Bug in area evaluation for reconstruction of ring. Important for PbPb events (high...
[u/mrichter/AliRoot.git] / HMPID / AliHMPIDDigit.h
index cddb491..e14b1bc 100644 (file)
@@ -3,23 +3,28 @@
 /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
  * See cxx source for full Copyright notice                               */
 
+// Class of HMPID to manage digits ---> pads
+//.
+//.
+//.
+
 #include <AliDigit.h>      //base class  
-#include <TMath.h>         //Mathieson()
-#include <TRandom.h>       //IsOverTh()  
+#include <AliRawReader.h>
+#include <AliLog.h>
+#include "TMath.h"         //Mathieson()
 #include <AliBitPacking.h> //Raw()
-
+#include "AliHMPIDParam.h"
 
 class TClonesArray;        //Hit2Sdi()
   
 class AliHMPIDDigit :public AliDigit //TObject-AliDigit-AliHMPIDDigit
 {
 public:
-  enum EChamberData{kMinCh=0,kMaxCh=6,kMinPc=0,kMaxPc=5};  
-  enum EPadxData{kPadPcX=80,kMinPx=0,kMaxPx=kPadPcX-1,kMaxPadChX=159};   //Segmentation structure along x
-  enum EPadyData{kPadPcY=48,kMinPy=0,kMaxPy=kPadPcY-1,kMaxPadChY=143};   //Segmentation structure along y
+    
 //ctor&dtor    
-  AliHMPIDDigit(                          ):AliDigit( ),fPad(Abs(-1,-1,-1,-1)),fQ(-1)  {}                         //default ctor
+  AliHMPIDDigit(                          ):AliDigit( ),fPad(AliHMPIDParam::Abs(-1,-1,-1,-1)),fQ(-1)  {}                         //default ctor
   AliHMPIDDigit(Int_t pad,Int_t q,Int_t *t):AliDigit(t),fPad(pad             ),fQ(q )  {}                         //digit ctor
+  AliHMPIDDigit(Int_t pad,Int_t q         ):AliDigit( ),fPad(pad             ),fQ(q )  {}                         //digit ctor
   AliHMPIDDigit(const AliHMPIDDigit &d    ):AliDigit(d),fPad(d.fPad),fQ(d.fQ)          {}                         //copy ctor
   virtual ~AliHMPIDDigit()                                                             {}                         //dtor   
 //framework part    
@@ -28,75 +33,40 @@ public:
          void    Draw        (Option_t *opt=""               );                                                                        //TObject::Draw() overloaded
          void    Print       (Option_t *opt=""               )const;                                                                   //TObject::Print() overloaded
 //private part  
-  static Int_t   Abs         (Int_t c,Int_t s,Int_t x,Int_t y)     {return c*100000000+s*1000000+x*1000+y;                           } //(ch,pc,padx,pady)-> abs pad
-  static Int_t   A2C         (Int_t pad                      )     {return pad/100000000;                                            } //abs pad -> chamber
-  static Int_t   A2P         (Int_t pad                      )     {return pad%100000000/1000000;                                    } //abs pad -> pc
-  static Int_t   A2X         (Int_t pad                      )     {return pad%1000000/1000;                                         } //abs pad -> pad X 
-  static Int_t   A2Y         (Int_t pad                      )     {return pad%1000;                                                 } //abs pad -> pad Y 
+
          void    AddTidOffset(Int_t offset                   )     {for (Int_t i=0; i<3; i++) if (fTracks[i]>0) fTracks[i]+=offset;  } //needed for merging
-         Int_t   Ch          (                               )const{return A2C(fPad);                                                } //chamber number
-  static Bool_t  IsOverTh    (Float_t q                      )     {return q >= 4;                                                   } //is digit over threshold????
-  static Bool_t  IsInside    (Float_t x,Float_t y            )     {return x>0&&y>0&&x<SizeAllX()&&y<SizeAllY();                     } //is point inside chamber boundary?
-         Float_t LorsX       (                               )const{return LorsX(A2P(fPad),A2X(fPad));                               } //center of the pad x, [cm]
-  static Float_t LorsX       (Int_t pc,Int_t padx            )     {return (padx    +0.5)*SizePadX()+(pc  %2)*(SizePcX()+SizeDead());} //center of the pad x, [cm]
-         Float_t LorsY       (                               )const{return LorsY(A2P(fPad),A2Y(fPad));                               } //center of the pad y, [cm]
-  static Float_t LorsY       (Int_t pc,Int_t pady            )     {return (pady    +0.5)*SizePadY()+(pc  /2)*(SizePcY()+SizeDead());} //center of the pad y, [cm]
-  inline Float_t Mathieson   (Float_t x,Float_t y            )const;                                                                   //Mathieson distribution 
-         Int_t   PadPcX      (                               )const{return A2X(fPad);}                                                 //pad pc x # 0..79
-         Int_t   PadPcY      (                               )const{return A2Y(fPad);}                                                 //pad pc y # 0..47
-         Int_t   PadChX      (                               )const{return (Pc()%2)*kPadPcX+PadPcX();}                                 //pad ch x # 0..159
-         Int_t   PadChY      (                               )const{return (Pc()/2)*kPadPcY+PadPcY();}                                 //pad ch y # 0..143
+         Int_t   Ch          (                               )const{return AliHMPIDParam::A2C(fPad);                                                } //chamber number
+         Float_t LorsX       (                               )const{return AliHMPIDParam::LorsX(AliHMPIDParam::A2P(fPad),AliHMPIDParam::A2X(fPad));                               } //center of the pad x, [cm]
+
