)\n",-zd1,-2*conpar[0]-zd1); zd1 += 2.*conpar[0]; tubpar[0] = 23.9/2.; tubpar[1] = 25.5/2.; tubpar[2] = 17.0/2.; TVirtualMC::GetMC()->Gsvolu("QT07", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QT07", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf(" QT07 TUBE pipe from z = %1.2f to z = %1.2f (VMZAR-III)\n",-zd1,-2*tubpar[2]-zd1); zd1 += 2.*tubpar[2]; conpar[0] = 6.9/2.; conpar[1] = 20.2/2.; conpar[2] = 20.6/2.; conpar[3] = 23.9/2.; conpar[4] = 24.3/2.; TVirtualMC::GetMC()->Gsvolu("QC08", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QC08", 1, "ZDCC", 0., 0., -conpar[0]-zd1, 0, "ONLY"); // Ch.debug //printf(" QC08 CONE pipe from z = %1.2f to z = %1.2f (VMZAR-IV)\n",-zd1,-2*conpar[0]-zd1); zd1 += 2.*conpar[0]; tubpar[0] = 20.2/2.; tubpar[1] = 20.6/2.; tubpar[2] = 2.15/2.; TVirtualMC::GetMC()->Gsvolu("QT08", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QT08", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf(" QT08 TUBE pipe from z = %1.2f to z = %1.2f (VMZAR-V)\n",-zd1,-2*tubpar[2]-zd1); zd1 += 2.*tubpar[2]; // Flange (ID=196 mm)(last part of VMZAR and first part of VCTYB) tubpar[0] = 19.6/2.; tubpar[1] = 25.3/2.; tubpar[2] = 4.9/2.; TVirtualMC::GetMC()->Gsvolu("QT09", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QT09", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf(" QT09 TUBE pipe from z = %1.2f to z = %1.2f (VMZAR-VI+VCTYB-I)\n",-zd1,-2*tubpar[2]-zd1); zd1 += 2.*tubpar[2]; // Ch.debug ////printf(" Beginning of VCTYB volume @ z = %1.2f \n",-zd1); // simulation of the trousers (VCTYB) tubpar[0] = 19.6/2.; tubpar[1] = 20.0/2.; tubpar[2] = 3.9/2.; TVirtualMC::GetMC()->Gsvolu("QT10", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QT10", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf(" QT10 TUBE pipe from z = %1.2f to z = %1.2f (VCTYB-II)\n",-zd1,-2*tubpar[2]-zd1); zd1 += 2.*tubpar[2]; // transition cone from ID=196. to ID=216.6 conpar[0] = 32.55/2.; conpar[1] = 21.66/2.; conpar[2] = 22.06/2.; conpar[3] = 19.6/2.; conpar[4] = 20.0/2.; TVirtualMC::GetMC()->Gsvolu("QC09", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QC09", 1, "ZDCC", 0., 0., -conpar[0]-zd1, 0, "ONLY"); // Ch.debug //printf(" QC09 CONE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*conpar[0]-zd1); zd1 += 2.*conpar[0]; // tube tubpar[0] = 21.66/2.; tubpar[1] = 22.06/2.; tubpar[2] = 28.6/2.; TVirtualMC::GetMC()->Gsvolu("QT11", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QT11", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf(" QT11 TUBE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*tubpar[2]-zd1); zd1 += 2.*tubpar[2]; // Ch.debug //printf(" Beginning of C side recombination chamber @ z = %f \n",-zd1); // -------------------------------------------------------- // RECOMBINATION CHAMBER IMPLEMENTED USING TGeo CLASSES!!!! // author: Chiara (August 2008) // -------------------------------------------------------- // TRANSFORMATION MATRICES // Combi transformation: dx = -3.970000; dy = 0.000000; dz = 0.0; // Rotation: thx = 84.989100; phx = 180.000000; thy = 90.000000; phy = 90.000000; thz = 185.010900; phz = 0.000000; TGeoRotation *rotMatrix1c = new TGeoRotation("c",thx,phx,thy,phy,thz,phz); // Combi transformation: dx = -3.970000; dy = 0.000000; dz = 0.0; TGeoCombiTrans *rotMatrix2c = new TGeoCombiTrans("ZDCC_c1", dx,dy,dz,rotMatrix1c); rotMatrix2c->RegisterYourself(); // Combi transformation: dx = 3.970000; dy = 0.000000; dz = 0.0; // Rotation: thx = 95.010900; phx = 180.000000; thy = 90.000000; phy = 90.000000; thz = 180.-5.010900; phz = 0.000000; TGeoRotation *rotMatrix3c = new TGeoRotation("",thx,phx,thy,phy,thz,phz); TGeoCombiTrans *rotMatrix4c = new TGeoCombiTrans("ZDCC_c2", dx,dy,dz,rotMatrix3c); rotMatrix4c->RegisterYourself(); // VOLUMES DEFINITION // Volume: ZDCC TGeoVolume *pZDCC = gGeoManager->GetVolume("ZDCC"); conpar[0] = (90.1-0.95-0.26-0.0085)/2.; conpar[1] = 0.0/2.; conpar[2] = 21.6/2.; conpar[3] = 0.0/2.; conpar[4] = 5.8/2.; new TGeoCone("QCLext", conpar[0],conpar[1],conpar[2],conpar[3],conpar[4]); conpar[0] = (90.1-0.95-0.26-0.0085)/2.; conpar[1] = 0.0/2.; conpar[2] = 21.2/2.; conpar[3] = 0.0/2.; conpar[4] = 5.4/2.; new TGeoCone("QCLint", conpar[0],conpar[1],conpar[2],conpar[3],conpar[4]); // Outer trousers TGeoCompositeShape *pOutTrousersC = new TGeoCompositeShape("outTrousersC", "QCLext:ZDCC_c1+QCLext:ZDCC_c2"); // Volume: QCLext TGeoVolume *pQCLext = new TGeoVolume("QCLext",pOutTrousersC, medZDCFe); pQCLext->SetLineColor(kGreen); pQCLext->SetVisLeaves(kTRUE); // TGeoTranslation *tr1c = new TGeoTranslation(0., 0., (Double_t) -conpar[0]-0.95-zd1); //printf(" C side recombination chamber from z = %1.2f to z= %1.2f\n",-zd1,-2*conpar[0]-0.95-zd1); // pZDCC->AddNode(pQCLext, 1, tr1c); // Inner trousers TGeoCompositeShape *pIntTrousersC = new TGeoCompositeShape("intTrousersC", "QCLint:ZDCC_c1+QCLint:ZDCC_c2"); // Volume: QCLint TGeoVolume *pQCLint = new TGeoVolume("QCLint",pIntTrousersC, medZDCvoid); pQCLint->SetLineColor(kTeal); pQCLint->SetVisLeaves(kTRUE); pQCLext->AddNode(pQCLint, 1); zd1 += 90.1; Double_t offset = 0.5; zd1 = zd1+offset; // second section : 2 tubes (ID = 54. OD = 58.) tubpar[0] = 5.4/2.; tubpar[1] = 5.8/2.; tubpar[2] = 40.0/2.; TVirtualMC::GetMC()->Gsvolu("QT12", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QT12", 1, "ZDCC", -15.8/2., 0., -tubpar[2]-zd1, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QT12", 2, "ZDCC", 15.8/2., 0., -tubpar[2]-zd1, 0, "ONLY"); // Ch.debug //printf(" QT12 TUBE from z = %1.2f to z = %1.2f (separate beam pipes)\n",-zd1,-2*tubpar[2]-zd1); zd1 += 2.*tubpar[2]; // transition x2zdc to recombination chamber : skewed cone conpar[0] = (10.-0.2-offset)/2.; conpar[1] = 6.3/2.; conpar[2] = 7.0/2.; conpar[3] = 5.4/2.; conpar[4] = 5.8/2.; TVirtualMC::GetMC()->Gsvolu("QC10", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QC10", 1, "ZDCC", -7.9-0.175, 0., -conpar[0]-0.1-zd1, irotpipe1, "ONLY"); TVirtualMC::GetMC()->Gspos("QC10", 2, "ZDCC", 7.9+0.175, 0., -conpar[0]-0.1-zd1, irotpipe2, "ONLY"); //printf(" QC10 CONE from z = %1.2f to z = %1.2f (transition X2ZDC)\n",-zd1,-2*conpar[0]-0.2-zd1); zd1 += 2.*conpar[0]+0.2; // 2 tubes (ID = 63 mm OD=70 mm) tubpar[0] = 6.3/2.; tubpar[1] = 7.0/2.; tubpar[2] = 639.8/2.; TVirtualMC::GetMC()->Gsvolu("QT13", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QT13", 1, "ZDCC", -16.5/2., 0., -tubpar[2]-zd1, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QT13", 2, "ZDCC", 16.5/2., 0., -tubpar[2]-zd1, 0, "ONLY"); //printf(" QT13 TUBE from z = %1.2f to z = %1.2f (separate beam pipes)\n",-zd1,-2*tubpar[2]-zd1); zd1 += 2.*tubpar[2]; printf(" END OF C SIDE BEAM PIPE DEFINITION @ z = %f m from IP2\n\n",-zd1/100.); // -- Luminometer (Cu box) in front of ZN - side C if(fLumiLength>0.){ boxpar[0] = 8.0/2.; boxpar[1] = 8.0/2.; boxpar[2] = fLumiLength/2.; TVirtualMC::GetMC()->Gsvolu("QLUC", "BOX ", idtmed[9], boxpar, 3); TVirtualMC::GetMC()->Gspos("QLUC", 1, "ZDCC", 0., 0., fPosZNC[2]+66.+boxpar[2], 0, "ONLY"); printf(" C SIDE LUMINOMETER %1.2f < z < %1.2f\n", fPosZNC[2]+66., fPosZNC[2]+66.+2*boxpar[2]); } } // -- END OF BEAM PIPE VOLUME DEFINITION FOR SIDE C (RB26 SIDE) // ---------------------------------------------------------------- //////////////////////////////////////////////////////////////// // // // SIDE A - RB24 // // // /////////////////////////////////////////////////////////////// // Rotation Matrices definition Int_t irotpipe3, irotpipe4, irotpipe5; //-- rotation matrices for the tilted cone after the TDI to recenter vacuum chamber TVirtualMC::GetMC()->Matrix(irotpipe3,90.-1.8934,0.,90.,90.,1.8934,180.); //-- rotation matrices for the tilted tube before and after the TDI TVirtualMC::GetMC()->Matrix(irotpipe4,90.-3.8,0.,90.,90.,3.8,180.); //-- rotation matrix for the tilted cone after the TDI TVirtualMC::GetMC()->Matrix(irotpipe5,90.