]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - HMPID/AliHMPIDDigit.h
Moving the copy constructors and assignment operators to private: and removing the...
[u/mrichter/AliRoot.git] / HMPID / AliHMPIDDigit.h
index fe1a6b6ac167bd157a9caeb1684ed250878c2ef0..3beda52d89f1d188be4352a6b6a8ccce5b99bf1e 100644 (file)
 //.
 
 #include <AliDigit.h>      //base class  
+#include <AliRawReader.h>
+#include <AliLog.h>
 #include "TMath.h"         //Mathieson()
 #include <AliBitPacking.h> //Raw()
-
+#include "AliHMPIDParam.h"
+//#include "AliHMPIDRawStream.h"
 
 class TClonesArray;        //Hit2Sdi()
   
 class AliHMPIDDigit :public AliDigit //TObject-AliDigit-AliHMPIDDigit
 {
 public:
-  enum EChamberData{kMinCh=0,kMaxCh=6,kMinPc=0,kMaxPc=5};      //Segmenation     
-  enum EPadxData{kPadPcX=80,kMinPx=0,kMaxPx=79,kMaxPcx=159};   //Segmentation structure along x
-  enum EPadyData{kPadPcY=48,kMinPy=0,kMaxPy=47,kMaxPcy=143};   //Segmentation structure along y
+    
 //ctor&dtor    
-  AliHMPIDDigit(                          ):AliDigit( ),fPad(Abs(-1,-1,-1,-1)),fQ(-1)  {}                         //default ctor
-  AliHMPIDDigit(Int_t pad,Int_t q,Int_t *t):AliDigit(t),fPad(pad             ),fQ(q )  {}                         //digit ctor
-  AliHMPIDDigit(const AliHMPIDDigit &d    ):AliDigit(d),fPad(d.fPad),fQ(d.fQ)          {}                         //copy ctor
-  virtual ~AliHMPIDDigit()                                                             {}                         //dtor   
+AliHMPIDDigit():
+    AliDigit( ),
+    fPad(AliHMPIDParam::Abs(-1,-1,-1,-1)),
+    fQ(-1)  
+    {}                                       //default ctor
+//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+AliHMPIDDigit(Int_t pad,Int_t q,Int_t *t):
+  AliDigit(t),
+  fPad(pad),
+  fQ(q)  
+  {if(fQ>4095) fQ=4095;}                     //digit ctor
+//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++  
+AliHMPIDDigit(Int_t pad,Int_t q):
+  AliDigit( ),
+  fPad(pad),
+  fQ(q )  
+  {if(fQ>4095) fQ=4095;}                     //digit ctor
+//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+AliHMPIDDigit& operator=(const AliHMPIDDigit& d)
+{
+  //
+  // Assignment operator
+  //
+  if(this!=&d){
+    AliDigit::operator=(d); 
+    fPad = d.fPad; 
+    fQ   = d.fQ;
+  }
+  return *this;                           
+}                                            
+//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+AliHMPIDDigit(const AliHMPIDDigit &d):
+  AliDigit(d),
+  fPad(d.fPad),
+  fQ(d.fQ)         
+  {}                                        //copy ctor
+//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++  
+virtual ~AliHMPIDDigit()  {}                //dtor
+   
 //framework part    
          Bool_t  IsSortable  (                               )const{return kTRUE;}                                                     //provision to use TObject::Sort() 
   inline Int_t   Compare     (const TObject *pObj            )const;                                                                   //provision to use TObject::Sort()
          void    Draw        (Option_t *opt=""               );                                                                        //TObject::Draw() overloaded
          void    Print       (Option_t *opt=""               )const;                                                                   //TObject::Print() overloaded
 //private part  
-  static Int_t   Abs         (Int_t ch,Int_t pc,Int_t x,Int_t y)   {return ch*100000000+pc*1000000+x*1000+y;                         } //(ch,pc,padx,pady)-> abs pad
-  static Int_t   A2C         (Int_t pad                      )     {return pad/100000000;                                            } //abs pad -> chamber
-  static Int_t   A2P         (Int_t pad                      )     {return pad%100000000/1000000;                                    } //abs pad -> pc
-  static Int_t   A2X         (Int_t pad                      )     {return pad%1000000/1000;                                         } //abs pad -> pad X 
-  static Int_t   A2Y         (Int_t pad                      )     {return pad%1000;                                                 } //abs pad -> pad Y 
+
          void    AddTidOffset(Int_t offset                   )     {for (Int_t i=0; i<3; i++) if (fTracks[i]>0) fTracks[i]+=offset;  } //needed for merging
-         Int_t   Ch          (                               )const{return A2C(fPad);                                                } //chamber number
-  static Bool_t  IsOverTh    (Float_t q                      )     {return q >= fgSigmas;                                            } //is digit over threshold?