+         Float_t LorsY       (                               )const{return AliHMPIDParam::LorsY(AliHMPIDParam::A2P(fPad),AliHMPIDParam::A2Y(fPad));                               } //center of the pad y, [cm]
+//  
+  inline Float_t Mathieson   (Float_t x                      )const;                                                                   //Mathieson distribution 
+  inline Float_t IntPartMathi(Float_t z, Int_t axis          )const;                                                                   //integral in 1-dim of Mathieson
+  inline Float_t IntMathieson(Float_t x,Float_t y            )const;                                                                   //integral in 2-dim of Mathieson  
+         Int_t   PadPcX      (                               )const{return AliHMPIDParam::A2X(fPad);}                                                 //pad pc x # 0..79
+         Int_t   PadPcY      (                               )const{return AliHMPIDParam::A2Y(fPad);}                                                 //pad pc y # 0..47
+         Int_t   PadChX      (                               )const{return (Pc()%2)*AliHMPIDParam::kPadPcX+PadPcX();}                                 //pad ch x # 0..159
+         Int_t   PadChY      (                               )const{return (Pc()/2)*AliHMPIDParam::kPadPcY+PadPcY();}                                 //pad ch y # 0..143
          Int_t   Pad         (                               )const{return fPad;}                                                      //absolute id of this pad
-         Int_t   Pc          (                               )const{return A2P(fPad);}                                                 //PC position number
+         Int_t   Pc          (                               )const{return AliHMPIDParam::A2P(fPad);}                                                 //PC position number
          Float_t Q           (                               )const{return fQ;}                                                        //charge, [QDC]
-  inline void    Raw         (UInt_t &w32,Int_t &ddl,Int_t &r,Int_t &d,Int_t &a)const;                                                 //digit->(w32,ddl,r,d,a)
-  inline void    Raw         (UInt_t  w32,Int_t  ddl         );                                                                        //(w32,ddl)->digit
-  inline Bool_t  Set         (Int_t c,Int_t p,Int_t x,Int_t y,Float_t q=0,Int_t tid=0);                                                //manual creation 
-  static void    WriteRaw    (TObjArray *pDigLst             );                                                                        //write as raw stream     
-  
-  static Float_t SizeAllX    (                               )     {return fMaxPcX[5];}                                                //all PCs size x, [cm]        
-  static Float_t SizeAllY    (                               )     {return fMaxPcY[5];}                                                //all PCs size y, [cm]    
-  static Float_t SizeArea    (                               )     {return SizePcX()*SizePcY()*(kMaxPc-kMinPc+1);}                     //sence area, [cm^2]  
-  static Float_t SizeDead    (                               )     {return 2.6;}                                                       //dead zone size x, [cm]         
-  static Float_t SizeGap     (                               )     {return 8;  }
-  static Float_t SizePadX    (                               )     {return 0.8;}                                                       //pad size x, [cm]  
-  static Float_t SizePadY    (                               )     {return 0.84;}                                                      //pad size y, [cm]  
-  static Float_t SizePcX     (                               )     {return fMaxPcX[0];}                                                //PC size x, [cm]        
-  static Float_t SizePcY     (                               )     {return fMaxPcY[0];}                                                //PC size y, [cm]    
-  static Float_t SizeWin     (                               )     {return 0.5;}                                                       //Quartz window width
-  static Float_t SizeRad     (                               )     {return 1.5;}                                                       //Rad width   
-  static const Float_t fMinPcX[6];
-  static const Float_t fMinPcY[6];
-  static const Float_t fMaxPcX[6];
-  static const Float_t fMaxPcY[6];
-  
-  inline static Bool_t IsInDead(Float_t x,Float_t y        );                                                                        //is point in dead area?
-  inline static void   Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py);                                                  //(x,y)->(pc,px,py) 
-  
-protected:                  //AliDigit has fTracks[3]
-  Int_t    fPad;            //absolute pad number
-  Float_t  fQ;              //QDC value, fractions are permitted for summable procedure  
-  ClassDef(AliHMPIDDigit,4) //HMPID digit class       
-};//class AliHMPIDDigitN
+  inline void    Raw(UInt_t &w32,Int_t &ddl,Int_t &r,Int_t &d,Int_t &a)const;
+  inline Bool_t  Set         (Int_t c,Int_t p,Int_t x,Int_t y,Int_t tid=0);                                                            //manual creation 
+         void    SetQ        (Float_t q                      )     {fQ=q;}                                                             //manual creation 
+         void    SetNsig     (Int_t sigmas                   )     {AliHMPIDParam::fgSigmas=sigmas;}                                                  //set n sigmas 
 
