]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - ITS/AliITSv11GeometrySPD.cxx
Added two missing includes to allow macro compilation (thanks to Laurent for remarkin...
[u/mrichter/AliRoot.git] / ITS / AliITSv11GeometrySPD.cxx
index 4a720386d5de3dd18fc766b2ccb9e84f1829b835..1d1cbef1cf6090bdd6bbfe50258dbe1a997e8ca4 100644 (file)
@@ -1,5 +1,5 @@
 /**************************************************************************
- * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
+ * Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. *
  *                                                                        *
  * Author: The ALICE Off-line Project.                                    *
  * Contributors are mentioned in the code where appropriate.              *
  **************************************************************************/
 //
 // This class Defines the Geometry for the ITS services and support cones
-// outside of the ceneteral volume (except for the Ceneteral support 
-// cylinders. Other classes define the rest of the ITS. Specificaly the ITS
-// The SSD support cone, SSD Support centeral cylinder, SDD support cone,
-// The SDD cupport centeral cylinder, the SPD Thermal Sheald, The supports
+// outside of the central volume (except for the Central support
+// cylinders). Other classes define the rest of the ITS, specifically the
+// SSD support cone, the SSD Support central cylinder, the SDD support cone,
+// the SDD support central cylinder, the SPD Thermal Shield, The supports
 // and cable trays on both the RB26 (muon dump) and RB24 sides, and all of
 // the cabling from the ladders/stave ends out past the TPC.
 //
+//     Here is the calling sequence associated with this file
+//   SPDSector(TGeoVolume *moth,TGeoManager *mgr)
+//   -----CarbonFiberSector(TGeoVolume *moth,Double_t &xAAtubeCenter0,
+//                          Double_t &yAAtubeCenter0,TGeoManager *mgr)
+//        -----2* SPDsectorShape(Int_t n,const Double_t *xc,const Double_t *yc,
+//        |                      const Double_t *r,const Double_t *ths,
+//        |                      const Double_t *the,Int_t npr,Int_t &m,
+//        |                      Double_t **xp,Double_t **yp)
+//        -----StavesInSector(TGeoVolume *moth,TGeoManager *mgr)
+//             -----3* CreaeStave(Int_t layer,TArrayD &sizes,Bool_t addClips,
+//             |                  TGeoManager *mgr)
+//             |    -----2* CreateHalfStave(Boot_t isRight,Int_t layer,
+//             |                            Int_t idxCentral,Int_t idxSide,
+//             |                            TArrayD &sizes,Bool_t addClips,
+//             |                            TGeoManager *mgr)
+//             |         -----CreateGrondingFoil(Bool_t isRight,TArrayD &sizes,
+//             |         |                       TGeoManager *mgr)
+//             |         |    -----4* CreateGroundingFoilSingle(Int_t type,
+//             |         |                                     TArrayD &sizes,
+//             |         |                                     TGeoManger *mgr)
+//             |         |----CreateLadder(Int_t layer, TArrayD &sizes,
+//             |         |                 TGeoManager *mgr)
+//             |         |----CreateMCM(Bool_t isRight,TArrayD &sizes,
+//             |         |              TGeoManger *mgr)
+//             |         |----CreatePixelBus(Bool_t isRight,TArrayD &sizes,
+//             |         |                   TGeoManager *mgr)
+//             |         -----CreateClip(TArrayD &sizes,TGeoManager *mgr)
+//             |----GetSectorMountingPoints(Int_t index,Double_t &x0,
+//             |                            Double_t &y0,Double_t &x1,
+//             |                            Double_t y1)
+//             -----3* ParallelPosition(Double_t dist1,Double_t dist2,
+//                                      Double_t phi,Double_t &x,Double_t &y)
+//
+//     Obsoleate or presently unused routines are: setAddStave(Bool_t *mask),
+// CreatePixelBusAndExtensions(...) which calles CreateExtender(...).
 
 /* $Id$ */
 
+
 // General Root includes
 #include <Riostream.h>
 #include <TMath.h>
 #include <TLatex.h>
 #include <TCanvas.h>
 #include <TPolyLine.h>
+#include <TPolyMarker.h>
+
 // Root Geometry includes
-#include <TGeoVolume.h>
-#include <TGeoPcon.h>
-#include <TGeoCone.h>
-#include <TGeoTube.h> // contains TGeoTubeSeg
-#include <TGeoArb8.h>
+#include <TGeoCompositeShape.h>
 #include <TGeoEltu.h>
-#include <TGeoXtru.h>
-#include <TGeoMatrix.h>
-//#include <TGeoRotation.h>
-//#include <TGeoCombiTrans.h>
-//#include <TGeoTranslation.h>
+#include <TGeoGlobalMagField.h>
 #include <TGeoMaterial.h>
+#include <TGeoMatrix.h>
 #include <TGeoMedium.h>
-#include <TGeoCompositeShape.h>
+#include <TGeoTube.h> // contains TGeoTubeSeg
+#include <TGeoVolume.h>
+#include <TGeoXtru.h>
+
 // AliRoot includes
+#include "AliLog.h"
 #include "AliMagF.h"
 #include "AliRun.h"
+
 // Declaration file
 #include "AliITSv11GeometrySPD.h"
 
+// Constant definistions
+const Double_t AliITSv11GeometrySPD::fgkGapLadder    =
+                      AliITSv11Geometry::fgkmicron*75.; //  75 microns
+const Double_t AliITSv11GeometrySPD::fgkGapHalfStave =
+                     AliITSv11Geometry::fgkmicron*120.; // 120 microns
+
 ClassImp(AliITSv11GeometrySPD)
+//______________________________________________________________________
+AliITSv11GeometrySPD::AliITSv11GeometrySPD(/*Double_t gap*/):
+AliITSv11Geometry(),// Default constructor of base class
+fAddStave(),        // [DEBUG] must be TRUE for all staves which will be
+                    // mounted in the sector (used to check overlaps)
+fSPDsectorX0(0),    // X of first edge of sector plane for stave
+fSPDsectorY0(0),    // Y of first edge of sector plane for stave
+fSPDsectorX1(0),    // X of second edge of sector plane for stave
+fSPDsectorY1(0),    // Y of second edge of sector plane for stave
+fTubeEndSector()    // coordinate of cooling tube ends
+{
+    //
+    // Default constructor.
+    // This does not initialize anything and is provided just for
+    // completeness. It is recommended to use the other one.
+    // The alignment gap is specified as argument (default = 0.0075 cm).
+    // Inputs:
+    //    none.
+    // Outputs:
+    //    none.
+    // Return:
+    //    A default constructed AliITSv11GeometrySPD class.
+    //
+    Int_t i = 0,j=0,k=0;
+
+    for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
+    for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
+        this->fTubeEndSector[k][0][i][j] = 0.0;
+        this->fTubeEndSector[k][1][i][j] = 0.0;
+    } // end for i,j
+}
+//______________________________________________________________________
+AliITSv11GeometrySPD::AliITSv11GeometrySPD(Int_t debug/*, Double_t gap*/):
+AliITSv11Geometry(debug),// Default constructor of base class
+fAddStave(),        // [DEBUG] must be TRUE for all staves which will be
+                    // mounted in the sector (used to check overlaps)
+fSPDsectorX0(0),    // X of first edge of sector plane for stave
+fSPDsectorY0(0),    // Y of first edge of sector plane for stave
+fSPDsectorX1(0),    // X of second edge of sector plane for stave
+fSPDsectorY1(0),    // Y of second edge of sector plane for stave
+fTubeEndSector()    // coordinate of cooling tube ends
+{
+    //
+    // Constructor with debug setting argument
+    // This is the constructor which is recommended to be used.
+    // It sets a debug level, and initializes the name of the object.
+    // The alignment gap is specified as argument (default = 0.0075 cm).
+    // Inputs:
+    //    Int_t    debug               Debug level, 0= no debug output.
+    // Outputs:
+    //    none.
+    // Return:
+    //    A default constructed AliITSv11GeometrySPD class.
+    //
+    Int_t i = 0,j=0,k=0;
 
-#define SQ(A) (A)*(A)
+    for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
+    for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
+        this->fTubeEndSector[k][0][i][j] = 0.0;
+        this->fTubeEndSector[k][1][i][j] = 0.0;
+    } // end for i,j
+}
+//______________________________________________________________________
+AliITSv11GeometrySPD::AliITSv11GeometrySPD(const AliITSv11GeometrySPD &s):
+AliITSv11Geometry(s),// Base Class Copy constructor
+fAddStave(),        // [DEBUG] must be TRUE for all staves which will be
+                    // mounted in the sector (used to check overlaps)
+fSPDsectorX0(s.fSPDsectorX0),    // X of first edge of sector plane for stave
+fSPDsectorY0(s.fSPDsectorY0),    // Y of first edge of sector plane for stave
+fSPDsectorX1(s.fSPDsectorX1),    // X of second edge of sector plane for stave
+fSPDsectorY1(s.fSPDsectorY1)     // Y of second edge of sector plane for stave
+{
+    //
+    // Copy Constructor
+    // Inputs:
+    //    AliITSv11GeometrySPD &s      source class
+    // Outputs:
+    //    none.
+    // Return:
+    //    A copy of a AliITSv11GeometrySPD class.
+    //
+    Int_t i=0,j=0,k=0;
 
+    for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i];
+    for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
+        this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j];
+        this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j];
+    } // end for i,j
+}
 //______________________________________________________________________
-Int_t AliITSv11GeometrySPD::CreateSPDCenteralMaterials(Int_t &medOffset, Int_t &matOffset)
+AliITSv11GeometrySPD& AliITSv11GeometrySPD::operator=(const
+                                               AliITSv11GeometrySPD &s)
 {
-    // Define the specific materials used for the ITS SPD centeral
-    // detectors. Note, These are the same old names. By the ALICE
-    // naming convension, these should start out at ITS SPD ....
-    // This data has been taken from AliITSvPPRasymmFMD::CreateMaterials().
-    // Intputs:
-    //    Int_t  &medOffset   The starting number of the list of media
-    //    Int_t  &matOffset   The starting number of the list of Materials
+    //
+    // = operator
+    // Inputs:
+    //    AliITSv11GeometrySPD &s      source class
     // Outputs:
-    //    Int_t  &medOffset   The ending number of the list of media
-    //    Int_t  &matOffset   The ending number of the list of Materials
+    //    none.
     // Return:
-    //    the last material number used +1 (the next avaiable material number).
-    //Begin_Html
-    /*
-      <img src="http://alice.pd.infn.it/latestdr/all-sections-module.ps"
-       title="SPD Sector drawing with all cross sections defined">
-       <p>The SPD Sector definition.
-      <img src="http://alice.pd.infn.it/latestdr/assembly-10-modules.ps"
-      titile="SPD All Sectors end view with thermal sheald">
-      <p>The SPD all sector end view with thermal sheald.
-      <img src="http://alice.pd.infn.it/latestdr/assembly.ps"
-      title="SPD side view cross section">
-      <p>SPD side view cross section with condes and thermal shealds.
-      <img src="http://alice.pd.infn.it/latestdr/SECTION-A_A.jpg"
-      title="Cross setion A-A"><p>Cross section A-A
-      <img src="http://alice.pd.infn.it/latestdr/SECTION-B_B.jpg"
-      title="Cross section B-B"><p>Cross section B-B
-      <img src="http://alice.pd.infn.it/latestdr/SECTION-C_C.jpg"
-      title-"Cross section C-C"><p>Cross section C-C
-      <img src="http://alice.pd.infn.it/latestdr/SECTION-D_D.jpg"
-      title="Cross section D-D"><p>Cross section D-D
-      <img src="http://alice.pd.infn.it/latestdr/SECTION-F_F.jpg"
-      title="Cross section F-F"><p>Cross section F-F
-      <img src="http://alice.pd.infn.it/latestdr/SECTION-G_G.jpg"
-      title="Cross section G-G"><p>Cross section G-G
-     */
-    //End_Html
-    const Double_t ktmaxfd = 0.1*fgkDegree; // Degree
-    const Double_t kstemax = 1.0*fgkcm; // cm
-    const Double_t kdeemax = 0.1; // Fraction of particle's energy 0<deemax<=1
-    const Double_t kepsil  = 1.0E-4; //
-    const Double_t kstmin  = 0.0*fgkcm; // cm "Default value used"
-    const Double_t ktmaxfdAir = 0.1*fgkDegree; // Degree
-    const Double_t kstemaxAir = 1.0000E+00*fgkcm; // cm
-    const Double_t kdeemaxAir = 0.1; // Fraction of particle's energy 0<deemax<=1
+    //    A copy of a AliITSv11GeometrySPD class.
+    //
+    Int_t i=0,j=0,k=0;
+
+    if(this==&s) return *this;
+    for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i];
+    this->fSPDsectorX0=s.fSPDsectorX0;
+    this->fSPDsectorY0=s.fSPDsectorY0;
+    this->fSPDsectorX1=s.fSPDsectorX1;
+    this->fSPDsectorY1=s.fSPDsectorY1;
+    for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
+        this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j];
+        this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j];
+    } // end for i,j
+    return *this;
+}
+//______________________________________________________________________
+TGeoMedium* AliITSv11GeometrySPD::GetMedium(const char* mediumName,
+                                            TGeoManager *mgr) const
+{
+    //
+    // This function is used to recovery any medium
+    // used to build the geometry volumes.
+    // If the required medium does not exists,
+    // a NULL pointer is returned, and an error message is written.
+    //
+     Char_t itsMediumName[30];
+
+     sprintf(itsMediumName, "ITS_%s", mediumName);
+     TGeoMedium* medium = mgr->GetMedium(itsMediumName);
+     if (!medium) AliError(Form("Medium <%s> not found", mediumName));
+
+     return medium;
+}
+//______________________________________________________________________
+Int_t AliITSv11GeometrySPD::CreateSPDCentralMaterials(Int_t &medOffset,
+                                                      Int_t &matOffset) const
+{
+    //
+    // Define the specific materials used for the ITS SPD central detectors.
+    // ---
+    // NOTE: These are the same old names.
+    //       By the ALICE naming conventions, they start with "ITS SPD ...."
+    //       Data taken from ** AliITSvPPRasymmFMD::CreateMaterials() **.
+    // ---
+    // Arguments [the ones passed by reference contain output values]:
+    // - medOffset --> (by ref) starting number of the list of media
+    // - matOffset --> (by ref) starting number of the list of Materials
+    // ---
+    // Inputs:
+    //   Int_t &medOffset  Starting number of the list of media
+    //   Int_t &matOffset  Starting number of the list of materials
+    // Outputs:
+    //   Int_t &medOffset  Ending number of the list of media
+    //   Int_t &matOffset  Ending number of the list of materials
+    // Return:
+    //   The last material indexused +1. (= next avaiable material index)
+    //
+    const Double_t ktmaxfd    = 0.1 * fgkDegree; // Degree
+    const Double_t kstemax    = 1.0 * fgkcm; // cm
+    const Double_t kdeemax    = 0.1;//Fraction of particle's energy 0<deemax<=1
+    const Double_t kepsil     = 1.0E-4; //
+    const Double_t kstmin     = 0.0 * fgkcm; // cm "Default value used"
+    const Double_t ktmaxfdAir = 0.1 * fgkDegree; // Degree
+    const Double_t kstemaxAir = 1.0000E+00 * fgkcm; // cm
+    const Double_t kdeemaxAir = 0.1;//Fraction of particle's energy 0<deemax<=1
     const Double_t kepsilAir  = 1.0E-4;//
-    const Double_t kstminAir  = 0.0*fgkcm; // cm "Default value used"
-    const Double_t ktmaxfdSi = 0.1*fgkDegree; // .10000E+01; // Degree
-    const Double_t kstemaxSi = 0.0075*fgkcm; //  .10000E+01; // cm
-    const Double_t kdeemaxSi = 0.1; // Fraction of particle's energy 0<deemax<=1
-    const Double_t kepsilSi  = 1.0E-4;//
-    const Double_t kstminSi  = 0.0*fgkcm; // cm "Default value used"
-    //
-    Int_t matindex=matOffset;
-    Int_t medindex=medOffset;
-    Double_t params[8]={8*0.0};
+    const Double_t kstminAir  = 0.0 * fgkcm; // cm "Default value used"
+    const Double_t ktmaxfdSi  = 0.1 * fgkDegree; // .10000E+01; // Degree
+    const Double_t kstemaxSi  = 0.0075 * fgkcm; //  .10000E+01; // cm
+    const Double_t kdeemaxSi  = 0.1;//Fraction of particle's energy 0<deemax<=1
+    const Double_t kepsilSi   = 1.0E-4;//
+    const Double_t kstminSi   = 0.0 * fgkcm; // cm "Default value used"
+    //
+    Int_t matindex = matOffset;
+    Int_t medindex = medOffset;
     TGeoMaterial *mat;
     TGeoMixture  *mix;
     TGeoMedium   *med;
     //
-    Int_t    ifield = (gAlice->Field()->Integ());
-    Double_t fieldm = (gAlice->Field()->Max());
+    Int_t    ifield = (((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Integ());
+    Double_t fieldm = (((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Max());
+    Double_t params[8] = {8 * 0.0};
+
     params[1] = (Double_t) ifield;
     params[2] = fieldm;
     params[3] = ktmaxfdSi;
@@ -128,560 +286,671 @@ Int_t AliITSv11GeometrySPD::CreateSPDCenteralMaterials(Int_t &medOffset, Int_t &
     params[6] = kepsilSi;
     params[7] = kstminSi;
 
-    mat = new TGeoMaterial("SI",28.086,14.0,2.33*fgkgcm3,
-                          TGeoMaterial::kMatStateSolid,25.0*fgkCelsius,
-                          0.0*fgkPascal);
+    // Definition of materials and mediums.
+    // Last argument in material definition is its pressure,
+    // which is initialized to ZERO.
+    // For better readability, it is simply set to zero.
+    // Then the writing "0.0 * fgkPascal" is replaced by "0."
