New class AliESDEvent, backward compatibility with the old AliESD (Christian)
[u/mrichter/AliRoot.git] / EMCAL / AliEMCALPID.cxx
index 64e4c0f..7717c74 100644 (file)
  **************************************************************************/
 
 /* $Id$ */
+/* History of cvs commits:
+ *
+ * $Log$
+ * Revision 1.12  2007/06/11 20:43:06  hristov
+ * Changes required by the updated AliESDCaloCluster (Gustavo)
+ *
+ * Revision 1.11  2007/03/30 13:50:34  gustavo
+ * PID for particles with E < 5 GeV was not done, temporal solution found (Guenole)
+ *
+ * Revision 1.10  2007/03/09 14:34:11  gustavo
+ * Correct probability calculation, added missing initialization of data members
+ *
+ * Revision 1.9  2007/02/20 20:17:43  hristov
+ * Corrected array size, removed warnings (icc)
+ *
+ * Revision 1.8  2006/12/19 08:49:35  gustavo
+ * New PID class for EMCAL, bayesian analysis done with ESD data, PID information filled when calling AliEMCALPID in AliEMCALReconstructor::FillESD()
+ *
+ *
+ */
+//    to compute PID for all the clusters in ESDs.root file
+//     the ESDs.root have to be in the same directory as the class
+//
+//
+//
+//
+//
+//     AliEMCALPID::CalculPID(Energy,Lambda0)
+//       Calcul PID for all clusters in AliESDs.root file
+//       keep this function for the moment for a simple verification, could be removed
+//
+//
+//
+//   AliEMCALPID::CalculPID(Energy,Lambda0)
+//    calcul PID Weght for a cluster with Energy, Lambda0 .
+//    Double_t PIDFinal[AliPID::kSPECIESN]  is the standard PID for :
+//
+//
+//
+//     kElectron :  fPIDFinal[0]
+//     kMuon     :  fPIDFinal[1]
+//     kPion     :  fPIDFinal[2]
+//     kKaon     :  fPIDFinal[3]
+//     kProton   :  fPIDFinal[4]
+//     kPhoton   :  fPIDFinal[5]
+//     kPi0      :  fPIDFinal[6]
+//     kNeutron  :  fPIDFinal[7]
+//     kKaon0    :  fPIDFinal[8]
+//     kEleCon   :  fPIDFinal[9]
+//     kUnknown  :  fPIDFinal[10]
+//
+//
+//    PID[3] is a simple PID for
+//      Electron & Photon  PID[0]
+//                   Pi0  PID[1]
+//                Hadron  PID[2]
+//
+//  
+//
+//
+//
+// --- ROOT system ---
 
-//_________________________________________________________________________
-//  Algorithm class for the identification of particles detected in EMCAL        
-//  base  class  of identified particle  
-//  Why should I put meaningless comments
-//  just to satisfy
-//  the code checker                
-                         
-//                  
-//*-- Author: Yves Schutz (SUBATECH) & Dmitri Peressounko
-
+// standard C++ includes
+#include <Riostream.h>
+// #include <cstdlib>
+// #include <cmath>
 
-// --- ROOT system ---
-#include "TGeometry.h"
-#include "TDirectory.h"
-#include "TFile.h"
+// ROOT includes
 #include "TTree.h"
-// --- Standard library ---
-#include <stdlib.h>
-
+#include "TStyle.h"
+#include "TVector3.h"
+#include "TBranch.h"
+#include "TClonesArray.h"
+#include "TCanvas.h"
+#include "TLorentzVector.h"
+#include "TMath.h"
+#include "TFile.h"
+#include "TH1.h"
+#include "TH2.h"
+#include "TParticle.h"
 
-// --- AliRoot header files ---
-#include "AliRun.h" 
+// // STEER includes
+// #include "AliRun.h"
+// #include "AliRunLoader.h"
+// #include "AliHeader.h"
+// #include "AliLoader.h"
+// #include "AliStack.h"
+// #include "AliESDtrack.h"
+// #include "AliESDEvent.h"
+#include "AliLog.h"
 #include "AliEMCALPID.h"
-#include "AliHeader.h" 
-
+  
 ClassImp(AliEMCALPID)
 