+9.8,0.,90.,90.,9.8,0.); // -- Mother of the ZDCs (Vacuum PCON) zd2 = 1910.22;// zd2 initial value conpar[0] = 0.; conpar[1] = 360.; conpar[2] = 2.; conpar[3] = zd2; conpar[4] = 0.; conpar[5] = 55.; conpar[6] = 13500.; conpar[7] = 0.; conpar[8] = 55.; TVirtualMC::GetMC()->Gsvolu("ZDCA", "PCON", idtmed[10], conpar, 9); TVirtualMC::GetMC()->Gspos("ZDCA", 1, "ALIC", 0., 0., 0., 0, "ONLY"); // To avoid overlaps 1 micron are left between certain volumes! Double_t dxNoOverlap = 0.0; //zd2 += dxNoOverlap; // BEAM PIPE from 19.10 m to inner triplet beginning (22.965 m) tubpar[0] = 6.0/2.; tubpar[1] = 6.4/2.; tubpar[2] = 386.28/2. - dxNoOverlap; TVirtualMC::GetMC()->Gsvolu("QA01", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QA01", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" QA01 TUBE centred in %f from z = %1.2f to z = %1.2f (IT begin)\n",tubpar[2]+zd2,zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // -- FIRST SECTION OF THE BEAM PIPE (from beginning of inner triplet to // beginning of D1) tubpar[0] = 6.3/2.; tubpar[1] = 6.7/2.; tubpar[2] = 3541.8/2. - dxNoOverlap; TVirtualMC::GetMC()->Gsvolu("QA02", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QA02", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" QA02 TUBE from z = %1.2f to z= %1.2f (D1 begin)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // -- SECOND SECTION OF THE BEAM PIPE (from the beginning of D1 to the beginning of D2) // // FROM (MAGNETIC) BEGINNING OF D1 TO THE (MAGNETIC) END OF D1 + 126.5 cm // CYLINDRICAL PIPE of diameter increasing from 6.75 cm up to 8.0 cm // from magnetic end : // 1) 80.1 cm still with ID = 6.75 radial beam screen // 2) 2.5 cm conical section from ID = 6.75 to ID = 8.0 cm // 3) 43.9 cm straight section (tube) with ID = 8.0 cm tubpar[0] = 6.75/2.; tubpar[1] = 7.15/2.; tubpar[2] = (945.0+80.1)/2.; TVirtualMC::GetMC()->Gsvolu("QA03", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QA03", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" QA03 TUBE from z = %1.2f to z = %1.2f (D1 end)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // Transition Cone from ID=67.5 mm to ID=80 mm conpar[0] = 2.5/2.; conpar[1] = 6.75/2.; conpar[2] = 7.15/2.; conpar[3] = 8.0/2.; conpar[4] = 8.4/2.; TVirtualMC::GetMC()->Gsvolu("QA04", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QA04", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY"); //printf(" QA04 CONE from z = %1.2f to z = %1.2f (transition cone)\n",zd2,2*conpar[0]+zd2); zd2 += 2.*conpar[0]; tubpar[0] = 8.0/2.; tubpar[1] = 8.4/2.; tubpar[2] = (43.9+20.+28.5+28.5)/2.; TVirtualMC::GetMC()->Gsvolu("QA05", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QA05", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" QA05 TUBE from z = %1.2f to z = %1.2f\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // Second section of VAEHI (transition cone from ID=80mm to ID=98mm) conpar[0] = 4.0/2.; conpar[1] = 8.0/2.; conpar[2] = 8.4/2.; conpar[3] = 9.8/2.; conpar[4] = 10.2/2.; TVirtualMC::GetMC()->Gsvolu("QAV1", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QAV1", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY"); //printf(" QAV1 CONE from z = %1.2f to z = %1.2f (VAEHI-I)\n",zd2,2*conpar[0]+zd2); zd2 += 2.*conpar[0]; //Third section of VAEHI (transition cone from ID=98mm to ID=90mm) conpar[0] = 1.0/2.; conpar[1] = 9.8/2.; conpar[2] = 10.2/2.; conpar[3] = 9.0/2.; conpar[4] = 9.4/2.; TVirtualMC::GetMC()->Gsvolu("QAV2", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QAV2", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY"); //printf(" QAV2 CONE from z = %1.2f to z = %1.2f (VAEHI-II)\n",zd2,2*conpar[0]+zd2); zd2 += 2.*conpar[0]; // Fourth section of VAEHI (tube ID=90mm) tubpar[0] = 9.0/2.; tubpar[1] = 9.4/2.; tubpar[2] = 31.0/2.; TVirtualMC::GetMC()->Gsvolu("QAV3", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QAV3", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" QAV3 TUBE from z = %1.2f to z = %1.2f (VAEHI-III)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; //---------------------------- TCDD beginning ---------------------------------- // space for the insertion of the collimator TCDD (2 m) // TCDD ZONE - 1st volume conpar[0] = 1.3/2.; conpar[1] = 9.0/2.; conpar[2] = 13.0/2.; conpar[3] = 9.6/2.; conpar[4] = 13.0/2.; TVirtualMC::GetMC()->Gsvolu("Q01T", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("Q01T", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY"); //printf(" Q01T CONE from z = %1.2f to z = %1.2f (TCDD-I)\n",zd2,2*conpar[0]+zd2); zd2 += 2.*conpar[0]; // TCDD ZONE - 2nd volume tubpar[0] = 9.6/2.; tubpar[1] = 10.0/2.; tubpar[2] = 1.0/2.; TVirtualMC::GetMC()->Gsvolu("Q02T", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("Q02T", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" Q02T TUBE from z = %1.2f to z= %1.2f (TCDD-II)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // TCDD ZONE - third volume conpar[0] = 9.04/2.; conpar[1] = 9.6/2.; conpar[2] = 10.0/2.; conpar[3] = 13.8/2.; conpar[4] = 14.2/2.; TVirtualMC::GetMC()->Gsvolu("Q03T", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("Q03T", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY"); //printf(" Q03T CONE from z = %1.2f to z= %1.2f (TCDD-III)\n",zd2,2*conpar[0]+zd2); zd2 += 2.*conpar[0]; // TCDD ZONE - 4th volume tubpar[0] = 13.8/2.; tubpar[1] = 14.2/2.; tubpar[2] = 38.6/2.; TVirtualMC::GetMC()->Gsvolu("Q04T", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("Q04T", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" Q04T TUBE from z = %1.2f to z= %1.2f (TCDD-IV)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // TCDD ZONE - 5th volume tubpar[0] = 21.0/2.; tubpar[1] = 21.4/2.; tubpar[2] = 100.12/2.; TVirtualMC::GetMC()->Gsvolu("Q05T", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("Q05T", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" Q05T TUBE from z = %1.2f to z= %1.2f (TCDD-V)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // TCDD ZONE - 6th volume tubpar[0] = 13.8/2.; tubpar[1] = 14.2/2.; tubpar[2] = 38.6/2.; TVirtualMC::GetMC()->Gsvolu("Q06T", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("Q06T", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" Q06T TUBE from z = %1.2f to z= %1.2f (TCDD-VI)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // TCDD ZONE - 7th volume conpar[0] = 11.34/2.; conpar[1] = 13.8/2.; conpar[2] = 14.2/2.; conpar[3] = 18.0/2.; conpar[4] = 18.4/2.; TVirtualMC::GetMC()->Gsvolu("Q07T", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("Q07T", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY"); //printf(" Q07T CONE from z = %1.2f to z= %1.2f (TCDD-VII)\n",zd2,2*conpar[0]+zd2); zd2 += 2.*conpar[0]; // Upper section : one single phi segment of a tube // 5 parameters for tubs: inner radius = 0., // outer radius = 7. cm, half length = 50 cm // phi1 = 0., phi2 = 180. tubspar[0] = 0.0/2.; tubspar[1] = 14.0/2.; tubspar[2] = 100.0/2.; tubspar[3] = 0.; tubspar[4] = 180.; TVirtualMC::GetMC()->Gsvolu("Q08T", "TUBS", idtmed[7], tubspar, 5); // rectangular beam pipe inside TCDD upper section (Vacuum) boxpar[0] = 7.0/2.; boxpar[1] = 2.2/2.; boxpar[2] = 100./2.; TVirtualMC::GetMC()->Gsvolu("Q09T", "BOX ", idtmed[10], boxpar, 3); // positioning vacuum box in the upper section of TCDD TVirtualMC::GetMC()->Gspos("Q09T", 1, "Q08T", 0., 1.1, 0., 0, "ONLY"); // lower section : one single phi segment of a tube tubspar[0] = 0.0/2.; tubspar[1] = 14.0/2.; tubspar[2] = 100.0/2.; tubspar[3] = 180.; tubspar[4] = 360.; TVirtualMC::GetMC()->Gsvolu("Q10T", "TUBS", idtmed[7], tubspar, 5); // rectangular beam pipe inside TCDD lower section (Vacuum) boxpar[0] = 7.0/2.; boxpar[1] = 2.2/2.; boxpar[2] = 100./2.; TVirtualMC::GetMC()->Gsvolu("Q11T", "BOX ", idtmed[10], boxpar, 3); // positioning vacuum box in the lower section of TCDD TVirtualMC::GetMC()->Gspos("Q11T", 1, "Q10T", 0., -1.1, 0., 0, "ONLY"); // positioning TCDD elements in ZDCA, (inside TCDD volume) TVirtualMC::GetMC()->Gspos("Q08T", 1, "ZDCA", 0., fTCDDAperturePos, -100.+zd2, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("Q10T", 1, "ZDCA", 0., -fTCDDApertureNeg, -100.+zd2, 0, "ONLY"); printf(" AliZDCv4 -> TCDD apertures +%1.2f/-%1.2f cm\n", fTCDDAperturePos, fTCDDApertureNeg); // RF screen boxpar[0] = 0.2/2.; boxpar[1] = 4.0/2.; boxpar[2] = 100./2.; TVirtualMC::GetMC()->Gsvolu("Q12T", "BOX ", idtmed[7], boxpar, 3); // positioning RF screen at both sides of TCDD TVirtualMC::GetMC()->Gspos("Q12T", 1, "ZDCA", tubspar[1]+boxpar[0], 0., -100.+zd2, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("Q12T", 2, "ZDCA", -tubspar[1]-boxpar[0], 0., -100.+zd2, 0, "ONLY"); //---------------------------- TCDD end --------------------------------------- // The following elliptical tube 180 mm x 70 mm // (obtained positioning the void QA06 in QA07) // represents VAMTF + first part of VCTCP (93 mm) // updated according to 2012 new ZDC installation tubpar[0] = 18.4/2.; tubpar[1] = 7.4/2.; tubpar[2] = (78+9.3)/2.; // TVirtualMC::GetMC()->Gsvolu("QA06", "ELTU", idtmed[7], tubpar, 3); // temporary replace with a scaled tube (AG) TGeoTube *tubeQA06 = new TGeoTube(0.,tubpar[0],tubpar[2]); TGeoScale *scaleQA06 = new TGeoScale(1., tubpar[1]/tubpar[0], 1.); TGeoScaledShape *sshapeQA06 = new TGeoScaledShape(tubeQA06, scaleQA06); new TGeoVolume("QA06", sshapeQA06, gGeoManager->GetMedium(idtmed[7])); //printf(" QA06 TUBE from z = %1.2f to z = %1.2f (VAMTF+VCTCP-I)\n",zd2,2*tubpar[2]+zd2); tubpar[0] = 18.0/2.; tubpar[1] = 7.0/2.; tubpar[2] = (78+9.3)/2.; // TVirtualMC::GetMC()->Gsvolu("QA07", "ELTU", idtmed[10], tubpar, 3); // temporary replace with a scaled tube (AG) TGeoTube *tubeQA07 = new TGeoTube(0.,tubpar[0],tubpar[2]); TGeoScale *scaleQA07 = new TGeoScale(1., tubpar[1]/tubpar[0], 1.); TGeoScaledShape *sshapeQA07 = new TGeoScaledShape(tubeQA07, scaleQA07); new TGeoVolume("QA07", sshapeQA07, gGeoManager->GetMedium(idtmed[10])); ////printf(" QA07 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2); TVirtualMC::GetMC()->Gspos("QA06", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QA07", 1, "QA06", 0., 0., 0., 0, "ONLY"); zd2 += 2.