+    // (Alberto)
+
+    // silicon definition for ITS (overall)
+    mat = new TGeoMaterial("ITS_SI", 28.086, 14.0, 2.33 * fgkgcm3,
+                           TGeoMaterial::kMatStateSolid, 25.0*fgkCelsius, 0.);
     mat->SetIndex(matindex);
-    med = new TGeoMedium("SI",medindex++,mat,params);
-    //med = new TGeoMedium("SI",medindex++,matindex++,0,ifield,
-    //          fieldm,ktmaxfdSi,kstemaxSi,kdeemaxSi,kepsilSi,kstminSi);
-    //
-    mat = new TGeoMaterial("SPD SI CHIP",28.086,14.0,2.33*fgkgcm3,
-                          TGeoMaterial::kMatStateSolid,25.0*fgkCelsius,
-                          0.0*fgkPascal);
+    med = new TGeoMedium("SI", medindex++, mat, params);
+
+    // silicon for ladder chips
+    mat = new TGeoMaterial("SPD SI CHIP", 28.086, 14.0, 2.33 * fgkgcm3,
+                           TGeoMaterial::kMatStateSolid, 25.0*fgkCelsius, 0.);
     mat->SetIndex(matindex);
-    med = new TGeoMedium("SPD SI CHIP",medindex++,mat,params);
-    //med = new TGeoMedium("SPD SI CHIP",medindex++,matindex++,0,ifield,
-    //          fieldm,ktmaxfdSi,kstemaxSi,kdeemaxSi,kepsilSi,kstminSi);
-    //
-    mat = new TGeoMaterial("SPD SI BUS",28.086,14.0,2.33*fgkgcm3,
-                          TGeoMaterial::kMatStateSolid,25.0*fgkCelsius,
-                          0.0*fgkPascal);
+    med = new TGeoMedium("SPD SI CHIP", medindex++, mat, params);
+
+    // silicon for pixel bus
+    mat = new TGeoMaterial("SPD SI BUS", 28.086, 14.0, 2.33 * fgkgcm3,
+                           TGeoMaterial::kMatStateSolid, 25.0*fgkCelsius, 0.);
     mat->SetIndex(matindex);
-    med = new TGeoMedium("SPD SI BUS",medindex++,mat,params);
-    //med = new TGeoMedium("SPD SI BUS",medindex++,matindex++,0,ifield,
-    //          fieldm,ktmaxfdSi,kstemaxSi,kdeemaxSi,kepsilSi,kstminSi);
-    //
-    mix = new TGeoMixture("C (M55J)",4,1.9866*fgkgcm3);// Carbon fiber by fractional weight "C (M55J)"
+    med = new TGeoMedium("SPD SI BUS", medindex++, mat, params);
+
+    // carbon fiber material is defined as a mix of C-O-N-H
+    // defined in terms of fractional weights according to 'C (M55J)'
+    // it is used for the support and clips
+    mix = new TGeoMixture("C (M55J)", 4, 1.9866 * fgkgcm3);
     mix->SetIndex(matindex);
-    mix->DefineElement(0,12.0107,6.0,0.908508078); // Carbon by fractional weight
-    mix->DefineElement(1,14.0067,7.0,0.010387573); // Nitrogen by fractional weight
-    mix->DefineElement(2,15.9994,8.0,0.055957585); // Oxigen by fractional weight
-    mix->DefineElement(3,1.00794,1.0,0.025146765); // Hydrogen by fractional weight
-    mix->SetPressure(0.0*fgkPascal);
-    mix->SetTemperature(25.0*fgkCelsius);
+    mix->DefineElement(0, 12.01070, 6.0, 0.908508078);// C by fractional weight
+    mix->DefineElement(1, 14.00670, 7.0, 0.010387573);// N by fractional weight
+    mix->DefineElement(2, 15.99940, 8.0, 0.055957585);// O by fractional weight
+    mix->DefineElement(3,  1.00794, 1.0, 0.025146765);// H by fractional weight
+    mix->SetPressure(0.0 * fgkPascal);
+    mix->SetTemperature(25.0 * fgkCelsius);
     mix->SetState(TGeoMaterial::kMatStateSolid);
     params[3] = ktmaxfd;
     params[4] = kstemax;
     params[5] = kdeemax;
     params[6] = kepsil;
     params[7] = kstmin;
-    med = new TGeoMedium("ITSspdCarbonFiber",medindex++,mix,params);
-    //med = new TGeoMedium("ITSspdCarbonFiber",medindex++,matindex++,0,ifield,
-    //          fieldm,ktmaxfd,kstemax,kdeemax,kepsil,kstmin);
-    //
-    mix = new TGeoMixture("Air",4,1.20479E-3*fgkgcm3);// Carbon fiber by fractional weight
+    med = new TGeoMedium("ITSspdCarbonFiber", medindex++, mix, params);
+
+    // air defined as a mixture of C-N-O-Ar:
+    // it is used to fill all containers
+    mix = new TGeoMixture("Air", 4, 1.20479E-3 * fgkgcm3);
     mix->SetIndex(matindex);
-    mix->DefineElement(0,12.0107,6.0,0.000124); // Carbon by fractional weight
-    mix->DefineElement(1,14.0067,7.0,0.755267); // Nitrogen by fractional weight
-    mix->DefineElement(2,15.9994,8.0,0.231781); // Oxigen by fractional weight
-    mix->DefineElement(3,39.948,18.0,0.012827); // Argon by fractional weight
-    mix->SetPressure(101325.0*fgkPascal); // 1 atmosphere
-    mix->SetTemperature(25.0*fgkCelsius);
+    mix->DefineElement(0, 12.0107,  6.0, 0.000124); // C by fractional weight
+    mix->DefineElement(1, 14.0067,  7.0, 0.755267); // N by fractional weight
+    mix->DefineElement(2, 15.9994,  8.0, 0.231781); // O by fractional weight
+    mix->DefineElement(3, 39.9480, 18.0, 0.012827); // Ar by fractional weight
+    mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere
+    mix->SetTemperature(25.0 * fgkCelsius);
     mix->SetState(TGeoMaterial::kMatStateGas);
     params[3] = ktmaxfdAir;
     params[4] = kstemaxAir;
     params[5] = kdeemaxAir;
     params[6] = kepsilAir;
     params[7] = kstminAir;
-    med = new TGeoMedium("ITSspdAir",medindex++,mix,params);
-    //med = new TGeoMedium("ITSspdAir",medindex++,matindex++,0,ifield,
-    //        fieldm,ktmaxfdAir,kstemaxAir,kdeemaxAir,kepsilAir,kstminAir);
-    //
-    mix = new TGeoMixture("INOX",9,8.03*fgkgcm3);// Carbon fiber by fractional weight
+    med = new TGeoMedium("ITSspdAir", medindex++, mix, params);
+
+    // inox stainless steel, defined as a mixture
+    // used for all metallic parts
+    mix = new TGeoMixture("INOX", 9, 8.03 * fgkgcm3);
     mix->SetIndex(matindex);
-    mix->DefineElement(0,12.0107, 6.0,0.0003); // Carbon by fractional weight
-    mix->DefineElement(1,54.9380,25.0,0.02); // Iron by fractional weight
-    mix->DefineElement(2,28.0855,14.0,0.01); // Sodium by fractional weight
-    mix->DefineElement(3,30.9738,15.0,0.00045); //  by fractional weight
-    mix->DefineElement(4,32.066 ,16.0,0.0003); // by fractional weight
-    mix->DefineElement(5,58.6928,28.0,0.12); // Nickel by fractional weight
-    mix->DefineElement(6,55.9961,24.0,0.17); // by fractional weight
-    mix->DefineElement(7,95.84  ,42.0,0.025); // by fractional weight
-    mix->DefineElement(8,55.845 ,26.0,0.654); // by fractional weight
-    mix->SetPressure(0.0*fgkPascal); //
-    mix->SetTemperature(25.0*fgkCelsius);
+    mix->DefineElement(0, 12.0107,  6., .0003);  // C  by fractional weight
+    mix->DefineElement(1, 54.9380, 25., .02);    // Fe by fractional weight
+    mix->DefineElement(2, 28.0855, 14., .01);    // Na by fractional weight
+    mix->DefineElement(3, 30.9738, 15., .00045); // P  by fractional weight
+    mix->DefineElement(4, 32.066 , 16., .0003);  // S  by fractional weight
+    mix->DefineElement(5, 58.6928, 28., .12);    // Ni by fractional weight
+    mix->DefineElement(6, 55.9961, 24., .17);    //    by fractional weight
+    mix->DefineElement(7, 95.84  , 42., .025);   //    by fractional weight
+    mix->DefineElement(8, 55.845 , 26., .654);   //    by fractional weight
+    mix->SetPressure(0.0 * fgkPascal);
+    mix->SetTemperature(25.0 * fgkCelsius);
     mix->SetState(TGeoMaterial::kMatStateSolid);
     params[3] = ktmaxfdAir;
     params[4] = kstemaxAir;
     params[5] = kdeemaxAir;
     params[6] = kepsilAir;
     params[7] = kstminAir;
-    med = new TGeoMedium("ITSspdStainlessSteel",medindex++,mix,params);
-    //med = new TGeoMedium("ITSspdStainlessSteel",medindex++,matindex++,0,ifield,
-    //        fieldm,ktmaxfdAir,kstemaxAir,kdeemaxAir,kepsilAir,kstminAir);
-    //
-    mix = new TGeoMixture("Freon",2,1.63*fgkgcm3);// Carbon fiber by fractional weight
+    med = new TGeoMedium("ITSspdStainlessSteel", medindex++, mix, params);
+
+    // freon gas which fills the cooling system (C+F)
+    mix = new TGeoMixture("Freon", 2, 1.63 * fgkgcm3);
     mix->SetIndex(matindex);
-    mix->DefineElement(0,12.0107,6.0,4); // Carbon by fractional weight
-    mix->DefineElement(1,18.9984032,9.0,10); // Florine by fractional weight
-    mix->SetPressure(101325.0*fgkPascal); // 1 atmosphere
-    mix->SetTemperature(25.0*fgkCelsius);
+    mix->DefineElement(0, 12.0107   , 6.0,  4);  // C by fractional weight
+    mix->DefineElement(1, 18.9984032, 9.0, 10); // F by fractional weight
+    mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere
+    mix->SetTemperature(25.0 * fgkCelsius);
     mix->SetState(TGeoMaterial::kMatStateLiquid);
     params[3] = ktmaxfdAir;
     params[4] = kstemaxAir;
     params[5] = kdeemaxAir;
     params[6] = kepsilAir;
     params[7] = kstminAir;
-    med = new TGeoMedium("ITSspdCoolingFluid",medindex++,mix,params);
-    //med = new TGeoMedium("ITSspdCoolingFluid",medindex++,matindex++,0,ifield,
-    //        fieldm,ktmaxfdAir,kstemaxAir,kdeemaxAir,kepsilAir,kstminAir);
-    //
+    med = new TGeoMedium("ITSspdCoolingFluid", medindex++, mix, params);
+
+    // return the next index to be used in case of adding new materials
     medOffset = medindex;
     matOffset = matindex;
     return matOffset;
 }
 //______________________________________________________________________
-void AliITSv11GeometrySPD::InitSPDCenteral(Int_t offset,TVirtualMC *vmc){
-    // Do any SPD Centeral detector related initilizations, setting
-    // transport cuts for example.
-    // Some GEANT3 Physics switches
-    // "MULTS"
-    // Multiple scattering. The variable IMULS controls this process. For 
-    // more information see [PHYS320 or 325 or 328].
-    // 0 - No multiple scattering.
-    // 1 - Multiple scattering according to Moli�re theory. Default setting.
-    // 2 - Same as 1. Kept for backward compatibility.
-    // 3 - Pure Gaussian scattering according to the Rossi formula.
-    // "DRAY"
-    // delta ray production. The variable IDRAY controls this process. See [PHYS430]
-    // 0 - No delta rays production.
-    // 1 - delta rays production with generation of . Default setting.
-    // 2 - delta rays production without generation of .
-    // "LOSS"
-    // Continuous energy loss. The variable ILOSS controls this process.
-    // 0 - No continuous energy loss, IDRAY is set to 0.
-    // 1 - Continuous energy loss with generation of delta rays above 
-    //     DCUTE (common/GCUTS/) and restricted Landau fluctuations below  DCUTE.
-    // 2 - Continuous energy loss without generation of delta rays and full 
-    //     Landau-Vavilov-Gauss fluctuations. In this case the variable IDRAY 
-    //     is forced to 0 to avoid double counting of fluctuations. Default setting.
-    // 3 - Same as 1, kept for backward compatibility.
-    // 4 - Energy loss without fluctuation. The value obtained from the tables is 
-    //     used directly.
-    // Intputs:
-    //    Int_t       offset The material/medium index offset.
-    //    TVirturalMC *vmc The pointer to the virtual Monte Carlo default gMC.
-    // Outputs:
-    //    none.
-    // Return:
-    //    none.
-    Int_t i,n=4;
-
-    for(i=0;i<n;i++){
-      vmc->Gstpar(i+offset,"CUTGAM",30.0*fgkKeV);
-      vmc->Gstpar(i+offset,"CUTELE",30.0*fgkKeV);
-      vmc->Gstpar(i+offset,"CUTNEU",30.0*fgkKeV);
-      vmc->Gstpar(i+offset,"CUTHAD",30.0*fgkKeV);
-      vmc->Gstpar(i+offset,"CUTMUO",30.0*fgkKeV);
-      vmc->Gstpar(i+offset,"BCUTE",30.0*fgkKeV);
-      vmc->Gstpar(i+offset,"BCUTM",30.0*fgkKeV);
-      vmc->Gstpar(i+offset,"DCUTE",30.0*fgkKeV);
-      vmc->Gstpar(i+offset,"DCUTM",30.0*fgkKeV);
-      //vmc->Gstpar(i+offset,"PPCUTM",);
-      //vmc->Gstpar(i+offset,"PAIR",);
-      //vmc->Gstpar(i+offset,"COMPT",);
-      //vmc->Gstpar(i+offset,"PHOT",);
-      //vmc->Gstpar(i+offset,"PFIS",);
-      vmc->Gstpar(i+offset,"DRAY",1);
-      //vmc->Gstpar(i+offset,"ANNI",);
-      //vmc->Gstpar(i+offset,"BREM",);
-      //vmc->Gstpar(i+offset,"HADR",);
-      //vmc->Gstpar(i+offset,"MUNU",);
-      //vmc->Gstpar(i+offset,"DCAY",);
-      vmc->Gstpar(i+offset,"LOSS",1);
-      //vmc->Gstpar(i+offset,"MULS",);
-      //vmc->Gstpar(i+offset,"GHCOR1",);
-      //vmc->Gstpar(i+offset,"BIRK1",);
-      //vmc->Gstpar(i+offset,"BRIK2",);
-      //vmc->Gstpar(i+offset,"BRIK3",);
-      //vmc->Gstpar(i+offset,"LABS",);
-      //vmc->Gstpar(i+offset,"SYNC",);
-      //vmc->Gstpar(i+offset,"STRA",);
-    } // end for i
+void AliITSv11GeometrySPD::InitSPDCentral(Int_t offset, TVirtualMC *vmc) const
+{
+     //
+     // Do all SPD Central detector initializations (e.g.: transport cuts).
+     // ---
+     // Here follow some GEANT3 physics switches, which are interesting
+     // for these settings to be defined:
+     // - "MULTS" (MULtiple Scattering):
+     //   the variable IMULS controls this process. See [PHYS320/325/328]
+     //   0 - No multiple scattering.
+     //   1 - (DEFAULT) Multiple scattering according to Moliere theory.
+     //   2 - Same as 1. Kept for backward compatibility.
+     //   3 - Pure Gaussian scattering according to the Rossi formula.
+     // - "DRAY" (Delta RAY production)
+     //   The variable IDRAY controls this process. See [PHYS430]
+     //   0 - No delta rays production.
+     //   1 - (DEFAULT) Delta rays production with generation of.
+     //   2 - Delta rays production without generation of.
+     // - "LOSS" (continuous energy loss)
+     //   The variable ILOSS controls this process.
+     //   0 - No continuous energy loss, IDRAY is set to 0.
+     //   1 - Continuous energy loss with generation of delta rays above
+     //       DCUTE (common/GCUTS/) and restricted Landau fluctuations
+     //        below DCUTE.
+     //   2 - (DEFAULT) Continuous energy loss without generation of
+     //       delta rays
+     //       and full Landau-Vavilov-Gauss fluctuations.
+     //       In this case the variable IDRAY is forced to 0 to avoid
+     //       double counting of fluctuations.
+     //   3 - Same as 1, kept for backward compatibility.
+     //   4 - Energy loss without fluctuation.
+     //       The value obtained from the tables is used directly.
+     // ---
+     // Arguments:
+     //    Int_t offset    --> the material/medium index offset
+     //    TVirtualMC *vmc --> pointer to the virtual Monte Carlo default gMC
+     //
+
+     Int_t i, n = 4;
+
+     for(i=0;i<n;i++) {
+          vmc->Gstpar(i+offset, "CUTGAM", 30.0 * fgkKeV);
+          vmc->Gstpar(i+offset, "CUTELE", 30.0 * fgkKeV);
+          vmc->Gstpar(i+offset, "CUTNEU", 30.0 * fgkKeV);
+          vmc->Gstpar(i+offset, "CUTHAD", 30.0 * fgkKeV);
+          vmc->Gstpar(i+offset, "CUTMUO", 30.0 * fgkKeV);
+          vmc->Gstpar(i+offset, "BCUTE",  30.0 * fgkKeV);
+          vmc->Gstpar(i+offset, "BCUTM",  30.0 * fgkKeV);
+          vmc->Gstpar(i+offset, "DCUTE",  30.0 * fgkKeV);
+          vmc->Gstpar(i+offset, "DCUTM",  30.0 * fgkKeV);
+          //vmc->Gstpar(i+offset, "PPCUTM", );
+          //vmc->Gstpar(i+offset, "PAIR", );
+          //vmc->Gstpar(i+offset, "COMPT", );
+          //vmc->Gstpar(i+offset, "PHOT", );
+          //vmc->Gstpar(i+offset, "PFIS", );
+          vmc->Gstpar(i+offset, "DRAY", 1);
+          //vmc->Gstpar(i+offset, "ANNI", );
+          //vmc->Gstpar(i+offset, "BREM", );
+          //vmc->Gstpar(i+offset, "HADR", );
+          //vmc->Gstpar(i+offset, "MUNU", );
+          //vmc->Gstpar(i+offset, "DCAY", );
+          vmc->Gstpar(i+offset, "LOSS", 1);
+          //vmc->Gstpar(i+offset, "MULS", );
+          //vmc->Gstpar(i+offset, "GHCOR1", );
+          //vmc->Gstpar(i+offset, "BIRK1", );
+          //vmc->Gstpar(i+offset, "BRIK2", );
+          //vmc->Gstpar(i+offset, "BRIK3", );
+          //vmc->Gstpar(i+offset, "LABS", );
+          //vmc->Gstpar(i+offset, "SYNC", );
+          //vmc->Gstpar(i+offset, "STRA", );
+     }
 }
 //______________________________________________________________________
-void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth,TGeoManager *mgr){
-    // Position of the Carbon Fiber Assembly based on distance
-    // of closest point of SPD stave to beam pipe figures
-    // all-sections-modules.ps of 7.22mm at section A-A.
+void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth, TGeoManager *mgr)
+{
+    //
+    // Creates a single SPD carbon fiber sector and places it
+    // in a container volume passed as first argument ('moth').
+    // Second argument points to the TGeoManager which coordinates
+    // the overall volume creation.
+    // The position of the sector is based on distance of
+    // closest point of SPD stave to beam pipe
+    // (figures all-sections-modules.ps) of 7.22mm at section A-A.
+    //
+
+    // Begin_Html
+    /*
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
+     title="SPD     Sector    drawing   with all  cross     sections  defined">
+     <p>The    SPD  Sector    definition.    In
+     <a   href="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.hpgl">HPGL</a>    format.
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly-10-modules.ps"
+     titile="SPD    All  Sectors   end  view with thermal   sheald">
+     <p>The    SPD  all  sector    end  view with thermal   sheald.
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
+     title="SPD     side view cross     section">
+     <p>SPD    side view cross     section   with condes    and  thermal   shealds.
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-A_A.jpg"
+     title="Cross   section   A-A"><p>Cross  section   A-A.
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-B_B.jpg"
+     title="Cross  updated section   A-A"><p>Cross updated section   A-A.
+     <img src="http://physics.mps.ohio-state.edu/~nilsen/ITSfigures/Sezione_layerAA.pdf"
+     title="Cross   section   B-B"><p>Cross  section   B-B.
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-C_C.jpg"
+     title-"Cross   section   C-C"><p>Cross  section   C-C.
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-D_D.jpg"
+     title="Cross   section   D-D"><p>Cross  section   D-D.
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-E_E.jpg"
+     title="Cross   section   E-E"><p>Cross  section   E-E.
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-F_F.jpg"
+     title="Cross   section   F-F"><p>Cross  section   F-F.
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-G_G.jpg"
+     title="Cross   section   G-G"><p>Cross  section   G-G.
+    */
+    // End_Html
+
     // Inputs:
-    //   TGeoVolume *moth   the mother volume which this
-    //                      object/volume is to be placed in.
+    //    TGeoVolume *moth  Pointer to mother volume where this object
+    //                      is to be placed in
+    //    TGeoManager *mgr  Pointer to the TGeoManager used, defaule is
+    //                      gGeoManager.
     // Outputs:
-    //   none.
+    //    none.
     // Return:
-    //   none.
-    const Double_t kSPDclossesStaveAA    = 7.22*fgkmm;
-    const Double_t kSectorStartingAngle  = -72.0*fgkDegree;
-    const Double_t kNSectorsTotal        = 10.; // number
-    const Double_t kSectorRelativeAngle  = 360./kNSectorsTotal*fgkDegree;
-    const Double_t kBeamPipeRadius       = 0.5*60.0*fgkmm;
+    //    none.
+    // Updated values for kSPDclossesStaveAA, kBeamPipeRadius, and
+    // staveThicknessAA are taken from
+    // http://physics.mps.ohio-state.edu/~nilsen/ITSfigures/Sezione_layerAA.pdf
     //
-    Int_t i;
-    Double_t angle,radiusSector,xAAtubeCenter0,yAAtubeCenter0;
-    Double_t staveThicknessAA=1.03*fgkmm; // get from stave geometry.
-    TGeoCombiTrans *secRot=new TGeoCombiTrans();
+    const Double_t kSPDclossesStaveAA   =   7.25* fgkmm;
+    const Double_t kSectorStartingAngle = -72.0 * fgkDegree;
+    const Int_t    kNSectorsTotal       =  10;
+    const Double_t kSectorRelativeAngle =  36.0 * fgkDegree;    // = 360.0 / 10
+    const Double_t kBeamPipeRadius      =   0.5 * 59.6 * fgkmm; // diam. = 59.6 mm
+  //const Double_t staveThicknessAA     =   0.9 *fgkmm;         // nominal thickness
+    const Double_t staveThicknessAA     =   1.02 * fgkmm;       // get from stave geometry.