-//____________________________________________________________________________
-  AliEMCALPID::AliEMCALPID():TTask("","")
+//______________________________________________
+  AliEMCALPID::AliEMCALPID():
+    fPrintInfo(kFALSE), fProbGamma(0.),fProbPiZero(0.),fProbHadron(0.),fReconstructor(kFALSE)
 {
-  // ctor
-  fSplitFile= 0 ; 
-
+  //
+  // Constructor.
+  // Initialize all constant values which have to be used
+  // during PID algorithm execution
+  //
+  
+  // set flag for printing to FALSE by default
+  fPrintInfo = kFALSE;
+  
+  // as a first step, all array elements are initialized to 0.0
+  Int_t i, j;
+  for (i = 0; i < 6; i++) {
+    for (j = 0; j < 6; j++) {
+      fGamma[i][j] = fHadron[i][j] = fPiZero5to10[i][j] = fPiZero10to60[i][j] = 0.;
+    }
+  }
+  
+  // then, only the ones which must be not zero are initialized
+  // while the others will remain to the value 0.0
+  
+  fGamma[0][0] =  0.038022;
+  fGamma[0][1] = -0.0001883;
+  fGamma[0][2] =  5.449e-06;
+  
+  fGamma[1][0] =  0.207313;
+  fGamma[1][1] = -0.000978;
+  fGamma[1][2] =  0.00001634;
+  
+  fGamma[2][0] =  0.043364;
+  fGamma[2][1] = -0.0002048;
+  fGamma[2][2] =  8.661e-06;
+  fGamma[2][3] = -1.353e-07;
+  
+  fGamma[3][0] =  0.265004;
+  fGamma[3][1] =  0.061298;
+  fGamma[3][2] = -0.003203;
+  fGamma[3][3] =  4.73e-05;
+  
+  fGamma[4][0] =  0.243579;
+  fGamma[4][1] = -1.614e-05;
+  
+  fGamma[5][0] =  0.002942;
+  fGamma[5][1] = -3.976e-05;
+  
+  fHadron[0][0] =  0.011945 / 3.;
+  fHadron[0][1] =  0.000386 / 3.;
+  fHadron[0][2] = -0.000014 / 3.;
+  fHadron[0][3] =  1.336e-07 / 3.;
+  
+  fHadron[1][0] =  0.496544;
+  fHadron[1][1] = -0.003226;
+  fHadron[1][2] =  0.00001678;
+  
+  fHadron[2][0] =  0.144838;
+  fHadron[2][1] = -0.002954;
+  fHadron[2][2] =  0.00008754;
+  fHadron[2][3] = -7.587e-07;
+  
+  fHadron[3][0] =  1.264461 / 7.;
+  fHadron[3][1] =  0.002097 / 7.;
+  
+  fHadron[4][0] =  0.261950;
+  fHadron[4][1] = -0.001078;
+  fHadron[4][2] =  0.00003237;
+  fHadron[4][3] = -3.241e-07;
+  fHadron[4][4] =  0.;
+  fHadron[4][5] =  0.;
+  fHadron[5][0] =  0.010317;
+  fHadron[5][1] =  0.;
+  fHadron[5][2] =  0.;
+  fHadron[5][3] =  0.;
+  fHadron[5][4] =  0.;
+  fHadron[5][5] =  0.;
+  
+  fPiZero5to10[0][0] = 0.009138;
+  fPiZero5to10[0][1] = 0.0006377;
+  
+  fPiZero5to10[1][0] = 0.08;
+  
+  fPiZero5to10[2][0] = -0.061119;
+  fPiZero5to10[2][1] =  0.019013;
+  
+  fPiZero5to10[3][0] =  0.2;
+  
+  fPiZero5to10[4][0] =  0.252044;
+  fPiZero5to10[4][1] = -0.002315;
+  
+  fPiZero5to10[5][0] =  0.002942;
+  fPiZero5to10[5][1] = -3.976e-05;
+  
+  fPiZero10to60[0][0] =  0.009138;
+  fPiZero10to60[0][1] =  0.0006377;
+  
+  fPiZero10to60[1][0] =  1.272837;
+  fPiZero10to60[1][1] = -0.069708;
+  fPiZero10to60[1][2] =  0.001568;
+  fPiZero10to60[1][3] = -1.162e-05;
+  
+  fPiZero10to60[2][0] =  0.139703;
+  fPiZero10to60[2][1] =  0.003687;
+  fPiZero10to60[2][2] = -0.000568;
+  fPiZero10to60[2][3] =  1.498e-05;
+  fPiZero10to60[2][4] = -1.174e-07;
+  
+  fPiZero10to60[3][0] = -0.826367;
+  fPiZero10to60[3][1] =  0.096951;
+  fPiZero10to60[3][2] = -0.002215;
+  fPiZero10to60[3][3] =  2.523e-05;
+  
+  fPiZero10to60[4][0] =  0.249890;
+  fPiZero10to60[4][1] = -0.000063;
+  
+  fPiZero10to60[5][0] =  0.002942;
+  fPiZero10to60[5][1] = -3.976e-05;
+  
+  fPIDWeight[0] = -1;
+  fPIDWeight[1] = -1;
+  fPIDWeight[2] = -1;
+  fReconstructor = kFALSE;
 }
 