*tubpar[2]; // VCTCP second part: transition cone from ID=180 to ID=212.7 conpar[0] = 31.5/2.; conpar[1] = 18.0/2.; conpar[2] = 18.6/2.; conpar[3] = 21.27/2.; conpar[4] = 21.87/2.; TVirtualMC::GetMC()->Gsvolu("QA08", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QA08", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY"); // Ch.debug //printf(" QA08 CONE from z = %f to z = %f (VCTCP-II)\n",zd2,2*conpar[0]+zd2); zd2 += 2.*conpar[0]; // Tube ID 212.7 mm // Represents VCTCP third part (92 mm) + VCDWB (765 mm) + VMBGA (400 mm) + // VCDWE (300 mm) + VMBGA (400 mm) // + TCTVB space + VAMTF space (new installation Jan 2012) tubpar[0] = 21.27/2.; tubpar[1] = 21.87/2.; tubpar[2] = (195.7+148.+78.)/2.; TVirtualMC::GetMC()->Gsvolu("QA09", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QA09", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); //printf(" QA09 TUBE from z = %1.2f to z= %1.2f (VCTCP-III+VCDWB+VMBGA+VCDWE+VMBGA)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // skewed transition piece (ID=212.7 mm to 332 mm) (before TDI) conpar[0] = (50.0-0.73-1.13)/2.; conpar[1] = 21.27/2.; conpar[2] = 21.87/2.; conpar[3] = 33.2/2.; conpar[4] = 33.8/2.; TVirtualMC::GetMC()->Gsvolu("QA10", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QA10", 1, "ZDCA", -1.66, 0., conpar[0]+0.73+zd2, irotpipe4, "ONLY"); // Ch.debug //printf(" QA10 skewed CONE from z = %1.2f to z= %1.2f\n",zd2,2*conpar[0]+0.73+1.13+zd2); zd2 += 2.*conpar[0]+0.73+1.13; // Vacuum chamber containing TDI tubpar[0] = 0.; tubpar[1] = 54.6/2.; tubpar[2] = 540.0/2.; TVirtualMC::GetMC()->Gsvolu("Q13TM", "TUBE", idtmed[10], tubpar, 3); TVirtualMC::GetMC()->Gspos("Q13TM", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); tubpar[0] = 54.0/2.; tubpar[1] = 54.6/2.; tubpar[2] = 540.0/2.; TVirtualMC::GetMC()->Gsvolu("Q13T", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("Q13T", 1, "Q13TM", 0., 0., 0., 0, "ONLY"); // Ch.debug //printf(" Q13T TUBE from z = %1.2f to z= %1.2f (TDI vacuum chamber)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; //---------------- INSERT TDI INSIDE Q13T ----------------------------------- boxpar[0] = 11.0/2.; boxpar[1] = 9.0/2.; boxpar[2] = 540.0/2.; TVirtualMC::GetMC()->Gsvolu("QTD1", "BOX ", idtmed[7], boxpar, 3); TVirtualMC::GetMC()->Gspos("QTD1", 1, "Q13TM", -3.8, boxpar[1]+fTDIAperturePos, 0., 0, "ONLY"); boxpar[0] = 11.0/2.; boxpar[1] = 9.0/2.; boxpar[2] = 540.0/2.; TVirtualMC::GetMC()->Gsvolu("QTD2", "BOX ", idtmed[7], boxpar, 3); TVirtualMC::GetMC()->Gspos("QTD2", 1, "Q13TM", -3.8, -boxpar[1]-fTDIApertureNeg, 0., 0, "ONLY"); boxpar[0] = 5.1/2.; boxpar[1] = 0.2/2.; boxpar[2] = 540.0/2.; TVirtualMC::GetMC()->Gsvolu("QTD3", "BOX ", idtmed[7], boxpar, 3); TVirtualMC::GetMC()->Gspos("QTD3", 1, "Q13TM", -3.8+5.5+boxpar[0], fTDIAperturePos, 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QTD3", 2, "Q13TM", -3.8+5.5+boxpar[0], -fTDIApertureNeg, 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QTD3", 3, "Q13TM", -3.8-5.5-boxpar[0], fTDIAperturePos, 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QTD3", 4, "Q13TM", -3.8-5.5-boxpar[0], -fTDIApertureNeg, 0., 0, "ONLY"); printf(" AliZDCv4 -> TDI apertures +%1.2f/-%1.2f cm\n", fTDIAperturePos, fTDIApertureNeg); // tubspar[0] = 12.0/2.; tubspar[1] = 12.4/2.; tubspar[2] = 540.0/2.; tubspar[3] = 90.; tubspar[4] = 270.; TVirtualMC::GetMC()->Gsvolu("QTD4", "TUBS", idtmed[7], tubspar, 5); TVirtualMC::GetMC()->Gspos("QTD4", 1, "Q13TM", -3.8-10.6, 0., 0., 0, "ONLY"); tubspar[0] = 12.0/2.; tubspar[1] = 12.4/2.; tubspar[2] = 540.0/2.; tubspar[3] = -90.; tubspar[4] = 90.; TVirtualMC::GetMC()->Gsvolu("QTD5", "TUBS", idtmed[7], tubspar, 5); TVirtualMC::GetMC()->Gspos("QTD5", 1, "Q13TM", -3.8+10.6, 0., 0., 0, "ONLY"); //---------------- END DEFINING TDI INSIDE Q13T ------------------------------- // VCTCG skewed transition piece (ID=332 mm to 212.7 mm) (after TDI) conpar[0] = (50.0-2.92-1.89)/2.; conpar[1] = 33.2/2.; conpar[2] = 33.8/2.; conpar[3] = 21.27/2.; conpar[4] = 21.87/2.; TVirtualMC::GetMC()->Gsvolu("QA11", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QA11", 1, "ZDCA", 4.32-3.8, 0., conpar[0]+2.92+zd2, irotpipe5, "ONLY"); // Ch.debug //printf(" QA11 skewed CONE from z = %f to z =%f (VCTCG)\n",zd2,2*conpar[0]+2.92+1.89+zd2); zd2 += 2.*conpar[0]+2.92+1.89; // The following tube ID 212.7 mm // represents VMBGA (400 mm) + VCDWE (300 mm) + VMBGA (400 mm) + // BTVTS (600 mm) + VMLGB (400 mm) tubpar[0] = 21.27/2.; tubpar[1] = 21.87/2.; tubpar[2] = 210.0/2.; TVirtualMC::GetMC()->Gsvolu("QA12", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QA12", 1, "ZDCA", 4., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" QA12 TUBE from z = %1.2f to z= %1.2f (VMBGA+VCDWE+VMBGA+BTVTS+VMLGB)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // First part of VCTCC // skewed transition cone from ID=212.7 mm to ID=797 mm conpar[0] = (121.0-0.37-1.35)/2.; conpar[1] = 21.27/2.; conpar[2] = 21.87/2.; conpar[3] = 79.7/2.; conpar[4] = 81.3/2.; TVirtualMC::GetMC()->Gsvolu("QA13", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QA13", 1, "ZDCA", 4.-2., 0., conpar[0]+0.37+zd2, irotpipe3, "ONLY"); // Ch.debug //printf(" QA13 CONE from z = %1.2f to z = %1.2f (VCTCC-I)\n",zd2,2*conpar[0]+0.37+1.35+zd2); zd2 += 2.*conpar[0]+0.37+1.35; // The following tube ID 797 mm // represents the second part of VCTCC (4272 mm) + // 4 x VCDGA (4 x 4272 mm) + // the first part of VCTCR (850 mm) // updated according to 2012 ZDC installation tubpar[0] = 79.7/2.; tubpar[1] = 81.3/2.; tubpar[2] = (2221.-136.)/2.; TVirtualMC::GetMC()->Gsvolu("QA14", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QA14", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" QA14 TUBE from z = %1.2f to z = %1.2f (VCTCC-II)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // Second part of VCTCR // Transition from ID=797 mm to ID=196 mm: // in order to simulate the thin window opened in the transition cone // we divide the transition cone in three cones: // (1) 8 mm thick (2) 3 mm thick (3) the third 8 mm thick // (1) 8 mm thick conpar[0] = 9.09/2.; // 15 degree conpar[1] = 79.7/2.; conpar[2] = 81.3/2.; // thickness 8 mm conpar[3] = 74.82868/2.; conpar[4] = 76.42868/2.; // thickness 8 mm TVirtualMC::GetMC()->Gsvolu("QA15", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QA15", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY"); //printf(" QA15 CONE from z = %1.2f to z= %1.2f (VCTCR-I)\n",zd2,2*conpar[0]+zd2); zd2 += 2.*conpar[0]; // (2) 3 mm thick conpar[0] = 96.2/2.; // 15 degree conpar[1] = 74.82868/2.; conpar[2] = 75.42868/2.; // thickness 3 mm conpar[3] = 23.19588/2.; conpar[4] = 23.79588/2.; // thickness 3 mm TVirtualMC::GetMC()->Gsvolu("QA16", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QA16", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY"); //printf(" QA16 CONE from z = %1.2f to z= %1.2f\n",zd2,2*conpar[0]+zd2); zd2 += 2.*conpar[0]; // (3) 8 mm thick conpar[0] = 6.71/2.; // 15 degree conpar[1] = 23.19588/2.; conpar[2] = 24.79588/2.;// thickness 8 mm conpar[3] = 19.6/2.; conpar[4] = 21.2/2.;// thickness 8 mm TVirtualMC::GetMC()->Gsvolu("QA17", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QA17", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY"); //printf(" QA17 CONE from z = %1.2f to z= %1.2f (VCTCR-II)\n",zd2,2*conpar[0]+zd2); zd2 += 2.*conpar[0]; // Third part of VCTCR: tube (ID=196 mm) tubpar[0] = 19.6/2.; tubpar[1] = 21.2/2.; tubpar[2] = 9.55/2.; TVirtualMC::GetMC()->Gsvolu("QA18", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QA18", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" QA18 TUBE from z = %1.2f to z= %1.2f (VCTCR-III)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // Flange (ID=196 mm) (last part of VCTCR and first part of VMZAR) tubpar[0] = 19.6/2.; tubpar[1] = 25.3/2.; tubpar[2] = 4.9/2.; TVirtualMC::GetMC()->Gsvolu("QF01", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QF01", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" QF01 TUBE from z = %1.2f to z= %1.2f (VMZAR-I)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // VMZAR (5 volumes) tubpar[0] = 20.2/2.; tubpar[1] = 20.6/2.; tubpar[2] = 2.15/2.; TVirtualMC::GetMC()->Gsvolu("QA19", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QA19", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" QA19 TUBE from z = %1.2f to z = %1.2f (VMZAR-II)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; conpar[0] = 6.9/2.; conpar[1] = 20.2/2.; conpar[2] = 20.6/2.; conpar[3] = 23.9/2.; conpar[4] = 24.3/2.; TVirtualMC::GetMC()->Gsvolu("QA20", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QA20", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY"); // Ch.debug //printf(" QA20 CONE from z = %1.2f to z = %1.2f (VMZAR-III)\n",zd2,2*conpar[0]+zd2); zd2 += 2.