+
+    Int_t i, j, k;
+    Double_t angle, radiusSector, xAAtubeCenter0, yAAtubeCenter0;
+    TGeoCombiTrans *secRot = new TGeoCombiTrans(), *comrot;
     TGeoVolume *vCarbonFiberSector;
     TGeoMedium *medSPDcf;
 
-    medSPDcf = mgr->GetMedium("ITSspdCarbonFiber");
+    // Define an assembly and fill it with the support of
+    // a single carbon fiber sector and staves in it
+    medSPDcf = GetMedium("SPD C (M55J)$", mgr);
     vCarbonFiberSector = new TGeoVolumeAssembly("ITSSPDCarbonFiberSectorV");
     vCarbonFiberSector->SetMedium(medSPDcf);
-    CarbonFiberSector(vCarbonFiberSector,xAAtubeCenter0,yAAtubeCenter0);
-    //SectorPlusStaves(vCarbonFiberSector,xAAtubeCenter0,yAAtubeCenter0);
-    vCarbonFiberSector->SetVisibility(kTRUE); // logical volume
-    // Compute the radial shift out of the sectors.
-    radiusSector = kBeamPipeRadius+kSPDclossesStaveAA+staveThicknessAA;
-    radiusSector *= radiusSector; // squaring;
-    radiusSector -= xAAtubeCenter0*xAAtubeCenter0;
-    radiusSector = -yAAtubeCenter0+TMath::Sqrt(radiusSector);
+    CarbonFiberSector(vCarbonFiberSector, xAAtubeCenter0, yAAtubeCenter0, mgr);
+
+    // Compute the radial shift out of the sectors
+    radiusSector = kBeamPipeRadius + kSPDclossesStaveAA + staveThicknessAA;
+    radiusSector  = GetSPDSectorTranslation(fSPDsectorX0.At(1), fSPDsectorY0.At(1),
+                                            fSPDsectorX1.At(1), fSPDsectorY1.At(1), radiusSector);
+  //radiusSector *= radiusSector; // squaring;
+  //radiusSector -= xAAtubeCenter0 * xAAtubeCenter0;
+  //radiusSector  = -yAAtubeCenter0 + TMath::Sqrt(radiusSector);
+
+    AliDebug(1, Form("SPDSector : radiusSector=%f\n",radiusSector));
+    i = 1;
+    AliDebug(1, Form("i= %d x0=%f y0=%f x1=%f y1=%f\n", i,
+                     fSPDsectorX0.At(i), fSPDsectorY0.At(i),
+                     fSPDsectorX1.At(i),fSPDsectorY1.At(i)));
+
+    // add 10 single sectors, by replicating the virtual sector defined above
+    // and placing at different angles
+    Double_t shiftX, shiftY, tub[2][6][3];
+    for(i=0;i<2;i++)for(j=0;j<6;j++)for(k=0;k<3;k++) tub[i][j][k] = fTubeEndSector[0][i][j][k];
     angle = kSectorStartingAngle;
     secRot->RotateZ(angle);
-    for(i=0;i<(Int_t)kNSectorsTotal;i++){
-        secRot->SetDx(-radiusSector*TMath::Sin(angle/fgkRadian));
-        secRot->SetDy(radiusSector*TMath::Cos(angle/fgkRadian));
-        //secRot->RegisterYourself();
-        moth->AddNode(vCarbonFiberSector,i+1,new TGeoCombiTrans(*secRot));
-        if(GetDebug(5)){
-            printf("i=%d angle=%g angle[rad]=%g radiusSector=%g x=%g y=%g \n",
-                   i,angle,angle/fgkRadian,radiusSector,
-                   -radiusSector*TMath::Sin(angle/fgkRadian),
-                   radiusSector*TMath::Cos(angle/fgkRadian));
+    TGeoVolumeAssembly *vcenteral = new TGeoVolumeAssembly("ITSSPD");
+    moth->AddNode(vcenteral, 1, 0);
+    for(i = 0; i < kNSectorsTotal; i++) {
+        shiftX = -radiusSector * TMath::Sin(angle/fgkRadian);
+        shiftY =  radiusSector * TMath::Cos(angle/fgkRadian);
+        //cout << "ANGLE = " << angle << endl;
+        shiftX += 0.1094 * TMath::Cos((angle + 196.)/fgkRadian);
+        shiftY += 0.1094 * TMath::Sin((angle + 196.)/fgkRadian);
+        //shiftX -= 0.105;
+        //shiftY -= 0.031;
+        //shiftX -= 0.11 * TMath::Cos(angle/fgkRadian); // add by Alberto
+        //shiftY -= 0.11 * TMath::Sin(angle/fgkRadian); // don't ask me where that 0.11 comes from!
+        secRot->SetDx(shiftX);
+        secRot->SetDy(shiftY);
+        comrot  = new TGeoCombiTrans(*secRot);
+        vcenteral->AddNode(vCarbonFiberSector,i+1,comrot);
+        for(j=0;j<2;j++)for(k=0;k<6;k++) // Transform Tube ends for each sector
+            comrot->LocalToMaster(tub[j][k],fTubeEndSector[i][j][k]);
+        if(GetDebug(5)) {
+            AliInfo(Form("i=%d angle=%g angle[rad]=%g radiusSector=%g "
+                         "x=%g y=%g \n",i, angle, angle/fgkRadian,
+                         radiusSector, shiftX, shiftY));
         } // end if GetDebug(5)
         angle += kSectorRelativeAngle;
         secRot->RotateZ(kSectorRelativeAngle);
     } // end for i
-    if(GetDebug(3)){
-        moth->PrintNodes();
-    } // end if GetDebug().
+    if(GetDebug(3)) moth->PrintNodes();
     delete secRot;
+
+    CreateCones(moth);
 }
 //______________________________________________________________________
 void AliITSv11GeometrySPD::CarbonFiberSector(TGeoVolume *moth,
-                                            Double_t &xAAtubeCenter0,
-                                            Double_t &yAAtubeCenter0,
-                                            TGeoManager *mgr){
+     Double_t &xAAtubeCenter0, Double_t &yAAtubeCenter0, TGeoManager *mgr)
+{
+    //
     // Define the detail SPD Carbon fiber support Sector geometry.
-    // Based on the drawings ALICE-Pixel "Construzione Profilo Modulo"
-    // March 25 2004 and ALICE-SUPPORTO "construzione Profilo Modulo"
-    // Define Outside radii as negitive, Outside in the sence that the
-    // center of the arc is outside of the object.
-    // February 16 2004.
+    // Based on the drawings:
+    /*
+      http:///QA-construzione-profilo-modulo.ps
+     */
+    // - ALICE-Pixel "Costruzione Profilo Modulo" (march 25 2004)
+    // - ALICE-SUPPORTO "Costruzione Profilo Modulo"
+    // ---
+    // Define outside radii as negative, where "outside" means that the
+    // center of the arc is outside of the object (feb 16 2004).
+    // ---
+    // Arguments [the one passed by ref contain output values]:
     // Inputs:
-    //   TGeoVolume *moth  The mother volume to put this object
+    //   TGeoVolume *moth             the voulme which will contain this object
+    //   TGeoManager *mgr             TGeo builder defauls is gGeoManager
     // Outputs:
-    //  Double_t &xAAtubeCenter0  The x location of the outer surface
-    //                            of the cooling tube center for tube 0.
-    //                            This location helps determine where 
-    //                            this sector is to be located (information
-    //                            used for this is the distance the
-    //                            center of the #0 detector is from the
-    //                            beam pipe. Measurements taken at 
-    //                            cross section A-A.
-    //  Double_t &yAAtubeCenter0  The y location of the outer surface
-    //                            of the cooling tube center for tube 0
-    //                            This location helps determine where
-    //                            this sector is to be located (information
-    //                            used for this is the distance the 
-    //                            center of the #0 detector is from the
-    //                            beam pipe. Measurements taken at 
-    //                            cross section A-A.
-    //   TGeoManager *mgr         The TGeoManager as needed, default is
-    //                            gGeoManager.
+    //   Double_t   &xAAtubeCenter0  (by ref) x location of the outer surface
+    //                               of the cooling tube center for tube 0.
+    //   Double_t   &yAAtubeCenter0  (by ref) y location of the outer surface
+    //                                of the cooling tube center for tube 0.
     // Return:
-    //  none.
-    TGeoMedium *medSPDcf  = 0; // SPD support cone Carbon Fiber materal number.
-    //TGeoMedium *medSPDfs  = 0; // SPD support cone inserto stesalite 4411w.
-    //TGeoMedium *medSPDfo  = 0; // SPD support cone foam, Rohacell 50A.
-    TGeoMedium *medSPDss  = 0; // SPD support cone screw material,Stainless
-    TGeoMedium *medSPDair = 0; // SPD support cone Air
-    //TGeoMedium *medSPDal  = 0; // SPD support cone SDD mounting bracket Al
-    TGeoMedium *medSPDcoolfl  = 0; // SPD cooling fluid, Freeon
-    medSPDcf = mgr->GetMedium("ITSspdCarbonFiber");
-    //medSPDfs = mgr->GetMedium("ITSspdStaselite4411w");
-    //medSPDfo = mgr->GetMedium("ITSspdRohacell50A");
-    medSPDss = mgr->GetMedium("ITSspdStainlessSteel");
-    medSPDair= mgr->GetMedium("ITSspdAir");
-    medSPDcoolfl= mgr->GetMedium("ITSspdCoolingFluid");
-    //
-    const Double_t ksecDz        = 0.5*500.0*fgkmm;
-    const Double_t ksecLen       = 30.0*fgkmm;
-    const Double_t ksecCthick    = 0.20*fgkmm;
-    const Double_t ksecDipLength = 3.2*fgkmm;
-    const Double_t ksecDipRadii  = 0.4*fgkmm;
-    //const Double_t ksecCoolingTubeExtraDepth = 0.86*fgkmm;
-    // These positions, ksecX*,ksecY* are the center of curvatures
-    // for the different point around the SPD sector. The radii,
-    // inner and outer, are the radous of curvature about the centers
-    // ksecX* and ksecY*. To draw this SPD sector, first plot all of
-    // the ksecX and ksecY points and draw circles of the specified
-    // radius about these points. Connect the circles, such that the
-    // lines are tangent to the circles, in accordance with the
-    // radii being "Inside" or "Outside". These lines and the 
-    // corresponding arc's are the surface of this SPD sector.
-    const Double_t ksecX0   = -10.725*fgkmm;
-    const Double_t ksecY0   = -14.853*fgkmm;
-    const Double_t ksecR0   = -0.8*fgkmm; // Outside
-    const Double_t ksecX1   = -13.187*fgkmm;
-    const Double_t ksecY1   = -19.964*fgkmm;
-    const Double_t ksecR1   = +0.6*fgkmm; // Inside
-    //const Double_t ksecDip0 = 5.9*fgkmm;
-    //
-    const Double_t ksecX2   = -3.883*fgkmm;
-    const Double_t ksecY2   = -17.805*fgkmm;
-    const Double_t ksecR2   = +0.80*fgkmm; // Inside Guess. 
-    const Double_t ksecX3   = -3.123*fgkmm;
-    const Double_t ksecY3   = -14.618*fgkmm;
-    const Double_t ksecR3   = -0.6*fgkmm; // Outside
-    //const Double_t ksecDip1 = 8.035*fgkmm;
-    //
-    const Double_t ksecX4   = +11.280*fgkmm;
-    const Double_t ksecY4   = -14.473*fgkmm;
-    const Double_t ksecR4   = +0.8*fgkmm; // Inside
-    const Double_t ksecX5   = +19.544*fgkmm;
-    const Double_t ksecY5   = +10.961*fgkmm;
-    const Double_t ksecR5   = +0.8*fgkmm; // Inside
-    //const Double_t ksecDip2 = 4.553*fgkmm;
-    //
-    const Double_t ksecX6   = +10.830*fgkmm;
-    const Double_t ksecY6   = +16.858*fgkmm;
-    const Double_t ksecR6   = +0.6*fgkmm; // Inside
-    const Double_t ksecX7   = +11.581*fgkmm;
-    const Double_t ksecY7   = +13.317*fgkmm;
-    const Double_t ksecR7   = -0.6*fgkmm; // Outside
-    //const Double_t ksecDip3 = 6.978*fgkmm;
-    //
-    const Double_t ksecX8   = -0.733*fgkmm;
-    const Double_t ksecY8   = +17.486*fgkmm;
-    const Double_t ksecR8   = +0.6*fgkmm; // Inside
-    const Double_t ksecX9   = +0.562*fgkmm;
-    //const Double_t ksecY9   = +14.486*fgkmm;  // correction by
-    const Double_t ksecY9   = +14.107*fgkmm;    // Alberto
-    const Double_t ksecR9   = -0.6*fgkmm; // Outside
-    //const Double_t ksecDip4 = 6.978*fgkmm;
-    //
-    const Double_t ksecX10  = -12.252*fgkmm;
-    const Double_t ksecY10  = +16.298*fgkmm;
-    const Double_t ksecR10  = +0.6*fgkmm; // Inside
-    const Double_t ksecX11  = -10.445*fgkmm;
-    const Double_t ksecY11  = +13.162*fgkmm;
-    const Double_t ksecR11  = -0.6*fgkmm; // Outside
-    //const Double_t ksecDip5 = 6.978*fgkmm;
-    //
-    const Double_t ksecX12  = -22.276*fgkmm;
-    const Double_t ksecY12  = +12.948*fgkmm;
-    const Double_t ksecR12  = +0.85*fgkmm; // Inside
-    //const Double_t ksecX13 = *fgkmm;
-    //const Double_t ksecY13 = *fgkmm;
-    const Double_t ksecR13  = -0.8*fgkmm; // Outside
-    const Double_t ksecAngleSide13 = 36.0*fgkDegree;
+    //   none.
+    // ---
+    // Int the two variables passed by reference values will be stored
+    // which will then be used to correctly locate this sector.
+    // The information used for this is the distance between the
+    // center of the #0 detector and the beam pipe.
+    // Measurements are taken at cross section A-A.
+    //
+
+    //TGeoMedium *medSPDfs      = 0;//SPD support cone inserto stesalite 4411w
+    //TGeoMedium *medSPDfo      = 0;//SPD support cone foam, Rohacell 50A.
+    //TGeoMedium *medSPDal      = 0;//SPD support cone SDD mounting bracket Al
+    TGeoMedium *medSPDcf     = GetMedium("SPD C (M55J)$", mgr);
+    TGeoMedium *medSPDss     = GetMedium("INOX$", mgr);
+    TGeoMedium *medSPDair    = GetMedium("AIR$", mgr);
+    TGeoMedium *medSPDcoolfl = GetMedium("Freon$", mgr); //ITSspdCoolingFluid
+    //
+    const Double_t ksecDz           =  0.5 * 500.0 * fgkmm;
+    //const Double_t ksecLen        = 30.0 * fgkmm;
+    const Double_t ksecCthick       =  0.2 * fgkmm;
+    const Double_t ksecDipLength =  3.2 * fgkmm;
+    const Double_t ksecDipRadii  =  0.4 * fgkmm;
+    //const Double_t ksecCoolingTubeExtraDepth = 0.86 * fgkmm;
+    //
+    // The following positions ('ksecX#' and 'ksecY#') and radii ('ksecR#')
+    // are the centers and radii of curvature of all the rounded corners
+    // between the straight borders of the SPD sector shape.
+    // To draw this SPD sector, the following steps are followed:
+    // 1) the (ksecX, ksecY) points are plotted
+    //    and circles of the specified radii are drawn around them.
+    // 2) each pair of consecutive circles is connected by a line
+    //    tangent to them, in accordance with the radii being "internal"
+    //    or "external" with respect to the closed shape which describes
+    //    the sector itself.
+    // The resulting connected shape is the section
+    // of the SPD sector surface in the transverse plane (XY).
+    //
+    const Double_t ksecX0   = -10.725 * fgkmm;
+    const Double_t ksecY0   = -14.853 * fgkmm;
+    const Double_t ksecR0   =  -0.8   * fgkmm; // external
+    const Double_t ksecX1   = -13.187 * fgkmm;
+    const Double_t ksecY1   = -19.964 * fgkmm;
+    const Double_t ksecR1   =  +0.6   * fgkmm; // internal  // (modif. by Alberto)
+    //const Double_t ksecR1   =  +0.8   * fgkmm; // internal  // (modif. by Alberto)
+
+    // const Double_t ksecDip0 = 5.9 * fgkmm;
+    //
+    //const Double_t ksecX2   =  -3.883 * fgkmm;
+    const Double_t ksecX2   =  -3.833 * fgkmm; // (corr. by Alberto)
+    const Double_t ksecY2   = -17.805 * fgkmm;
+    const Double_t ksecR2   =  +0.6  * fgkmm; // internal (guess)
+    const Double_t ksecX3   =  -3.123 * fgkmm;
+    const Double_t ksecY3   = -14.618 * fgkmm;
+    const Double_t ksecR3   =  -0.6   * fgkmm; // external
+    //const Double_t ksecDip1 = 8.035 * fgkmm;
+    //
+    const Double_t ksecX4   = +11.280 * fgkmm;
+    const Double_t ksecY4   = -14.473 * fgkmm;
+    const Double_t ksecR4   =  +0.8   * fgkmm; // internal
+    const Double_t ksecX5   = +19.544 * fgkmm;
+    const Double_t ksecY5   = +10.961 * fgkmm;
+    const Double_t ksecR5   =  +0.8   * fgkmm; // internal
+    //const Double_t ksecDip2 = 4.553 * fgkmm;
+    //
+    const Double_t ksecX6   = +10.830 * fgkmm;
+    const Double_t ksecY6   = +16.858 * fgkmm;
+    const Double_t ksecR6   =  +0.6   * fgkmm; // internal
+    const Double_t ksecX7   = +11.581 * fgkmm;
+    const Double_t ksecY7   = +13.317 * fgkmm;
+    const Double_t ksecR7   =  -0.6   * fgkmm; // external
+    //const Double_t ksecDip3 = 6.978 * fgkmm;
+    //
+    const Double_t ksecX8   =  -0.733 * fgkmm;
+    const Double_t ksecY8   = +17.486 * fgkmm;
+    const Double_t ksecR8   =  +0.6   * fgkmm; // internal
+    const Double_t ksecX9   =  +0.562 * fgkmm;
+    //const Double_t ksecY9 = +14.486 * fgkmm; // correction by
+    const Double_t ksecY9   = +14.107 * fgkmm; // Alberto
+    const Double_t ksecR9   =  -0.6   * fgkmm; // external
+    //const Double_t ksecDip4 = 6.978 * fgkmm;
+    //
+    const Double_t ksecX10  = -12.252 * fgkmm;
+    const Double_t ksecY10  = +16.298 * fgkmm;
+    const Double_t ksecR10  =  +0.6   * fgkmm; // internal
+    const Double_t ksecX11  = -10.445 * fgkmm;
+    const Double_t ksecY11  = +13.162 * fgkmm;
+    const Double_t ksecR11  =  -0.6   * fgkmm; // external
+    //const Double_t ksecDip5 = 6.978 * fgkmm;
+    //
+    const Double_t ksecX12  = -22.276 * fgkmm;
+    const Double_t ksecY12  = +12.948 * fgkmm;
+    const Double_t ksecR12  =  +0.85  * fgkmm; // internal
+    const Double_t ksecR13  =  -0.8   * fgkmm; // external
+    const Double_t ksecAngleSide13 = 36.0 * fgkDegree;
     //
     const Int_t ksecNRadii = 20;
     const Int_t ksecNPointsPerRadii = 4;
     const Int_t ksecNCoolingTubeDips = 6;
-    // Since the Rounded parts are aproximated by a regular polygon and
-    // a cooling tube of the propper diameter must fit, a scaling factor
+    //
+    // Since the rounded parts are approximated by a regular polygon
+    // and a cooling tube of the propper diameter must fit, a scaling factor
     // increases the size of the polygon for the tube to fit.
