]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - HMPID/AliHMPIDCluster.cxx
Fixes for some mem-leaks: most changes where pretty basic (i.e. adding deletes).
[u/mrichter/AliRoot.git] / HMPID / AliHMPIDCluster.cxx
index dfdcce55d09bfaa3d9f007705213402ff1b0ba02..28db82b7ebb8eff0e90123690cc41546da43366f 100644 (file)
 //  * provided "as is" without express or implied warranty.                  *
 //  **************************************************************************
 
-#include "AliHMPIDCluster.h"  //class header
+#include <TVirtualFitter.h>  //Solve()
 #include <TMinuit.h>         //Solve()
 #include <TClonesArray.h>    //Solve()
 #include <TMarker.h>         //Draw()
 
+#include "AliLog.h"          //FitFunc()
+
+#include "AliHMPIDCluster.h"  //class header
+
 Bool_t AliHMPIDCluster::fgDoCorrSin=kTRUE;
 
 ClassImp(AliHMPIDCluster)
+    
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 void AliHMPIDCluster::CoG()
 {
@@ -66,8 +71,8 @@ void AliHMPIDCluster::CorrSin()
 // Arguments: none
 //   Returns: none
   Int_t pc,px,py;
-  AliHMPIDDigit::Lors2Pad(fX,fY,pc,px,py);             //tmp digit to get it center
-  Float_t x=fX-AliHMPIDDigit::LorsX(pc,px);                    //diff between cluster x and center of the pad contaning this cluster   
+  AliHMPIDParam::Lors2Pad(fX,fY,pc,px,py);             //tmp digit to get it center
+  Float_t x=fX-AliHMPIDParam::LorsX(pc,px);                    //diff between cluster x and center of the pad contaning this cluster   
   fX+=3.31267e-2*TMath::Sin(2*TMath::Pi()/0.8*x)-2.66575e-3*TMath::Sin(4*TMath::Pi()/0.8*x)+2.80553e-3*TMath::Sin(6*TMath::Pi()/0.8*x)+0.0070;
 }
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
@@ -76,30 +81,71 @@ void AliHMPIDCluster::Draw(Option_t*)
   TMarker *pMark=new TMarker(X(),Y(),5); pMark->SetUniqueID(fSt);pMark->SetMarkerColor(kBlue); pMark->Draw();
 }
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-void AliHMPIDCluster::FitFunc(Int_t &iNpars, Double_t* /*deriv*/, Double_t &chi2, Double_t *par, Int_t /* */)
+void AliHMPIDCluster::FitFunc(Int_t &iNpars, Double_t* deriv, Double_t &chi2, Double_t *par, Int_t /* */)
 {
 // Cluster fit function 
 // par[0]=x par[1]=y par[2]=q for the first Mathieson shape
 // par[3]=x par[4]=y par[5]=q for the second Mathieson shape and so on up to iNpars/3 Mathieson shapes
-// For each pad of the cluster calculates the difference between actual pad charge and the charge induced to this pad by all Mathieson distributions 
+// For each pad of the cluster calculates the difference between actual pad charge and the charge induced to this pad by all Mathieson distributions
 // Then the chi2 is calculated as the sum of this value squared for all pad in the cluster.  
 // Arguments: iNpars - number of parameters which is number of local maxima of cluster * 3
 //            chi2   - function result to be minimised 
 //            par   - parameters array of size iNpars            
 //   Returns: none  
-  AliHMPIDCluster *pClu=(AliHMPIDCluster*)gMinuit->GetObjectFit();
-  Int_t iNshape = iNpars/3;
-    
+  
+  AliHMPIDCluster *pClu=(AliHMPIDCluster*)TVirtualFitter::GetFitter()->GetObjectFit();
+
+  Int_t nPads = pClu->Size();  
+  Double_t **derivPart;
+  
+  derivPart = new Double_t*[iNpars];
   chi2 = 0;
-  for(Int_t i=0;i<pClu->Size();i++){                                                   //loop on all pads of the cluster
+  
+  Int_t iNshape = iNpars/3;
+  
+  for(Int_t j=0;j<iNpars;j++){                                                      
+    deriv[j] = 0;
+    derivPart[j] = new Double_t[nPads];
+    for(Int_t i=0;i<nPads;i++){                                                          
+      derivPart[j][i] = 0;
+    }
+  }
+  
+  if(iNshape>6) {Printf("HMPID Error!!: n. of clusters in FitFunc %i",iNshape);return;}
+  for(Int_t i=0;i<nPads;i++){                                                          //loop on all pads of the cluster
+    Double_t dQpadMath = 0;
+    for(Int_t j=0;j<iNshape;j++){                                                      //Mathiesons loop as all of them may contribute to this pad
+      Double_t fracMathi = pClu->Dig(i)->IntMathieson(par[3*j],par[3*j+1]);
+      dQpadMath+=par[3*j+2]*fracMathi;                                                 // par[3*j+2] is charge par[3*j] is x par[3*j+1] is y of current Mathieson
+      
+      derivPart[3*j  ][i] += par[3*j+2]*(pClu->Dig(i)->Mathieson(par[3*j]-pClu->Dig(i)->LorsX()-0.5*AliHMPIDParam::SizePadX())-
+                                         pClu->Dig(i)->Mathieson(par[3*j]-pClu->Dig(i)->LorsX()+0.5*AliHMPIDParam::SizePadX()))*
+                                         pClu->Dig(i)->IntPartMathi(par[3*j+1],2);
+      derivPart[3*j+1][i] += par[3*j+2]*(pClu->Dig(i)->Mathieson(par[3*j+1]-pClu->Dig(i)->LorsY()-0.5*AliHMPIDParam::SizePadY())-
+                                         pClu->Dig(i)->Mathieson(par[3*j+1]-pClu->Dig(i)->LorsY()+0.5*AliHMPIDParam::SizePadY()))*
+                                         pClu->Dig(i)->IntPartMathi(par[3*j],1);
+      derivPart[3*j+2][i] += fracMathi;
+    }
+    if(dQpadMath>0 && pClu->Dig(i)->Q()>0) {
+      chi2 +=TMath::Power((pClu->Dig(i)->Q()-dQpadMath),2)/pClu->Dig(i)->Q();          //chi2 function to be minimized
+    }
+  }
+                                                                                       //loop on all pads of the cluster     
+  for(Int_t i=0;i<nPads;i++){                                                          //loop on all pads of the cluster
     Double_t dQpadMath = 0;                                                            //pad charge collector  
     for(Int_t j=0;j<iNshape;j++){                                                      //Mathiesons loop as all of them may contribute to this pad
-      dQpadMath+=par[3*j+2]*pClu->Dig(i)->IntMathieson(par[3*j],par[3*j+1]);           // par[3*j+2] is charge par[3*j] is x par[3*j+1] is y of current Mathieson
+      Double_t fracMathi = pClu->Dig(i)->IntMathieson(par[3*j],par[3*j+1]);
+      dQpadMath+=par[3*j+2]*fracMathi;                                                 
+      if(dQpadMath>0 && pClu->Dig(i)->Q()>0) {
+        deriv[3*j]   += 2/pClu->Dig(i)->Q()*(pClu->Dig(i)->Q()-dQpadMath)*derivPart[3*j  ][i];
+        deriv[3*j+1] += 2/pClu->Dig(i)->Q()*(pClu->Dig(i)->Q()-dQpadMath)*derivPart[3*j+1][i];
+        deriv[3*j+2] += 2/pClu->Dig(i)->Q()*(pClu->Dig(i)->Q()-dQpadMath)*derivPart[3*j+2][i];
+      }
     }
-//    if(dQpadMath>0)chi2 +=TMath::Power((pClu->Dig(i)->Q()-dQpadMath),2)/dQpadMath;   //
-    if(dQpadMath>0 && pClu->Dig(i)->Q())
-      chi2 +=TMath::Power((pClu->Dig(i)->Q()-dQpadMath),2)/pClu->Dig(i)->Q(); //
-  }                                                                                    //loop on all pads of the cluster     
+  }
+  //delete array...
+  for(Int_t i=0;i<iNpars;i++) delete [] derivPart[i]; delete [] derivPart;
+  
 }//FitFunction()
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 void AliHMPIDCluster::Print(Option_t* opt)const
@@ -138,88 +184,116 @@ Int_t AliHMPIDCluster::Solve(TClonesArray *pCluLst,Bool_t isTryUnfold)
 //Arguments: pCluLst     - cluster list pointer where to add new cluster(s)
 //           isTryUnfold - flag to switch on/off unfolding   
 //  Returns: number of local maxima of original cluster
-  CoG();
+  const Int_t kMaxLocMax=6;                                                              //max allowed number of loc max for fitting
+//  
+  CoG();                                                                                 //First calculate CoG for the given cluster
   Int_t iCluCnt=pCluLst->GetEntriesFast();                                               //get current number of clusters already stored in the list by previous operations
   if(isTryUnfold==kFALSE || Size()==1) {                                                 //if cluster contains single pad there is no way to improve the knowledge 
     (isTryUnfold)?fSt=kSi1:fSt=kNot;
     new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this);  //add this raw cluster 
     return 1;
   } 
-//Phase 0. Initialise TMinuit  
-  const Int_t kMaxLocMax=6;                                                              //max allowed number of loc max for fitting
-  if(!gMinuit) gMinuit = new TMinuit(100);                                               //init MINUIT with this number of parameters (3 params per mathieson)
-  gMinuit->mncler();                                                                     // reset Minuit list of paramters
-  gMinuit->SetObjectFit((TObject*)this);  gMinuit->SetFCN(AliHMPIDCluster::FitFunc);     //set fit function
-  Double_t aArg=-1;                                                                    //tmp vars for TMinuit
-  Int_t iErrFlg;                   
-  gMinuit->mnexcm("SET PRI",&aArg,1,iErrFlg);                                          //suspend all printout from TMinuit 
-  gMinuit->mnexcm("SET NOW",&aArg,0,iErrFlg);                                          //suspend all warning printout from TMinuit
+  
+//Phase 0. Initialise Fitter  
+  Double_t arglist[10];
+  Int_t ierflg = 0;
+  TVirtualFitter *fitter = TVirtualFitter::Fitter(this,3*6);                            //initialize Fitter
+
+  arglist[0] = -1;
+  ierflg = fitter->ExecuteCommand("SET PRI", arglist, 1);                               // no printout
+  ierflg = fitter->ExecuteCommand("SET NOW", arglist, 0);                               //no warning messages
+  arglist[0] =  1;
+  ierflg = fitter->ExecuteCommand("SET GRA", arglist, 1);                               //force Fitter to use my gradient
+
+  fitter->SetFCN(AliHMPIDCluster::FitFunc);
+
+//  arglist[0] = 1;
+//  ierflg = fitter->ExecuteCommand("SET ERR", arglist ,1);
+  
+// Set starting values and step sizes for parameters
+    
 //Phase 1. Find number of local maxima. Strategy is to check if the current pad has QDC more then all neigbours. Also find the box contaning the cluster   
   fNlocMax=0;
 
- for(Int_t iDig1=0;iDig1<Size();iDig1++) {                                               //first digits loop
+  for(Int_t iDig1=0;iDig1<Size();iDig1++) {                                               //first digits loop
+    
     AliHMPIDDigit *pDig1 = Dig(iDig1);                                                   //take next digit    
     Int_t iCnt = 0;                                                                      //counts how many neighbouring pads has QDC more then current one
+    
     for(Int_t iDig2=0;iDig2<Size();iDig2++) {                                            //loop on all digits again
+      
       if(iDig1==iDig2) continue;                                                         //the same digit, no need to compare 
       AliHMPIDDigit *pDig2 = Dig(iDig2);                                                 //take second digit to compare with the first one
       Int_t dist = TMath::Sign(Int_t(pDig1->PadChX()-pDig2->PadChX()),1)+TMath::Sign(Int_t(pDig1->PadChY()-pDig2->PadChY()),1);//distance between pads
       if(dist==1)                                                                        //means dig2 is a neighbour of dig1
          if(pDig2->Q()>=pDig1->Q()) iCnt++;                                              //count number of pads with Q more then Q of current pad
+      
     }//second digits loop
+    
     if(iCnt==0&&fNlocMax<kMaxLocMax){                                                    //this pad has Q more then any neighbour so it's local maximum
+      
       Double_t xStart=pDig1->LorsX();Double_t yStart=pDig1->LorsY();
-      Double_t xMin=xStart-AliHMPIDDigit::SizePadX();
-      Double_t xMax=xStart+AliHMPIDDigit::SizePadX();
-      Double_t yMin=yStart-AliHMPIDDigit::SizePadY();
-      Double_t yMax=yStart+AliHMPIDDigit::SizePadY();
-      gMinuit->mnparm(3*fNlocMax  ,Form("x%i",fNlocMax),xStart,0.1,xMin,xMax,iErrFlg);   // X,Y,Q initial values of the loc max pad
-      gMinuit->mnparm(3*fNlocMax+1,Form("y%i",fNlocMax),yStart,0.1,yMin,yMax,iErrFlg);   // X, Y constrained to be near the loc max
-      gMinuit->mnparm(3*fNlocMax+2,Form("q%i",fNlocMax),pDig1->Q(),0.1,0,100000,iErrFlg);// Q constrained to be positive
+      Double_t xMin=xStart-AliHMPIDParam::SizePadX();
+      Double_t xMax=xStart+AliHMPIDParam::SizePadX();
+      Double_t yMin=yStart-AliHMPIDParam::SizePadY();
+      Double_t yMax=yStart+AliHMPIDParam::SizePadY();
+      
+      ierflg = fitter->SetParameter(3*fNlocMax  ,Form("x%i",fNlocMax),xStart,0.1,xMin,xMax);    // X,Y,Q initial values of the loc max pad
+      ierflg = fitter->SetParameter(3*fNlocMax+1,Form("y%i",fNlocMax),yStart,0.1,yMin,yMax);    // X, Y constrained to be near the loc max
+      ierflg = fitter->SetParameter(3*fNlocMax+2,Form("q%i",fNlocMax),pDig1->Q(),0.1,0,100000); // Q constrained to be positive
+      
       fNlocMax++;
+      
     }//if this pad is local maximum
   }//first digits loop
   
 //Phase 2. Fit loc max number of Mathiesons or add this current cluster to the list
 // case 1 -> no loc max found
- if ( fNlocMax == 0) {                                                                   // case of no local maxima found: pads with same charge...
-   gMinuit->mnparm(3*fNlocMax  ,Form("x%i",fNlocMax),fX,0.1,0,0,iErrFlg);                // Init values taken from CoG() -> fX,fY,fQRaw
-   gMinuit->mnparm(3*fNlocMax+1,Form("y%i",fNlocMax),fY,0.1,0,0,iErrFlg);                //
-   gMinuit->mnparm(3*fNlocMax+2,Form("q%i",fNlocMax),fQRaw,0.1,0,100000,iErrFlg);        //
+ if ( fNlocMax == 0) {                                                                       // case of no local maxima found: pads with same charge...
+   
+   ierflg = fitter->SetParameter(3*fNlocMax  ,Form("x%i",fNlocMax),fX,0.1,0,0);              // Init values taken from CoG() -> fX,fY,fQRaw
+   ierflg = fitter->SetParameter(3*fNlocMax+1,Form("y%i",fNlocMax),fY,0.1,0,0);              //
+   ierflg = fitter->SetParameter(3*fNlocMax+2,Form("q%i",fNlocMax),fQRaw,0.1,0,100000);      //
+   
    fNlocMax = 1;
    fSt=kNoLoc;
  }
 
 // case 2 -> loc max found. Check # of loc maxima 
- if ( fNlocMax >= kMaxLocMax)                                                            // if # of local maxima exceeds kMaxLocMax... 
-   {
-     fSt = kMax;   new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this);                   //...add this raw cluster  
-   }                                                                                     //or...
- else{                                                                                   //...resonable number of local maxima to fit and user requested it
-   Double_t arglist[10];arglist[0] = 10000;arglist[1] = 1.;                              //number of steps and sigma on pads charges  
-   gMinuit->mnexcm("SIMPLEX" ,arglist,2,iErrFlg);                                        //start fitting with Simplex
-   gMinuit->mnexcm("MIGRAD" ,arglist,2,iErrFlg);                                         //fitting improved by Migrad
-   if(iErrFlg) {
+ if ( fNlocMax >= kMaxLocMax)  {                                                          // if # of local maxima exceeds kMaxLocMax...
+   fSt = kMax;   new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this);                      //...add this raw cluster  
+   } else {                                                                               //or resonable number of local maxima to fit and user requested it
+  // Now ready for minimization step
+   arglist[0] = 500;                                                                      //number of steps and sigma on pads charges
+   arglist[1] = 1.;                                                                       //
+
+   ierflg = fitter->ExecuteCommand("SIMPLEX",arglist,2);                                  //start fitting with Simplex
+   if (!ierflg)
+     fitter->ExecuteCommand("MIGRAD" ,arglist,2);                                         //fitting improved by Migrad
+   if(ierflg) {
      Double_t strategy=2;
-     gMinuit->mnexcm("SET STR",&strategy,1,iErrFlg);                                     //change level of strategy 
-     if(!iErrFlg) {
-       gMinuit->mnexcm("SIMPLEX" ,arglist,2,iErrFlg);
-       gMinuit->mnexcm("MIGRAD" ,arglist,2,iErrFlg);                                     //fitting improved by Migrad
-//       Printf("Try to improve fit --> err %d",iErrFlg);
+     ierflg = fitter->ExecuteCommand("SET STR",&strategy,1);                              //change level of strategy 
+     if(!ierflg) {
+       ierflg = fitter->ExecuteCommand("SIMPLEX",arglist,2);                              //start fitting with Simplex
+       if (!ierflg)
+         fitter->ExecuteCommand("MIGRAD" ,arglist,2);                                     //fitting improved by Migrad
      }
    }        
-   if(iErrFlg) fSt=kAbn;                                                                 //no convergence of the fit...
-   Double_t dummy; TString sName;                                                        //vars to get results from Minuit
+   if(ierflg) fSt=kAbn;                                                                   //no convergence of the fit...
+   Double_t dummy; char sName[80];                                                        //vars to get results from Minuit
+   Double_t edm, errdef;
+   Int_t nvpar, nparx;
+  
    for(Int_t i=0;i<fNlocMax;i++){                                                        //store the local maxima parameters
-      gMinuit->mnpout(3*i   ,sName,  fX, fErrX , dummy, dummy, iErrFlg);                 // X 
-      gMinuit->mnpout(3*i+1 ,sName,  fY, fErrY , dummy, dummy, iErrFlg);                 // Y
-      gMinuit->mnpout(3*i+2 ,sName,  fQ, fErrQ , dummy, dummy, iErrFlg);                 // Q
-      gMinuit->mnstat(fChi2,dummy,dummy,iErrFlg,iErrFlg,iErrFlg);                        // Chi2 of the fit
+     fitter->GetParameter(3*i   ,sName,  fX, fErrX , dummy, dummy);                      // X
+     fitter->GetParameter(3*i+1 ,sName,  fY, fErrY , dummy, dummy);                      // Y
+     fitter->GetParameter(3*i+2 ,sName,  fQ, fErrQ , dummy, dummy);                      // Q
+     fitter->GetStats(fChi2, edm, errdef, nvpar, nparx);                                 //get fit infos
       if(fSt!=kAbn) {         
-        if(fNlocMax!=1)fSt=kUnf;                                                           // if unfolded
-        if(fNlocMax==1&&fSt!=kNoLoc) fSt=kLo1;                                             // if only 1 loc max
-        if ( !IsInPc()) fSt = kEdg;                                                        // if Out of Pc
-        if(fSt==kNoLoc) fNlocMax=0;                                                        // if with no loc max (pads with same charge..)
+        if(fNlocMax!=1)fSt=kUnf;                                                         // if unfolded
+        if(fNlocMax==1&&fSt!=kNoLoc) fSt=kLo1;                                           // if only 1 loc max
+        if ( !IsInPc()) fSt = kEdg;                                                      // if Out of Pc
+        if(fSt==kNoLoc) fNlocMax=0;                                                      // if with no loc max (pads with same charge..)
       }
       new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this);                               //add new unfolded cluster
    }