*conpar[0]; tubpar[0] = 23.9/2.; tubpar[1] = 25.5/2.; tubpar[2] = 17.0/2.; TVirtualMC::GetMC()->Gsvolu("QA21", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QA21", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" QA21 TUBE from z = %1.2f to z = %1.2f (VMZAR-IV)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; conpar[0] = 6.9/2.; conpar[1] = 23.9/2.; conpar[2] = 24.3/2.; conpar[3] = 20.2/2.; conpar[4] = 20.6/2.; TVirtualMC::GetMC()->Gsvolu("QA22", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QA22", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY"); // Ch.debug //printf(" QA22 CONE from z = %1.2f to z = %1.2f (VMZAR-V)\n",zd2,2*conpar[0]+zd2); zd2 += 2.*conpar[0]; tubpar[0] = 20.2/2.; tubpar[1] = 20.6/2.; tubpar[2] = 2.15/2.; TVirtualMC::GetMC()->Gsvolu("QA23", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QA23", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" QA23 TUBE from z = %1.2f to z= %1.2f (VMZAR-VI)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // Flange (ID=196 mm)(last part of VMZAR and first part of VCTYD) tubpar[0] = 19.6/2.; tubpar[1] = 25.3/2.; tubpar[2] = 4.9/2.; TVirtualMC::GetMC()->Gsvolu("QF02", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QF02", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" QF02 TUBE from z = %1.2f to z= %1.2f (VMZAR-VII)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // simulation of the trousers (VCTYB) tubpar[0] = 19.6/2.; tubpar[1] = 20.0/2.; tubpar[2] = 3.9/2.; TVirtualMC::GetMC()->Gsvolu("QA24", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QA24", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" QA24 TUBE from z = %1.2f to z= %1.2f (VCTYB)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // transition cone from ID=196. to ID=216.6 conpar[0] = 32.55/2.; conpar[1] = 19.6/2.; conpar[2] = 20.0/2.; conpar[3] = 21.66/2.; conpar[4] = 22.06/2.; TVirtualMC::GetMC()->Gsvolu("QA25", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QA25", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY"); // Ch.debug //printf(" QA25 CONE from z = %1.2f to z= %1.2f (transition cone)\n",zd2,2*conpar[0]+zd2); zd2 += 2.*conpar[0]; // tube tubpar[0] = 21.66/2.; tubpar[1] = 22.06/2.; tubpar[2] = 28.6/2.; TVirtualMC::GetMC()->Gsvolu("QA26", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QA26", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" QA26 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // Ch.debug //printf(" Begin of recombination chamber z = %1.2f\n",zd2); // -------------------------------------------------------- // RECOMBINATION CHAMBER IMPLEMENTED USING TGeo CLASSES!!!! // author: Chiara (June 2008) // -------------------------------------------------------- // TRANSFORMATION MATRICES // Combi transformation: dx = -3.970000; dy = 0.000000; dz = 0.0; // Rotation: thx = 84.989100; phx = 0.000000; thy = 90.000000; phy = 90.000000; thz = 5.010900; phz = 180.000000; TGeoRotation *rotMatrix1 = new TGeoRotation("",thx,phx,thy,phy,thz,phz); // Combi transformation: dx = -3.970000; dy = 0.000000; dz = 0.0; TGeoCombiTrans *rotMatrix2 = new TGeoCombiTrans("ZDC_c1", dx,dy,dz,rotMatrix1); rotMatrix2->RegisterYourself(); // Combi transformation: dx = 3.970000; dy = 0.000000; dz = 0.0; // Rotation: thx = 95.010900; phx = 0.000000; thy = 90.000000; phy = 90.000000; thz = 5.010900; phz = 0.000000; TGeoRotation *rotMatrix3 = new TGeoRotation("",thx,phx,thy,phy,thz,phz); TGeoCombiTrans *rotMatrix4 = new TGeoCombiTrans("ZDC_c2", dx,dy,dz,rotMatrix3); rotMatrix4->RegisterYourself(); // VOLUMES DEFINITION // Volume: ZDCA TGeoVolume *pZDCA = gGeoManager->GetVolume("ZDCA"); conpar[0] = (90.1-0.95-0.26)/2.; conpar[1] = 0.0/2.; conpar[2] = 21.6/2.; conpar[3] = 0.0/2.; conpar[4] = 5.8/2.; new TGeoCone("QALext", conpar[0],conpar[1],conpar[2],conpar[3],conpar[4]); conpar[0] = (90.1-0.95-0.26)/2.; conpar[1] = 0.0/2.; conpar[2] = 21.2/2.; conpar[3] = 0.0/2.; conpar[4] = 5.4/2.; new TGeoCone("QALint", conpar[0],conpar[1],conpar[2],conpar[3],conpar[4]); // Outer trousers TGeoCompositeShape *pOutTrousers = new TGeoCompositeShape("outTrousers", "QALext:ZDC_c1+QALext:ZDC_c2"); // Volume: QALext //TGeoMedium *medZDCFe = gGeoManager->GetMedium("ZDC_ZIRON"); TGeoVolume *pQALext = new TGeoVolume("QALext",pOutTrousers, medZDCFe); pQALext->SetLineColor(kBlue); pQALext->SetVisLeaves(kTRUE); // TGeoTranslation *tr1 = new TGeoTranslation(0., 0., (Double_t) conpar[0]+0.95+zd2); pZDCA->AddNode(pQALext, 1, tr1); // Inner trousers TGeoCompositeShape *pIntTrousers = new TGeoCompositeShape("intTrousers", "QALint:ZDC_c1+QALint:ZDC_c2"); // Volume: QALint //TGeoMedium *medZDCvoid = gGeoManager->GetMedium("ZDC_ZVOID"); TGeoVolume *pQALint = new TGeoVolume("QALint",pIntTrousers, medZDCvoid); pQALint->SetLineColor(kAzure); pQALint->SetVisLeaves(kTRUE); pQALext->AddNode(pQALint, 1); zd2 += 90.1; // Ch.debug //printf(" End of recombination chamber z = %1.2f\n",zd2); // second section : 2 tubes (ID = 54. OD = 58.) tubpar[0] = 5.4/2.; tubpar[1] = 5.8/2.; tubpar[2] = 40.0/2.; TVirtualMC::GetMC()->Gsvolu("QA27", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QA27", 1, "ZDCA", -15.8/2., 0., tubpar[2]+zd2, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QA27", 2, "ZDCA", 15.8/2., 0., tubpar[2]+zd2, 0, "ONLY"); // Ch.debug //printf(" QA27 TUBE from z = %1.2f to z= %1.2f (separate pipes)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // transition x2zdc to recombination chamber : skewed cone conpar[0] = (10.-1.)/2.; conpar[1] = 5.4/2.; conpar[2] = 5.8/2.; conpar[3] = 6.3/2.; conpar[4] = 7.0/2.; TVirtualMC::GetMC()->Gsvolu("QA28", "CONE", idtmed[7], conpar, 5); TVirtualMC::GetMC()->Gspos("QA28", 1, "ZDCA", -7.9-0.175, 0., conpar[0]+0.5+zd2, irotpipe1, "ONLY"); TVirtualMC::GetMC()->Gspos("QA28", 2, "ZDCA", 7.9+0.175, 0., conpar[0]+0.5+zd2, irotpipe2, "ONLY"); //printf(" QA28 CONE from z = %1.2f to z= %1.2f (transition X2ZDC)\n",zd2,2*conpar[0]+0.2+zd2); zd2 += 2.*conpar[0]+1.; // 2 tubes (ID = 63 mm OD=70 mm) tubpar[0] = 6.3/2.; tubpar[1] = 7.0/2.; tubpar[2] = (342.5+498.3)/2.; TVirtualMC::GetMC()->Gsvolu("QA29", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("QA29", 1, "ZDCA", -16.5/2., 0., tubpar[2]+zd2, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QA29", 2, "ZDCA", 16.5/2., 0., tubpar[2]+zd2, 0, "ONLY"); //printf(" QA29 TUBE from z = %1.2f to z= %1.2f (separate pipes)\n",zd2,2*tubpar[2]+zd2); zd2 += 2.*tubpar[2]; // -- Luminometer (Cu box) in front of ZN - side A if(fLumiLength>0.){ boxpar[0] = 8.0/2.; boxpar[1] = 8.0/2.; boxpar[2] = fLumiLength/2.; TVirtualMC::GetMC()->Gsvolu("QLUA", "BOX ", idtmed[9], boxpar, 3); TVirtualMC::GetMC()->Gspos("QLUA", 1, "ZDCA", 0., 0., fPosZNA[2]-66.-boxpar[2], 0, "ONLY"); printf(" A SIDE LUMINOMETER %1.2f < z < %1.2f\n\n", fPosZNA[2]-66., fPosZNA[2]-66.-2*boxpar[2]); } printf(" END OF A SIDE BEAM PIPE VOLUME DEFINITION AT z = %f m from IP2\n",zd2/100.); // ---------------------------------------------------------------- // -- MAGNET DEFINITION -> LHC OPTICS 6.5 // ---------------------------------------------------------------- // *************************************************************** // SIDE C - RB26 (dimuon side) // *************************************************************** // -- COMPENSATOR DIPOLE (MBXW) zCorrDip = 1972.5; // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 3.14; tubpar[2] = 153./2.; TVirtualMC::GetMC()->Gsvolu("MBXW", "TUBE", idtmed[11], tubpar, 3); // -- YOKE tubpar[0] = 4.5; tubpar[1] = 55.; tubpar[2] = 153./2.; TVirtualMC::GetMC()->Gsvolu("YMBX", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("MBXW", 1, "ZDCC", 0., 0., -tubpar[2]-zCorrDip, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("YMBX", 1, "ZDCC", 0., 0., -tubpar[2]-zCorrDip, 0, "ONLY"); // -- INNER TRIPLET zInnTrip = 2296.5; // -- DEFINE MQXL AND MQX QUADRUPOLE ELEMENT // -- MQXL // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 3.14; tubpar[2] = 637./2.; TVirtualMC::GetMC()->Gsvolu("MQXL", "TUBE", idtmed[11], tubpar, 3); // -- YOKE tubpar[0] = 3.5; tubpar[1] = 22.; tubpar[2] = 637./2.; TVirtualMC::GetMC()->Gsvolu("YMQL", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("MQXL", 1, "ZDCC", 0., 0., -tubpar[2]-zInnTrip, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("YMQL", 1, "ZDCC", 0., 0., -tubpar[2]-zInnTrip, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("MQXL", 2, "ZDCC", 0., 0., -tubpar[2]-zInnTrip-2400., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("YMQL", 2, "ZDCC", 0., 0., -tubpar[2]-zInnTrip-2400., 0, "ONLY"); // -- MQX // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 3.14; tubpar[2] = 550./2.; TVirtualMC::GetMC()->Gsvolu("MQX ", "TUBE", idtmed[11], tubpar, 3); // -- YOKE tubpar[0] = 3.5; tubpar[1] = 22.; tubpar[2] = 550./2.; TVirtualMC::GetMC()->Gsvolu("YMQ ", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("MQX ", 1, "ZDCC", 0., 0., -tubpar[2]-zInnTrip-908.5, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("YMQ ", 1, "ZDCC", 0., 0., -tubpar[2]-zInnTrip-908.5, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("MQX ", 2, "ZDCC", 0., 0., -tubpar[2]-zInnTrip-1558.5, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("YMQ ", 2, "ZDCC", 0., 0., -tubpar[2]-zInnTrip-1558.5, 0, "ONLY"); // -- SEPARATOR DIPOLE D1 zD1 = 5838.3001; // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 