-  static Bool_t  IsInside    (Float_t x,Float_t y,Float_t margin=0){return x>-margin&&y>-margin&&x<SizeAllX()+margin&&y<SizeAllY()+margin;} //is point inside chamber boundary?
-         Float_t LorsX       (                               )const{return LorsX(A2P(fPad),A2X(fPad));                               } //center of the pad x, [cm]
-  static Float_t LorsX       (Int_t pc,Int_t padx            )     {return (padx    +0.5)*SizePadX()+(pc  %2)*(SizePcX()+SizeDead());} //center of the pad x, [cm]
-         Float_t LorsY       (                               )const{return LorsY(A2P(fPad),A2Y(fPad));                               } //center of the pad y, [cm]
-  static Float_t LorsY       (Int_t pc,Int_t pady            )     {return (pady    +0.5)*SizePadY()+(pc  /2)*(SizePcY()+SizeDead());} //center of the pad y, [cm]
-  inline Float_t IntMathieson(Float_t x,Float_t y            )const;                                                                   //Mathieson distribution 
-         Int_t   PadPcX      (                               )const{return A2X(fPad);}                                                 //pad pc x # 0..79
-         Int_t   PadPcY      (                               )const{return A2Y(fPad);}                                                 //pad pc y # 0..47
-         Int_t   PadChX      (                               )const{return (Pc()%2)*kPadPcX+PadPcX();}                                 //pad ch x # 0..159
-         Int_t   PadChY      (                               )const{return (Pc()/2)*kPadPcY+PadPcY();}                                 //pad ch y # 0..143
+         Int_t   Ch          (                               )const{return AliHMPIDParam::A2C(fPad);                                                } //chamber number
+         Float_t LorsX       (                               )const{return AliHMPIDParam::LorsX(AliHMPIDParam::A2P(fPad),AliHMPIDParam::A2X(fPad));                               } //center of the pad x, [cm]
+
+         Float_t LorsY       (                               )const{return AliHMPIDParam::LorsY(AliHMPIDParam::A2P(fPad),AliHMPIDParam::A2Y(fPad));                               } //center of the pad y, [cm]
+//  
+  inline Double_t MathiesonX   (Double_t x                   )const;                                                                   //Mathieson distribution along wires X 
+  inline Double_t MathiesonY   (Double_t x                   )const;                                                                   //Mathieson distribution perp to wires Y
+  inline Double_t IntPartMathiX(Double_t z                   )const;                                                                   //integral in 1-dim of Mathieson X
+  inline Double_t IntPartMathiY(Double_t z                   )const;                                                                   //integral in 1-dim of Mathieson Y
+  inline Double_t IntMathieson (Double_t x,Double_t y        )const;                                                                   //integral in 2-dim of Mathieson  
+         Int_t   PadPcX      (                               )const{return AliHMPIDParam::A2X(fPad);}                                                 //pad pc x # 0..79
+         Int_t   PadPcY      (                               )const{return AliHMPIDParam::A2Y(fPad);}                                                 //pad pc y # 0..47
+         Int_t   PadChX      (                               )const{return (Pc()%2)*AliHMPIDParam::kPadPcX+PadPcX();}                                 //pad ch x # 0..159
+         Int_t   PadChY      (                               )const{return (Pc()/2)*AliHMPIDParam::kPadPcY+PadPcY();}                                 //pad ch y # 0..143
          Int_t   Pad         (                               )const{return fPad;}                                                      //absolute id of this pad
-         Int_t   Pc          (                               )const{return A2P(fPad);}                                                 //PC position number
+         Int_t   Pc          (                               )const{return AliHMPIDParam::A2P(fPad);}                                                 //PC position number