+//______________________________________________
+void AliEMCALPID::RunPID(AliESDEvent *esd)
+{
+//
+// Make the PID for all the EMCAL clusters containedin the ESDs File
+// but just gamma/PiO/Hadron
+//
+       // trivial check against NULL object passed
+  
+  if (esd == 0x0) {
+    AliInfo("NULL ESD object passed !!" );
+    return ;
+  }
+
+  Int_t nClusters = esd->GetNumberOfEMCALClusters();
+  Int_t firstCluster = esd->GetFirstEMCALCluster();
+  Double_t energy, lambda0;
+  for (Int_t iCluster = firstCluster; iCluster < (nClusters + firstCluster); iCluster++) {
+    
+    AliESDCaloCluster *clust = esd->GetCaloCluster(iCluster);
+    energy = clust->E();
+    lambda0 = clust->GetM02();
+    // verify cluster type
+    Int_t clusterType= clust->GetClusterType();
+    if (clusterType == AliESDCaloCluster::kClusterv1 && lambda0 != 0  && energy < 1000) {
+
+
+      // reject clusters with lambda0 = 0
 
-//____________________________________________________________________________
-AliEMCALPID::AliEMCALPID(const char* headerFile, const char * name, const Bool_t toSplit):TTask(name, headerFile)
+
+      ComputePID(energy, lambda0);
+
+
+      if (fPrintInfo) {
+       AliInfo("___________________________________________________");
+       AliInfo(Form( "Particle Energy = %f",energy));
+       AliInfo(Form( "Particle Lambda0 of the particle = %f", lambda0) );
+       AliInfo("PIDWeight of the particle :" );
+       AliInfo(Form( " GAMMA  : %f",fPID[0] ));
+       AliInfo(Form( " PiZero : %f",fPID[1] ));
+       AliInfo(Form( " HADRON : %f", fPID[2] ));
+       AliInfo("_________________________________________");
+       AliInfo(Form( " kElectron : %f", fPIDFinal[0]) );
+       AliInfo(Form( " kMuon     : %f", fPIDFinal[1] ));
+       AliInfo(Form( " kPion       : %f", fPIDFinal[2] ));
+       AliInfo(Form( " kKaon       : %f", fPIDFinal[3] ));
+       AliInfo(Form( " kProton   : %f", fPIDFinal[4] ));
+       AliInfo(Form( " kPhoton   : %f", fPIDFinal[5] ));
+       AliInfo(Form( " kPi0        : %f", fPIDFinal[6] ));
+       AliInfo(Form( " kNeutron  : %f", fPIDFinal[7] ));
+       AliInfo(Form( " kKaon0  : %f", fPIDFinal[8] ));
+       AliInfo(Form( " kEleCon   : %f", fPIDFinal[9] ));
+       AliInfo(Form( " kUnknown  : %f", fPIDFinal[10] ));
+       AliInfo("___________________________________________________");
+      }
+
+      if(fReconstructor) // In case it is called during reconstruction.
+       clust->SetPid(fPIDFinal);
+    } // end if (clusterType...)
+  } // end for (iCluster...)
+}
+
+//__________________________________________________________
+void AliEMCALPID::ComputePID(Double_t energy, Double_t lambda0)
 {
-  // ctor
+//
+// This is the main command, which uses the distributions computed and parametrised, 
+// and gives the PID by the bayesian method.
+//
 