3.46; tubpar[2] = 945./2.; TVirtualMC::GetMC()->Gsvolu("MD1 ", "TUBE", idtmed[11], tubpar, 3); // -- Insert horizontal Cu plates inside D1 // -- (to simulate the vacuum chamber) boxpar[0] = TMath::Sqrt(tubpar[1]*tubpar[1]-(2.98+0.2)*(2.98+0.2)) - 0.05; boxpar[1] = 0.2/2.; boxpar[2] = 945./2.; TVirtualMC::GetMC()->Gsvolu("MD1V", "BOX ", idtmed[6], boxpar, 3); TVirtualMC::GetMC()->Gspos("MD1V", 1, "MD1 ", 0., 2.98+boxpar[1], 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("MD1V", 2, "MD1 ", 0., -2.98-boxpar[1], 0., 0, "ONLY"); // -- YOKE tubpar[0] = 3.68; tubpar[1] = 110./2.; tubpar[2] = 945./2.; TVirtualMC::GetMC()->Gsvolu("YD1 ", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("YD1 ", 1, "ZDCC", 0., 0., -tubpar[2]-zD1, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("MD1 ", 1, "ZDCC", 0., 0., -tubpar[2]-zD1, 0, "ONLY"); // Ch debug //printf(" MD1 from z = %1.2f to z= %1.2f cm\n",-zD1, -zD1-2*tubpar[2]); // -- DIPOLE D2 /* zD2 = 12167.8; // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 7.5/2.; tubpar[2] = 945./2.; TVirtualMC::GetMC()->Gsvolu("MD2 ", "TUBE", idtmed[11], tubpar, 3); // -- YOKE tubpar[0] = 0.; tubpar[1] = 55.; tubpar[2] = 945./2.; TVirtualMC::GetMC()->Gsvolu("YD2 ", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("YD2 ", 1, "ZDCC", 0., 0., -tubpar[2]-zD2, 0, "ONLY"); // Ch debug //printf(" YD2 from z = %1.2f to z= %1.2f cm\n",-zD2, -zD2-2*tubpar[2]); TVirtualMC::GetMC()->Gspos("MD2 ", 1, "YD2 ", -9.4, 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("MD2 ", 2, "YD2 ", 9.4, 0., 0., 0, "ONLY"); */ // *************************************************************** // SIDE A - RB24 // *************************************************************** // COMPENSATOR DIPOLE (MCBWA) (2nd compensator) // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 3.; tubpar[2] = 153./2.; TVirtualMC::GetMC()->Gsvolu("MCBW", "TUBE", idtmed[11], tubpar, 3); TVirtualMC::GetMC()->Gspos("MCBW", 1, "ZDCA", 0., 0., tubpar[2]+zCorrDip, 0, "ONLY"); // -- YOKE tubpar[0] = 4.5; tubpar[1] = 55.; tubpar[2] = 153./2.; TVirtualMC::GetMC()->Gsvolu("YMCB", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("YMCB", 1, "ZDCA", 0., 0., tubpar[2]+zCorrDip, 0, "ONLY"); // -- INNER TRIPLET // -- DEFINE MQX1 AND MQX2 QUADRUPOLE ELEMENT // -- MQX1 // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 3.14; tubpar[2] = 637./2.; TVirtualMC::GetMC()->Gsvolu("MQX1", "TUBE", idtmed[11], tubpar, 3); TVirtualMC::GetMC()->Gsvolu("MQX4", "TUBE", idtmed[11], tubpar, 3); // -- YOKE tubpar[0] = 3.5; tubpar[1] = 22.; tubpar[2] = 637./2.; TVirtualMC::GetMC()->Gsvolu("YMQ1", "TUBE", idtmed[7], tubpar, 3); // -- Q1 TVirtualMC::GetMC()->Gspos("MQX1", 1, "ZDCA", 0., 0., tubpar[2]+zInnTrip, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("YMQ1", 1, "ZDCA", 0., 0., tubpar[2]+zInnTrip, 0, "ONLY"); // -- BEAM SCREEN FOR Q1 tubpar[0] = 4.78/2.; tubpar[1] = 5.18/2.; tubpar[2] = 637./2.; TVirtualMC::GetMC()->Gsvolu("QBS1", "TUBE", idtmed[6], tubpar, 3); TVirtualMC::GetMC()->Gspos("QBS1", 1, "MQX1", 0., 0., 0., 0, "ONLY"); // INSERT VERTICAL PLATE INSIDE Q1 boxpar[0] = 0.2/2.0; boxpar[1] = TMath::Sqrt(tubpar[0]*tubpar[0]-(1.9+0.2)*(1.9+0.2)); boxpar[2] =637./2.; TVirtualMC::GetMC()->Gsvolu("QBS2", "BOX ", idtmed[6], boxpar, 3); TVirtualMC::GetMC()->Gspos("QBS2", 1, "MQX1", 1.9+boxpar[0], 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QBS2", 2, "MQX1", -1.9-boxpar[0], 0., 0., 0, "ONLY"); // -- Q3 TVirtualMC::GetMC()->Gspos("MQX4", 1, "ZDCA", 0., 0., tubpar[2]+zInnTrip+2400., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("YMQ1", 2, "ZDCA", 0., 0., tubpar[2]+zInnTrip+2400., 0, "ONLY"); // -- BEAM SCREEN FOR Q3 tubpar[0] = 5.79/2.; tubpar[1] = 6.14/2.; tubpar[2] = 637./2.; TVirtualMC::GetMC()->Gsvolu("QBS3", "TUBE", idtmed[6], tubpar, 3); TVirtualMC::GetMC()->Gspos("QBS3", 1, "MQX4", 0., 0., 0., 0, "ONLY"); // INSERT VERTICAL PLATE INSIDE Q3 boxpar[0] = 0.2/2.0; boxpar[1] = TMath::Sqrt(tubpar[0]*tubpar[0]-(2.405+0.2)*(2.405+0.2)); boxpar[2] =637./2.; TVirtualMC::GetMC()->Gsvolu("QBS4", "BOX ", idtmed[6], boxpar, 3); TVirtualMC::GetMC()->Gspos("QBS4", 1, "MQX4", 2.405+boxpar[0], 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QBS4", 2, "MQX4", -2.405-boxpar[0], 0., 0., 0, "ONLY"); // -- MQX2 // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 3.14; tubpar[2] = 550./2.; TVirtualMC::GetMC()->Gsvolu("MQX2", "TUBE", idtmed[11], tubpar, 3); TVirtualMC::GetMC()->Gsvolu("MQX3", "TUBE", idtmed[11], tubpar, 3); // -- YOKE tubpar[0] = 3.5; tubpar[1] = 22.; tubpar[2] = 550./2.; TVirtualMC::GetMC()->Gsvolu("YMQ2", "TUBE", idtmed[7], tubpar, 3); // -- BEAM SCREEN FOR Q2 tubpar[0] = 5.79/2.; tubpar[1] = 6.14/2.; tubpar[2] = 550./2.; TVirtualMC::GetMC()->Gsvolu("QBS5", "TUBE", idtmed[6], tubpar, 3); // VERTICAL PLATE INSIDE Q2 boxpar[0] = 0.2/2.0; boxpar[1] = TMath::Sqrt(tubpar[0]*tubpar[0]-(2.405+0.2)*(2.405+0.2)); boxpar[2] =550./2.; TVirtualMC::GetMC()->Gsvolu("QBS6", "BOX ", idtmed[6], boxpar, 3); // -- Q2A TVirtualMC::GetMC()->Gspos("MQX2", 1, "ZDCA", 0., 0., tubpar[2]+zInnTrip+908.5, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QBS5", 1, "MQX2", 0., 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QBS6", 1, "MQX2", 2.405+boxpar[0], 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QBS6", 2, "MQX2", -2.405-boxpar[0], 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("YMQ2", 1, "ZDCA", 0., 0., tubpar[2]+zInnTrip+908.5, 0, "ONLY"); // -- Q2B TVirtualMC::GetMC()->Gspos("MQX3", 1, "ZDCA", 0., 0., tubpar[2]+zInnTrip+1558.5, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QBS5", 2, "MQX3", 0., 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QBS6", 3, "MQX3", 2.405+boxpar[0], 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QBS6", 4, "MQX3", -2.405-boxpar[0], 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("YMQ2", 2, "ZDCA", 0., 0., tubpar[2]+zInnTrip+1558.5, 0, "ONLY"); // -- SEPARATOR DIPOLE D1 // -- GAP (VACUUM WITH MAGNETIC FIELD) tubpar[0] = 0.; tubpar[1] = 6.75/2.;//3.375 tubpar[2] = 945./2.; TVirtualMC::GetMC()->Gsvolu("MD1L", "TUBE", idtmed[11], tubpar, 3); // -- The beam screen tube is provided by the beam pipe in D1 (QA03 volume) // -- Insert the beam screen horizontal Cu plates inside D1 // -- (to simulate the vacuum chamber) boxpar[0] = TMath::Sqrt(tubpar[1]*tubpar[1]-(2.885+0.2)*(2.885+0.2)); boxpar[1] = 0.2/2.; boxpar[2] =945./2.; TVirtualMC::GetMC()->Gsvolu("QBS7", "BOX ", idtmed[6], boxpar, 3); TVirtualMC::GetMC()->Gspos("QBS7", 1, "MD1L", 0., 2.885+boxpar[1],0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("QBS7", 2, "MD1L", 0., -2.885-boxpar[1],0., 0, "ONLY"); // -- YOKE tubpar[0] = 3.68; tubpar[1] = 110./2; tubpar[2] = 945./2.; TVirtualMC::GetMC()->Gsvolu("YD1L", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("YD1L", 1, "ZDCA", 0., 0., tubpar[2]+zD1, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("MD1L", 1, "ZDCA", 0., 0., tubpar[2]+zD1, 0, "ONLY"); // -- DIPOLE D2 // -- GAP (VACUUM WITH MAGNETIC FIELD) /* tubpar[0] = 0.; tubpar[1] = 7.5/2.; // this has to be checked tubpar[2] = 945./2.; TVirtualMC::GetMC()->Gsvolu("MD2L", "TUBE", idtmed[11], tubpar, 3); // -- YOKE tubpar[0] = 0.; tubpar[1] = 55.; tubpar[2] = 945./2.; TVirtualMC::GetMC()->Gsvolu("YD2L", "TUBE", idtmed[7], tubpar, 3); TVirtualMC::GetMC()->Gspos("YD2L", 1, "ZDCA", 0., 0., tubpar[2]+zD2, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("MD2L", 1, "YD2L", -9.4, 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("MD2L", 2, "YD2L", 9.4, 0., 0., 0, "ONLY"); */ // -- END OF MAGNET DEFINITION } //_____________________________________________________________________________ void AliZDCv4::CreateZDC() { // // Create the various ZDCs (ZN + ZP) // Float_t dimPb[6], dimVoid[6]; Int_t *idtmed = fIdtmed->GetArray(); // Parameters for EM calorimeter geometry // NB -> parameters used ONLY in CreateZDC() Float_t kDimZEMPb = 0.15*(TMath::Sqrt(2.)); // z-dimension of the Pb slice Float_t kFibRadZEM = 0.0315; // External fiber radius (including cladding) Int_t fDivZEM[3] = {92, 0, 20}; // Divisions for EM detector Float_t fDimZEM[6] = {fZEMLength, 3.5, 3.5, 45., 0., 0.}; // Dimensions of EM detector Float_t fFibZEM2 = fDimZEM[2]/TMath::Sin(fDimZEM[3]*kDegrad)-kFibRadZEM; Float_t fFibZEM[3] = {0., 0.0275, fFibZEM2}; // Fibers for EM calorimeter if(!fOnlyZEM){ // Parameters for hadronic calorimeters geometry // NB -> parameters used ONLY in CreateZDC() Float_t fGrvZN[3] = {0.03, 0.03, 50.}; // Grooves for neutron detector Float_t fGrvZP[3] = {0.04, 0.04, 75.