          Float_t Q           (                               )const{return fQ;}                                                        //charge, [QDC]
-  inline void    Raw         (UInt_t &w32,Int_t &ddl,Int_t &r,Int_t &d,Int_t &a)const;                                                 //digit->(w32,ddl,r,d,a)
-  inline void    Raw         (UInt_t  w32,Int_t  ddl         );                                                                        //(w32,ddl)->digit
-  inline void    Raw         (Int_t ddl,Int_t r,Int_t d,Int_t a);                                                                      //raw->abs pad number
+  inline void    Raw(UInt_t &w32,Int_t &ddl,Int_t &r,Int_t &d,Int_t &a)const;
   inline Bool_t  Set         (Int_t c,Int_t p,Int_t x,Int_t y,Int_t tid=0);                                                            //manual creation 
-         void    SetQ        (Float_t q                      )     {fQ=q;}                                                             //manual creation 
-         void    SetNsig     (Int_t sigmas                   )     {fgSigmas=sigmas;}                                                  //set n sigmas 
-  static void    WriteRaw    (TObjArray *pDigLst             );                                                                        //write as raw stream     
-  
-  static Float_t CathAnoCath (                               )     {return 0.445;}                                                     //Cathode-Anode-cathode pitch
-  static Float_t MaxPcX      (Int_t iPc                      )     {return fgkMaxPcX[iPc];}                                            // PC limits
-  static Float_t MaxPcY      (Int_t iPc                      )     {return fgkMaxPcY[iPc];}                                            // PC limits
-  static Float_t MinPcX      (Int_t iPc                      )     {return fgkMinPcX[iPc];}                                            // PC limits
-  static Float_t MinPcY      (Int_t iPc                      )     {return fgkMinPcY[iPc];}                                            // PC limits
-  static Int_t   Nsig        (                               )     {return fgSigmas;}                                                  //Getter n. sigmas for noise
-  static Float_t SizeAllX    (                               )     {return fgkMaxPcX[5];}                                              //all PCs size x, [cm]        
-  static Float_t SizeAllY    (                               )     {return fgkMaxPcY[5];}                                              //all PCs size y, [cm]    
-  static Float_t SizeArea    (                               )     {return SizePcX()*SizePcY()*(kMaxPc-kMinPc+1);}                     //sence area, [cm^2]  
-  static Float_t SizeDead    (                               )     {return 2.6;}                                                       //dead zone size x, [cm]         
-  static Float_t SizeGap     (                               )     {return 8;  }
-  static Float_t SizePadX    (                               )     {return 0.8;}                                                       //pad size x, [cm]  
-  static Float_t SizePadY    (                               )     {return 0.84;}                                                      //pad size y, [cm]  
-  static Float_t SizePcX     (                               )     {return fgkMaxPcX[0];}                                              //PC size x, [cm]        
-  static Float_t SizePcY     (                               )     {return fgkMaxPcY[0];}                                              //PC size y, [cm]    
-  static Float_t SizeWin     (                               )     {return 0.5;}                                                       //Quartz window width
-  static Float_t SizeRad     (                               )     {return 1.5;}                                                       //Rad width   
-  inline static Bool_t IsInDead(Float_t x,Float_t y        );                                                                          //is point in dead area?