-  fToSplit = toSplit ;
-  fSplitFile= 0 ; 
+if (energy<5){energy =6;}
+
+
+  TArrayD paramDistribGamma  = DistLambda0(energy, 1);
+  TArrayD paramDistribPiZero = DistLambda0(energy, 2);
+  TArrayD paramDistribHadron = DistLambda0(energy, 3);
+  
+  Bool_t norm = kFALSE;
+  
+  fProbGamma   = TMath::Gaus(lambda0, paramDistribGamma[1], paramDistribGamma[2], norm) * paramDistribGamma[0];
+  fProbGamma  += TMath::Landau(lambda0, paramDistribGamma[4], paramDistribGamma[5], norm) * paramDistribGamma[3];
+  fProbPiZero  = TMath::Gaus(lambda0, paramDistribPiZero[1], paramDistribPiZero[2], norm) * paramDistribPiZero[0];
+  fProbPiZero += TMath::Landau(lambda0, paramDistribPiZero[4], paramDistribPiZero[5], norm) * paramDistribPiZero[3];
+  fProbHadron  = TMath::Gaus(lambda0, paramDistribHadron[1], paramDistribHadron[2], norm) * paramDistribHadron[0];
+  fProbHadron += TMath::Landau(lambda0, paramDistribHadron[4], paramDistribHadron[5], norm) * paramDistribHadron[3];
+  
+  // compute PID Weight
+  fPIDWeight[0] = fProbGamma / (fProbGamma + fProbPiZero + fProbHadron);
+  fPIDWeight[1] = fProbPiZero / (fProbGamma+fProbPiZero+fProbHadron);
+  fPIDWeight[2] = fProbHadron / (fProbGamma+fProbPiZero+fProbHadron);
+  
+  SetPID(fPIDWeight[0], 0);
+  SetPID(fPIDWeight[1], 1);
+  SetPID(fPIDWeight[2], 2);
+  
+  // sortie ecran pid Weight only for control (= in english ???)
+  if (fPrintInfo) {
+    AliInfo(Form( "Energy in loop = %f", energy) );
+    AliInfo(Form( "Lambda0 in loop = %f", lambda0) );
+    AliInfo(Form( "fProbGamma in loop = %f", fProbGamma) );
+    // AliInfo(Form( "fParametresDistribGamma[2] = %f", fParamDistribGamma[2]) );
+    AliInfo(Form( "fProbaPiZero = %f", fProbPiZero ));
+    AliInfo(Form( "fProbaHadron = %f", fProbHadron) );
+    AliInfo(Form( "PIDWeight in loop = %f ||| %f ||| %f",  fPIDWeight[0] , fPIDWeight[1], fPIDWeight[2]) );
+    AliInfo(Form( "fGamma[2][2] = %f", fGamma[2][2] ));
+    AliInfo("********************************************************" );
+  }
+  
+  fPIDFinal[0]  = fPIDWeight[0]/2;
+  fPIDFinal[1]  = fPIDWeight[2]/8;
+  fPIDFinal[2]  = fPIDWeight[2]/8;
+  fPIDFinal[3]  = fPIDWeight[2]/8;
+  fPIDFinal[4]  = fPIDWeight[2]/8;
+  fPIDFinal[5]  = fPIDWeight[0]/2;
+  fPIDFinal[6]  = fPIDWeight[1]  ;
+  fPIDFinal[7]  = fPIDWeight[2]/8;
+  fPIDFinal[8]  = fPIDWeight[2]/8;
+  fPIDFinal[9]  = fPIDWeight[2]/8;
+  fPIDFinal[10] = fPIDWeight[2]/8;
+}
+
+//________________________________________________________
+TArrayD AliEMCALPID::DistLambda0(Double_t energy, Int_t type)
+{
+  //
+  // Compute the values of the parametrised distributions using the data initialised before.
+  //
+  Double_t constGauss = 0., meanGauss = 0., sigmaGauss = 0.;
+  Double_t constLandau=0., mpvLandau=0., sigmaLandau=0.;
+  TArrayD  distributionParam(6);
+  
+  switch (type) {
+  case 1:
+    constGauss  = Polynomial(energy, fGamma[0]);
+    meanGauss   = Polynomial(energy, fGamma[1]);
+    sigmaGauss  = Polynomial(energy, fGamma[2]);
+    constLandau = Polynomial(energy, fGamma[3]);
+    mpvLandau   = Polynomial(energy, fGamma[4]);
+    sigmaLandau = Polynomial(energy, fGamma[5]);
+    break;
+  case 2:
+    if (energy < 10) {
+      constGauss  = Polynomial(energy, fPiZero5to10[0]);
+      meanGauss   = Polynomial(energy, fPiZero5to10[1]);
+      sigmaGauss  = Polynomial(energy, fPiZero5to10[2]);
+      constLandau = Polynomial(energy, fPiZero5to10[3]);
+      mpvLandau   = Polynomial(energy, fPiZero5to10[4]);
+      sigmaLandau = Polynomial(energy, fPiZero5to10[5]);
+    }
+    else {
+      constGauss  = Polynomial(energy, fPiZero10to60[0]);
+      meanGauss   = Polynomial(energy, fPiZero10to60[1]);
+      sigmaGauss  = Polynomial(energy, fPiZero10to60[2]);
+      constLandau = Polynomial(energy, fPiZero10to60[3]);
+      mpvLandau   = Polynomial(energy, fPiZero10to60[4]);
+      sigmaLandau = Polynomial(energy, fPiZero10to60[5]);
+    }
+    break;
+  case 3:
+    constGauss  = Polynomial(energy, fHadron[0]);
+    meanGauss   = Polynomial(energy, fHadron[1]);
+    sigmaGauss  = Polynomial(energy, fHadron[2]);
+    constLandau = Polynomial(energy, fHadron[3]);
+    mpvLandau   = Polynomial(energy, fHadron[4]);
+    sigmaLandau = Polynomial(energy, fHadron[5]);
+    break;
+  }
+  
+  distributionParam[0] = constGauss;
+  distributionParam[1] = meanGauss;
+  distributionParam[2] = sigmaGauss;
+  distributionParam[3] = constLandau;
+  distributionParam[4] = mpvLandau;
+  distributionParam[5] = sigmaLandau;
+  
+  return distributionParam;
 }
 
-//____________________________________________________________________________
-AliEMCALPID::~AliEMCALPID()
+//_______________________________________________________
+Double_t AliEMCALPID::Polynomial(Double_t x, Double_t *params)
 {
-  // dtor
-        
-  fSplitFile = 0 ;
+  //
+  // Compute a polynomial for a given value of 'x'
+  // with the array of parameters passed as the second arg
+  //
+  Double_t y;
+  y  = params[0];
+  y += params[1] * x;
+  y += params[2] * x * x;
+  y += params[3] * x * x * x;
+  y += params[4] * x * x * x * x;
+  y += params[5] * x * x * x * x * x;
+  
+  return y;
 }