}; // Grooves for proton detector Int_t fDivZN[3] = {11, 11, 0}; // Division for neutron detector Int_t fDivZP[3] = {7, 15, 0}; // Division for proton detector Int_t fTowZN[2] = {2, 2}; // Tower for neutron detector Int_t fTowZP[2] = {4, 1}; // Tower for proton detector //-- Create calorimeters geometry // ------------------------------------------------------------------------------- //--> Neutron calorimeter (ZN) TVirtualMC::GetMC()->Gsvolu("ZNEU", "BOX ", idtmed[1], fDimZN, 3); // Passive material TVirtualMC::GetMC()->Gsvolu("ZNF1", "TUBE", idtmed[3], fFibZN, 3); // Active material TVirtualMC::GetMC()->Gsvolu("ZNF2", "TUBE", idtmed[4], fFibZN, 3); TVirtualMC::GetMC()->Gsvolu("ZNF3", "TUBE", idtmed[4], fFibZN, 3); TVirtualMC::GetMC()->Gsvolu("ZNF4", "TUBE", idtmed[3], fFibZN, 3); TVirtualMC::GetMC()->Gsvolu("ZNG1", "BOX ", idtmed[12], fGrvZN, 3); // Empty grooves TVirtualMC::GetMC()->Gsvolu("ZNG2", "BOX ", idtmed[12], fGrvZN, 3); TVirtualMC::GetMC()->Gsvolu("ZNG3", "BOX ", idtmed[12], fGrvZN, 3); TVirtualMC::GetMC()->Gsvolu("ZNG4", "BOX ", idtmed[12], fGrvZN, 3); // Divide ZNEU in towers (for hits purposes) TVirtualMC::GetMC()->Gsdvn("ZNTX", "ZNEU", fTowZN[0], 1); // x-tower TVirtualMC::GetMC()->Gsdvn("ZN1 ", "ZNTX", fTowZN[1], 2); // y-tower //-- Divide ZN1 in minitowers // fDivZN[0]= NUMBER OF FIBERS PER TOWER ALONG X-AXIS, // fDivZN[1]= NUMBER OF FIBERS PER TOWER ALONG Y-AXIS // (4 fibres per minitower) TVirtualMC::GetMC()->Gsdvn("ZNSL", "ZN1 ", fDivZN[1], 2); // Slices TVirtualMC::GetMC()->Gsdvn("ZNST", "ZNSL", fDivZN[0], 1); // Sticks // --- Position the empty grooves in the sticks (4 grooves per stick) Float_t dx = fDimZN[0] / fDivZN[0] / 4.; Float_t dy = fDimZN[1] / fDivZN[1] / 4.; TVirtualMC::GetMC()->Gspos("ZNG1", 1, "ZNST", 0.-dx, 0.+dy, 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("ZNG2", 1, "ZNST", 0.+dx, 0.+dy, 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("ZNG3", 1, "ZNST", 0.-dx, 0.-dy, 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("ZNG4", 1, "ZNST", 0.+dx, 0.-dy, 0., 0, "ONLY"); // --- Position the fibers in the grooves TVirtualMC::GetMC()->Gspos("ZNF1", 1, "ZNG1", 0., 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("ZNF2", 1, "ZNG2", 0., 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("ZNF3", 1, "ZNG3", 0., 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("ZNF4", 1, "ZNG4", 0., 0., 0., 0, "ONLY"); // --- Position the neutron calorimeter in ZDC // -- Rotation of ZDCs Int_t irotzdc; TVirtualMC::GetMC()->Matrix(irotzdc, 90., 180., 90., 90., 180., 0.); // TVirtualMC::GetMC()->Gspos("ZNEU", 1, "ZDCC", fPosZNC[0], fPosZNC[1], fPosZNC[2]-fDimZN[2], irotzdc, "ONLY"); //Ch debug //printf("\n ZN -> %f < z < %f cm\n",fPosZN[2],fPosZN[2]-2*fDimZN[2]); // --- Position the neutron calorimeter in ZDC2 (left line) // -- No Rotation of ZDCs TVirtualMC::GetMC()->Gspos("ZNEU", 2, "ZDCA", fPosZNA[0], fPosZNA[1], fPosZNA[2]+fDimZN[2], 0, "ONLY"); //Ch debug //printf("\n ZN left -> %f < z < %f cm\n",fPosZNl[2],fPosZNl[2]+2*fDimZN[2]); // ------------------------------------------------------------------------------- //--> Proton calorimeter (ZP) TVirtualMC::GetMC()->Gsvolu("ZPRO", "BOX ", idtmed[2], fDimZP, 3); // Passive material TVirtualMC::GetMC()->Gsvolu("ZPF1", "TUBE", idtmed[3], fFibZP, 3); // Active material TVirtualMC::GetMC()->Gsvolu("ZPF2", "TUBE", idtmed[4], fFibZP, 3); TVirtualMC::GetMC()->Gsvolu("ZPF3", "TUBE", idtmed[4], fFibZP, 3); TVirtualMC::GetMC()->Gsvolu("ZPF4", "TUBE", idtmed[3], fFibZP, 3); TVirtualMC::GetMC()->Gsvolu("ZPG1", "BOX ", idtmed[12], fGrvZP, 3); // Empty grooves TVirtualMC::GetMC()->Gsvolu("ZPG2", "BOX ", idtmed[12], fGrvZP, 3); TVirtualMC::GetMC()->Gsvolu("ZPG3", "BOX ", idtmed[12], fGrvZP, 3); TVirtualMC::GetMC()->Gsvolu("ZPG4", "BOX ", idtmed[12], fGrvZP, 3); //-- Divide ZPRO in towers(for hits purposes) TVirtualMC::GetMC()->Gsdvn("ZPTX", "ZPRO", fTowZP[0], 1); // x-tower TVirtualMC::GetMC()->Gsdvn("ZP1 ", "ZPTX", fTowZP[1], 2); // y-tower //-- Divide ZP1 in minitowers // fDivZP[0]= NUMBER OF FIBERS ALONG X-AXIS PER MINITOWER, // fDivZP[1]= NUMBER OF FIBERS ALONG Y-AXIS PER MINITOWER // (4 fiber per minitower) TVirtualMC::GetMC()->Gsdvn("ZPSL", "ZP1 ", fDivZP[1], 2); // Slices TVirtualMC::GetMC()->Gsdvn("ZPST", "ZPSL", fDivZP[0], 1); // Sticks // --- Position the empty grooves in the sticks (4 grooves per stick) dx = fDimZP[0] / fTowZP[0] / fDivZP[0] / 2.; dy = fDimZP[1] / fTowZP[1] / fDivZP[1] / 2.; TVirtualMC::GetMC()->Gspos("ZPG1", 1, "ZPST", 0.-dx, 0.+dy, 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("ZPG2", 1, "ZPST", 0.+dx, 0.+dy, 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("ZPG3", 1, "ZPST", 0.-dx, 0.-dy, 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("ZPG4", 1, "ZPST", 0.+dx, 0.-dy, 0., 0, "ONLY"); // --- Position the fibers in the grooves TVirtualMC::GetMC()->Gspos("ZPF1", 1, "ZPG1", 0., 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("ZPF2", 1, "ZPG2", 0., 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("ZPF3", 1, "ZPG3", 0., 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("ZPF4", 1, "ZPG4", 0., 0., 0., 0, "ONLY"); // --- Position the proton calorimeter in ZDCC TVirtualMC::GetMC()->Gspos("ZPRO", 1, "ZDCC", fPosZPC[0], fPosZPC[1], fPosZPC[2]-fDimZP[2], irotzdc, "ONLY"); //Ch debug //printf("\n ZP -> %f < z < %f cm\n",fPosZP[2],fPosZP[2]-2*fDimZP[2]); // --- Position the proton calorimeter in ZDCA // --- No rotation TVirtualMC::GetMC()->Gspos("ZPRO", 2, "ZDCA", fPosZPA[0], fPosZPA[1], fPosZPA[2]+fDimZP[2], 0, "ONLY"); //Ch debug //printf("\n ZP left -> %f < z < %f cm\n",fPosZPl[2],fPosZPl[2]+2*fDimZP[2]); } // ------------------------------------------------------------------------------- // -> EM calorimeter (ZEM) TVirtualMC::GetMC()->Gsvolu("ZEM ", "PARA", idtmed[10], fDimZEM, 6); Int_t irot1, irot2; TVirtualMC::GetMC()->Matrix(irot1,0.,0.,90.,90.,-90.,0.); // Rotation matrix 1 TVirtualMC::GetMC()->Matrix(irot2,180.,0.,90.,fDimZEM[3]+90.,90.,fDimZEM[3]);// Rotation matrix 2 //printf("irot1 = %d, irot2 = %d \n", irot1, irot2); TVirtualMC::GetMC()->Gsvolu("ZEMF", "TUBE", idtmed[3], fFibZEM, 3); // Active material TVirtualMC::GetMC()->Gsdvn("ZETR", "ZEM ", fDivZEM[2], 1); // Tranches dimPb[0] = kDimZEMPb; // Lead slices dimPb[1] = fDimZEM[2]; dimPb[2] = fDimZEM[1]; //dimPb[3] = fDimZEM[3]; //controllare dimPb[3] = 90.-fDimZEM[3]; //originale dimPb[4] = 0.; dimPb[5] = 0.; TVirtualMC::GetMC()->Gsvolu("ZEL0", "PARA", idtmed[5], dimPb, 6); TVirtualMC::GetMC()->Gsvolu("ZEL1", "PARA", idtmed[5], dimPb, 6); TVirtualMC::GetMC()->Gsvolu("ZEL2", "PARA", idtmed[5], dimPb, 6); // --- Position the lead slices in the tranche Float_t zTran = fDimZEM[0]/fDivZEM[2]; Float_t zTrPb = -zTran+kDimZEMPb; TVirtualMC::GetMC()->Gspos("ZEL0", 1, "ZETR", zTrPb, 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("ZEL1", 1, "ZETR", kDimZEMPb, 0., 0., 0, "ONLY"); // --- Vacuum zone (to be filled with fibres) dimVoid[0] = (zTran-2*kDimZEMPb)/2.; dimVoid[1] = fDimZEM[2]; dimVoid[2] = fDimZEM[1]; dimVoid[3] = 90.-fDimZEM[3]; dimVoid[4] = 0.; dimVoid[5] = 0.; TVirtualMC::GetMC()->Gsvolu("ZEV0", "PARA", idtmed[10], dimVoid,6); TVirtualMC::GetMC()->Gsvolu("ZEV1", "PARA", idtmed[10], dimVoid,6); // --- Divide the vacuum slice into sticks along x axis TVirtualMC::GetMC()->Gsdvn("ZES0", "ZEV0", fDivZEM[0], 3); TVirtualMC::GetMC()->Gsdvn("ZES1", "ZEV1", fDivZEM[0], 3); // --- Positioning the fibers into the sticks TVirtualMC::GetMC()->Gspos("ZEMF", 1,"ZES0", 0., 0., 0., irot2, "ONLY"); TVirtualMC::GetMC()->Gspos("ZEMF", 1,"ZES1", 0., 0., 0., irot2, "ONLY"); // --- Positioning the vacuum slice into the tranche //Float_t displFib = fDimZEM[1]/fDivZEM[0]; TVirtualMC::GetMC()->Gspos("ZEV0", 1,"ZETR", -dimVoid[0], 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("ZEV1", 1,"ZETR", -dimVoid[0]+zTran, 0., 0., 0, "ONLY"); // --- Positioning the ZEM into the ZDC - rotation for 90 degrees // NB -> ZEM is positioned in ALIC (instead of in ZDC) volume TVirtualMC::GetMC()->Gspos("ZEM ", 1,"ALIC", -fPosZEM[0], fPosZEM[1], fPosZEM[2]+fDimZEM[0], irot1, "ONLY"); // Second EM ZDC (same side w.r.t. IP, just on the other side w.r.t. beam pipe) TVirtualMC::GetMC()->Gspos("ZEM ", 2,"ALIC", fPosZEM[0], fPosZEM[1], fPosZEM[2]+fDimZEM[0], irot1, "ONLY"); // --- Adding last slice at the end of the EM calorimeter Float_t zLastSlice = fPosZEM[2]+kDimZEMPb+2*fDimZEM[0]; TVirtualMC::GetMC()->Gspos("ZEL2", 1,"ALIC", fPosZEM[0], fPosZEM[1], zLastSlice, irot1, "ONLY"); //Ch debug //printf("\n ZEM lenght = %f cm\n",2*fZEMLength); //printf("\n ZEM -> %f < z < %f cm\n",fPosZEM[2],fPosZEM[2]+2*fZEMLength+zLastSlice+kDimZEMPb); } //_____________________________________________________________________________ void AliZDCv4::CreateMaterials() { // // Create Materials for the Zero Degree Calorimeter // Float_t dens, ubuf[1], wmat[3], a[3], z[3]; // --- W alloy -> ZN passive material dens = 17.6; a[0] = 183.85; a[1] = 55.85; a[2] = 58.71; z[0] = 74.; z[1] = 26.; z[2] = 28.; wmat[0] = .93; wmat[1] = .03; wmat[2] = .04; AliMixture(1, "WALL", a, z, dens, 3, wmat); // --- Brass (CuZn) -> ZP passive material dens = 8.48; a[0] = 63.546; a[1] = 65.39; z[0] = 29.; z[1] = 30.; wmat[0] = .63; wmat[1] = .37; AliMixture(2, "BRASS", a, z, dens, 2, wmat); // --- SiO2 dens = 2.64; a[0] = 28.086; a[1] = 15.9994; z[0] = 14.; z[1] = 8.; wmat[0] = 1.; wmat[1] = 2.; AliMixture(3, "SIO2", a, z, dens, -2, wmat); // --- Lead ubuf[0] = 1.12; AliMaterial(5, "LEAD", 207.19, 82., 11.35, .56, 0., ubuf, 1); // --- Copper (energy loss taken into account) ubuf[0] = 1.10; AliMaterial(6, "COPP0", 63.54, 29., 8.96, 1.4, 0., ubuf, 1); // --- Copper ubuf[0] = 1.10; AliMaterial(9, "COPP1", 63.54, 29., 8.96, 1.4, 0., ubuf, 1); // --- Iron (energy loss taken into account) ubuf[0] = 1.1; AliMaterial(7, "IRON0", 55.85, 26., 7.87, 1.76, 0., ubuf, 1); // --- Iron (no energy loss) ubuf[0] = 1.1; AliMaterial(8, "IRON1", 55.85, 26., 7.87, 1.76, 0., ubuf, 1); // --- Tatalum ubuf[0] = 1.1; AliMaterial(13, "TANT", 183.84, 74., 19.3, 0.35, 0., ubuf, 1); // --------------------------------------------------------- Float_t aResGas[3]={1.008,12.0107,15.9994}; Float_t zResGas[3]={1.,6.,8.