-  inline static void   Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py);                                                    //(x,y)->(pc,px,py) 
+         void    SetQ        (Float_t q                      )     {fQ=q;if(fQ>4095)fQ=4095;}                                          //setter for charge 
+         void    SetPad      (Int_t pad                      )     {fPad=pad;}                                                         //setter for pad
 protected:                                                                   //AliDigit has fTracks[3]
-  static Int_t fgSigmas;                                                                                                               //n. sigma to cut on charge 
-  static const Float_t fgkMinPcX[6];                                                                                                   //limits PC
-  static const Float_t fgkMinPcY[6];                                                                                                   //limits PC
-  static const Float_t fgkMaxPcX[6];                                                                                                   //limits PC
-  static const Float_t fgkMaxPcY[6];                                                                                                   //limits PC
-  static const Float_t fgk1;                                                                                                           //Mathieson parameters
-  static const Float_t fgk2;                                                                                                           //...
-  static const Float_t fgkSqrtK3;                                                                                                      //...
-  static const Float_t fgk4;                                                                                                           //...
+                                                                               
+
   Int_t    fPad;                                                                                                                       //absolute pad number
   Float_t  fQ;                                                               //QDC value, fractions are permitted for summable procedure  
   ClassDef(AliHMPIDDigit,4)                                                  //HMPID digit class       
 };//class AliHMPIDDigit
 
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-void AliHMPIDDigit::Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py)
-{
-// Check the pad of given position
-// Arguments: x,y- position [cm] in LORS; pc,px,py- pad where to store the result
-//   Returns: none
-  pc=px=py=-1;
-  if     (x>=          0          && x<=  SizePcX()            ) {pc=0; px=Int_t( x                           / SizePadX());}//PC 0 or 2 or 4
-  else if(x>=SizePcX()+SizeDead() && x<=  SizeAllX()           ) {pc=1; px=Int_t((x-  SizePcX()-  SizeDead()) / SizePadX());}//PC 2 or 4 or 6
-  else return;
-  if     (y>=          0          && y<=  SizePcY()            ) {      py=Int_t( y                           / SizePadY());}//PC 0 or 1
-  else if(y>=SizePcY()+SizeDead() && y<=2*SizePcY()+SizeDead() ) {pc+=2;py=Int_t((y-  SizePcY()-  SizeDead()) / SizePadY());}//PC 2 or 3
-  else if(y>=SizeAllY()-SizePcY() && y<=  SizeAllY()           ) {pc+=4;py=Int_t((y-2*SizePcY()-2*SizeDead()) / SizePadY());}//PC 4 or 5
-  else return;
-}
-//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
 Int_t AliHMPIDDigit::Compare(const TObject *pObj) const
 {
 // Used in Sort() method to compare to objects. Note that abs pad structure is first x then y, hence will be sorted on column basis.
@@ -122,93 +114,122 @@ Int_t AliHMPIDDigit::Compare(const TObject *pObj) const
   else                                         return -1;
 }
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-Bool_t AliHMPIDDigit::IsInDead(Float_t x,Float_t y)
+
+Double_t AliHMPIDDigit::MathiesonX(Double_t x)const
 {
-// Check is the current point is outside of sensitive area or in dead zones
-// Arguments: x,y -position
-//   Returns: 1 if not in sensitive zone           
-  if(x<0 || x>SizeAllX() || y<0 || y>SizeAllY()) return kTRUE; //out of pc 
+// Mathieson function.
+// This is the answer to electrostatic problem of charge distrubution in MWPC described elsewhere. (NIM A370(1988)602-603)
+// Arguments: x- position of the center of Mathieson distribution
+//  Returns: value of the Mathieson function
   
-  if(x>SizePcX()  && x<SizePcX()+SizeDead())   return kTRUE; //in dead zone along x  
+  Double_t lambda = x/AliHMPIDParam::PitchAnodeCathode();
+  Double_t tanh = TMath::TanH(AliHMPIDParam::K2x()*lambda);
+  Double_t a=1-tanh*tanh;
+  Double_t b=1+AliHMPIDParam::SqrtK3x()*AliHMPIDParam::SqrtK3x()*tanh*tanh;
+  Double_t mathi = AliHMPIDParam::K1x()*a/b;
+  return mathi;
+}
+//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+Double_t AliHMPIDDigit::MathiesonY(Double_t y)const
+{
+// Mathieson function.