-typedef AliHMPIDDigit AliRICHDigit; // for backward compatibility
+protected:                                                                   //AliDigit has fTracks[3]
+                                                                               
+
+  Int_t    fPad;                                                                                                                       //absolute pad number
+  Float_t  fQ;                                                               //QDC value, fractions are permitted for summable procedure  
+  ClassDef(AliHMPIDDigit,4)                                                  //HMPID digit class       
+};//class AliHMPIDDigit
 
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-void AliHMPIDDigit::Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py)
-{
-// Check the pad of given position
-// Arguments: x,y- position [cm] in LORS; pc,px,py- pad where to store the result
-//   Returns: none
-  pc=px=py=-1;
-  if     (x>=          0          && x<=  SizePcX()            ) {pc=0; px=Int_t( x                           / SizePadX());}//PC 0 or 2 or 4
-  else if(x>=SizePcX()+SizeDead() && x<=  SizeAllX()           ) {pc=1; px=Int_t((x-  SizePcX()-  SizeDead()) / SizePadX());}//PC 2 or 4 or 6
-  else return;
-  if     (y>=          0          && y<=  SizePcY()            ) {      py=Int_t( y                           / SizePadY());}//PC 0 or 1
-  else if(y>=SizePcY()+SizeDead() && y<=2*SizePcY()+SizeDead() ) {pc+=2;py=Int_t((y-  SizePcY()-  SizeDead()) / SizePadY());}//PC 2 or 3
-  else if(y>=SizeAllY()-SizePcY() && y<=  SizeAllY()           ) {pc+=4;py=Int_t((y-2*SizePcY()-2*SizeDead()) / SizePadY());}//PC 4 or 5
-  else return;
-}
-//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
 Int_t AliHMPIDDigit::Compare(const TObject *pObj) const
 {
 // Used in Sort() method to compare to objects. Note that abs pad structure is first x then y, hence will be sorted on column basis.
@@ -108,32 +78,56 @@ Int_t AliHMPIDDigit::Compare(const TObject *pObj) const
   else                                         return -1;
 }
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-Bool_t AliHMPIDDigit::IsInDead(Float_t x,Float_t y)
+
+Float_t AliHMPIDDigit::Mathieson(Float_t x)const
 {
-// Check is the current point is outside of sensitive area or in dead zones
-// Arguments: x,y -position
-//   Returns: 1 if not in sensitive zone           
-  if(x<0 || x>SizeAllX() || y<0 || y>SizeAllY()) return kTRUE; //out of pc 
-  
-  if(x>SizePcX()  && x<SizePcX()+SizeDead())   return kTRUE; //in dead zone along x  
+// Mathieson function.
+// This is the answer to electrostatic problem of charge distrubution in MWPC described elsewhere. (NIM A370(1988)602-603)
+// Arguments: x- position of the center of Mathieson distribution
+//  Returns: value of the Mathieson function
+  Float_t  kK1=0.28278795,kK2=0.96242952, kSqrtK3 =0.77459667, kD=0.445;
+  Float_t lambda = x/kD;
+  Float_t a=1-TMath::TanH(kK2*lambda)*TMath::TanH(kK2*lambda);
+  Float_t b=1+kSqrtK3*kSqrtK3*TMath::TanH(kK2*lambda)*TMath::TanH(kK2*lambda);
+  Float_t mathi = kK1*a/b;
+  return mathi;
+}
+//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+Float_t AliHMPIDDigit::IntPartMathi(Float_t z, Int_t axis)const
+{
+// Integration of Mathieson.
+// This is the answer to electrostatic problem of charge distrubution in MWPC described elsewhere. (NIM A370(1988)602-603)
+// Arguments: x,y- position of the center of Mathieson distribution
+//  Returns: a charge fraction [0-1] imposed into the pad
+  Float_t shift1,shift2;
+  if(axis==1) {
+    shift1 = -LorsX()+0.5*AliHMPIDParam::SizePadX();
+    shift2 = -LorsX()-0.5*AliHMPIDParam::SizePadX();
+  } else {
+    shift1 = -LorsY()+0.5*AliHMPIDParam::SizePadY();
+    shift2 = -LorsY()-0.5*AliHMPIDParam::SizePadY();
+  }
+    
+  Float_t  kK2=0.96242952, kSqrtK3 =0.77459667,  kK4=0.37932926, kD=0.445;
+
+  Float_t ux1=kSqrtK3*TMath::TanH(kK2*(z+shift1)/kD);
+  Float_t ux2=kSqrtK3*TMath::TanH(kK2*(z+shift2)/kD);
   
-  if(y>SizePcY()                       && y<SizePcY()+SizeDead())      return kTRUE; //in first dead zone along y   
-  if(y>SizeAllY()-SizePcY()-SizeDead() && y<SizeAllY()-SizePcY())      return kTRUE; //in second dead zone along y   
-  return kFALSE;
+  return kK4*(TMath::ATan(ux2)-TMath::ATan(ux1));
 }
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-Float_t AliHMPIDDigit::Mathieson(Float_t x,Float_t y)const
+
+Float_t AliHMPIDDigit::IntMathieson(Float_t x,Float_t y)const
 {
+// Integration of Mathieson.
 // This is the answer to electrostatic problem of charge distrubution in MWPC described elsewhere. (NIM A370(1988)602-603)
 // Arguments: x,y- position of the center of Mathieson distribution
 //  Returns: a charge fraction [0-1] imposed into the pad
-  const Float_t kSqrtK3=0.77459667,k2=0.962,k4=0.379;
 
-  Float_t ux1=kSqrtK3*TMath::TanH(k2*(x-LorsX()+0.5*SizePadX())/0.425);
-  Float_t ux2=kSqrtK3*TMath::TanH(k2*(x-LorsX()-0.5*SizePadX())/0.425);
-  Float_t uy1=kSqrtK3*TMath::TanH(k2*(y-LorsY()+0.5*SizePadY())/0.425);
-  Float_t uy2=kSqrtK3*TMath::TanH(k2*(y-LorsY()-0.5*SizePadY())/0.425);
-  return 4*k4*(TMath::ATan(ux2)-TMath::ATan(ux1))*k4*(TMath::ATan(uy2)-TMath::ATan(uy1));
+  Float_t xm = IntPartMathi(x,1);
+  Float_t ym = IntPartMathi(y,2);
+  return 4*xm*ym;
 }
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 void AliHMPIDDigit::Raw(UInt_t &w32,Int_t &ddl,Int_t &r,Int_t &d,Int_t &a)const
@@ -143,45 +137,38 @@ void AliHMPIDDigit::Raw(UInt_t &w32,Int_t &ddl,Int_t &r,Int_t &d,Int_t &a)const
 //   Returns: none
   Int_t y2a[6]={5,3,1,0,2,4};
 
-                                  ddl=2*Ch()+Pc()%2;                     //DDL# 0..13
+                                    ddl=2*Ch()+Pc()%2;                     //DDL# 0..13
   Int_t tmp=1+Pc()/2*8+PadPcY()/6;  r=(Pc()%2)? 25-tmp:tmp;              //row r=1..24
                                     d=1+PadPcX()/8;                      //DILOGIC# 1..10
                                     a=y2a[PadPcY()%6]+6*(PadPcX()%8);    //ADDRESS 0..47        
       
-  w32=0;    
-  AliBitPacking::PackWord((UInt_t)fQ,w32, 0,11);  // 0000 0rrr rrdd ddaa aaaa qqqq qqqq qqqq        Qdc               bits (00..11) counts (0..4095)
-  AliBitPacking::PackWord(        a ,w32,12,17);  // 3322 2222 2222 1111 1111 1000 0000 0000        DILOGIC address   bits (12..17) counts (0..47)
-  AliBitPacking::PackWord(        d ,w32,18,21);  // 1098 7654 3210 9876 5432 1098 7654 3210        DILOGIC number    bits (18..21) counts (1..10)
-  AliBitPacking::PackWord(        r ,w32,22,26);  //                                                Row number        bits (22..26) counts (1..24)  
-}
-//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-void AliHMPIDDigit::Raw(UInt_t w32,Int_t ddl)
-{
-// Converts a given raw data word to a digit
-// Arguments: w32 - 32 bits raw data word
-//            ddl - DDL idx  0 1 2 3 4 ... 13
-//   Returns: none
-  Int_t a2y[6]={3,2,4,1,5,0};//pady for a given address (for single DILOGIC chip)
-  Int_t r = AliBitPacking::UnpackWord(w32,22,26); assert(1<=r&&r<=24);   //                                         Row number      (1..24)    
-  Int_t d = AliBitPacking::UnpackWord(w32,18,21); assert(1<=d&&d<=10);   // 3322 2222 2222 1111 1111 1000 0000 0000 DILOGIC number  (1..10)
-  Int_t a = AliBitPacking::UnpackWord(w32,12,17); assert(0<=a&&a<=47);   // 1098 7654 3210 9876 5432 1098 7654 3210 DILOGIC address (0..47)  
-  Int_t q = AliBitPacking::UnpackWord(w32, 0,11); assert(0<=q&&q<=4095); // 0000 0rrr rrdd ddaa aaaa qqqq qqqq qqqq Qdc             (0..4095)   
-                                  Int_t ch=ddl/2;
-  Int_t tmp=(r-1)/8;              Int_t pc=(ddl%2)? 5-2*tmp:2*tmp; 
-                                  Int_t px=(d-1)*8+a/6;
-        tmp=(ddl%2)?(24-r):r-1;   Int_t py=6*(tmp%8)+a2y[a%6];
-  fPad=Abs(ch,pc,px,py);fQ=q;
+  w32=0;   
+  //Printf("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++");
+  //
+  //Printf("AliHMPIDDigit::Raw ddl: %d r: %d d: %d a: %d",ddl,r,d,a);
+  //Printf("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++");
+//  Bool_t isOK=kTRUE; isOK=
+  AliBitPacking::PackWord((fQ>4095)?(UInt_t)4095:(UInt_t)fQ,w32, 0,11);       // 0000 0rrr rrdd ddaa aaaa qqqq qqqq qqqq        Qdc               bits (00..11) counts (0..4095)
+  //Printf("isOK: %d",isOK);
+  //molnarl: Since in simulation the the charge can be > than 4095 but not in real life we need to protect. If fQ>4095 after packing we will get 0 for the charge! 
+  assert(0<=a&&a<=47);AliBitPacking::PackWord(        a ,w32,12,17);  // 3322 2222 2222 1111 1111 1000 0000 0000        DILOGIC address   bits (12..17) counts (0..47)
+  assert(1<=d&&d<=10);AliBitPacking::PackWord(        d ,w32,18,21);  // 1098 7654 3210 9876 5432 1098 7654 3210        DILOGIC number    bits (18..21) counts (1..10)
+  assert(1<=r&&r<=24);AliBitPacking::PackWord(        r ,w32,22,26);  //                                                Row number        bits (22..26) counts (1..24)  
+                      AliBitPacking::PackWord((UInt_t)0, w32,27,27);  //To make sure set the 27th bit to Zero so we can distinguis it from the EoE
 }
 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-Bool_t AliHMPIDDigit::Set(Int_t ch,Int_t pc,Int_t px,Int_t py,Float_t qdc,Int_t tid)
+Bool_t AliHMPIDDigit::Set(Int_t ch,Int_t pc,Int_t px,Int_t py,Int_t tid)
 {
 // Manual creation of digit
 // Arguments: ch,pc,px,py,qdc,tid  
-//   Returns: none  
-  if(px<kMinPx || px>kMaxPx) return kTRUE;
-  if(py<kMinPy || py>kMaxPy) return kTRUE;
+//   Returns: kTRUE if wrong digit
+  if(px<AliHMPIDParam::kMinPx || px>AliHMPIDParam::kMaxPx) return kTRUE;
+  if(py<AliHMPIDParam::kMinPy || py>AliHMPIDParam::kMaxPy) return kTRUE;
 
-  fPad=Abs(ch,pc,px,py);fQ=qdc;fTracks[0]=tid;
+  fPad=AliHMPIDParam::Abs(ch,pc,px,py);fTracks[0]=tid;
+  fQ=0;
   return kFALSE;
 }
+//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
 #endif