}; Float_t wResGas[3]={0.28,0.28,0.44}; Float_t dResGas = 3.2E-14; // --- Vacuum (no magnetic field) AliMixture(10, "VOID", aResGas, zResGas, dResGas, 3, wResGas); // --- Vacuum (with magnetic field) AliMixture(11, "VOIM", aResGas, zResGas, dResGas, 3, wResGas); // --- Air (no magnetic field) Float_t aAir[4]={12.0107,14.0067,15.9994,39.948}; Float_t zAir[4]={6.,7.,8.,18.}; Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827}; Float_t dAir = 1.20479E-3; // AliMixture(12, "Air $", aAir, zAir, dAir, 4, wAir); // --- Definition of tracking media: // --- Tantalum = 1 ; // --- Brass = 2 ; // --- Fibers (SiO2) = 3 ; // --- Fibers (SiO2) = 4 ; // --- Lead = 5 ; // --- Copper (with high thr.)= 6 ; // --- Copper (with low thr.)= 9; // --- Iron (with energy loss) = 7 ; // --- Iron (without energy loss) = 8 ; // --- Vacuum (no field) = 10 // --- Vacuum (with field) = 11 // --- Air (no field) = 12 // **************************************************** // Tracking media parameters // Float_t epsil = 0.01; // Tracking precision, Float_t stmin = 0.01; // Min. value 4 max. step (cm) Float_t stemax = 1.; // Max. step permitted (cm) Float_t tmaxfd = 0.; // Maximum angle due to field (degrees) Float_t tmaxfdv = 0.1; // Maximum angle due to field (degrees) Float_t deemax = -1.; // Maximum fractional energy loss Float_t nofieldm = 0.; // Max. field value (no field) Float_t fieldm = 45.; // Max. field value (with field) Int_t isvol = 0; // ISVOL =0 -> not sensitive volume Int_t isvolActive = 1; // ISVOL =1 -> sensitive volume Int_t inofld = 0; // IFIELD=0 -> no magnetic field Int_t ifield =2; // IFIELD=2 -> magnetic field defined in AliMagFC.h // ***************************************************** AliMedium(1, "ZWALL", 1, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(2, "ZBRASS",2, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(3, "ZSIO2", 3, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(4, "ZQUAR", 3, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(5, "ZLEAD", 5, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(6, "ZCOPP", 6, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(7, "ZIRON", 7, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(8, "ZIRONN",8, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(9, "ZCOPL", 6, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(10,"ZVOID",10, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(11,"ZVOIM",11, isvol, ifield, fieldm, tmaxfdv, stemax, deemax, epsil, stmin); AliMedium(12,"ZAIR", 12, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(13,"ZTANT",13, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(14, "ZIRONT", 7, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin); } //_____________________________________________________________________________ void AliZDCv4::AddAlignableVolumes() const { // // Create entries for alignable volumes associating the symbolic volume // name with the corresponding volume path. Needs to be syncronized with // eventual changes in the geometry. // if(fOnlyZEM) return; TString volpath1 = "ALIC_1/ZDCC_1/ZNEU_1"; TString volpath2 = "ALIC_1/ZDCC_1/ZPRO_1"; TString volpath3 = "ALIC_1/ZDCA_1/ZNEU_2"; TString volpath4 = "ALIC_1/ZDCA_1/ZPRO_2"; TString symname1="ZDC/NeutronZDC_C"; TString symname2="ZDC/ProtonZDC_C"; TString symname3="ZDC/NeutronZDC_A"; TString symname4="ZDC/ProtonZDC_A"; if(!gGeoManager->SetAlignableEntry(symname1.Data(),volpath1.Data())) AliFatal(Form("Alignable entry %s not created. Volume path %s not valid", symname1.Data(),volpath1.Data())); if(!gGeoManager->SetAlignableEntry(symname2.Data(),volpath2.Data())) AliFatal(Form("Alignable entry %s not created. Volume path %s not valid", symname2.Data(),volpath2.Data())); if(!gGeoManager->SetAlignableEntry(symname3.Data(),volpath3.Data())) AliFatal(Form("Alignable entry %s not created. Volume path %s not valid", symname1.Data(),volpath1.Data())); if(!gGeoManager->SetAlignableEntry(symname4.Data(),volpath4.Data())) AliFatal(Form("Alignable entry %s not created. Volume path %s not valid", symname2.Data(),volpath2.Data())); } //_____________________________________________________________________________ void AliZDCv4::Init() { InitTables(); Int_t *idtmed = fIdtmed->GetArray(); // fMedSensZN = idtmed[1]; // Sensitive volume: ZN passive material fMedSensZP = idtmed[2]; // Sensitive volume: ZP passive material fMedSensF1 = idtmed[3]; // Sensitive volume: fibres type 1 fMedSensF2 = idtmed[4]; // Sensitive volume: fibres type 2 fMedSensZEM = idtmed[5]; // Sensitive volume: ZEM passive material fMedSensTDI = idtmed[6]; // Sensitive volume: TDI Cu shield fMedSensPI = idtmed[7]; // Sensitive volume: beam pipes fMedSensLumi = idtmed[9]; // Sensitive volume: luminometer fMedSensGR = idtmed[12]; // Sensitive volume: air into the grooves fMedSensVColl = idtmed[13]; // Sensitive volume: collimator jaws } //_____________________________________________________________________________ void AliZDCv4::InitTables() { // // Read light tables for Cerenkov light production parameterization // Int_t k, j; int read=1; // --- Reading light tables for ZN char *lightfName1 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362207s"); FILE *fp1 = fopen(lightfName1,"r"); if(fp1 == NULL){ printf("Cannot open file fp1 \n"); return; } else{ for(k=0; kExpandPathName("$ALICE_ROOT/ZDC/light22620362208s"); FILE *fp2 = fopen(lightfName2,"r"); if(fp2 == NULL){ printf("Cannot open file fp2 \n"); return; } else{ for(k=0; kExpandPathName("$ALICE_ROOT/ZDC/light22620362209s"); FILE *fp3 = fopen(lightfName3,"r"); if(fp3 == NULL){ printf("Cannot open file fp3 \n"); return; } else{ for(k=0; kExpandPathName("$ALICE_ROOT/ZDC/light22620362210s"); FILE *fp4 = fopen(lightfName4,"r"); if(fp4 == NULL){ printf("Cannot open file fp4 \n"); return; } else{ for(k=0; kExpandPathName("$ALICE_ROOT/ZDC/light22620552207s"); FILE *fp5 = fopen(lightfName5,"r"); if(fp5 == NULL){ printf("Cannot open file fp5 \n"); return; } else{ for(k=0; kExpandPathName("$ALICE_ROOT/ZDC/light22620552208s"); FILE *fp6 = fopen(lightfName6,"r"); if(fp6 == NULL){ printf("Cannot open file fp6 \n"); return; } else{ for(k=0; kExpandPathName("$ALICE_ROOT/ZDC/light22620552209s"); FILE *fp7 = fopen(lightfName7,"r"); if(fp7 == NULL){ printf("Cannot open file fp7 \n"); return; } else{ for(k=0; kExpandPathName("$ALICE_ROOT/ZDC/light22620552210s"); FILE *fp8 = fopen(lightfName8,"r"); if(fp8 == NULL){ printf("Cannot open file fp8 \n"); return; } else{ for(k=0; k return if(fNoShower==1 && ((TVirtualMC::GetMC()->CurrentMedium() == fMedSensPI) || (TVirtualMC::GetMC()->CurrentMedium() == fMedSensTDI) || (TVirtualMC::GetMC()->CurrentMedium() == fMedSensVColl || (TVirtualMC::GetMC()->CurrentMedium() == fMedSensLumi)))){ // If option NoShower is set -> StopTrack Int_t ipr = 0; TVirtualMC::GetMC()->TrackPosition(s[0],s[1],s[2]); if(TVirtualMC::GetMC()->CurrentMedium() == fMedSensPI){ knamed = TVirtualMC::GetMC()->CurrentVolName(); if(!strncmp(knamed,"YMQ",3)){ if(s[2]<0) fpLostITC += 1; else fpLostITA += 1; ipr=1; } else if(!strncmp(knamed,"YD1",3)){ if(s[2]<0) fpLostD1C += 1; else fpLostD1A += 1; ipr=1; } } else if(TVirtualMC::GetMC()->CurrentMedium() == fMedSensTDI){ knamed = TVirtualMC::GetMC()->CurrentVolName(); if(!strncmp(knamed,"MD1",3)){ if(s[2]<0) fpLostD1C += 1; else fpLostD1A += 1; ipr=1; } else if(!strncmp(knamed,"QTD",3)) fpLostTDI += 1; } else if(TVirtualMC::GetMC()->CurrentMedium() == fMedSensVColl){ knamed = TVirtualMC::GetMC()->CurrentVolName(); if(!strncmp(knamed,"QCVC",4)) fpcVCollC++; else if(!strncmp(knamed,"QCVA",4)) fpcVCollA++; ipr=1; } // //TVirtualMC::GetMC()->TrackMomentum(p[0], p[1], p[2], p[3]); //printf("\t Particle: mass = %1.3f, E = %1.3f GeV, pz = %1.2f GeV -> stopped in volume %s\n", // TVirtualMC::GetMC()->TrackMass(), p[3], p[2], TVirtualMC::GetMC()->CurrentVolName()); // if(ipr<0){ printf("\n\t **********************************\n"); printf("\t ********** Side C **********\n"); printf("\t # of particles in IT = %d\n",fpLostITC); printf("\t # of particles in D1 = %d\n",fpLostD1C); printf("\t # of particles in VColl = %d\n",fpcVCollC); printf("\t ********** Side A **********\n"); printf("\t # of particles in IT = %d\n",fpLostITA); printf("\t # of particles in D1 = %d\n",fpLostD1A); printf("\t # of particles in TDI = %d\n",fpLostTDI); printf("\t # of