+// This is the answer to electrostatic problem of charge distrubution in MWPC described elsewhere. (NIM A370(1988)602-603)
+// Arguments: x- position of the center of Mathieson distribution
+//  Returns: value of the Mathieson function
   
-  if(y>SizePcY()                       && y<SizePcY()+SizeDead())      return kTRUE; //in first dead zone along y   
-  if(y>SizeAllY()-SizePcY()-SizeDead() && y<SizeAllY()-SizePcY())      return kTRUE; //in second dead zone along y   
-  return kFALSE;
+  Double_t lambda = y/AliHMPIDParam::PitchAnodeCathode();
+  Double_t tanh = TMath::TanH(AliHMPIDParam::K2y()*lambda);
+  Double_t a=1-tanh*tanh;
+  Double_t b=1+AliHMPIDParam::SqrtK3y()*AliHMPIDParam::SqrtK3y()*tanh*tanh;
+  Double_t mathi = AliHMPIDParam::K1y()*a/b;
+  return mathi;
 }
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-Float_t AliHMPIDDigit::IntMathieson(Float_t x,Float_t y)const
+
+Double_t AliHMPIDDigit::IntPartMathiX(Double_t x)const
 {
 // Integration of Mathieson.
 // This is the answer to electrostatic problem of charge distrubution in MWPC described elsewhere. (NIM A370(1988)602-603)
 // Arguments: x,y- position of the center of Mathieson distribution
 //  Returns: a charge fraction [0-1] imposed into the pad
-//  K1    =0.28278796
-//  K2    =0.96242952
-//  SqrtK3=0.77459667
-//  K4    =0.37932926
-
-  Float_t ux1=fgkSqrtK3*TMath::TanH(fgk2*(x-LorsX()+0.5*SizePadX())/CathAnoCath());
-  Float_t ux2=fgkSqrtK3*TMath::TanH(fgk2*(x-LorsX()-0.5*SizePadX())/CathAnoCath());
-  Float_t uy1=fgkSqrtK3*TMath::TanH(fgk2*(y-LorsY()+0.5*SizePadY())/CathAnoCath());
-  Float_t uy2=fgkSqrtK3*TMath::TanH(fgk2*(y-LorsY()-0.5*SizePadY())/CathAnoCath());
-  return 4*fgk4*(TMath::ATan(ux2)-TMath::ATan(ux1))*fgk4*(TMath::ATan(uy2)-TMath::ATan(uy1));
+  Double_t shift1 = -LorsX()+0.5*AliHMPIDParam::SizePadX();
+  Double_t shift2 = -LorsX()-0.5*AliHMPIDParam::SizePadX();
+    
+  Double_t ux1=AliHMPIDParam::SqrtK3x()*TMath::TanH(AliHMPIDParam::K2x()*(x+shift1)/AliHMPIDParam::PitchAnodeCathode());
+  Double_t ux2=AliHMPIDParam::SqrtK3x()*TMath::TanH(AliHMPIDParam::K2x()*(x+shift2)/AliHMPIDParam::PitchAnodeCathode());
+  
+  return AliHMPIDParam::K4x()*(TMath::ATan(ux2)-TMath::ATan(ux1));
 }
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-void AliHMPIDDigit::Raw(UInt_t &w32,Int_t &ddl,Int_t &r,Int_t &d,Int_t &a)const
-{
-// Convert digit structure to raw word format
-// Arguments: w32,ddl,r,d,a where to write the results
-//   Returns: none
-  Int_t y2a[6]={5,3,1,0,2,4};
 
-                                  ddl=2*Ch()+Pc()%2;                     //DDL# 0..13
-  Int_t tmp=1+Pc()/2*8+PadPcY()/6;  r=(Pc()%2)? 25-tmp:tmp;              //row r=1..24
-                                    d=1+PadPcX()/8;                      //DILOGIC# 1..10
-                                    a=y2a[PadPcY()%6]+6*(PadPcX()%8);    //ADDRESS 0..47        
-      
-  w32=0;    
-  AliBitPacking::PackWord((UInt_t)fQ,w32, 0,11);  // 0000 0rrr rrdd ddaa aaaa qqqq qqqq qqqq        Qdc               bits (00..11) counts (0..4095)
-  AliBitPacking::PackWord(        a ,w32,12,17);  // 3322 2222 2222 1111 1111 1000 0000 0000        DILOGIC address   bits (12..17) counts (0..47)
-  AliBitPacking::PackWord(        d ,w32,18,21);  // 1098 7654 3210 9876 5432 1098 7654 3210        DILOGIC number    bits (18..21) counts (1..10)
-  AliBitPacking::PackWord(        r ,w32,22,26);  //                                                Row number        bits (22..26) counts (1..24)  
+Double_t AliHMPIDDigit::IntPartMathiY(Double_t y)const
+{
+// Integration of Mathieson.
+// This is the answer to electrostatic problem of charge distrubution in MWPC described elsewhere. (NIM A370(1988)602-603)
+// Arguments: x,y- position of the center of Mathieson distribution
+//  Returns: a charge fraction [0-1] imposed into the pad
+  Double_t shift1 = -LorsY()+0.5*AliHMPIDParam::SizePadY();
+  Double_t shift2 = -LorsY()-0.5*AliHMPIDParam::SizePadY();
+    
+  Double_t uy1=AliHMPIDParam::SqrtK3y()*TMath::TanH(AliHMPIDParam::K2y()*(y+shift1)/AliHMPIDParam::PitchAnodeCathode());
+  Double_t uy2=AliHMPIDParam::SqrtK3y()*TMath::TanH(AliHMPIDParam::K2y()*(y+shift2)/AliHMPIDParam::PitchAnodeCathode());
+  
+  return AliHMPIDParam::K4y()*(TMath::ATan(uy2)-TMath::ATan(uy1));
+  
 }
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-void AliHMPIDDigit::Raw(UInt_t w32,Int_t ddl)
+
+Double_t AliHMPIDDigit::IntMathieson(Double_t x,Double_t y)const
 {
-// Converts a given raw data word to a digit
-// Arguments: w32 - 32 bits raw data word
-//            ddl - DDL idx  0 1 2 3 4 ... 13
-//   Returns: none
-  Int_t r = AliBitPacking::UnpackWord(w32,22,26); assert(1<=r&&r<=24);   //                                         Row number      (1..24)    
-  Int_t d = AliBitPacking::UnpackWord(w32,18,21); assert(1<=d&&d<=10);   // 3322 2222 2222 1111 1111 1000 0000 0000 DILOGIC number  (1..10)
-  Int_t a = AliBitPacking::UnpackWord(w32,12,17); assert(0<=a&&a<=47);   // 1098 7654 3210 9876 5432 1098 7654 3210 DILOGIC address (0..47)  
-  Int_t q = AliBitPacking::UnpackWord(w32, 0,11); assert(0<=q&&q<=4095); // 0000 0rrr rrdd ddaa aaaa qqqq qqqq qqqq Qdc             (0..4095) 
-  Raw(ddl,r,d,a);
-  fQ=q;
+// Integration of Mathieson.
+// This is the answer to electrostatic problem of charge distrubution in MWPC described elsewhere. (NIM A370(1988)602-603)
+// Arguments: x,y- position of the center of Mathieson distribution
+//  Returns: a charge fraction [0-1] imposed into the pad
+
+  Double_t xm = IntPartMathiX(x);
+  Double_t ym = IntPartMathiY(y);
+  return 4*xm*ym;
 }
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-void AliHMPIDDigit::Raw(Int_t ddl,Int_t r,Int_t d,Int_t a)
+void AliHMPIDDigit::Raw(UInt_t &w32,Int_t &ddl,Int_t &r,Int_t &d,Int_t &a)const
 {
-  Int_t a2y[6]={3,2,4,1,5,0};//pady for a given address (for single DILOGIC chip)
-                                  Int_t ch=ddl/2;
-  Int_t tmp=(r-1)/8;              Int_t pc=(ddl%2)? 5-2*tmp:2*tmp; 
-                                  Int_t px=(d-1)*8+a/6;
-        tmp=(ddl%2)?(24-r):r-1;   Int_t py=6*(tmp%8)+a2y[a%6];
-  fPad=Abs(ch,pc,px,py);
-}
-
+// Convert digit structure to raw word format
+// Arguments: w32,ddl,r,d,a where to write the results
+//   Returns: none
+  Int_t y2a[6]={5,3,1,0,2,4};
 
+  ddl=2*Ch()+Pc()%2;                    //DDL# 0..13
+  Int_t tmp=1+Pc()/2*8+PadPcY()/6;  r=(Pc()%2)? tmp:25-tmp;               //row r=1..24
+  d=1+PadPcX()/8;                       //DILOGIC# 1..10
+//  d=AliHMPIDRawStream::kNDILOGICAdd+1-d;                   ////flip according to Paolo (2-9-2008)
+  d=10+1-d;                                                  ////flip according to Paolo (2-9-2008)
+  a=y2a[PadPcY()%6]+6*(7-PadPcX()%8);   //ADDRESS 0..47        
+    
+  w32=0;   
+  if(r<1 || r>24 || d<1 || d>10 || a<0 || a>47) {w32=0;ddl=-1;r=-1;d=-1;a=-1; return;}    //clm: the assert is removed not to break the reconstruction code 
+  AliBitPacking::PackWord((UInt_t)fQ,w32, 0,11);                      // 0000 0rrr rrdd ddaa aaaa qqqq qqqq qqqq        Qdc               bits (00..11) counts (0..4095)
+  AliBitPacking::PackWord(        a ,w32,12,17);                      // 3322 2222 2222 1111 1111 1000 0000 0000        DILOGIC address   bits (12..17) counts (0..47)
+  AliBitPacking::PackWord(        d ,w32,18,21);                      // 1098 7654 3210 9876 5432 1098 7654 3210        DILOGIC number    bits (18..21) counts (1..10)
+  AliBitPacking::PackWord(        r ,w32,22,26);                      //                                                Row number        bits (22..26) counts (1..24)  
+  AliBitPacking::PackWord((UInt_t)0, w32,27,27);                      //To make sure set the 27th bit to Zero so we can distinguis it from the EoE
+}
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 Bool_t AliHMPIDDigit::Set(Int_t ch,Int_t pc,Int_t px,Int_t py,Int_t tid)
 {
 // Manual creation of digit
 // Arguments: ch,pc,px,py,qdc,tid  
 //   Returns: kTRUE if wrong digit
-  if(px<kMinPx || px>kMaxPx) return kTRUE;
-  if(py<kMinPy || py>kMaxPy) return kTRUE;
+  if(ch<AliHMPIDParam::kMinCh || ch>AliHMPIDParam::kMaxCh) return kTRUE;
+  if(pc<AliHMPIDParam::kMinPc || pc>AliHMPIDParam::kMaxPc) return kTRUE;
+  if(px<AliHMPIDParam::kMinPx || px>AliHMPIDParam::kMaxPx) return kTRUE;
+  if(py<AliHMPIDParam::kMinPy || py>AliHMPIDParam::kMaxPy) return kTRUE;
+  
 
-  fPad=Abs(ch,pc,px,py);fTracks[0]=tid;
+  fPad=AliHMPIDParam::Abs(ch,pc,px,py);fTracks[0]=tid;
   fQ=0;
   return kFALSE;
 }
+//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
 #endif