New class for ITS coordiante transformations used by AliITSgeom nearly
[u/mrichter/AliRoot.git] / ITS / AliITSgeom.h
index 11d5756..77a2f81 100644 (file)
@@ -1,5 +1,10 @@
-#ifndef ITSGEOM_H
-#define ITSGEOM_H
+#ifndef ALIITSGEOM_H
+#define ALIITSGEOM_H
+/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
+ * See cxx source for full Copyright notice                               */
+
+/* $Id$ */
+
 /////////////////////////////////////////////////////////////////////////
 //  ITS geometry manipulation routines.
 //  Created April 15 1999.
 // a specialized structure for ease of implementation.
 /////////////////////////////////////////////////////////////////////////
 #include <fstream.h>
-#include "TObjArray.h"
+#include <TObjArray.h>
+#include <TVector.h>
+
 #include "AliITSgeomSPD.h"
 #include "AliITSgeomSDD.h"
 #include "AliITSgeomSSD.h"
 
-////////////////////////////////////////////////////////////////////////
-// The structure ITS_geom:
-//     The structure ITS_geom has been defined to hold all of the
-// information necessary to do the coordinate transformations for one
-// detector between the ALICE Cartesian global and the detector local
-// coordinate systems. The rotations are implemented in the following
-// order, Rz*Ry*Rx*(Vglobal-Vtrans)=Vlocal (in matrix notation). 
-// In addition it contains an index to the TObjArray containing all of
-// the information about the shape of the active detector volume, and
-// any other useful detector parameters. See the definition of *fShape
-// below and the classes AliITSgeomSPD, AliITSgeomSDD, and AliITSgeomSSD
-// for a full description. This structure is not available outside of 
-// these routines.
-//
-// Int_t fShapeIndex
-//     The index to the array of detector shape information. In this way
-// only an index is needed to be stored and not all of the shape
-// information. This saves much space since most, if not all, of the
-// detectors of a give type have the same shape information and are only
-// placed in a different spot in the ALICE/ITS detector.
-//
-// Float_t fx0,fy0,fz0
-//     The Cartesian translation vector used to define part of the
-// coordinate transformation. The units of the translation are kept
-// in the Monte Carlo distance units, usually cm.
-//
-// Float_t frx,fry,frz
-//     The three rotation angles that define the rotation matrix. The
-// angles are, frx the rotation about the x axis. fry the rotation about
-// the "new" or "rotated" y axis. frz the rotation about the "new" or
-// "rotated" z axis. These angles, although redundant with the rotation
-// matrix fr, are kept for speed. This allows for their retrieval without
-// having to compute them each and every time. The angles are kept in
-// radians
-//
-// Float_t fr[9]
-//     The 3x3 rotation matrix defined by the angles frx, fry, and frz,
-// for the Global to Local transformation is
-//    |fr[0] fr[1] fr[2]| | cos(frz)  sin(frz) 0| | cos(fry) 0  sin(fry)|
-// fr=|fr[3] fr[4] fr[4]|=|-sin(frz)  cos(frz) 0|*|   0      1    0     |
-//    |fr[6] fr[7] fr[8]| |   0         0      1| |-sin(fry) 0  cos(fry)|
-//
-//    |1    0        0     |
-//   *|0  cos(frx) sin(frx)|
-//    |0 -sin(frx) cos(frx)|
-//
-// Even though this information is redundant with the three rotation
-// angles, because this transformation matrix can be used so much it is
-// kept to speed things up a lot. The coordinate system used is Cartesian.
-////////////////////////////////////////////////////////////////////////
 
-struct ITS_geom {
+struct AliITSgeomS {
     Int_t   fShapeIndex; // Shape index for this volume
     Float_t fx0,fy0,fz0; // Translation vector
     Float_t frx,fry,frz; // Rotation about axis, angle radians
     Float_t fr[9];       // the rotation matrix
+    Float_t angles[6];   // module center, theta and phi
+    Double_t rottrack[3][3]; // the tracking rotation matrix
 };
 
 //_______________________________________________________________________
 
 class AliITSgeom : public TObject {
-////////////////////////////////////////////////////////////////////////
-//
-// version: 0
-// Written by Bjorn S. Nilsen
-//
-// Data Members:
-//
-// Int_t fNlayers
-//     The number of ITS layers for this geometry. By default this
-//  is 6, but can be modified by the creator function if there are
-// more layers defined.
-//
-// Int_t *fNlad
-//     A pointer to an array fNlayers long containing the number of 
-// ladders for each layer. This array is typically created and filled 
-// by the AliITSgeom creator function.
-//
-// Int_t *fNdet
-//     A pointer to an array fNlayers long containing the number of
-// active detector volumes for each ladder. This array is typically
-// created and filled by the AliITSgeom creator function.
-//
-// ITS_geom **fg
-//     A pointer to an array of pointers pointing to the ITS_geom
-// structure containing the coordinate transformation information.
-// The ITS_geom structure corresponding to layer=lay, ladder=lad,
-// and detector=det is gotten by fg[lay-1][(fNlad[lay-1]*(lad-1)+det-1)].
-// In this way a lot of space is saved over trying to keep a three
-// dimensional array fNlayersXmax(fNlad)Xmax(fNdet), since the number
-// of detectors typically increases with layer number.
-//
-// TObjArray *fShape
-//     A pointer to an array of TObjects containing the detailed shape
-// information for each type of detector used in the ITS. For example
-// I have created AliITSgeomSPD, AliITSgeomSDD, and AliITSgeomSSD as
-// example structures, derived from TObjects, to hold the detector
-// information. I would recommend that one element in each of these
-// structures, that which describes the shape of the active volume,
-// be one of the ROOT classes derived from TShape. In this way it would
-// be easy to have the display program display the correct active
-// ITS volumes. See the example classes AliITSgeomSPD, AliITSgeomSDD,
-// and AliITSgeomSSD for a more detailed example.
-//
-// Member Functions:
-//
-// AliITSgeom()
-//     The default constructor for the AliITSgeom class. It, by default,
-// sets fNlayers to zero and zeros all pointers.
-//
-// AliITSgeom(const char *filename)
-//     The constructor for the AliITSgeom class. All of the data to fill
-// this structure is read in from the file given my the input filename.
-//
-// AliITSgeom(AliITSgeom &source)
-//     The copy constructor for the AliITSgeom class. It calls the
-// = operator function. See the = operator function for more details.
-//
-// void operator=(AliITSgeom &source)
-//     The = operator function for the AliITSgeom class. It makes an
-// independent copy of the class in such a way that any changes made
-// to the copied class will not affect the source class in any way.
-// This is required for many ITS alignment studies where the copied
-// class is then modified by introducing some misalignment.
-//
-// ~AliITSgeom()
-//     The destructor for the AliITSgeom class. If the arrays fNlad,
-// fNdet, or fg have had memory allocated to them, there pointer values
-// are non zero, then this memory space is freed and they are set
-// to zero. In addition, fNlayers is set to zero. The destruction of
-// TObjArray fShape is, by default, handled by the TObjArray destructor.
-//
-// Int_t GetNdetectors(Int_t layer)
-//     This function returns the number of detectors/ladder for a give 
-// layer. In particular it returns fNdet[layer-1].
-//
-// Int_t GetNladders(Int_t layer)
-//     This function returns the number of ladders for a give layer. In
-// particular it returns fNlad[layer-1].
-//
-// Int_t GetNlayers()
-//     This function returns the number of layers defined in the ITS
-// geometry. In particular it returns fNlayers.
-//
-// GetAngles(Int_t layer,Int_t ladder,Int_t detector,
-//           Float_t &rx, Float_t &ry, Float_t &rz)
-//     This function returns the rotation angles for a give detector on
-// a give ladder in a give layer in the three floating point variables
-// provided. rx = frx, fy = fry, rz = frz. The angles are in radians
-//
-// GetTrans(Int_t layer,Int_t ladder,Int_t detector,
-//          Float_t &x, Float_t &y, Float_t &z)
-//     This function returns the Cartesian translation for a give
-// detector on a give ladder in a give layer in the three floating
-// point variables provided. x = fx0, y = fy0, z = fz0. The units are
-// those of the Monte Carlo, generally cm.
-//
-// SetByAngles(Int_t layer,Int_t ladder,Int_t detector,
-//            Float_t &rx, Float_t &ry, Float_t &rz)
-//     This function computes a new rotation matrix based on the angles
-// rx, ry, and rz (in radians) for a give detector on the give ladder
-// in the give layer. A new
-// fg[layer-1][(fNlad[layer-1]*(ladder-1)+detector-1)].fr[] array is
-// computed.
-//
-// SetTrans(Int_t layer,Int_t ladder,Int_t detector,
-//          Float_t x, Float_t y, Float_t z)
-//     This function sets a new translation vector, given by the three
-// variables x, y, and z, for the Cartesian coordinate transformation
-// for the detector defined by layer, ladder and detector.
-//
-// GetRotMatrix(Int_t layer, Int_t ladder, Int_t detector, Float_t *mat)
-//     Returns, in the Float_t array pointed to by mat, the full rotation
-// matrix for the give detector defined by layer, ladder, and detector.
-// It returns all nine elements of fr in the ITS_geom structure. See the
-// description of the ITS_geom structure for further details of this
-// rotation matrix.
-//
-// GtoL(Int_t layer, Int_t ladder, Int_t detector,
-//       const Float_t *g, Float_t *l)
-//     The function that does the global ALICE Cartesian coordinate
-// to local active volume detector Cartesian coordinate transformation.
-// The local detector coordinate system is determined by the layer, 
-// ladder, and detector numbers. The global coordinates are entered by
-// the three element Float_t array g and the local coordinate values
-// are returned by the three element Float_t array l. The order of the 
-// three elements are g[0]=x, g[1]=y, and g[2]=z, similarly for l.
-//
-// GtoL(const Int_t *Id, const Float_t *g, Float_t *l)
-//     The function that does the global ALICE Cartesian coordinate
-// to local active volume detector Cartesian coordinate transformation.
-// The local detector coordinate system is determined by the three
-// element array Id containing as it's three elements Id[0]=layer, 
-// Id[1]=ladder, and Id[2]=detector numbers. The global coordinates
-// are entered by the three element Float_t array g and the local
-// coordinate values are returned by the three element Float_t array l.
-// The order of the three elements are g[0]=x, g[1]=y, and g[2]=z,
-// similarly for l.
-//
-//  LtoG(Int_t layer, Int_t ladder, Int_t detector,
-//       const Float_t *l, Float_t *g)
-//     The function that does the local active volume detector Cartesian
-// coordinate to global ALICE Cartesian coordinate transformation.
-// The local detector coordinate system is determined by the layer, 
-// ladder, and detector numbers. The local coordinates are entered by
-// the three element Float_t array l and the global coordinate values
-// are returned by the three element Float_t array g. The order of the 
-// three elements are l[0]=x, l[1]=y, and l[2]=z, similarly for g.
-//
-// LtoG(const Int_t *Id, const Float_t *l, Float_t *g)
-//     The function that does the local active volume detector Cartesian
-// coordinate to global ALICE Cartesian coordinate transformation.
-// The local detector coordinate system is determined by the three
-// element array Id containing as it's three elements Id[0]=layer, 
-// Id[1]=ladder, and Id[2]=detector numbers. The local coordinates
-// are entered by the three element Float_t array l and the global
-// coordinate values are returned by the three element Float_t array g.
-// The order of the three elements are l[0]=x, l[1]=y, and l[2]=z,
-// similarly for g.
-//
-// Int_t IsVersion()
-//     This function returns the version number of this AliITSgeom
-// class.
-//
-// AddShape(TObject *shape)
-//     This function adds one more shape element to the TObjArray
-// fShape. It is primarily used in the constructor functions of the
-// AliITSgeom class. The pointer *shape can be the pointer to any
-// class that is derived from TObject (this is true for nearly every
-// ROOT class). This does not appear to be working properly at this time.
-//
-// PrintComparison(FILE *fp, AliITSgeom *other)
-//     This function was primarily created for diagnostic reasons. It
-// print to a file pointed to by the file pointer fp the difference
-// between two AliITSgeom classes. The format of the file is basicly,
-// define d? to be the difference between the same element of the two
-// classes. For example dfrx = this->fg[i][j].frx - other->fg[i][j].frx.
-// if(at least one of dfx0, dfy0, dfz0,dfrx,dfry,dfrz are non zero) then print
-// layer ladder detector dfx0 dfy0 dfz0 dfrx dfry dfrz
-// if(at least one of the 9 elements of dfr[] are non zero) then print
-// layer ladder detector dfr[0] dfr[1] dfr[2]
-//                       dfr[3] dfr[4] dfr[5]
-//                       dfr[6] dfr[7] dfr[8]
-// Only non zero values are printed to save space. The differences are
-// typical written to a file because there are usually a lot of numbers
-// printed out and it is usually easier to read them in some nice editor
-// rather than zooming quickly past you on a screen. fprintf is used to
-// do the printing. The fShapeIndex difference is not printed at this time.
-//
-// PrintData(FILE *fp, Int_t layer, Int_t ladder, Int_t detector)
-//     This function prints out the coordinate transformations for
-// the particular detector defined by layer, ladder, and detector
-// to the file pointed to by the File pointer fp. fprinf statements
-// are used to print out the numbers. The format is
-// layer ladder detector Trans= fx0 fy0 fz0 rot= frx fry frz Shape=fShapeIndex
-//                         dfr= fr[0] fr[1] fr[2]
-//                         dfr= fr[3] fr[4] fr[5]
-//                         dfr= fr[6] fr[7] fr[8]
-// By indicating which detector, some control over the information 
-// is given to the user. The output it written to the file pointed
-// to by the file pointer fp. This can be set to stdout if you want.
-//
-// Streamer(TBuffer &R__b)
-//     The default Streamer function "written by ROOT" doesn't write out
-// the arrays referenced by pointers. Therefore, a specific Streamer function
-// has to be written. This function should not be modified but instead added
-// on to so that older versions can still be read. The proper handling of
-// the version dependent streamer function hasn't been written do to the lack
-// of finding an example at the time of writting.
-//
-//----------------------------------------------------------------------
-//
-//     The following member functions are defined to modify an existing
-// AliITSgeom data structure. They were developed for the use in doing
-// alignment studies of the ITS.
-//
-// GlobalChange(Float_t *dtranslation, Float_t *drotation)
-//     This function performs a Cartesian translation and rotation of
-// the full ITS from its default position by an amount determined by
-// the three element arrays dtranslation and drotation. If every element
-// of dtranslation and drotation are zero then there is no change made
-// the geometry. The change is global in that the exact same translation
-// and rotation is done to every detector element in the exact same way.
-// The units of the translation are those of the Monte Carlo, usually cm,
-// and those of the rotation are in radians. The elements of dtranslation
-// are dtranslation[0] = x, dtranslation[1] = y, and dtranslation[2] = z.
-// The elements of drotation are drotation[0] = rx, drotation[1] = ry, and
-// drotation[2] = rz. A change in x will move the hole ITS in the ALICE
-// global x direction, the same for a change in y. A change in z will
-// result in a translation of the ITS as a hole up or down the beam line.
-// A change in the angles will result in the inclination of the ITS with
-// respect to the beam line, except for an effective rotation about the
-// beam axis which will just rotate the ITS as a hole about the beam axis.
-//
-// GlobalCylindericalChange(Float_t *dtranslation, Float_t *drotation)
-//     This function performs a cylindrical translation and rotation of
-// each ITS element by a fixed about in radius, rphi, and z from its
-// default position by an amount determined by the three element arrays
-// dtranslation and drotation. If every element of dtranslation and
-// drotation are zero then there is no change made the geometry. The
-// change is global in that the exact same distance change in translation
-// and rotation is done to every detector element in the exact same way.
-// The units of the translation are those of the Monte Carlo, usually cm,
-// and those of the rotation are in radians. The elements of dtranslation
-// are dtranslation[0] = r, dtranslation[1] = rphi, and dtranslation[2] = z.
-// The elements of drotation are drotation[0] = rx, drotation[1] = ry, and
-// drotation[2] = rz. A change in r will results in the increase of the
-// radius of each layer by the same about. A change in rphi will results in
-// the rotation of each layer by a different angle but by the same
-// circumferential distance. A change in z will result in a translation
-// of the ITS as a hole up or down the beam line. A change in the angles
-// will result in the inclination of the ITS with respect to the beam
-// line, except for an effective rotation about the beam axis which will
-// just rotate the ITS as a hole about the beam axis.
-//
-// RandomChange(Float_t *stranslation, Float_t *srotation)
-//     This function performs a Gaussian random displacement and/or
-// rotation about the present global position of each active
-// volume/detector of the ITS. The sigma of the random displacement
-// is determined by the three element array stranslation, for the
-// x y and z translations, and the three element array srotation,
-// for the three rotation about the axis x y and z.
-//
-// RandomCylindericalChange(Float_t *stranslation, Float_t *srotation)
-//     This function performs a Gaussian random displacement and/or
-// rotation about the present global position of each active
-// volume/detector of the ITS. The sigma of the random displacement
-// is determined by the three element array stranslation, for the
-// r rphi and z translations, and the three element array srotation,
-// for the three rotation about the axis x y and z. This random change
-// in detector position allow for the simulation of a random uncertainty
-// in the detector positions of the ITS.
-////////////////////////////////////////////////////////////////////////
- private:
-    Int_t     fNlayers; // The number of layers.
-    Int_t     *fNlad;   // Array of the number of ladders/layer(layer)
-    Int_t     *fNdet;   // Array of the number of detectors/ladder(layer)
-    ITS_geom  **fg;     // Structure of translation and rotation.
-    TObjArray *fShape;  // Array of shapes and detector information.
 
  public:
-    AliITSgeom();                      // Default constructor
-    AliITSgeom(const char *filename);  // Constructor
-    AliITSgeom(AliITSgeom &source);    // Copy constructor
-    void operator=(AliITSgeom &source);// = operator
-    virtual ~AliITSgeom();             // Default destructor
-    // this is a dummy routine for now.
-    inline Int_t GetNdetectors(Int_t layer) {return fNdet[layer-1];}
-    inline Int_t GetNladders(Int_t layer)   {return fNlad[layer-1];}
-    inline Int_t GetNlayers()               {return fNlayers;}
-    inline void GetAngles(Int_t lay,Int_t lad,Int_t det,
-                         Float_t &rx,Float_t &ry,Float_t &rz){
-                          rx = fg[lay-1][fNdet[lay-1]*(lad-1)+det-1].frx;
-                          ry = fg[lay-1][fNdet[lay-1]*(lad-1)+det-1].fry;
-                          rz = fg[lay-1][fNdet[lay-1]*(lad-1)+det-1].frz;}
-    inline void GetTrans(Int_t lay,Int_t lad,Int_t det,
-                        Float_t &x,Float_t &y,Float_t &z){
-                         x = fg[lay-1][fNdet[lay-1]*(lad-1)+det-1].fx0;
-                         y = fg[lay-1][fNdet[lay-1]*(lad-1)+det-1].fy0;
-                         z = fg[lay-1][fNdet[lay-1]*(lad-1)+det-1].fz0;}
+    AliITSgeom();                            // Default constructor
+    AliITSgeom(const char *filename);        // Constructor
+    AliITSgeom(const AliITSgeom &source);    // Copy constructor
+    //    void operator=(const AliITSgeom &source);// = operator
+    AliITSgeom& operator=(const AliITSgeom &source);// = operator
+
+    virtual ~AliITSgeom();                   // Default destructor
+
+    Int_t GetNdetectors(Int_t layer) const {return fNdet[layer-1];}// return number of detector a ladder has
+    Int_t GetNladders(Int_t layer)   const {return fNlad[layer-1];}// return number of laders a layer has
+    Int_t GetNlayers()               const {return fNlayers;} // return number of layer the ITS has
+    void GetAngles(Int_t lay,Int_t lad,Int_t det,
+                         Float_t &rx,Float_t &ry,Float_t &rz)const {
+                          rx = fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].frx;
+                          ry = fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].fry;
+                          rz = fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].frz;} // Get agnles of roations for a give module
+    void GetTrans(Int_t lay,Int_t lad,Int_t det,
+                        Float_t &x,Float_t &y,Float_t &z)const {
+                         x = fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].fx0;
+                         y = fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].fy0;
+                         z = fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].fz0;} // get translation for a given module
     void SetByAngles(Int_t lay,Int_t lad,Int_t det,
                     Float_t rx,Float_t ry,Float_t rz);
-    inline void SetTrans(Int_t lay,Int_t lad,Int_t det,
+    void SetByAngles(Int_t index,Double_t angl[]);
+    void SetTrans(Int_t lay,Int_t lad,Int_t det,
                         Float_t x,Float_t y,Float_t z){
-                         fg[lay-1][fNdet[lay-1]*(lad-1)+det-1].fx0 = x;
-                         fg[lay-1][fNdet[lay-1]*(lad-1)+det-1].fy0 = y;
-                         fg[lay-1][fNdet[lay-1]*(lad-1)+det-1].fz0 = z;}
+                         fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].fx0 = x;
+                         fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].fy0 = y;
+                         fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].fz0 = z;}// Set translation vector for a give module
+    void SetTrans(Int_t index,Double_t x[]);
     void GetRotMatrix(Int_t lay,Int_t lad,Int_t det,Float_t *mat);
+    void GetRotMatrix(Int_t lay,Int_t lad,Int_t det,Double_t *mat);
+    void GetRotMatrix(Int_t index,Float_t *mat);
+    void GetRotMatrix(Int_t index,Double_t *mat);
+    Int_t GetStartDet(Int_t dtype );
+    Int_t GetLastDet(Int_t dtype);
+    Int_t GetStartSPD() {return GetModuleIndex(1,1,1);} // return starting index for SPD
+    Int_t GetLastSPD() {return GetModuleIndex(2,fNlad[1],fNdet[1]);}// return Ending index for SPD
+    Int_t GetStartSDD() {return GetModuleIndex(3,1,1);} // return starting index for SDD
+    Int_t GetLastSDD() {return GetModuleIndex(4,fNlad[3],fNdet[3]);}// return Ending index for SDD
+    Int_t GetStartSSD() {return GetModuleIndex(5,1,1);} // return starting index for SSD
+    Int_t GetLastSSD() {return GetModuleIndex(6,fNlad[5],fNdet[5]);}// return Ending index for SSD
+    Int_t GetIndexMax() {return GetModuleIndex(fNlayers,fNlad[fNlayers-1],
+                                              fNdet[fNlayers-1])+1;}// return Ending index for all ITS
     void GtoL(Int_t lay,Int_t lad,Int_t det,const Float_t *g,Float_t *l);
     void GtoL(const Int_t *id,const Float_t *g,Float_t *l);
     void GtoL(const Int_t index,const Float_t *g,Float_t *l);
-    void GtoLMomentum(Int_t lay,Int_t lad,Int_t det,const Float_t *g,Float_t *l);
+    void GtoL(Int_t lay,Int_t lad,Int_t det,const Double_t *g,Double_t *l);
+    void GtoL(const Int_t *id,const Double_t *g,Double_t *l);
+    void GtoL(const Int_t index,const Double_t *g,Double_t *l);
+    void GtoLMomentum(Int_t lay,Int_t lad,Int_t det,
+                     const Float_t *g,Float_t *l);
+    void GtoLMomentum(Int_t lay,Int_t lad,Int_t det,
+                     const Double_t *g,Double_t *l);
     void LtoG(Int_t lay,Int_t lad,Int_t det,const Float_t *l,Float_t *g);
     void LtoG(const Int_t *id,const Float_t *l,Float_t *g);
     void LtoG(const Int_t index,const Float_t *l,Float_t *g);
-    void LtoGMomentum(Int_t lay,Int_t lad,Int_t det,const Float_t *l,Float_t *g);
+    void LtoG(Int_t lay,Int_t lad,Int_t det,const Double_t *l,Double_t *g);
+    void LtoG(const Int_t *id,const Double_t *l,Double_t *g);
+    void LtoG(const Int_t index,const Double_t *l,Double_t *g);
+    void LtoGMomentum(Int_t lay,Int_t lad,Int_t det,
+                     const Float_t *l,Float_t *g);
+    void LtoGMomentum(Int_t lay,Int_t lad,Int_t det,
+                     const Double_t *l,Double_t *g);
+    void LtoL(const Int_t *id1,const Int_t *id2,Double_t *l1,Double_t *l2);
+    void LtoL(const Int_t index1,const Int_t index2,Double_t *l1,Double_t *l2);
+    void LtoLMomentum(const Int_t *id1,const Int_t *id2,
+                     const Double_t *l1,Double_t *l2);
+    void GtoLErrorMatrix(const Int_t index,Double_t **g,Double_t **l);
+    void LtoGErrorMatrix(const Int_t index,Double_t **l,Double_t **g);
+    void LtoLErrorMatrix(const Int_t index1,const Int_t index2,
+                        Double_t **l1,Double_t **l2);
     Int_t GetModuleIndex(Int_t lay,Int_t lad,Int_t det);
-    void  GetModuleId(Int_t index,Int_t &lay,Int_t &lad,Int_t &det);
+    void GetModuleId(Int_t index,Int_t &lay,Int_t &lad,Int_t &det);
     void GlobalChange(Float_t  *tran,Float_t  *rot);
     void GlobalCylindericalChange(Float_t *tran,Float_t *rot);
     void RandomChange(Float_t *stran,Float_t *srot);
@@ -404,10 +122,48 @@ class AliITSgeom : public TObject {
     void PrintData(FILE *fp,Int_t lay,Int_t lad,Int_t det);
     ofstream &PrintGeom(ofstream &out);
     ifstream &ReadGeom(ifstream &in);
-    virtual Int_t IsVersion() const {return 0;}
-    inline void AddShape(TObject *shp){fShape->AddLast(shp);}
+    virtual Int_t IsVersion() const {return 1;} // return version number
+    void AddShape(TObject *shp){fShape->AddLast(shp);} // Add Shapes
+    virtual TObject *GetShape(Int_t lay,Int_t lad,Int_t det)
+       const {return fShape->At(fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].
+                                fShapeIndex);} // return specific TShape
+
+    TObjArray *Shape() {return fShape;} // return Shapes array
+
+    void GeantToTracking(AliITSgeom &source); // This converts the geometry
+    // transformations from that used by the ITS and it's Monte Carlo to that
+    // used by the track finding code.
+    // Usage:
+    // AliITSgeom *gm,*gt;
+    // gm = ((AliITS *) ITS)->GetITSgeom();
+    // gt->GeantToTracking(*gm);
+    // This allocates and fills gt with the geometry transforms between the
+    // global coordinate system to the local coordinate system used to do
+    // tracking.
 
-  ClassDef(AliITSgeom,1)
+    void GtoLtracking(Int_t lay,Int_t lad,Int_t det,const Double_t *g,Double_t *l);
+    void LtoGtracking(Int_t lay,Int_t lad,Int_t det,const Double_t *l,Double_t *g);
+    void GetCenterThetaPhi(Int_t lay,Int_t lad,Int_t det, TVector &x) const {
+                       x(0) = fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].fx0;
+                      x(1) = fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].fy0;
+                      x(2) = fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].fz0;                                                
+                      x(3) = fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].angles[0];
+                      x(4) = fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].angles[1];
+                      x(5) = fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].angles[2];
+                      x(6) = fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].angles[3];
+                      x(7) = fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].angles[4];
+                      x(8) = fGm[lay-1][fNdet[lay-1]*(lad-1)+det-1].angles[5];
+
+}
+
+ private:
+    Int_t        fNlayers; // The number of layers.
+    Int_t        *fNlad;   // Array of the number of ladders/layer(layer)
+    Int_t        *fNdet;   // Array of the number of detectors/ladder(layer)
+    AliITSgeomS  **fGm;     // Structure of translation and rotation.
+    TObjArray    *fShape;  // Array of shapes and detector information.
+    
+    ClassDef(AliITSgeom,1) // ITS geometry class
 };
 
 #endif