particles in VColl = %d\n",fpcVCollA); printf("\t **********************************\n"); } TVirtualMC::GetMC()->StopTrack(); return; } if((TVirtualMC::GetMC()->CurrentMedium() == fMedSensZN) || (TVirtualMC::GetMC()->CurrentMedium() == fMedSensZP) || (TVirtualMC::GetMC()->CurrentMedium() == fMedSensGR) || (TVirtualMC::GetMC()->CurrentMedium() == fMedSensF1) || (TVirtualMC::GetMC()->CurrentMedium() == fMedSensF2) || (TVirtualMC::GetMC()->CurrentMedium() == fMedSensZEM)){ //Particle coordinates TVirtualMC::GetMC()->TrackPosition(s[0],s[1],s[2]); for(j=0; j<=2; j++) x[j] = s[j]; hits[0] = x[0]; hits[1] = x[1]; hits[2] = x[2]; // Determine in which ZDC the particle is knamed = TVirtualMC::GetMC()->CurrentVolName(); if(!strncmp(knamed,"ZN",2)){ if(x[2]<0.) vol[0]=1; // ZNC (dimuon side) else if(x[2]>0.) vol[0]=4; //ZNA } else if(!strncmp(knamed,"ZP",2)){ if(x[2]<0.) vol[0]=2; //ZPC (dimuon side) else if(x[2]>0.) vol[0]=5; //ZPA } else if(!strncmp(knamed,"ZE",2)) vol[0]=3; //ZEM // Determine in which quadrant the particle is if(vol[0]==1){ //Quadrant in ZNC // Calculating particle coordinates inside ZNC xdet[0] = x[0]-fPosZNC[0]; xdet[1] = x[1]-fPosZNC[1]; // Calculating quadrant in ZN if(xdet[0]<=0.){ if(xdet[1]<=0.) vol[1]=1; else vol[1]=3; } else if(xdet[0]>0.){ if(xdet[1]<=0.) vol[1]=2; else vol[1]=4; } } else if(vol[0]==2){ //Quadrant in ZPC // Calculating particle coordinates inside ZPC xdet[0] = x[0]-fPosZPC[0]; xdet[1] = x[1]-fPosZPC[1]; if(xdet[0]>=fDimZP[0]) xdet[0]=fDimZP[0]-0.01; if(xdet[0]<=-fDimZP[0]) xdet[0]=-fDimZP[0]+0.01; // Calculating tower in ZP Float_t xqZP = xdet[0]/(fDimZP[0]/2.); for(int i=1; i<=4; i++){ if(xqZP>=(i-3) && xqZP<(i-2)){ vol[1] = i; break; } } } // // Quadrant in ZEM: vol[1] = 1 -> particle in 1st ZEM (placed at x = 8.5 cm) // vol[1] = 2 -> particle in 2nd ZEM (placed at x = -8.5 cm) else if(vol[0] == 3){ if(x[0]>0.){ vol[1] = 1; // Particle x-coordinate inside ZEM1 xdet[0] = x[0]-fPosZEM[0]; } else{ vol[1] = 2; // Particle x-coordinate inside ZEM2 xdet[0] = x[0]+fPosZEM[0]; } xdet[1] = x[1]-fPosZEM[1]; } // else if(vol[0]==4){ //Quadrant in ZNA // Calculating particle coordinates inside ZNA xdet[0] = x[0]-fPosZNA[0]; xdet[1] = x[1]-fPosZNA[1]; // Calculating quadrant in ZNA if(xdet[0]>=0.){ if(xdet[1]<=0.) vol[1]=1; else vol[1]=3; } else if(xdet[0]<0.){ if(xdet[1]<=0.) vol[1]=2; else vol[1]=4; } } // else if(vol[0]==5){ //Quadrant in ZPA // Calculating particle coordinates inside ZPA xdet[0] = x[0]-fPosZPA[0]; xdet[1] = x[1]-fPosZPA[1]; if(xdet[0]>=fDimZP[0]) xdet[0]=fDimZP[0]-0.01; if(xdet[0]<=-fDimZP[0]) xdet[0]=-fDimZP[0]+0.01; // Calculating tower in ZP Float_t xqZP = -xdet[0]/(fDimZP[0]/2.); for(int i=1; i<=4; i++){ if(xqZP>=(i-3) && xqZP<(i-2)){ vol[1] = i; break; } } } if((vol[1]!=1) && (vol[1]!=2) && (vol[1]!=3) && (vol[1]!=4)) AliError(Form(" WRONG tower for det %d: tow %d with xdet=(%f, %f)\n", vol[0], vol[1], xdet[0], xdet[1])); // Ch. debug //printf("\t *** det %d vol %d xdet(%f, %f)\n",vol[0], vol[1], xdet[0], xdet[1]); // Store impact point and kinetic energy of the ENTERING particle if(TVirtualMC::GetMC()->IsTrackEntering()){ //Particle energy TVirtualMC::GetMC()->TrackMomentum(p[0],p[1],p[2],p[3]); hits[3] = p[3]; // Impact point on ZDC // X takes into account the LHC x-axis sign // which is opposite to positive x on detector front face // for side A detectors (ZNA and ZPA) if(vol[0]==4 || vol[0]==5){ hits[4] = -xdet[0]; } else{ hits[4] = xdet[0]; } hits[5] = xdet[1]; hits[6] = 0; hits[7] = 0; hits[8] = 0; hits[9] = 0; // Int_t curTrackN = gAlice->GetMCApp()->GetCurrentTrackNumber(); TParticle *part = gAlice->GetMCApp()->Particle(curTrackN); hits[10] = part->GetPdgCode(); hits[11] = 0; hits[12] = 1.0e09*TVirtualMC::GetMC()->TrackTime(); // in ns! hits[13] = part->Eta(); // if(fFindMother){ Int_t imo = part->GetFirstMother(); //printf(" tracks: pc %d -> mother %d \n", curTrackN,imo); int trmo = imo; TParticle *pmot = 0x0; Bool_t isChild = kFALSE; if(imo>-1){ pmot = gAlice->GetMCApp()->Particle(imo); trmo = pmot->GetFirstMother(); isChild = kTRUE; while(trmo!=-1){ pmot = gAlice->GetMCApp()->Particle(trmo); //printf(" **** pc %d -> mother %d \n", trch,trmo); trmo = pmot->GetFirstMother(); } } if(isChild && pmot){ hits[6] = 1; hits[11] = pmot->GetPdgCode(); hits[13] = pmot->Eta(); } } AddHit(curTrackN, vol, hits); if(fNoShower==1){ if(vol[0]==1){ fnDetectedC += 1; //if(fnDetectedC==1) printf(" ### Particle in ZNC\n\n"); } else if(vol[0]==2){ fpDetectedC += 1; //if(fpDetectedC==1) printf(" ### Particle in ZPC\n\n"); } //else if(vol[0]==3) printf(" ### Particle in ZEM\n\n"); else if(vol[0]==4){ fnDetectedA += 1; //if(fnDetectedA==1) printf(" ### Particle in ZNA\n\n"); } else if(vol[0]==5){ fpDetectedA += 1; //if(fpDetectedA==1) printf(" ### Particle in ZPA\n\n"); } // //printf("\t Pc: x %1.2f y %1.2f z %1.2f E %1.2f GeV pz = %1.2f GeV in volume %s\n", // x[0],x[1],x[3],p[3],p[2],TVirtualMC::GetMC()->CurrentVolName()); // TVirtualMC::GetMC()->StopTrack(); return; } } // Particle energy loss if(TVirtualMC::GetMC()->Edep() != 0){ hits[9] = TVirtualMC::GetMC()->Edep(); hits[7] = 0.; hits[8] = 0.; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } } // *** Light production in fibres if((TVirtualMC::GetMC()->CurrentMedium() == fMedSensF1) || (TVirtualMC::GetMC()->CurrentMedium() == fMedSensF2)){ //Select charged particles if((destep=TVirtualMC::GetMC()->Edep())){ // Particle velocity Float_t beta = 0.; TVirtualMC::GetMC()->TrackMomentum(p[0],p[1],p[2],p[3]); Float_t ptot=TMath::Sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]); if(p[3] > 0.00001) beta = ptot/p[3]; else return; if(beta<0.67)return; else if((beta>=0.67) && (beta<=0.75)) ibeta = 0; else if((beta>0.75) && (beta<=0.85)) ibeta = 1; else if((beta>0.85) && (beta<=0.95)) ibeta = 2; else if(beta>0.95) ibeta = 3; // Angle between particle trajectory and fibre axis // 1 -> Momentum directions um[0] = p[0]/ptot; um[1] = p[1]/ptot; um[2] = p[2]/ptot; TVirtualMC::GetMC()->Gmtod(um,ud,2); // 2 -> Angle < limit angle Double_t alfar = TMath::ACos(ud[2]); Double_t alfa = alfar*kRaddeg; if(alfa>=110.) return; // ialfa = Int_t(1.+alfa/2.); // Distance between particle trajectory and fibre axis TVirtualMC::GetMC()->TrackPosition(s[0],s[1],s[2]); for(j=0; j<=2; j++){ x[j] = s[j]; } TVirtualMC::GetMC()->Gmtod(x,xdet,1); if(TMath::Abs(ud[0])>0.00001){ Float_t dcoeff = ud[1]/ud[0]; be = TMath::Abs((xdet[1]-dcoeff*xdet[0])/TMath::Sqrt(dcoeff*dcoeff+1.)); } else{ be = TMath::Abs(ud[0]); } ibe = Int_t(be*1000.+1); //Looking into the light tables Float_t charge = 0.; Int_t curTrackN = gAlice->GetMCApp()->GetCurrentTrackNumber(); TParticle *part = gAlice->GetMCApp()->Particle(curTrackN); Int_t pdgCode = part->GetPdgCode(); if(pdgCode<10000) charge = TVirtualMC::GetMC()->TrackCharge(); else{ float z = (pdgCode/10000-100000); charge = TMath::Abs(z); //printf(" PDG %d charge %f\n",pdgCode,charge); } if(vol[0]==1 || vol[0]==4) { // (1) ZN fibres if(ibe>fNben) ibe=fNben; out = charge*charge*fTablen[ibeta][ialfa][ibe]; nphe = gRandom->Poisson(out); // Ch. debug //if(ibeta==3) printf("\t %f \t %f \t %f\n",alfa, be, out); //printf("\t ibeta = %d, ialfa = %d, ibe = %d -> nphe = %d\n\n",ibeta,ialfa,ibe,nphe); if(TVirtualMC::GetMC()->CurrentMedium() == fMedSensF1){ hits[7] = nphe; //fLightPMQ hits[8] = 0; hits[9] = 0; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } else{ hits[7] = 0; hits[8] = nphe; //fLightPMC hits[9] = 0; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } } else if(vol[0]==2 || vol[0]==5) {// (2) ZP fibres if(ibe>fNbep) ibe=fNbep; out = charge*charge*fTablep[ibeta][ialfa][ibe]; nphe = gRandom->Poisson(out); if(TVirtualMC::GetMC()->CurrentMedium() == fMedSensF1){ hits[7] = nphe; //fLightPMQ hits[8] = 0; hits[9] = 0; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } else{ hits[7] = 0; hits[8] = nphe; //fLightPMC hits[9] = 0; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } } else if(vol[0]==3) { // (3) ZEM fibres if(ibe>fNbep) ibe=fNbep; out = charge*charge*fTablep[ibeta][ialfa][ibe]; TVirtualMC::GetMC()->TrackPosition(s[0],s[1],s[2]); Float_t xalic[3]; for(j=0; j<3; j++){ xalic[j] = s[j]; } // z-coordinate from ZEM front face // NB-> fPosZEM[2]+fZEMLength = -1000.+2*10.3 = 979.69 cm Float_t z = -xalic[2]+fPosZEM[2]+2*fZEMLength-xalic[1]; //z = xalic[2]-fPosZEM[2]-fZEMLength-xalic[1]*(TMath::Tan(45.*kDegrad)); //printf(" fPosZEM[2]+2*fZEMLength = %f", fPosZEM[2]+2*fZEMLength); // // Parametrization for light guide uniformity // NEW!!! Light guide tilted @ 51 degrees Float_t guiPar[4]={0.31,-0.0006305,0.01337,0.8895}; Float_t guiEff = guiPar[0]*(guiPar[1]*z*z+guiPar[2]*z+guiPar[3]); out = out*guiEff; nphe = gRandom->Poisson(out); //printf(" out*guiEff = %f nphe = %d", out, nphe); if(vol[1] == 1){ hits[7] = 0; hits[8] = nphe; //fLightPMC (ZEM1) hits[9] = 0; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } else{ hits[7] = nphe; //fLightPMQ (ZEM2) hits[8] = 0; hits[9] = 0; AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } } } } }