index 870067754a0b17bc19d5910c941490a781b489c2..c345b4728e7bde0416e539deb97b61e3cf0db2a2 100644 (file)
@@ -17,7 +17,7 @@ About 100-200 M events EMCAL (L0) triggered (trigger threshold at 1.5-2 GeV) all

A few iterations on the data, obtaining in each iteration improved calibration coefficients, are needed to achieve a good accuracy (1-2\%). Since the online calibration has a strong effect on the trigger efficiency, the voltage gains of the APDs are varied after each running period, to get a uniform trigger performance. Still, some towers are difficult to calibrate because they are behind of a lot of material (TRD support structures). For those MIPs or $J/\Psi$ measurements could help.

-\paragraph*{$\pi^{0}$ Calibration Procedure}
+\paragraph*{$\pi^{0}$ Calibration Procedure\\}

Since $\pi^{0}$s decay into 2 gammas, their invariant mass is calculated from the energy of 2 clusters (and angle between the clusters). The position of the invariant mass peak of a tower therefore doesn't depend only on its response and calibration coefficient, but also on an average of the responses and calibration coefficients of all the other towers of the SM, weighted by  how often they appear in combination with a cluster in the considered tower. The 2nd effect, of weaker magnitude maybe, originates from the fact that a cluster most often covers more than the considered tower. To simplify the calibration process, the calibration coefficient is calculated as if the whole energy of the cluster was contained in the tower of the cluster which has the largest signal. So the position of the invariant mass peak of a tower also depends on an average of the responses and calib coeffs of its neighbouring towers. For these reasons, the calibration of the calorimeter with the  $\pi^{0}$ is an iterative procedure :
\begin{itemize}