     //const Double_t ksecRCoolScale = 1./TMath::Cos(TMath::Pi()/
-    //                                          (Double_t)ksecNPointsPerRadii);
-    const Double_t ksecZEndLen  = 30.00*fgkmm;
-    //const Double_t ksecZFlangLen= 45.00*fgkmm;
-    const Double_t ksecTl       = 0.860*fgkmm;
-    const Double_t ksecCthick2  = 0.600*fgkmm;
-    //const Double_t ksecCthick3  = 1.800*fgkmm;
-    //const Double_t ksecSidelen  = 22.00*fgkmm;
-    //const Double_t ksecSideD5   = 3.679*fgkmm;
-    //const Double_t ksecSideD12  = 7.066*fgkmm;
-    const Double_t ksecRCoolOut = 2.400*fgkmm;
-    const Double_t ksecRCoolIn  = 2.000*fgkmm;
-    const Double_t ksecDl1      = 5.900*fgkmm;
-    const Double_t ksecDl2      = 8.035*fgkmm;
-    const Double_t ksecDl3      = 4.553*fgkmm;
-    const Double_t ksecDl4      = 6.978*fgkmm;
-    const Double_t ksecDl5      = 6.978*fgkmm;
-    const Double_t ksecDl6      = 6.978*fgkmm;
-    const Double_t ksecCoolTubeThick  = 0.04*fgkmm;
-    const Double_t ksecCoolTubeROuter = 2.6*fgkmm;
-    const Double_t ksecCoolTubeFlatX  = 3.696*fgkmm;
-    const Double_t ksecCoolTubeFlatY  = 0.68*fgkmm;
-    //const Double_t ksecBeamX0   = 0.0*fgkmm; // guess
-    //const Double_t ksecBeamY0   = (15.223+40.)*fgkmm; // guess
-    //
-    const Int_t ksecNPoints = (ksecNPointsPerRadii+1)*ksecNRadii + 8;
-    Double_t secX[ksecNRadii] = {ksecX0,ksecX1,-1000.0,ksecX2 ,ksecX3 ,-1000.0,
-                                ksecX4,ksecX5,-1000.0,ksecX6 ,ksecX7 ,-1000.0,
-                                ksecX8,ksecX9,-1000.0,ksecX10,ksecX11,-1000.0,
-                                ksecX12,-1000.0};
-    Double_t secY[ksecNRadii] = {ksecY0,ksecY1,-1000.0,ksecY2 ,ksecY3 ,-1000.0,
-                                ksecY4,ksecY5,-1000.0,ksecY6 ,ksecY7 ,-1000.0,
-                                ksecY8,ksecY9,-1000.0,ksecY10,ksecY11,-1000.0,
-                                ksecY12,-1000.0};
-    Double_t secR[ksecNRadii] ={ksecR0 ,ksecR1 ,-.5*ksecDipLength-ksecDipRadii,
-                               ksecR2 ,ksecR3 ,-.5*ksecDipLength-ksecDipRadii,
-                               ksecR4 ,ksecR5 ,-.5*ksecDipLength-ksecDipRadii,
-                               ksecR6 ,ksecR7 ,-.5*ksecDipLength-ksecDipRadii,
-                               ksecR8 ,ksecR9 ,-.5*ksecDipLength-ksecDipRadii,
-                               ksecR10,ksecR11,-.5*ksecDipLength-ksecDipRadii,
-                               ksecR12,ksecR13};/*
-    Double_t secDip[ksecNRadii]={0.0,0.0,ksecDip0,0.0,0.0,ksecDip1,
-                                0.0,0.0,ksecDip2,0.0,0.0,ksecDip3,
-                                0.0,0.0,ksecDip4,0.0,0.0,ksecDip5,
-                                0.0,0.0};*/
+    //                                      (Double_t)ksecNPointsPerRadii);
+    const Double_t ksecZEndLen   = 30.000 * fgkmm;
+    //const Double_t ksecZFlangLen = 45.000 * fgkmm;
+    const Double_t ksecTl        =  0.860 * fgkmm;
+    const Double_t ksecCthick2   =  0.600 * fgkmm;
+    //const Double_t ksecCthick3  =  1.80  * fgkmm;
+    //const Double_t ksecSidelen  = 22.0   * fgkmm;
+    //const Double_t ksecSideD5   =  3.679 * fgkmm;
+    //const Double_t ksecSideD12  =  7.066 * fgkmm;
+    const Double_t ksecRCoolOut  = 2.400 * fgkmm;
+    const Double_t ksecRCoolIn   = 2.000 * fgkmm;
+    const Double_t ksecDl1       = 5.900 * fgkmm;
+    const Double_t ksecDl2       = 8.035 * fgkmm;
+    const Double_t ksecDl3       = 4.553 * fgkmm;
+    const Double_t ksecDl4       = 6.978 * fgkmm;
+    const Double_t ksecDl5       = 6.978 * fgkmm;
+    const Double_t ksecDl6       = 6.978 * fgkmm;
+    const Double_t ksecCoolTubeThick  = 0.04  * fgkmm;
+    const Double_t ksecCoolTubeROuter = 2.6   * fgkmm;
+    const Double_t ksecCoolTubeFlatX  = 3.696 * fgkmm;
+    const Double_t ksecCoolTubeFlatY  = 0.68  * fgkmm;
+    //const Double_t ksecBeamX0 = 0.0 * fgkmm; // guess
+    //const Double_t ksecBeamY0 = (15.223 + 40.) * fgkmm; // guess
+    //
+    // redefine some of the points already defined above
+    // in the format of arrays (???)
+    const Int_t ksecNPoints = (ksecNPointsPerRadii + 1) * ksecNRadii + 8;
+    Double_t secX[ksecNRadii] = {
+        ksecX0,  ksecX1,  -1000.0,
+        ksecX2,  ksecX3,  -1000.0,
+        ksecX4,  ksecX5,  -1000.0,
+        ksecX6,  ksecX7,  -1000.0,
+        ksecX8,  ksecX9,  -1000.0,
+        ksecX10, ksecX11, -1000.0,
+        ksecX12, -1000.0
+    };
+    Double_t secY[ksecNRadii] = {
+        ksecY0,  ksecY1,  -1000.0,
+        ksecY2,  ksecY3,  -1000.0,
+        ksecY4,  ksecY5,  -1000.0,
+        ksecY6,  ksecY7,  -1000.0,
+        ksecY8,  ksecY9,  -1000.0,
+        ksecY10, ksecY11, -1000.0,
+        ksecY12, -1000.0
+    };
+    Double_t secR[ksecNRadii] = {
+        ksecR0,  ksecR1,  -.5 * ksecDipLength - ksecDipRadii,
+        ksecR2,  ksecR3,  -.5 * ksecDipLength - ksecDipRadii,
+        ksecR4,  ksecR5,  -.5 * ksecDipLength - ksecDipRadii,
+        ksecR6,  ksecR7,  -.5 * ksecDipLength - ksecDipRadii,
+        ksecR8,  ksecR9,  -.5 * ksecDipLength - ksecDipRadii,
+        ksecR10, ksecR11, -.5 * ksecDipLength - ksecDipRadii,
+        ksecR12, ksecR13
+    };
+    /*
+      Double_t secDip[ksecNRadii] = {
+      0., 0., ksecDip0, 0., 0., ksecDip1,
+      0., 0., ksecDip2, 0., 0., ksecDip3,
+      0., 0., ksecDip4, 0., 0., ksecDip5,
+      0., 0.
+      };
+    */
     Double_t secX2[ksecNRadii];
     Double_t secY2[ksecNRadii];
     Double_t secR2[ksecNRadii] = {
-       ksecR0,ksecR1,ksecRCoolOut,ksecR2,ksecR3,ksecRCoolOut,ksecR4,ksecR5,
-       ksecRCoolOut,ksecR6,ksecR7,ksecRCoolOut,ksecR8,ksecR9,ksecRCoolOut,
-       ksecR10,ksecR11,ksecRCoolOut,ksecR12,ksecR13};
-    Double_t secDip2[ksecNCoolingTubeDips]={ksecDl1,ksecDl2,ksecDl3,
-                                           ksecDl4,ksecDl5,ksecDl6};
+        ksecR0,  ksecR1,  ksecRCoolOut,
+        ksecR2,  ksecR3,  ksecRCoolOut,
+        ksecR4,  ksecR5,  ksecRCoolOut,
+        ksecR6,  ksecR7,  ksecRCoolOut,
+        ksecR8,  ksecR9,  ksecRCoolOut,
+        ksecR10, ksecR11, ksecRCoolOut,
+        ksecR12, ksecR13
+    };
+    Double_t secDip2[ksecNCoolingTubeDips] = {
+        ksecDl1, ksecDl2, ksecDl3,
+        ksecDl4, ksecDl5, ksecDl6
+    };
     Double_t secX3[ksecNRadii];
     Double_t secY3[ksecNRadii];
-    const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2,5,8,11,14,17};
+    const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2, 5, 8, 11, 14, 17};
     Double_t secAngleStart[ksecNRadii];
     Double_t secAngleEnd[ksecNRadii];
     Double_t secAngleStart2[ksecNRadii];
     Double_t secAngleEnd2[ksecNRadii];
-    Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0.0,0.0,0.0,0.0,0.0,0.0};
+    Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0., 0., 0., 0., 0., 0.0};
     //Double_t secAngleStart3[ksecNRadii];
     //Double_t secAngleEnd3[ksecNRadii];
-    Double_t xpp[ksecNPoints],ypp[ksecNPoints];
-    Double_t xpp2[ksecNPoints],ypp2[ksecNPoints];
-    Double_t *xp[ksecNRadii],*xp2[ksecNRadii];
-    Double_t *yp[ksecNRadii],*yp2[ksecNRadii];
-    TGeoXtru *sA0,*sA1,*sB0,*sB1;
-    TGeoEltu *sTA0,*sTA1;
-    TGeoTube *sTB0,*sTB1; //,*sM0;
+    Double_t  xpp[ksecNPoints],  ypp[ksecNPoints];
+    Double_t  xpp2[ksecNPoints], ypp2[ksecNPoints];
+    Double_t *xp[ksecNRadii],   *xp2[ksecNRadii];
+    Double_t *yp[ksecNRadii],   *yp2[ksecNRadii];
+    TGeoXtru *sA0,  *sA1, *sB0, *sB1,*sB2;
+    TGeoBBox *sB3;
+    TGeoEltu *sTA0, *sTA1;
+    TGeoTube *sTB0, *sTB1; //,*sM0;
     TGeoRotation    *rot;
     TGeoTranslation *trans;
     TGeoCombiTrans  *rotrans;
-    Double_t t,t0,t1,a,b,x0,y0,x1,y1;
-    Int_t i,j,k,m;
+    Double_t t, t0, t1, a, b, x0, y0,z0, x1, y1;
+    Int_t i, j, k, m;
     Bool_t tst;
 
-    if(moth==0){
-       Error("CarbonFiberSector","moth=%p",moth);
-       return;
-    } // end if moth==0
-    //SetDebug(3);
-    for(i=0;i<ksecNRadii;i++){
-       xp[i]  = &(xpp[i*(ksecNPointsPerRadii+1)]);
-       yp[i]  = &(ypp[i*(ksecNPointsPerRadii+1)]);
-       xp2[i] = &(xpp2[i*(ksecNPointsPerRadii+1)]);
-       yp2[i] = &(ypp2[i*(ksecNPointsPerRadii+1)]);
-       secX2[i] = secX[i];
-       secY2[i] = secY[i];
-       secX3[i] = secX[i];
-       secY3[i] = secY[i];
+    if(!moth) {
+        AliError("Container volume (argument) is NULL");
+        return;
+    } // end if(!moth)
+    for(i = 0; i < ksecNRadii; i++) {
+        xp[i]  = &(xpp[i*(ksecNPointsPerRadii+1)]);
+        yp[i]  = &(ypp[i*(ksecNPointsPerRadii+1)]);
+        xp2[i] = &(xpp2[i*(ksecNPointsPerRadii+1)]);
+        yp2[i] = &(ypp2[i*(ksecNPointsPerRadii+1)]);
+        secX2[i] = secX[i];
+        secY2[i] = secY[i];
+        secX3[i] = secX[i];
+        secY3[i] = secY[i];
     } // end for i
-
-    // Find starting and ending angles for all but cooling tube sections
-    secAngleStart[0] = 0.5*ksecAngleSide13;
-    for(i=0;i<ksecNRadii-2;i++){
-       tst = kFALSE;
-       for(j=0;j<ksecNCoolingTubeDips;j++) tst = tst||i==ksecDipIndex[j];
-       if(tst) continue;
-       tst = kFALSE;
-       for(j=0;j<ksecNCoolingTubeDips;j++) tst = tst||(i+1)==ksecDipIndex[j];
-       if(tst) j = i+2;
-       else j = i+1;
-       AnglesForRoundedCorners(secX[i],secY[i],secR[i],
-                               secX[j],secY[j],secR[j],t0,t1);
-       secAngleEnd[i]   = t0;
-       secAngleStart[j] = t1;
-       if(secR[i]>0.0&&secR[j]>0.0)if(secAngleStart[i]>secAngleEnd[i])
-           secAngleEnd[i] += 360.0;
-       secAngleStart2[i] = secAngleStart[i];
-       secAngleEnd2[i]   = secAngleEnd[i];
+    //
+    // find starting and ending angles for all but cooling tube sections
+    secAngleStart[0] = 0.5 * ksecAngleSide13;
+    for(i = 0; i < ksecNRadii - 2; i++) {
+        tst = kFALSE;
+        for(j=0;j<ksecNCoolingTubeDips;j++) tst = (tst||i==ksecDipIndex[j]);
+        if (tst) continue;
+        tst = kFALSE;
+        for(j=0;j<ksecNCoolingTubeDips;j++) tst =(tst||(i+1)==ksecDipIndex[j]);
+        if (tst) j = i+2; else j = i+1;
+        AnglesForRoundedCorners(secX[i],secY[i],secR[i],secX[j],secY[j],
+                                secR[j],t0,t1);
+        secAngleEnd[i]   = t0;
+        secAngleStart[j] = t1;
+        if(secR[i] > 0.0 && secR[j] > 0.0) {
+            if(secAngleStart[i] > secAngleEnd[i]) secAngleEnd[i] += 360.0;
+        } // end if(secR[i]>0.0 && secR[j]>0.0)
+        secAngleStart2[i] = secAngleStart[i];
+        secAngleEnd2[i]   = secAngleEnd[i];
     } // end for i
-    secAngleEnd[ksecNRadii-2]   = secAngleStart[ksecNRadii-2] + 
-                                    (secAngleEnd[ksecNRadii-5]-
-                                     secAngleStart[ksecNRadii-5]);
-    if(secAngleEnd[ksecNRadii-2]<0.0) secAngleEnd[ksecNRadii-2] += 360.0;
-    secAngleStart[ksecNRadii-1] = secAngleEnd[ksecNRadii-2] - 180.0;
-    secAngleEnd[ksecNRadii-1]   = secAngleStart[0];
+    secAngleEnd[ksecNRadii-2] = secAngleStart[ksecNRadii-2] +
+                   (secAngleEnd[ksecNRadii-5] - secAngleStart[ksecNRadii-5]);
+    if (secAngleEnd[ksecNRadii-2] < 0.0) secAngleEnd[ksecNRadii-2] += 360.0;
+    secAngleStart[ksecNRadii-1]  = secAngleEnd[ksecNRadii-2] - 180.0;
+    secAngleEnd[ksecNRadii-1]    = secAngleStart[0];
     secAngleStart2[ksecNRadii-2] = secAngleStart[ksecNRadii-2];
     secAngleEnd2[ksecNRadii-2]   = secAngleEnd[ksecNRadii-2];
     secAngleStart2[ksecNRadii-1] = secAngleStart[ksecNRadii-1];
     secAngleEnd2[ksecNRadii-1]   = secAngleEnd[ksecNRadii-1];
-    // Find location of circle last rounded corner.
+    //
+    // find location of circle last rounded corner.
     i = 0;
-    j = ksecNRadii-2;
+    j = ksecNRadii - 2;
     t0 = TanD(secAngleStart[i]-90.);
     t1 = TanD(secAngleEnd[j]-90.);
     t  = secY[i] - secY[j];
-    // Note, secR[i=0] <0; secR[j=18]>0; and secR[j+1=19] <0
-    t += (-secR[i]+secR[j+1])*SinD(secAngleStart[i]);
-    t -= (secR[j]-secR[j+1])*SinD(secAngleEnd[j]);
-    t += t1*secX[j] - t0*secX[i];
-    t += t1*(secR[j]-secR[j+1])*CosD(secAngleEnd[j]);
-    t -= t0*(-secR[i]+secR[j+1])*CosD(secAngleStart[i]);
-    secX[ksecNRadii-1] = t/(t1-t0);
-    secY[ksecNRadii-1] = TanD(90.+0.5*ksecAngleSide13)*
-                         (secX[ksecNRadii-1]-secX[0]) + secY[0];
+    // NOTE: secR[i=0] < 0; secR[j=18] > 0; and secR[j+1=19] < 0
+    t += (-secR[i]+secR[j+1]) * SinD(secAngleStart[i]);
+    t -= (secR[j]-secR[j+1]) * SinD(secAngleEnd[j]);
+    t += t1 * secX[j] - t0*secX[i];
+    t += t1 * (secR[j] - secR[j+1]) * CosD(secAngleEnd[j]);
+    t -= t0 * (-secR[i]+secR[j+1]) * CosD(secAngleStart[i]);
+    secX[ksecNRadii-1] = t / (t1-t0);
+    secY[ksecNRadii-1] = TanD(90.0+0.5*ksecAngleSide13)*
+        (secX[ksecNRadii-1]-secX[0])+secY[0];
     secX2[ksecNRadii-1] = secX[ksecNRadii-1];
     secY2[ksecNRadii-1] = secY[ksecNRadii-1];
     secX3[ksecNRadii-1] = secX[ksecNRadii-1];
     secY3[ksecNRadii-1] = secY[ksecNRadii-1];
+
     // find location of cooling tube centers
-    for(i=0;i<ksecNCoolingTubeDips;i++){
-       j = ksecDipIndex[i];
-       x0 = secX[j-1] + TMath::Abs(secR[j-1])*CosD(secAngleEnd[j-1]);
-       y0 = secY[j-1] + TMath::Abs(secR[j-1])*SinD(secAngleEnd[j-1]);
-       x1 = secX[j+1] + TMath::Abs(secR[j+1])*CosD(secAngleStart[j+1]);
-       y1 = secY[j+1] + TMath::Abs(secR[j+1])*SinD(secAngleStart[j+1]);
-       t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
-       t  = secDip2[i]/t0;
-       a  = x0+(x1-x0)*t;
-       b  = y0+(y1-y0)*t;
-       if(i==0){ // get location of tube center->Surface for locating
-                 // this sector around the beam pipe. This needs to be
-                 // double checked, but I need my notes for that, Bjorn Nilsen
-           xAAtubeCenter0 = x0+(x1-x0)*t*0.5;
-           yAAtubeCenter0 = y0+(y1-y0)*t*0.5;
-       } // end if i==0
-       if(a+b*(a-x0)/(b-y0)>0.0){
-           secX[j] = a + TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0;
-           secY[j] = b - TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0;
-           secX2[j] = a + TMath::Abs(y1-y0)*ksecTl/t0;
-           secY2[j] = b - TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0;
-           secX3[j] = a + TMath::Abs(y1-y0)*(2.0*ksecDipRadii-
-                                         0.5*ksecCoolTubeFlatY)/t0;
-           secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,
-                                  y1-y0)*(x1-x0)/t0;
-       }else{
-           secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0;
-           secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0;
-           secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0;
-           secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0;
-           secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii-
-                                         0.5*ksecCoolTubeFlatY)/t0;
-           secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,
-                                     y1-y0)*(x1-x0)/t0;
-        } // end if
-        // Set up Start and End angles to correspond to start/end of dips.
-        t1 = (secDip2[i]-TMath::Abs(secR[j]))/t0;
-        secAngleStart[j] = TMath::RadToDeg()*TMath::ATan2(
-                               y0+(y1-y0)*t1-secY[j],x0+(x1-x0)*t1-secX[j]);
-        if(secAngleStart[j]<0.0) secAngleStart[j] += 360.0;
+    for(i = 0; i < ksecNCoolingTubeDips; i++) {
+        j = ksecDipIndex[i];
+        x0 = secX[j-1] + TMath::Abs(secR[j-1]) * CosD(secAngleEnd[j-1]);
+        y0 = secY[j-1] + TMath::Abs(secR[j-1]) * SinD(secAngleEnd[j-1]);
+        x1 = secX[j+1] + TMath::Abs(secR[j+1]) * CosD(secAngleStart[j+1]);
+        y1 = secY[j+1] + TMath::Abs(secR[j+1]) * SinD(secAngleStart[j+1]);
+        t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
+        t  = secDip2[i] / t0;
+        a  = x0+(x1-x0) * t;
+        b  = y0+(y1-y0) * t;
+        if(i == 0) {
+            // get location of tube center->Surface for locating
+            // this sector around the beam pipe.
+            // This needs to be double checked, but I need my notes for that.
+            // (Bjorn Nilsen)
+            xAAtubeCenter0 = x0 + (x1 - x0) * t * 0.5;
+            yAAtubeCenter0 = y0 + (y1 - y0) * t * 0.5;
+        }// end if i==0
+        if(a + b*(a - x0) / (b - y0) > 0.0) {
+            secX[j]  = a + TMath::Abs(y1-y0) * 2.0 * ksecDipRadii/t0;
+            secY[j]  = b - TMath::Sign(2.0*ksecDipRadii,y1-y0) * (x1-x0)/t0;
+            secX2[j] = a + TMath::Abs(y1-y0) * ksecTl/t0;
+            secY2[j] = b - TMath::Sign(ksecTl,y1-y0) * (x1-x0) / t0;
+            secX3[j] = a + TMath::Abs(y1-y0) *
+                       (2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0;
+            secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,
+                                       y1-y0)*(x1-x0)/t0;
+        } else {
+            secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0;
+            secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0;
+            secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0;
+            secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0;
+            secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii-0.5*
+                                                  ksecCoolTubeFlatY)/t0;
+            secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,
+                                       y1-y0)*(x1-x0)/t0;
+        } // end if(a+b*(a-x0)/(b-y0)>0.0)
+
+          // Set up Start and End angles to correspond to start/end of dips.
+        t1 = (secDip2[i]-TMath::Abs(secR[j])) / t0;
+        secAngleStart[j] =TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],
+                                                        x0+(x1-x0)*t1-secX[j]);
+        if (secAngleStart[j]<0.0) secAngleStart[j] += 360.0;
         secAngleStart2[j] = secAngleStart[j];
         t1 = (secDip2[i]+TMath::Abs(secR[j]))/t0;
-        secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2(
-                               y0+(y1-y0)*t1-secY[j],x0+(x1-x0)*t1-secX[j]);
-        if(secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0;
-        secAngleEnd2[j]   = secAngleEnd[j];
-        if(secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0;
+        secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],
+                                                        x0+(x1-x0)*t1-secX[j]);
+        if (secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0;
+        secAngleEnd2[j] = secAngleEnd[j];
+        if (secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0;
         secR[j] = TMath::Sqrt(secR[j]*secR[j]+4.0*ksecDipRadii*ksecDipRadii);
     } // end for i
-    // Spcial cases
+
+    // Special cases
     secAngleStart2[8] -= 360.;
     secAngleStart2[11] -= 360.;
-    //
-    SPDsectorShape(ksecNRadii,secX,secY,secR,secAngleStart,secAngleEnd,
-                   ksecNPointsPerRadii,m,xp,yp);
+
+    SPDsectorShape(ksecNRadii, secX, secY, secR, secAngleStart, secAngleEnd,
+                   ksecNPointsPerRadii, m, xp, yp);
+
     //  Fix up dips to be square.
-    for(i=0;i<ksecNCoolingTubeDips;i++){
+    for(i = 0; i < ksecNCoolingTubeDips; i++) {
         j = ksecDipIndex[i];
         t = 0.5*ksecDipLength+ksecDipRadii;
         t0 = TMath::RadToDeg()*TMath::ATan(2.0*ksecDipRadii/t);
@@ -692,28 +961,55 @@ void AliITSv11GeometrySPD::CarbonFiberSector(TGeoVolume *moth,
         x1 = xp[j][ksecNPointsPerRadii-1] = secX[j] + t*CosD(t1);
         y1 = yp[j][ksecNPointsPerRadii-1] = secY[j] + t*SinD(t1);
         t0 = 1./((Double_t)(ksecNPointsPerRadii-2));
-        for(k=2;k<ksecNPointsPerRadii-1;k++){// extra points spread them out.
-            t = ((Double_t)(k-1))*t0;
-            xp[j][k] = x0+(x1-x0)*t;
-            yp[j][k] = y0+(y1-y0)*t;
+        for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
+            // extra points spread them out.
+            t = ((Double_t)(k-1)) * t0;
+            xp[j][k] = x0+(x1-x0) * t;
+            yp[j][k] = y0+(y1-y0) * t;
         } // end for k
-        secAngleTurbo[i] = -TMath::RadToDeg()*TMath::ATan2(y1-y0,x1-x0);
-        if(GetDebug(3)){ 
-           cout <<"i="<<i<<" angle="<<secAngleTurbo[i]<<" x0,y0{"
-                <<x0<<","<<y0<<"} x1y1={"<<x1<<","<<y1<<"}"<<endl;
-        } // end if
+        secAngleTurbo[i] = -TMath::RadToDeg() * TMath::ATan2(y1-y0, x1-x0);
+        if(GetDebug(3)) {
+            AliInfo(
+                Form("i=%d -- angle=%f -- x0,y0=(%f, %f) -- x1,y1=(%f, %f)",
+                     i, secAngleTurbo[i], x0, y0, x1, y1));
+        } // end if GetDebug(3)
     } // end for i
     sA0 = new TGeoXtru(2);
     sA0->SetName("ITS SPD Carbon fiber support Sector A0");
-    sA0->DefinePolygon(m,xpp,ypp);
-    sA0->DefineSection(0,-ksecDz);
-    sA0->DefineSection(1,ksecDz);
-    //
+    sA0->DefinePolygon(m, xpp, ypp);
+    sA0->DefineSection(0, -ksecDz);
+    sA0->DefineSection(1,  ksecDz);
+
+    // store the edges of each XY segment which defines
+    // one of the plane zones where staves will have to be placed
+    fSPDsectorX0.Set(ksecNCoolingTubeDips);
+    fSPDsectorY0.Set(ksecNCoolingTubeDips);
+    fSPDsectorX1.Set(ksecNCoolingTubeDips);
+    fSPDsectorY1.Set(ksecNCoolingTubeDips);
+    Int_t ixy0, ixy1;
+    for(i = 0; i < ksecNCoolingTubeDips; i++) {
+        // Find index in xpp[] and ypp[] corresponding to where the
+        // SPD ladders are to be attached. Order them according to
+        // the ALICE numbering schema. Using array of indexes (+-1 for
+        // cooling tubes. For any "bend/dip/edge, there are
+        // ksecNPointsPerRadii+1 points involved.
+        if(i == 0) j = 1;
+        else if (i == 1) j = 0;
+        else j = i;
+        ixy0 = (ksecDipIndex[j]-1)*(ksecNPointsPerRadii+1)+
+            (ksecNPointsPerRadii);
+        ixy1 = (ksecDipIndex[j]+1) * (ksecNPointsPerRadii+1);
+        fSPDsectorX0[i] = sA0->GetX(ixy0);
+        fSPDsectorY0[i] = sA0->GetY(ixy0);
+        fSPDsectorX1[i] = sA0->GetX(ixy1);
+        fSPDsectorY1[i] = sA0->GetY(ixy1);
+    } // end for i
+
     //printf("SectorA#%d ",0);
-    InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1],
-                ksecCthick,xpp2[0],ypp2[0]);
-    for(i=1;i<m-1;i++){
-        j = i/(ksecNPointsPerRadii+1);
+    InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1],ksecCthick,
+                xpp2[0],ypp2[0]);
+    for(i = 1; i < m - 1; i++) {
+        j = i / (ksecNPointsPerRadii+1);
         //printf("SectorA#%d ",i);
         InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1],
                     ksecCthick,xpp2[i],ypp2[i]);
@@ -721,9 +1017,9 @@ void AliITSv11GeometrySPD::CarbonFiberSector(TGeoVolume *moth,
     //printf("SectorA#%d ",m);
     InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0],
                 ksecCthick,xpp2[m-1],ypp2[m-1]);
-    // Fix center value of cooling tube dip.
+    // Fix center value of cooling tube dip and
     // find location of cooling tube centers
-    for(i=0;i<ksecNCoolingTubeDips;i++){
+    for(i = 0; i < ksecNCoolingTubeDips; i++) {
         j = ksecDipIndex[i];
         x0 = xp2[j][1];
         y0 = yp2[j][1];
@@ -731,302 +1027,2968 @@ void AliITSv11GeometrySPD::CarbonFiberSector(TGeoVolume *moth,
         y1 = yp2[j][ksecNPointsPerRadii-1];
         t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
         t  = secDip2[i]/t0;
-        for(k=2;k<ksecNPointsPerRadii-1;k++){// extra points spread them out.
-            t = ((Double_t)(k-1))*t0;
-            xp2[j][k] = x0+(x1-x0)*t;
-            yp2[j][k] = y0+(y1-y0)*t;
+        for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
+            // extra points spread them out.
+            t = ((Double_t)(k-1)) * t0;
+            xp2[j][k] = x0+(x1-x0) * t;
+            yp2[j][k] = y0+(y1-y0) * t;
         } // end for k
     } // end for i
     sA1 = new TGeoXtru(2);
     sA1->SetName("ITS SPD Carbon fiber support Sector Air A1");
-    sA1->DefinePolygon(m,xpp2,ypp2);
-    sA1->DefineSection(0,-ksecDz);
-    sA1->DefineSection(1,ksecDz);
+    sA1->DefinePolygon(m, xpp2, ypp2);
+    sA1->DefineSection(0, -ksecDz);
+    sA1->DefineSection(1,  ksecDz);
     //
     // Error in TGeoEltu. Semi-axis X must be < Semi-axis Y (?).
-    sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0",
-                      0.5* ksecCoolTubeFlatY, 0.5* ksecCoolTubeFlatX,ksecDz);
+    sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0", 0.5 * ksecCoolTubeFlatY,
+                        0.5 * ksecCoolTubeFlatX, ksecDz);
     sTA1 = new TGeoEltu("ITS SPD Cooling Tube coolant TA1",
-                        sTA0->GetA()-ksecCoolTubeThick,
+                        sTA0->GetA() - ksecCoolTubeThick,
                         sTA0->GetB()-ksecCoolTubeThick,ksecDz);
-    //
     SPDsectorShape(ksecNRadii,secX2,secY2,secR2,secAngleStart2,secAngleEnd2,
-                   ksecNPointsPerRadii,m,xp,yp);
-    //
+                   ksecNPointsPerRadii, m, xp, yp);
     sB0 = new TGeoXtru(2);
     sB0->SetName("ITS SPD Carbon fiber support Sector End B0");
-    sB0->DefinePolygon(m,xpp,ypp);
-    sB0->DefineSection(0,ksecDz);
-    sB0->DefineSection(1,ksecDz+ksecZEndLen);
-    //
+    sB0->DefinePolygon(m, xpp, ypp);
+    sB0->DefineSection(0, ksecDz);
+    sB0->DefineSection(1, ksecDz + ksecZEndLen);
+
     //printf("SectorB#%d ",0);
+  // Points around the most sharpened tips have to be avoided - M.S. 24 feb 09
+    const Int_t nSpecialPoints = 5;
+    const Int_t kSpecialPoints[nSpecialPoints] = {7, 17, 47, 62, 77};
+    Int_t i2 = 0;
     InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1],
-                ksecCthick2,xpp2[0],ypp2[0]);
-    for(i=1;i<m-1;i++){
+                ksecCthick2,xpp2[i2],ypp2[i2]);
+    for(i = 1; i < m - 1; i++) {
         t = ksecCthick2;
-        for(k=0;k<ksecNCoolingTubeDips;k++)
-            if((i/(ksecNPointsPerRadii+1))==ksecDipIndex[k]) 
-                if(!(ksecDipIndex[k]*(ksecNPointsPerRadii+1)==i || 
-                     ksecDipIndex[k]*(ksecNPointsPerRadii+1)+
-                     ksecNPointsPerRadii==i   )) 
+        for(k = 0; k < ksecNCoolingTubeDips; k++)
+            if((i/(ksecNPointsPerRadii+1))==ksecDipIndex[k])
+                if(!(ksecDipIndex[k]*(ksecNPointsPerRadii+1) == i ||
+                     ksecDipIndex[k]*(ksecNPointsPerRadii+1) +
+                     ksecNPointsPerRadii == i))
                     t = ksecRCoolOut-ksecRCoolIn;
         //printf("SectorB#%d ",i);
-        InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1],
-                    t,xpp2[i],ypp2[i]);
-    } // end for
+       Bool_t useThisPoint = kTRUE;
+       for(Int_t ii = 0; ii < nSpecialPoints; ii++)
+         if ( (i == kSpecialPoints[ii] - 1) ||
+              (i == kSpecialPoints[ii] + 1)   ) useThisPoint = kFALSE;
+       if (useThisPoint) {
+         i2++;
+         InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1],t,
+                     xpp2[i2],ypp2[i2]);
+       }
+    }// end for i
     //printf("SectorB#%d ",m);
+    i2++;
     InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0],
-                ksecCthick2,xpp2[m-1],ypp2[m-1]);
+                ksecCthick2,xpp2[i2],ypp2[i2]);
     sB1 = new TGeoXtru(2);
     sB1->SetName("ITS SPD Carbon fiber support Sector Air End B1");
-    sB1->DefinePolygon(m,xpp2,ypp2);
-    sB1->DefineSection(0,ksecDz);
-    sB1->DefineSection(1,ksecDz+ksecLen);
-    sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0",0.0,
-                       0.5*ksecCoolTubeROuter,0.5*ksecLen);
-    sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0",0.0,
-                       sTB0->GetRmax()-ksecCoolTubeThick,0.5*ksecLen);
-    //
-    //sM0 = new TGeoTube("ITS SPD Sensitive Virutual Volume M0",0.0,8.0,
-    //                   sA0->GetZ(1)+sB0->GetZ(1));
+    sB1->DefinePolygon(i2+1, xpp2, ypp2);
+    sB1->DefineSection(0,sB0->GetZ(0));
+    sB1->DefineSection(1,sB0->GetZ(1)-ksecCthick2);
+    const Double_t kspdEndHoleRadius1=5.698*fgkmm;
+    const Double_t kspdEndHoleRadius2=2.336*fgkmm;
+    const Double_t kspdEndHoleDisplacement=6.29*fgkmm;
+    k = (m-1)/4;
+    for(i=0;i<=k;i++){
+        t= ((Double_t)i)/((Double_t)(k));
+        if(!CFHolePoints(t,kspdEndHoleRadius1,kspdEndHoleRadius2,
+                         kspdEndHoleDisplacement,xpp2[i],ypp2[i])){
+            Warning("CarbonFiberSector","CFHolePoints failed "
+                    "i=%d m=%d k=%d t=%e",i,m,k,t);
+        } // end if
+        // simitry in each quadrant.
+        xpp2[2*k-i] = -xpp2[i];
+        ypp2[2*k-i] =  ypp2[i];
+        xpp2[2*k+i] = -xpp2[i];
+        ypp2[2*k+i] = -ypp2[i];
+        xpp2[4*k-i] =  xpp2[i];
+        ypp2[4*k-i] = -ypp2[i];
+    }// end for i
+    //xpp2[m-1] = xpp2[0]; // begining point in
+    //ypp2[m-1] = ypp2[0]; // comment with end point
+    sB2 = new TGeoXtru(2);
+    sB2->SetName("ITS SPD Hole in Carbon fiber support End plate");
+    sB2->DefinePolygon(4*k, xpp2, ypp2);
+    sB2->DefineSection(0,sB1->GetZ(1));
+    sB2->DefineSection(1,sB0->GetZ(1));
+    // SPD sector mount blocks
+    const Double_t kMountBlock[3] = {0.5*(1.8-0.2)*fgkmm,0.5*22.0*fgkmm,
+                                     0.5*45.0*fgkmm};
+    sB3 = new TGeoBBox((Double_t*)kMountBlock);
+    // SPD sector cooling tubes
+    sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0", 0.0,
+                   0.5*ksecCoolTubeROuter,0.5*(sB1->GetZ(1)-sB1->GetZ(0)));
+    sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0", 0.0,
+                        sTB0->GetRmax() - ksecCoolTubeThick,sTB0->GetDz());
     //
-    if(GetDebug(3)){
-        if(medSPDcf) medSPDcf->Dump();
-        else printf("medSPDcf=0\n");
-        if(medSPDss) medSPDss->Dump();
-        else printf("medSPDss=0\n");
-        if(medSPDair) medSPDair->Dump();
-        else printf("medSPDAir=0\n");
-        if(medSPDcoolfl) medSPDcoolfl->Dump();
-        else printf("medSPDcoolfl=0\n");
-        //sM0->InspectShape();
+    if(GetDebug(3)) {
+        if(medSPDcf) medSPDcf->Dump(); else AliInfo("medSPDcf = 0");
+        if(medSPDss) medSPDss->Dump(); else AliInfo("medSPDss = 0");
+        if(medSPDair) medSPDair->Dump(); else AliInfo("medSPDAir = 0");
+        if(medSPDcoolfl) medSPDcoolfl->Dump();else AliInfo("medSPDcoolfl = 0");
         sA0->InspectShape();
         sA1->InspectShape();
         sB0->InspectShape();
         sB1->InspectShape();
-    } // end if GetDebug
-    //
-    TGeoVolume *vA0,*vA1,*vTA0,*vTA1,*vB0,*vB1,*vTB0,*vTB1;
-    TGeoVolumeAssembly *vM0;
-    vM0 = new TGeoVolumeAssembly("ITSSPDSensitiveVirtualvolumeM0");
-    //vM0 = new TGeoVolume("ITSSPDSensitiveVirtualvolumeM0",sM0,medSPDair);
-    //vM0->SetVisibility(kTRUE);
-    //vM0->SetLineColor(7); // light Blue
-    //vM0->SetLineWidth(1);
-    //vM0->SetFillColor(vM0->GetLineColor());
-    //vM0->SetFillStyle(4090); // 90% transparent
-    // ALBERTO
+        sB2->InspectShape();
+    } // end if(GetDebug(3))
+
+    // create the assembly of the support and place staves on it
+    TGeoVolumeAssembly *vM0 = new TGeoVolumeAssembly(
+                                         "ITSSPDSensitiveVirtualvolumeM0");
     StavesInSector(vM0);
-    vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0",sA0,medSPDcf);
+    // create other volumes with some graphical settings
+    TGeoVolume *vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0",
+                                     sA0, medSPDcf);
     vA0->SetVisibility(kTRUE);
     vA0->SetLineColor(4); // Blue
     vA0->SetLineWidth(1);
     vA0->SetFillColor(vA0->GetLineColor());
     vA0->SetFillStyle(4010); // 10% transparent
-    vA1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorAirA1",sA1,medSPDair);
+    TGeoVolume *vA1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorAirA1",
+                                     sA1, medSPDair);
     vA1->SetVisibility(kTRUE);
     vA1->SetLineColor(7); // light Blue
     vA1->SetLineWidth(1);
     vA1->SetFillColor(vA1->GetLineColor());
     vA1->SetFillStyle(4090); // 90% transparent
-    vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0",sTA0,medSPDss);
+    TGeoVolume *vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0", sTA0, medSPDss);
     vTA0->SetVisibility(kTRUE);
-    vTA0->SetLineColor(1); // Black
+    vTA0->SetLineColor(15); // gray
     vTA0->SetLineWidth(1);
     vTA0->SetFillColor(vTA0->GetLineColor());
     vTA0->SetFillStyle(4000); // 0% transparent
-    vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1",sTA1,medSPDcoolfl);
+    TGeoVolume *vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1",
+                                      sTA1, medSPDcoolfl);
     vTA1->SetVisibility(kTRUE);
     vTA1->SetLineColor(6); // Purple
     vTA1->SetLineWidth(1);
     vTA1->SetFillColor(vTA1->GetLineColor());
     vTA1->SetFillStyle(4000); // 0% transparent
-    vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0",sB0,medSPDcf);
+    TGeoVolume *vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0",
+                                     sB0, medSPDcf);
     vB0->SetVisibility(kTRUE);
-    vB0->SetLineColor(4); // Blue
+    vB0->SetLineColor(1); // Black
     vB0->SetLineWidth(1);
     vB0->SetFillColor(vB0->GetLineColor());
-    vB0->SetFillStyle(4010); // 10% transparent
-    vB1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB1",
-                         sB1,medSPDair);
+    vB0->SetFillStyle(4000); // 0% transparent
+    TGeoVolume *vB1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB1",
+                                     sB1, medSPDair);
     vB1->SetVisibility(kTRUE);
-    vB1->SetLineColor(7); // light Blue
+    vB1->SetLineColor(0); // white
     vB1->SetLineWidth(1);
     vB1->SetFillColor(vB1->GetLineColor());
-    vB1->SetFillStyle(4090); // 90% transparent
-    vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0",sTB0,medSPDss);
+    vB1->SetFillStyle(4100); // 100% transparent
+    TGeoVolume *vB2 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB2",
+                                     sB2, medSPDair);
+    vB2->SetVisibility(kTRUE);
+    vB2->SetLineColor(0); // white
+    vB2->SetLineWidth(1);
+    vB2->SetFillColor(vB2->GetLineColor());
+    vB2->SetFillStyle(4100); // 100% transparent
+    TGeoVolume *vB3 = new TGeoVolume(
+        "ITSSPDCarbonFiberSupportSectorMountBlockB3",sB3, medSPDcf);
+    vB3->SetVisibility(kTRUE);
+    vB3->SetLineColor(1); // Black
+    vB3->SetLineWidth(1);
+    vB3->SetFillColor(vB3->GetLineColor());
+    vB3->SetFillStyle(4000); // 0% transparent
+    TGeoVolume *vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0",sTB0,medSPDss);
     vTB0->SetVisibility(kTRUE);
-    vTB0->SetLineColor(1); // Black
+    vTB0->SetLineColor(15); // gray
     vTB0->SetLineWidth(1);
     vTB0->SetFillColor(vTB0->GetLineColor());
     vTB0->SetFillStyle(4000); // 0% transparent
-    vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1",sTB1,medSPDcoolfl);
+    TGeoVolume *vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1",sTB1,
+                                      medSPDcoolfl);
     vTB1->SetVisibility(kTRUE);
-    vTB1->SetLineColor(6); // Purple
+    vTB1->SetLineColor(7); // light blue
     vTB1->SetLineWidth(1);
     vTB1->SetFillColor(vTB1->GetLineColor());
-    vTB1->SetFillStyle(4000); // 0% transparent
-    //
+    vTB1->SetFillStyle(4050); // 0% transparent
+
+    // add volumes to mother container passed as argument of this method
     moth->AddNode(vM0,1,0); // Add virtual volume to mother
     vA0->AddNode(vA1,1,0); // Put air inside carbon fiber.
-    vB0->AddNode(vB1,1,0); // Put air inside carbon fiber.
-    vTA0->AddNode(vTA1,1,0); // Put air inside carbon fiber.
-    vTB0->AddNode(vTB1,1,0); // Put air inside carbon fiber.
-    for(i=0;i<ksecNCoolingTubeDips;i++){
+    vB0->AddNode(vB1,1,0); // Put air inside carbon fiber ends.
+    vB0->AddNode(vB2,1,0); // Put air wholes inside carbon fiber ends
+    vTA0->AddNode(vTA1,1,0); // Put cooling liquid indide tube middel.
+    vTB0->AddNode(vTB1,1,0); // Put cooling liquid inside tube end.
+    Double_t tubeEndLocal[3]={0.0,0.0,sTA0->GetDz()};
+    for(i = 0; i < ksecNCoolingTubeDips; i++) {
         x0 = secX3[ksecDipIndex[i]];
         y0 = secY3[ksecDipIndex[i]];
-        t = 90.0-secAngleTurbo[i];
+        t = 90.0 - secAngleTurbo[i];
         trans = new TGeoTranslation("",x0,y0,0.5*(sB1->GetZ(0)+sB1->GetZ(1)));
-        vB1->AddNode(vTB0,i+1,trans);
-        rot = new TGeoRotation("",0.0,0.0,t);
-        rotrans = new TGeoCombiTrans("",x0,y0,0.0,rot);
-        vM0->AddNode(vTA0,i+1,rotrans);
-        //delete rot; // rot owned by AliITSv11GeometerySPD::CarbonFiberSector
+        vB1->AddNode(vTB0, i+1, trans);
+        // Find location of tube ends for later use.
+        trans->LocalToMaster(tubeEndLocal,fTubeEndSector[0][0][i]);
+        rot = new TGeoRotation("", 0.0, 0.0, t);
+        rotrans = new TGeoCombiTrans("", x0, y0, 0.0, rot);
+        vM0->AddNode(vTA0, i+1, rotrans);
     } // end for i
-    vM0->AddNode(vA0,1,0);
-    vM0->AddNode(vB0,1,0);
+    vM0->AddNode(vA0, 1, 0);
+    vM0->AddNode(vB0, 1, 0);
     // Reflection.
-    vM0->AddNode(vB0,2,new TGeoRotation("",90.,0.,90.,90.,180.,0.));
+    rot = new TGeoRotation("", 90., 0., 90., 90., 180., 0.);
+    vM0->AddNode(vB0,2,rot);
+    // Find location of tube ends for later use.
+    for(i=0;i<ksecNCoolingTubeDips;i++) rot->LocalToMaster(
+                            fTubeEndSector[0][0][i],fTubeEndSector[0][1][i]);
+    // left side
+    t = -TMath::RadToDeg()*TMath::ATan2(
+                                   sB0->GetX(0)-sB0->GetX(sB0->GetNvert()-1),
+                                   sB0->GetY(0)-sB0->GetY(sB0->GetNvert()-1));
+    rot = new TGeoRotation("",t,0.0,0.0);// z axis rotation
+    x0 = 0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))+
+        sB3->GetDX()*TMath::Cos(t*TMath::DegToRad());
+    y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))+
+        sB3->GetDX()*TMath::Sin(t*TMath::DegToRad());
+    z0 = sB0->GetZ(0)+sB3->GetDZ();
+    rotrans = new TGeoCombiTrans("",x0,y0,z0,rot);
+    vM0->AddNode(vB3,1,rotrans); // Put Mounting bracket on sector
+    rotrans = new TGeoCombiTrans("",x0,y0,-z0,rot);
+    vM0->AddNode(vB3,2,rotrans); // Put Mounting bracket on sector
+    /*
+    j = 0; // right side, find point with largest x value
+    x1 = sB0->GetX(0);
+    for(i=1;i<sB0->GetNvert();i++)if(sB0->GetX(i)>x1) {j=i;x1=sB0->GetX(i);}
+    j--; // Too big by 1
+    //t = -TMath::RadToDeg()*TMath::ATan2(
+    //                               sB0->GetX(j)-sB0->GetX(j-1),
+    //                               sB0->GetY(j)-sB0->GetY(j-1));
+    */
+    t *= -1.0;
+    rot = new TGeoRotation("",t,0.0,0.0); // z axis rotation
+    /*  // this way gets correct orientation but wrong "height"
+    x0 = 0.5*(sB0->GetX(j)+sB0->GetX(j-1))+
+        sB3->GetDX()*TMath::Cos(t*TMath::DegToRad());
+    y0 = 0.5*(sB0->GetY(j)+sB0->GetY(j-1))+
+        sB3->GetDX()*TMath::Sin(t*TMath::DegToRad());
+    z0 = sB0->GetZ(0)+sB3->GetDZ();
+    */ // I don't understand the need for this factor 3.5.
+    // posibly the SPD sector as coded isn't symetric which the
+    // plans would suggest.
+    x0 = -0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))-3.5*
+        sB3->GetDX()*TMath::Cos(t*TMath::DegToRad());
+    y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))-3.5*
+        sB3->GetDX()*TMath::Sin(t*TMath::DegToRad());
+    rotrans = new TGeoCombiTrans("",1.01*x0,y0,z0,rot);
+    vM0->AddNode(vB3,3,rotrans); // Put Mounting bracket on sector
+    rotrans = new TGeoCombiTrans("",1.01*x0,y0,-z0,rot);
+    vM0->AddNode(vB3,4,rotrans); // Put Mounting bracket on sector
     if(GetDebug(3)){
         vM0->PrintNodes();
         vA0->PrintNodes();
         vA1->PrintNodes();
         vB0->PrintNodes();
         vB1->PrintNodes();
+        vB2->PrintNodes();
+        vB3->PrintNodes();
         vTA0->PrintNodes();
         vTA1->PrintNodes();
         vTB0->PrintNodes();
         vTB1->PrintNodes();
-    } // end if GetDebug
+    } // end if(GetDebug(3))
+}
+//______________________________________________________________________
+Bool_t AliITSv11GeometrySPD::CFHolePoints(Double_t s,Double_t r1,
+                   Double_t r2,Double_t l,Double_t &x,Double_t &y) const
+{
+    //
+    // Step along arck a distancs ds and compute boundry of
+    // two holes (radius r1 and r2) a distance l apart (along
+    // x-axis).
+    // Inputs:
+    //   Double_t s   fractional Distance along arcs [0-1]
+    //                where 0-> alpha=beta=0, 1-> alpha=90 degrees.
+    //   Double_t r1  radius at center circle
+    //   Double_t r2  radius of displaced circle
+    //   Double_t l   Distance displaced circle is displaces (x-axis)
+    // Output:
+    //   Double_t x   x coordinate along double circle.
+    //   Double_t y   y coordinate along double circle.
+    // Return:
+    //   logical, kFALSE if an error
+    //
+    Double_t alpha,beta;
+    Double_t ac,bc,scb,sca,t,alphac,betac; // at intersection of two circles
+
+    x=y=0.0;
+    ac = r1*r1-l*l-r2*r2;
+    bc = 2.*l*r2;
+    if(bc==0.0) {printf("bc=0 l=%e r2=%e\n",l,r2);return kFALSE;}
+    betac = TMath::ACos(ac/bc);
+    alphac = TMath::Sqrt((bc-ac)*(bc+ac))/(2.*l*r1);
+    scb = r2*betac;
+    sca = r1*alphac;
+    t = r1*0.5*TMath::Pi() - sca + scb;
+    if(s<= scb/t){
+        beta = s*t/r2;
+        x = r2*TMath::Cos(beta) + l;
+        y = r2*TMath::Sin(beta);
+        //printf("betac=%e scb=%e t=%e s=%e beta=%e x=%e y=%e\n",
+        //       betac,scb,t,s,beta,x,y);
+        return kTRUE;
+    }else{
+        beta = (s*t-scb+sca)/(r1*0.5*TMath::Pi());
+        alpha = beta*0.5*TMath::Pi();
+        x = r1*TMath::Cos(alpha);
+        y = r1*TMath::Sin(alpha);
+        //printf("alphac=%e sca=%e t=%e s=%e beta=%e alpha=%e x=%e y=%e\n",
+        //       alphac,sca,t,s,beta,alpha,x,y);
+        return kTRUE;
+    } // end if
+    return kFALSE;
+}
+//______________________________________________________________________
+Bool_t AliITSv11GeometrySPD::GetSectorMountingPoints(Int_t index,Double_t &x0,
+                              Double_t &y0, Double_t &x1, Double_t &y1) const
+{
     //
+    // Returns the edges of the straight borders in the SPD sector shape,
+    // which are used to mount staves on them.
+    // Coordinate system is that of the carbon fiber sector volume.
+    // ---
+    // Index numbering is as follows:
+    //                         /5
+    //                        /\/4
+    //                      1\   \/3
+    //                      0|___\/2
+    // ---
+    // Arguments [the ones passed by reference contain output values]:
+    //    Int_t    index   --> location index according to above scheme [0-5]
+    //    Double_t &x0     --> (by ref) x0 location or the ladder sector [cm]
+    //    Double_t &y0     --> (by ref) y0 location of the ladder sector [cm]
+    //    Double_t &x1     --> (by ref) x1 location or the ladder sector [cm]
+    //    Double_t &y1     --> (by ref) y1 location of the ladder sector [cm]
+    //    TGeoManager *mgr --> The TGeo builder
+    // ---
+    // The location is described by a line going from (x0, y0) to (x1, y1)
+    // ---
+    // Returns kTRUE if no problems encountered.
+    // Returns kFALSE if a problem was encountered (e.g.: shape not found).
+    //
+    Int_t isize = fSPDsectorX0.GetSize();
+
+    x0 = x1 = y0 = y1 = 0.0;
+    if(index < 0 || index > isize) {
+        AliError(Form("index = %d: allowed 0 --> %", index, isize));
+        return kFALSE;
+    } // end if(index<0||index>isize)
+    x0 = fSPDsectorX0[index];
+    x1 = fSPDsectorX1[index];
+    y0 = fSPDsectorY0[index];
+    y1 = fSPDsectorY1[index];
+    return kTRUE;
 }
-//----------------------------------------------------------------------
+//______________________________________________________________________
 void AliITSv11GeometrySPD::SPDsectorShape(Int_t n,const Double_t *xc,
-const Double_t *yc,const Double_t *r,const Double_t *ths,const Double_t *the,
-                               Int_t npr,Int_t &m,Double_t **xp,Double_t **yp){
+                              const Double_t *yc,  const Double_t *r,
+                              const Double_t *ths, const Double_t *the,
+                      Int_t npr, Int_t &m, Double_t **xp, Double_t **yp) const
+{
+    //
     // Code to compute the points that make up the shape of the SPD
     // Carbon fiber support sections
     // Inputs:
-    //    Int_t    n       Size of arrays xc,yc, and r.
-    //    Double_t *xc     Array of x values for radii centers.
-    //    Double_t *yc     Array of y values for radii centers.
-    //    Double_t *r      Array of signed radii values.
-    //    Double_t *ths    Array of starting angles [degrees].
-    //    Double_t *the    Array of ending angles [degrees].
-    //    Int_t    npr     The number of lines segments to aproximate the arc.
-    // Outputs:
-    //    Int_t    m       The number of enetries in the arrays *xp[npr+1] 
-    //                     and *yp[npr+1].
-    //    Double_t **xp    Array of x coordinate values of the line segments
-    //                     which make up the SPD support sector shape.
-    //    Double_t **yp    Array of y coordinate values of the line segments
-    //                     which make up the SPD support sector shape.
-    // Return:
-    //    none.
-    Int_t i,k;
-    Double_t t,t0,t1;
-
-    m = n*(npr+1);
-    if(GetDebug(2)){
-        cout <<"    X    \t  Y  \t  R  \t  S  \t  E"<< m <<endl;
-        for(i=0;i<n;i++){
-            cout <<"{"<< xc[i] <<",";
-            cout << yc[i] <<",";
-            cout << r[i] <<",";
-            cout << ths[i] <<",";
-            cout << the[i] <<"},"<< endl;
-        } // end for i
-    } // end if GetDebug
+    //   Int_t n        size of arrays xc,yc, and r.
+    //   Double_t *xc   array of x values for radii centers.
+    //   Double_t *yc   array of y values for radii centers.
+    //   Double_t *r    array of signed radii values.
+    //   Double_t *ths  array of starting angles [degrees].
+    //   Double_t *the  array of ending angles [degrees].
+    //   Int_t     npr  the number of lines segments to aproximate the arc.
+    // Outputs (arguments passed by reference):
+    //   Int_t       m    the number of enetries in the arrays *xp[npr+1]
+    //                    and *yp[npr+1].
+    //   Double_t **xp    array of x coordinate values of the line segments
+    //                    which make up the SPD support sector shape.
+    //   Double_t **yp    array of y coordinate values of the line segments
+    //                    which make up the SPD support sector shape.
     //
-    if(GetDebug(3)) cout <<"Double_t sA0 = ["<< n*(npr+1)+1<<"][";
-    if(GetDebug(4)) cout <<"3]{";
-    else if(GetDebug(3)) cout <<"2]{";
+    Int_t    i, k;
+    Double_t t, t0, t1;
+
+    m = n*(npr + 1);
+    if(GetDebug(2)) {
+        cout <<"  X    \t  Y  \t  R  \t  S  \t  E" << m << endl;
+        for(i = 0; i < n; i++) {
+            cout << "{"    << xc[i] << ", ";
+            cout << yc[i]  << ", ";
+            cout << r[i]   << ", ";
+            cout << ths[i] << ", ";
+            cout << the[i] << "}, " << endl;
+        } // end for i
+    } // end if(GetDebug(2))
+    if (GetDebug(3)) cout << "Double_t sA0 = [" << n*(npr+1)+1<<"][";
+    if (GetDebug(4)) cout << "3] {";
+    else if(GetDebug(3)) cout <<"2] {";
     t0 = (Double_t)npr;
-    for(i=0;i<n;i++){
-        t1 = (the[i]-ths[i])/t0;
-        if(GetDebug(5)) cout<<"t1="<< t1<<endl;
-        for(k=0;k<=npr;k++){
-            t=ths[i]+((Double_t)k)*t1;
-            xp[i][k] = TMath::Abs(r[i])*CosD(t)+xc[i];
-            yp[i][k] = TMath::Abs(r[i])*SinD(t)+yc[i];
-            if(GetDebug(3)){
-                cout << "{"<<xp[i][k]<<","<<yp[i][k];
-                if(GetDebug(4)) cout <<","<<t;
-                cout <<"},";
+    for(i = 0; i < n; i++) {
+        t1 = (the[i] - ths[i]) / t0;
+        if(GetDebug(5)) cout << "t1 = " << t1 << endl;
+        for(k = 0; k <= npr; k++) {
+            t = ths[i] + ((Double_t)k) * t1;
+            xp[i][k] = TMath::Abs(r[i]) * CosD(t) + xc[i];
+            yp[i][k] = TMath::Abs(r[i]) * SinD(t) + yc[i];
+            if(GetDebug(3)) {
+                cout << "{" << xp[i][k] << "," << yp[i][k];
+                if (GetDebug(4)) cout << "," << t;
+                cout << "},";
             } // end if GetDebug
         } // end for k
         if(GetDebug(3)) cout << endl;
     } // end of i
-    if(GetDebug(3)) cout<<"{"<<xp[0][0]<<","<<yp[0][0];
-    if(GetDebug(4)) cout<<","<< ths[0];
-    if(GetDebug(3)) cout<<"}}"<<endl;
+    if(GetDebug(3)) cout << "{"  << xp[0][0] << ", " << yp[0][0];
+    if(GetDebug(4)) cout << ","  << ths[0];
+    if(GetDebug(3)) cout << "}}" << endl;
+}
+
+//______________________________________________________________________
+TGeoVolume* AliITSv11GeometrySPD::CreateLadder(Int_t layer,TArrayD &sizes,
+                                               TGeoManager *mgr) const
+{
     //
-    return;
+    // Creates the "ladder" = silicon sensor + 5 chips.
+    // Returns a TGeoVolume containing the following components:
+    //  - the sensor (TGeoBBox), whose name depends on the layer
+    //  - 5 identical chips (TGeoBBox)
+    //  - a guard ring around the sensor (subtraction of TGeoBBoxes),
+    //    which is separated from the rest of sensor because it is not
+    //    a sensitive part
+    //  - bump bondings (TGeoBBox stripes for the whole width of the
+    //    sensor, one per column).
+    // ---
+    // Arguments:
+    //  1 - the owner layer (MUST be 1 or 2 or a fatal error is raised)
+    //  2 - a TArrayD passed by reference, which will contain relevant
+    //      dimensions related to this object:
+    //      size[0] = 'thickness' (the smallest dimension)
+    //      size[1] = 'length' (the direction along the ALICE Z axis)
+    //      size[2] = 'width' (extension in the direction perp. to the
+    //                         above ones)
+    //  3 - the used TGeoManager
+
+    // ** CRITICAL CHECK **
+    // layer number can be ONLY 1 or 2
+    if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2");
+
+    // ** MEDIA **
+    TGeoMedium *medAir       = GetMedium("AIR$",mgr);
+    TGeoMedium *medSPDSiChip = GetMedium("SPD SI CHIP$",mgr); // SPD SI CHIP
+    TGeoMedium *medSi        = GetMedium("SI$",mgr);
+    TGeoMedium *medBumpBond  = GetMedium("COPPER$",mgr);  // ??? BumpBond
+
+    // ** SIZES **
+    Double_t chipThickness  = fgkmm *  0.150;
+    Double_t chipWidth      = fgkmm * 15.950;
+    Double_t chipLength     = fgkmm * 13.600;
+    Double_t chipSpacing    = fgkmm *  0.400; // separation of chips along Z
+    Double_t sensThickness  = fgkmm *  0.200;
+    Double_t sensLength     = fgkmm * 69.600;
+    Double_t sensWidth      = fgkmm * 12.800;
+    Double_t guardRingWidth = fgkmm *  0.560; // a border of this thickness
+                                              // all around the sensor
+    Double_t bbLength       = fgkmm * 0.042;
+    Double_t bbWidth        = sensWidth;
+    Double_t bbThickness    = fgkmm * 0.012;
+    Double_t bbPos          = 0.080;  // Z position w.r. to left pixel edge
+    // compute the size of the container volume which
+    // will also be returned in the referenced TArrayD;
+    // for readability, they are linked by reference to a more meaningful name
+    sizes.Set(3);
+    Double_t &thickness = sizes[0];
+    Double_t &length = sizes[1];
+    Double_t &width = sizes[2];
+    // the container is a box which exactly enclose all the stuff;
+    width = chipWidth;
+    length = sensLength + 2.0*guardRingWidth;
+    thickness = sensThickness + chipThickness + bbThickness;
+
+    // ** VOLUMES **
+    // While creating this volume, since it is a sensitive volume,
+    // we must respect some standard criteria for its local reference frame.
+    // Local X must correspond to x coordinate of the sensitive volume:
+    // this means that we are going to create the container with a local
+    // reference system that is **not** in the middle of the box.
+    // This is accomplished by calling the shape constructor with an
+    // additional option ('originShift'):
+    Double_t xSens = 0.5 * (width - sensWidth - 2.0*guardRingWidth);
+    Double_t originShift[3] = {-xSens, 0., 0.};
+    TGeoBBox *shapeContainer = new TGeoBBox(0.5*width,0.5*thickness,
+                                            0.5*length,originShift);
+    // then the volume is made of air, and using this shape
+    TGeoVolume *container = new TGeoVolume(Form("ITSSPDlay%d-Ladder",layer),
+                                           shapeContainer, medAir);
+    // the chip is a common box
+    TGeoVolume *volChip = mgr->MakeBox("ITSSPDchip",medSPDSiChip,
+                              0.5*chipWidth,0.5*chipThickness,0.5*chipLength);
+    // the sensor as well
+    TGeoVolume *volSens = mgr->MakeBox(GetSenstiveVolumeName(layer),medSi,
+                             0.5*sensWidth,0.5*sensThickness,0.5*sensLength);
+    // the guard ring shape is the subtraction of two boxes with the
+    // same center.
+    TGeoBBox  *shIn = new TGeoBBox(0.5*sensWidth,sensThickness,0.5*sensLength);
+    TGeoBBox  *shOut = new TGeoBBox(0.5*sensWidth+guardRingWidth,
+                              0.5*sensThickness,0.5*sensLength+guardRingWidth);
+    shIn->SetName("ITSSPDinnerBox");
+    shOut->SetName("ITSSPDouterBox");
+    TGeoCompositeShape *shBorder = new TGeoCompositeShape(
+      "ITSSPDgaurdRingBorder",Form("%s-%s",shOut->GetName(),shIn->GetName()));
+    TGeoVolume *volBorder = new TGeoVolume("ITSSPDgaurdRing",shBorder,medSi);
+    // bump bonds for one whole column
+    TGeoVolume *volBB = mgr->MakeBox("ITSSPDbb",medBumpBond,0.5*bbWidth,
+                                     0.5*bbThickness,0.5*bbLength);
+    // set colors of all objects for visualization
+    volSens->SetLineColor(kYellow + 1);
+    volChip->SetLineColor(kGreen);
+    volBorder->SetLineColor(kYellow + 3);
+    volBB->SetLineColor(kGray);
+
+    // ** MOVEMENTS **
+    // sensor is translated along thickness (X) and width (Y)
+    Double_t ySens = 0.5 * (thickness - sensThickness);
+    Double_t zSens = 0.0;
+    // we want that the x of the ladder is the same as the one of
+    // its sensitive volume
+    TGeoTranslation *trSens = new TGeoTranslation(0.0, ySens, zSens);
+    // bump bonds are translated along all axes:
+    // keep same Y used for sensors, but change the Z
+    TGeoTranslation *trBB[160];
+    Double_t x =  0.0;
+    Double_t y =  0.5 * (thickness - bbThickness) - sensThickness;
+    Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos;
+    Int_t i;
+    for (i = 0; i < 160; i++) {
+        trBB[i] = new TGeoTranslation(x, y, z);
+        switch(i) {
+        case  31:case  63:case  95:case 127:
+            z += fgkmm * 0.625 + fgkmm * 0.2;
+            break;
+        default:
+            z += fgkmm * 0.425;
+        } // end switch
+    } // end for i
+    // the chips are translated along the length (Z) and thickness (X)
+    TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0};
+    x = -xSens;
+    y = 0.5 * (chipThickness - thickness);
+    z = 0.0;
+    for (i = 0; i < 5; i++) {
+        z = -0.5*length + guardRingWidth
+            + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength;
+        trChip[i] = new TGeoTranslation(x, y, z);
+    } // end ofr i
+
+    // add nodes to container
+    container->AddNode(volSens, 1, trSens);
+    container->AddNode(volBorder, 1, trSens);
+    for (i = 0; i < 160; i++) container->AddNode(volBB,i+1,trBB[i]);
+    for (i = 0; i < 5; i++) container->AddNode(volChip,i+3,trChip[i]);
+    // return the container
+    return container;
 }
-//----------------------------------------------------------------------
-void AliITSv11GeometrySPD::CreateFigure0(const Char_t *filepath,
-                                         const Char_t *type,
-                                        TGeoManager *mgr){
-    // Creates Figure 0 for the documentation of this class. In this
-    // specific case, it creates the X,Y cross section of the SPD suport
-    // section, center and ends. The output is written to a standard
-    // file name to the path specificed.
-    // Inputs:
-    //   const Char_t *filepath  Path where the figure is to be drawn
-    //   const Char_t *type      The type of file, default is gif.
-    //   TGeoManager  *mgr       The TGeoManager default gGeoManager
-    // Output:
-    //   none.
-    // Return:
-    //   none.
-    TGeoXtru *sA0,*sA1,*sB0,*sB1;
-    //TPolyMarker *pmA,*pmB;
-    TPolyLine plA0,plA1,plB0,plB1;
-    TCanvas *canvas;
-    TLatex txt;
-    Double_t x=0.0,y=0.0;
-    Int_t i,kNRadii=6;
 
-    if(strcmp(filepath,"")){
-        Error("CreateFigure0","filepath=%s type=%s",filepath,type);
-    } // end if
+/*
+//______________________________________________________________________
+TGeoVolume* AliITSv11GeometrySPD::CreateLadder
+        (Int_t layer, TArrayD &sizes, TGeoManager *mgr) const
+{
     //
-    sA0 = (TGeoXtru*) mgr->GetVolume(
-        "ITSSPDCarbonFiberSupportSectorA0_1")->GetShape();
-    sA1 = (TGeoXtru*) mgr->GetVolume(
-        "ITSSPDCarbonFiberSupportSectorAirA1_1")->GetShape();
-    sB0 = (TGeoXtru*) mgr->GetVolume(
-        "ITSSPDCarbonFiberSupportSectorEndB0_1")->GetShape();
-    sB1 = (TGeoXtru*) mgr->GetVolume(
-        "ITSSPDCarbonFiberSupportSectorEndAirB1_1")->GetShape();
-    //pmA = new TPolyMarker();
-    //pmA.SetMarkerStyle(2); // +
-    //pmA.SetMarkerColor(7); // light blue
-    //pmB = new TPolyMarker();
-    //pmB.SetMarkerStyle(5); // X
-    //pmB.SetMarkerColor(6); // purple
-    plA0.SetPolyLine(sA0->GetNvert());
-    plA0.SetLineColor(1); // black
-    plA0.SetLineStyle(1);
-    plA1.SetPolyLine(sA1->GetNvert());
-    plA1.SetLineColor(2); // red
-    plA1.SetLineStyle(1);
-    plB0.SetPolyLine(sB0->GetNvert());
-    plB0.SetLineColor(3); // Green
-    plB0.SetLineStyle(2);
-    plB1.SetPolyLine(sB1->GetNvert());
-    plB1.SetLineColor(4); // Blue
-    plB1.SetLineStyle(2);
-    //for(i=0;i<kNRadii;i++) pmA.SetPoint(i,xyB1p[i][0],xyB1p[i][1]);
-    //for(i=0;i<kNRadii;i++) pmB.SetPoint(i,xyB1p[i][0],xyB1p[i][1]);
-    for(i=0;i<sA0->GetNvert();i++) plA0.SetPoint(i,sA0->GetX(i),sA0->GetY(i));
-    for(i=0;i<sA1->GetNvert();i++) plA1.SetPoint(i,sA1->GetX(i),sA1->GetY(i));
-    for(i=0;i<sB0->GetNvert();i++) plB0.SetPoint(i,sB0->GetX(i),sB0->GetY(i));
-    for(i=0;i<sB1->GetNvert();i++) plB1.SetPoint(i,sB1->GetX(i),sB1->GetY(i));
-    canvas = new TCanvas("AliITSv11GeometrySPDFig0","",1000,1000);
-    canvas->Range(-3.,-3.,3.,3.);
-    txt.SetTextSize(0.05);
-    txt.SetTextAlign(33);
+    // Creates the "ladder" = silicon sensor + 5 chips.
+    // Returns a TGeoVolume containing the following components:
+    //  - the sensor (TGeoBBox), whose name depends on the layer
+    //  - 5 identical chips (TGeoBBox)
+    //  - a guard ring around the sensor (subtraction of TGeoBBoxes),
+    //    which is separated from the rest of sensor because it is not
+    //    a sensitive part
+    //  - bump bondings (TGeoBBox stripes for the whole width of the
+    //    sensor, one per column).
+    // ---
+    // Arguments:
+    //  1 - the owner layer (MUST be 1 or 2 or a fatal error is raised)
+    //  2 - a TArrayD passed by reference, which will contain relevant
+    //      dimensions related to this object:
+    //      size[0] = 'thickness' (the smallest dimension)
+    //      size[1] = 'length' (the direction along the ALICE Z axis)
+    //      size[2] = 'width' (extension in the direction perp. to the
+    //                         above ones)
+    //  3 - the used TGeoManager
+
+    // ** CRITICAL CHECK ******************************************************
+    // layer number can be ONLY 1 or 2
+    if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2");
+
+    // ** MEDIA ***************************************************************
+
+    TGeoMedium *medAir       = GetMedium("AIR$",mgr);
+    TGeoMedium *medSPDSiChip = GetMedium("SPD SI CHIP$",mgr); // SPD SI CHIP
+    TGeoMedium *medSi        = GetMedium("SI$",mgr);
+    TGeoMedium *medBumpBond  = GetMedium("COPPER$",mgr);  // ??? BumpBond
+
+    // ** SIZES ***************************************************************
+
+    Double_t chipThickness  = fgkmm *  0.150;
+    Double_t chipWidth      = fgkmm * 15.950;
+    Double_t chipLength     = fgkmm * 13.600;
+    Double_t chipSpacing    = fgkmm *  0.400; // separation of chips along Z
+    Double_t sensThickness  = fgkmm *  0.200;
+    Double_t sensLength     = fgkmm * 69.600;
+    Double_t sensWidth      = fgkmm * 12.800;
+    Double_t guardRingWidth = fgkmm *  0.560; // guard ring around sensor
+    Double_t bbLength       = fgkmm * 0.042;
+    Double_t bbWidth        = sensWidth;
+    Double_t bbThickness    = fgkmm * 0.012;
+    Double_t bbPos          = 0.080;          // Z position w.r. to left pixel edge
+
+    // the three dimensions of the box which contains the ladder
+    // are returned in the 'sizes' argument, and are used for volumes positionement
+    // for readability purpose, they are linked by reference to a more meaningful name
+    sizes.Set(3);
+    Double_t &thickness = sizes[0];
+    Double_t &length = sizes[1];
+    Double_t &width = sizes[2];
+    // the container is a box which exactly enclose all the stuff
+    width = chipWidth;
+    length = sensLength + 2.0*guardRingWidth;
+    thickness = sensThickness + chipThickness + bbThickness;
+
+    // ** VOLUMES *************************************************************
+
+    // This is a sensitive volume.
+    // Local X must correspond to x coordinate of the sensitive volume:
+    // to respect this, the origin of the local reference system
+    // must be shifted from the middle of the box, using
+    // an additional option ('originShift') when creating the container shape:
+    Double_t xSens = 0.5 * (width - sensWidth - 2.0*guardRingWidth);
+    Double_t originShift[3] = {-xSens, 0., 0.};
+
+    // now the container is a TGeoBBox with this shift,
+    // and the volume is made of air (it does not exist in reality)
+    TGeoBBox *shLadder = new TGeoBBox(0.5*width, 0.5*thickness, 0.5*length, originShift);
+    TGeoVolume *vLadder = new TGeoVolume(Form("ITSSPDlay%d-Ladder", layer), shLadder, medAir);
+
+    // the chip is a common box
+    TGeoVolume *vChip = mgr->MakeBox("ITSSPDchip", medSPDSiChip,
+                                     0.5*chipWidth, 0.5*chipThickness, 0.5*chipLength);
+
+    // to build the sensor with its guard ring, we create a TGeoBBox with the size
+    // of the sensor + guard ring, and we insert the true sensor into it as an
+    // internal node: this simplifies the implementation with the same result
+    TGeoVolume *vSensGuard = mgr->MakeBox(Form("%s-guardRing", GetSenstiveVolumeName(layer)),
+                                          medSi,
+                                          0.5*sensWidth + guardRingWidth,
+                                          0.5*sensThickness,
+                                          0.5*sensLength + guardRingWidth);
+    TGeoVolume *vSens = mgr->MakeBox(GetSenstiveVolumeName(layer), medSi,
+                                     0.5*sensWidth,0.5*sensThickness,0.5*sensLength);
+    vSensGuard->AddNode(vSens, 0);
+    vSensGuard->SetTransparency(50);
+
+    // bump bond is a common box for one whole column
+    TGeoVolume *vBB = mgr->MakeBox("ITSSPDbb", medBumpBond,
+                                   0.5*bbWidth, 0.5*bbThickness, 0.5*bbLength);
+
+    // set colors of all objects for visualization
+    vLadder->SetLineColor(kRed);
+    vSens->SetLineColor(kYellow + 1);
+    vChip->SetLineColor(kGreen);
+    vSensGuard->SetLineColor(kYellow + 3);
+    vBB->SetLineColor(kGray);
+
+    // ** MOVEMENTS **
+    // sensor is translated along thickness (Y) and width (X)
+    Double_t ySens = 0.5 * (thickness - sensThickness);
+    Double_t zSens = 0.0;
+    // we want that the x of the ladder is the same as the one of
+    // its sensitive volume
+    TGeoTranslation *trSens = new TGeoTranslation(0.0, ySens, zSens);
+    // bump bonds are translated along all axes:
+    // keep same Y used for sensors, but change the Z
+    TGeoTranslation *trBB[160];
+    Double_t x =  0.0;
+    Double_t y =  0.5 * (thickness - bbThickness) - sensThickness;
+    Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos;
+    Int_t i;
+    for (i = 0; i < 160; i++) {
+        trBB[i] = new TGeoTranslation(x, y, z);
+        switch(i) {
+            case  31:case  63:case  95:case 127:
+                z += fgkmm * 0.625 + fgkmm * 0.2;
+                break;
+            default:
+                z += fgkmm * 0.425;
+        } // end switch
+    } // end for i
+    // the chips are translated along the length (Z) and thickness (X)
+    TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0};
+    x = -xSens;
+    y = 0.5 * (chipThickness - thickness);
+    z = 0.0;
+    for (i = 0; i < 5; i++) {
+        z = -0.5*length + guardRingWidth
+                + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength;
+        trChip[i] = new TGeoTranslation(x, y, z);
+    } // end ofr i
+
+    // add nodes to container
+    vLadder->AddNode(vSensGuard, 1, trSens);
+    //vLadderAddNode(volBorder, 1, trSens);
+    for (i = 0; i < 160; i++) vLadder->AddNode(vBB,i+1,trBB[i]);
+    for (i = 0; i < 5; i++) vLadder->AddNode(vChip,i+3,trChip[i]);
+    // return the container
+    return vLadder;
+}
+*/
+
+//______________________________________________________________________
+TGeoVolume* AliITSv11GeometrySPD::CreateClip(TArrayD &sizes,Bool_t isDummy,
+                                             TGeoManager *mgr) const
+{
+    //
+    // Creates the carbon fiber clips which are added to the central ladders.
+    // They have a complicated shape which is approximated by a TGeoXtru
+    // Implementation of a single clip over an half-stave.
+    // It has a complicated shape which is approximated to a section like this:
+    //
+    //     6
+    //     /\   .
+    //  7 //\\  5
+    //    / 1\\___________________4
+    //   0    \___________________
+    //        2                   3
+    // with a finite thickness for all the shape
+    // Its local reference frame is such that point A corresponds to origin.
+    //
+    Double_t fullLength      = fgkmm * 12.6;    // = x4 - x0
+    Double_t flatLength      = fgkmm *  5.4;    // = x4 - x3
+    Double_t inclLongLength  = fgkmm *  5.0;    // = 5-6
+    Double_t inclShortLength = fgkmm *  2.0;    // = 6-7
+    Double_t fullHeight      = fgkmm *  2.8;    // = y6 - y3
+    Double_t thickness       = fgkmm *  0.18;    // thickness
+    Double_t totalLength     = fgkmm * 52.0;    // total length in Z
+    Double_t holeSize        = fgkmm *  5.0;    // dimension of cubic
+                                                // hole inserted for pt1000
+    Double_t angle1          = 27.0;            // supplementary of angle DCB
+    Double_t angle2;                            // angle DCB
+    Double_t angle3;                            // angle of GH with vertical
+
+    angle2 = 0.5 * (180.0 - angle1);
+    angle3 = 90.0 - TMath::ACos(fullLength - flatLength -
+                                inclLongLength*TMath::Cos(angle1)) *
+                                TMath::RadToDeg();
+    angle1 *= TMath::DegToRad();
+    angle2 *= TMath::DegToRad();
+    angle3 *= TMath::DegToRad();
+
+    Double_t x[8], y[8];
+
+    x[0] =  0.0;
+    x[1] = x[0] + fullLength - flatLength - inclLongLength*TMath::Cos(angle1);
+    x[2] = x[0] + fullLength - flatLength;
+    x[3] = x[0] + fullLength;
+    x[4] = x[3];
+    x[5] = x[4] - flatLength + thickness * TMath::Cos(angle2);
+    x[6] = x[1];
+    x[7] = x[0];
+
+    y[0] = 0.0;
+    y[1] = y[0] + inclShortLength * TMath::Cos(angle3);
+    y[2] = y[1] - inclLongLength * TMath::Sin(angle1);
+    y[3] = y[2];
+    y[4] = y[3] + thickness;
+    y[5] = y[4];
+    y[6] = y[1] + thickness;
+    y[7] = y[0] + thickness;
+
+    sizes.Set(7);
+    sizes[0] = totalLength;
+    sizes[1] = fullHeight;
+    sizes[2] = y[2];
+    sizes[3] = y[6];
+    sizes[4] = x[0];
+    sizes[5] = x[3];
+    sizes[6] = x[2];
+
+    if(isDummy){// use this argument when on ewant just the
+                // positions without create any volume
+        return NULL;
+    } // end if isDummy
+
+    TGeoXtru *shClip = new TGeoXtru(2);
+    shClip->SetName("ITSSPDshclip");
+    shClip->DefinePolygon(8, x, y);
+    shClip->DefineSection(0, -0.5*totalLength, 0., 0., 1.0);
+    shClip->DefineSection(1,  0.5*totalLength, 0., 0., 1.0);
+
+    TGeoBBox *shHole = new TGeoBBox("ITSSPDSHClipHole",0.5*holeSize,
+                                    0.5*holeSize,0.5*holeSize);
+    TGeoTranslation *tr1 = new TGeoTranslation("ITSSPDTRClipHole1",x[2],0.0,
+                                               fgkmm*14.);
+    TGeoTranslation *tr2 = new TGeoTranslation("ITSSPDTRClipHole2",x[2],0.0,
+                                               0.0);
+    TGeoTranslation *tr3 = new TGeoTranslation("ITSSPDTRClipHole3",x[2],0.0,
+                                               -fgkmm*14.);
+    tr1->RegisterYourself();
+    tr2->RegisterYourself();
+    tr3->RegisterYourself();
+
+    //TString strExpr("ITSSPDshclip-(");
+    TString strExpr(shClip->GetName());
+    strExpr.Append("-(");
+    strExpr.Append(Form("%s:%s+", shHole->GetName(), tr1->GetName()));
+    strExpr.Append(Form("%s:%s+", shHole->GetName(), tr2->GetName()));
+    strExpr.Append(Form("%s:%s)", shHole->GetName(), tr3->GetName()));
+    TGeoCompositeShape *shClipHole = new TGeoCompositeShape(
+        "ITSSPDSHClipHoles",strExpr.Data());
+
+    TGeoMedium *mat = GetMedium("SPD C (M55J)$", mgr);
+    TGeoVolume *vClip = new TGeoVolume("ITSSPDclip", shClipHole, mat);
+    vClip->SetLineColor(kGray + 2);
+    return vClip;
+}//______________________________________________________________________
+TGeoCompositeShape* AliITSv11GeometrySPD::CreateGroundingFoilShape
+                       (Int_t itype,Double_t &length,Double_t &width,
+                        Double_t thickness,TArrayD &sizes)
+{
+    //
+    // Creates the typical composite shape of the grounding foil:
+    //
+    //  +---------------------------------------------------------+
+    //  |                         5           6      9            |
+    //  |                         +-----------+      +------------+ 10
+    //  |             O           |           |      |
+    //  |                 3 /-----+ 4         +------+
+    //  |     1            /                 7        8
+    //  |      /----------/
+    //  +-----/                2                                  +
+    //       0
+    //       Z                                                    + 11
+    //
+    // This shape is used 4 times: two layers of glue, one in kapton
+    // and one in aluminum, taking into account that the aliminum
+    // layer has small differences in the size of some parts.
+    // ---
+    // In order to overcome problems apparently due to a large number
+    // of points, the shape creation is done according the following
+    // steps:
+    //    1) a TGeoBBox is created with a size right enough to contain
+    //       the whole shape (0-1-X-13)
+    //    2) holes are defined as other TGeoBBox which are subtracted
+    //       from the main shape
+    //    3) a TGeoXtru is defined connecting the points (0-->11-->0)
+    //       and is also subtracted from the main shape
+    // ---
+    // The argument ("type") is used to choose between all these
+    // possibilities:
+    //   - type = 0 --> kapton layer
+    //   - type = 1 --> aluminum layer
+    //   - type = 2 --> glue layer between support and GF
+    //   - type = 3 --> glue layer between GF and ladders
+    // Returns: a TGeoCompositeShape which will then be used to shape
+    // several volumes. Since TGeoXtru is used, the local reference
+    // frame of this object has X horizontal and Y vertical w.r to
+    // the shape drawn above, and Z axis going perpendicularly to the screen.
+    // This is not the correct reference for the half stave, for which
+    // the "long" dimension is Z and the "short" is X, while Y goes in
+    // the direction of thickness. This will imply some rotations when
+    // using the volumes created with this shape.
+
+    // suffix to differentiate names
+    Char_t type[10];
+
+    // size of the virtual box containing exactly this volume
+    length = fgkmm * 243.18;
+    width  = fgkmm *  15.95;
+    if (itype == 1) {
+        length -= fgkmm * 0.4;
+        width  -= fgkmm * 0.4;
+    } // end if itype==1
+    switch (itype) {
+    case 0:
+        sprintf(type,"Kap");
+        break;
+    case 1:
+        sprintf(type,"Alu");
+        break;
+    case 2:
+        sprintf(type,"Glue1");
+        break;
+    case 3:
+        sprintf(type,"Glue2");
+        break;
+    }
+    // we divide the shape in several slices along the horizontal
+    // direction (local X) here we define define the length of all
+    // sectors (from leftmost to rightmost)
+    Int_t i;
+    Double_t sliceLength[] = { 140.71,  2.48,  26.78,   4.00,
+                                10.00, 24.40,  10.00,  24.81 };
+    for (i = 0; i < 8; i++) sliceLength[i] *= fgkmm;
+    if (itype == 1) {
+        sliceLength[0] -= fgkmm * 0.2;
+        sliceLength[4] -= fgkmm * 0.2;
+        sliceLength[5] += fgkmm * 0.4;
+        sliceLength[6] -= fgkmm * 0.4;
+    } // end if itype ==1
+
+    // as shown in the drawing, we have four different widths
+    // (along local Y) in this shape:
+    Double_t widthMax  = fgkmm * 15.95;
+    Double_t widthMed1 = fgkmm * 15.00;
+    Double_t widthMed2 = fgkmm * 11.00;
+    Double_t widthMin  = fgkmm *  4.40;
+    if (itype == 1) {
+        widthMax  -= fgkmm * 0.4;
+        widthMed1 -= fgkmm * 0.4;
+        widthMed2 -= fgkmm * 0.4;
+        widthMin  -= fgkmm * 0.4;
+    } // end if itype==1
+
+    // create the main shape
+    TGeoBBox *shGroundFull = 0;
+    shGroundFull = new TGeoBBox(Form("ITSSPDSHgFoil%sFull", type),
+                                0.5*length,0.5*width, 0.5*thickness);
+
+    // create the polygonal shape to be subtracted to give the correct
+    // shape to the borders its vertices are defined in sugh a way that
+    // this polygonal will be placed in the correct place considered
+    // that the origin of the local reference frame is in the center
+    // of the main box: we fix the starting point at the lower-left
+    // edge of the shape (point 12), and add all points in order,
+    // following a clockwise rotation
+
+    Double_t x[13], y[13];
+    x[ 0] = -0.5 * length + sliceLength[0];
+    y[ 0] = -0.5 * widthMax;
+
+    x[ 1] = x[0] + sliceLength[1];
+    y[ 1] = y[0] + (widthMax - widthMed1);
+
+    x[ 2] = x[1] + sliceLength[2];
+    y[ 2] = y[1];
+
+    x[ 3] = x[2] + sliceLength[3];
+    y[ 3] = y[2] + (widthMed1 - widthMed2);
+
+    x[ 4] = x[3] + sliceLength[4];
+    y[ 4] = y[3];
+
+    x[ 5] = x[4];
+    y[ 5] = y[4] + (widthMed2 - widthMin);
+
+    x[ 6] = x[5] + sliceLength[5];
+    y[ 6] = y[5];
+
+    x[ 7] = x[6];
+    y[ 7] = y[4];
+
+    x[ 8] = x[7] + sliceLength[6];
+    y[ 8] = y[7];
+
+    x[ 9] = x[8];
+    y[ 9] = y[6];
+
+    x[10] = x[9] + sliceLength[7] + 0.5;
+    y[10] = y[9];
+
+    x[11] = x[10];
+    y[11] = y[0] - 0.5;
+
+    x[12] = x[0];
+    y[12] = y[11];
+
+    // create the shape
+    TGeoXtru *shGroundXtru = new TGeoXtru(2);
+    shGroundXtru->SetName(Form("ITSSPDSHgFoil%sXtru", type));
+    shGroundXtru->DefinePolygon(13, x, y);
+    shGroundXtru->DefineSection(0, -thickness, 0., 0., 1.0);
+    shGroundXtru->DefineSection(1,  thickness, 0., 0., 1.0);
+
+    // define a string which will express the algebric operations among volumes
+    // and add the subtraction of this shape from the main one
+    TString strComposite(Form("ITSSPDSHgFoil%sFull-(%s+", type,
+                              shGroundXtru->GetName()));
+
+    // define the holes according to size information coming from drawings:
+    Double_t holeLength = fgkmm * 10.00;
+    Double_t holeWidth  = fgkmm *  7.50;
+    Double_t holeSepX0  = fgkmm *  7.05;  // separation between center
+                                          // of first hole and left border
+    Double_t holeSepXC  = fgkmm * 14.00;  // separation between the centers
+                                          // of two consecutive holes
+    Double_t holeSepX1  = fgkmm * 15.42;  // separation between centers of
+                                          // 5th and 6th hole
+    Double_t holeSepX2  = fgkmm * 22.00;  // separation between centers of
+                                          // 10th and 11th hole
+    if (itype == 1) {
+        holeSepX0  -= fgkmm * 0.2;
+        holeLength += fgkmm * 0.4;
+        holeWidth  += fgkmm * 0.4;
+    } // end if itype==1
+    sizes.Set(7);
+    sizes[0] = holeLength;
+    sizes[1] = holeWidth;
+    sizes[2] = holeSepX0;
+    sizes[3] = holeSepXC;
+    sizes[4] = holeSepX1;
+    sizes[5] = holeSepX2;
+    sizes[6] = fgkmm * 4.40;
+
+    // X position of hole center (will change for each hole)
+    Double_t holeX = -0.5*length;
+    // Y position of center of all holes (= 4.4 mm from upper border)
+    Double_t holeY = 0.5*(width - holeWidth) - widthMin;
+
+    // create a shape for the holes (common)
+    TGeoBBox *shHole = 0;
+    shHole = new TGeoBBox(Form("ITSSPD%sGfoilHole", type),0.5*holeLength,
+                          0.5*holeWidth, thickness);
+
+    // insert the holes in the XTRU shape:
+    // starting from the first value of X, they are simply
+    // shifted along this axis
+    char name[200];
+    TGeoTranslation *transHole[11];
+    for (i = 0; i < 11; i++) {
+        // set the position of the hole, depending on index
+        if (i == 0) {
+            holeX += holeSepX0;
+        }else if (i < 5) {
+            holeX += holeSepXC;
+        }else if (i == 5) {
+            holeX += holeSepX1;
+        }else if (i < 10) {
+            holeX += holeSepXC;
+        }else {
+            holeX += holeSepX2;
+        } // end if else if's
+        //cout << i << " --> X = " << holeX << endl;
+        sprintf(name,"ITSSPDTRgFoil%sHole%d", type, i);
+        transHole[i] = new TGeoTranslation(name, holeX, holeY, 0.0);
+        transHole[i]->RegisterYourself();
+        strComposite.Append(Form("ITSSPD%sGfoilHole:%s", type, name));
+        if (i < 10) strComposite.Append("+"); else strComposite.Append(")");
+    } // end for i
+
+    // create composite shape
+    TGeoCompositeShape *shGround = new TGeoCompositeShape(
+        Form("ITSSPDSHgFoil%s", type), strComposite.Data());
+
+    return shGround;
+}
+//______________________________________________________________________
+TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateGroundingFoil(Bool_t isRight,
+                                   TArrayD &sizes, TGeoManager *mgr)
+{
+    //
+    // Create a volume containing all parts of the grounding foil a
+    // for a half-stave.
+    // It consists of 4 layers with the same shape but different thickness:
+    // 1) a layer of glue
+    // 2) the aluminum layer
+    // 3) the kapton layer
+    // 4) another layer of glue
+    // ---
+    // Arguments:
+    //  1: a boolean value to know if it is the grounding foir for
+    //     the right or left side
+    //  2: a TArrayD which will contain the dimension of the container box:
+    //       - size[0] = length along Z (the beam line direction)
+    //       - size[1] = the 'width' of the stave, which defines, together
+    //                   with Z, the plane of the carbon fiber support
+    //       - size[2] = 'thickness' (= the direction along which all
+    //                    stave components are superimposed)
+    //  3: the TGeoManager
+    // ---
+    // The return value is a TGeoBBox volume containing all grounding
+    // foil components.
+    // to avoid strange behaviour of the geometry manager,
+    // create a suffix to be used in the names of all shapes
+    //
+    char suf[5];
+    if (isRight) strcpy(suf, "R"); else strcpy(suf, "L");
+    // this volume will be created in order to ease its placement in
+    // the half-stave; then, it is added here the small distance of
+    // the "central" edge of each volume from the Z=0 plane in the stave
+    // reference (which coincides with ALICE one)
+    Double_t dist = fgkmm * 0.71;
+
+    // define materials
+    TGeoMedium *medKap  = GetMedium("SPD KAPTON(POLYCH2)$", mgr);
+    TGeoMedium *medAlu  = GetMedium("AL$", mgr);
+    TGeoMedium *medGlue = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT
+
+    // compute the volume shapes (thicknesses change from one to the other)
+    Double_t kpLength, kpWidth, alLength, alWidth;
+    TArrayD  kpSize, alSize, glSize;
+    Double_t kpThickness = fgkmm * 0.04;
+    Double_t alThickness = fgkmm * 0.01;
+//cout << "AL THICKNESS" << alThickness << endl;
+    //Double_t g0Thickness = fgkmm * 0.1175 - fgkGapHalfStave;
+    //Double_t g1Thickness = fgkmm * 0.1175 - fgkGapLadder;
+    Double_t g0Thickness = fgkmm * 0.1275 - fgkGapHalfStave;
+    Double_t g1Thickness = fgkmm * 0.1275 - fgkGapLadder;
+    TGeoCompositeShape *kpShape = CreateGroundingFoilShape(0,kpLength,kpWidth,
+                                                          kpThickness, kpSize);
+    TGeoCompositeShape *alShape = CreateGroundingFoilShape(1,alLength,alWidth,
+                                                          alThickness, alSize);
+    TGeoCompositeShape *g0Shape = CreateGroundingFoilShape(2,kpLength,kpWidth,
+                                                          g0Thickness, glSize);
+    TGeoCompositeShape *g1Shape = CreateGroundingFoilShape(3,kpLength,kpWidth,
+                                                          g1Thickness, glSize);
+    // create the component volumes and register their sizes in the
+    // passed arrays for readability reasons, some reference variables
+    // explicit the meaning of the array slots
+    TGeoVolume *kpVol = new TGeoVolume(Form("ITSSPDgFoilKap%s",suf),
+                                       kpShape, medKap);
+    TGeoVolume *alVol = new TGeoVolume(Form("ITSSPDgFoilAlu%s",suf),
+                                       alShape, medAlu);
+    TGeoVolume *g0Vol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf),
+                                       g0Shape, medGlue);
+    TGeoVolume *g1Vol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf),
+                                       g1Shape, medGlue);
+    // set colors for the volumes
+    kpVol->SetLineColor(kRed);
+    alVol->SetLineColor(kGray);
+    g0Vol->SetLineColor(kYellow);
+    g1Vol->SetLineColor(kYellow);
+    // create references for the final size object
+    if (sizes.GetSize() != 3) sizes.Set(3);
+    Double_t &fullThickness = sizes[0];
+    Double_t &fullLength = sizes[1];
+    Double_t &fullWidth = sizes[2];
+    // kapton leads the larger dimensions of the foil
+    // (including the cited small distance from Z=0 stave reference plane)
+    // the thickness is the sum of the ones of all components
+    fullLength    = kpLength + dist;
+    fullWidth     = kpWidth;
+    fullThickness = kpThickness + alThickness + g0Thickness + g1Thickness;
+    // create the container
+//    TGeoMedium *air = GetMedium("AIR$", mgr);
+    TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form("ITSSPDgFOIL-%s",suf));
+//    TGeoVolume *container = mgr->MakeBox(Form("ITSSPDgFOIL-%s",suf),
+//                 air, 0.5*fullThickness, 0.5*fullWidth, 0.5*fullLength);
+    // create the common correction rotation (which depends of what side
+    // we are building)
+    TGeoRotation *rotCorr = new TGeoRotation(*gGeoIdentity);
+    if (isRight) rotCorr->RotateY(90.0);
+    else rotCorr->RotateY(-90.0);
+    // compute the translations, which are in the length and
+    // thickness directions
+    Double_t x, y, z, shift = 0.0;
+    if (isRight) shift = dist;
+    // glue (bottom)
+    x = -0.5*(fullThickness - g0Thickness);
+    z =  0.5*(fullLength - kpLength) - shift;
+    TGeoCombiTrans *glTrans0 = new TGeoCombiTrans(x, 0.0, z, rotCorr);
+    // kapton
+    x += 0.5*(g0Thickness + kpThickness);
+    TGeoCombiTrans *kpTrans  = new TGeoCombiTrans(x, 0.0, z, rotCorr);
+    // aluminum
+    x += 0.5*(kpThickness + alThickness);
+    z  = 0.5*(fullLength - alLength) - shift - 0.5*(kpLength - alLength);
+    TGeoCombiTrans *alTrans  = new TGeoCombiTrans(x, 0.0, z, rotCorr);
+    // glue (top)
+    x += 0.5*(alThickness + g1Thickness);
+    z  = 0.5*(fullLength - kpLength) - shift;
+    TGeoCombiTrans *glTrans1 = new TGeoCombiTrans(x, 0.0, z, rotCorr);
+
+    //cout << fgkGapHalfStave << endl;
+    //cout << g0Thickness << endl;
+    //cout << kpThickness << endl;
+    //cout << alThickness << endl;
+    //cout << g1Thickness << endl;
+
+    // add to container
+    container->SetLineColor(kMagenta-10);
+    container->AddNode(kpVol, 1, kpTrans);
+    container->AddNode(alVol, 1, alTrans);
+    container->AddNode(g0Vol, 1, glTrans0);
+    container->AddNode(g1Vol, 2, glTrans1);
+    // to add the grease we remember the sizes of the holes, stored as
+    // additional parameters in the kapton layer size:
+    //   - sizes[3] = hole length
+    //   - sizes[4] = hole width
+    //   - sizes[5] = position of first hole center
+    //   - sizes[6] = standard separation between holes
+    //   - sizes[7] = separation between 5th and 6th hole
+    //   - sizes[8] = separation between 10th and 11th hole
+    //   - sizes[9] = separation between the upper hole border and
+    //                the foil border
+    Double_t holeLength      = kpSize[0];
+    Double_t holeWidth       = kpSize[1];
+    Double_t holeFirstZ      = kpSize[2];
+    Double_t holeSepZ        = kpSize[3];
+    Double_t holeSep5th6th   = kpSize[4];
+    Double_t holeSep10th11th = kpSize[5];
+    Double_t holeSepY        = kpSize[6];
+    // volume (common)
+    // Grease has not been defined to date. Need much more information
+    // no this material!
+    TGeoMedium *grease = GetMedium("SPD KAPTON(POLYCH2)$", mgr); // ??? GREASE
+    TGeoVolume *hVol   = mgr->MakeBox("ITSSPDGrease", grease,
+                           0.5*fullThickness, 0.5*holeWidth, 0.5*holeLength);
+    hVol->SetLineColor(kBlue);
+    // displacement of volumes in the container
+    Int_t    idx = 1;  // copy numbers start from 1.
+    x = 0.0;
+    y = 0.5*(fullWidth - holeWidth) - holeSepY;
+    if (isRight) z = holeFirstZ - 0.5*fullLength + dist;
+    else z = 0.5*fullLength - holeFirstZ - dist;
+    for (Int_t i = 0; i < 11; i++) {
+        TGeoTranslation *t = 0;
+        t = new TGeoTranslation(x, y, -z);
+        container->AddNode(hVol, idx++, t);
+        if (i < 4) shift = holeSepZ;
+        else if (i == 4) shift = holeSep5th6th;
+        else if (i < 9) shift = holeSepZ;
+        else shift = holeSep10th11th;
+        if (isRight) z += shift;
+        else z -= shift;
+    } // end for i
+    return container;
+}
+//___________________________________________________________________
+TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateMCM(Bool_t isRight,
+                                   TArrayD &sizes, TGeoManager *mgr) const
+{
+    //
+    // Create a TGeoAssembly containing all the components of the MCM.
+    // The TGeoVolume container is rejected due to the possibility of overlaps
+    // when placing this object on the carbon fiber sector.
+    // The assembly contains:
+    //  - the thin part of the MCM (integrated circuit)
+    //  - the MCM chips (specifications from EDMS)
+    //  - the cap which covers the zone where chips are bound to MCM
+    // ---
+    // The local reference frame of this assembly is defined in such a way
+    // that all volumes are contained in a virtual box whose center
+    // is placed exactly in the middle of the occupied space w.r to all
+    // directions. This will ease the positioning of this object in the
+    // half-stave. The sizes of this virtual box are stored in
+    // the array passed by reference.
+    // ---
+    // Arguments:
+    //  - a boolean flag to know if this is the "left" or "right" MCM, when
+    //    looking at the stave from above (i.e. the direction from which
+    //    one sees bus over ladders over grounding foil) and keeping the
+    //    continuous border in the upper part, one sees the thicker part
+    //    on the left or right.
+    //  - an array passed by reference which will contain the size of
+    //    the virtual container.
+    //  - a pointer to the used TGeoManager.
+    //
+
+    // to distinguish the "left" and "right" objects, a suffix is created
+    char suf[5];
+    if (isRight) strcpy(suf, "R"); else strcpy(suf, "L");
+
+    // ** MEDIA **
+    TGeoMedium *medBase = GetMedium("SPD KAPTON(POLYCH2)$",mgr);// ??? MCM BASE
+    TGeoMedium *medChip = GetMedium("SPD SI CHIP$",mgr);
+    TGeoMedium *medCap  = GetMedium("AL$",mgr);
+
+    // The shape of the MCM is divided into 3 sectors with different
+    // widths (Y) and lengths (X), like in this sketch:
+    //
+    //   0                      1                                   2
+    //    +---------------------+-----------------------------------+
+    //    |                                    4       sect 2       |
+    //    |                    6      sect 1    /-------------------+
+    //    |      sect 0         /--------------/                    3
+    //    +--------------------/               5
+    //   8                     7
+    //
+    // the inclination of all oblique borders (6-7, 4-5) is always 45 degrees.
+    // From drawings we can parametrize the dimensions of all these sectors,
+    // then the shape of this part of the MCM is implemented as a
+    // TGeoXtru centerd in the virtual XY space.
+    // The first step is definig the relevant sizes of this shape:
+    Int_t i, j;
+    Double_t mcmThickness  = fgkmm * 0.35;
+    Double_t sizeXtot      = fgkmm * 105.6;   // total distance (0-2)
+    // resp. 7-8, 5-6 and 3-4
+    Double_t sizeXsector[3] = {fgkmm * 28.4, fgkmm * 41.4, fgkmm * 28.8};
+    // resp. 0-8, 1-6 and 2-3
+    Double_t sizeYsector[3] = {fgkmm * 15.0, fgkmm * 11.0, fgkmm *  8.0};
+    Double_t sizeSep01 = fgkmm * 4.0;      // x(6)-x(7)
+    Double_t sizeSep12 = fgkmm * 3.0;      // x(4)-x(5)
+
+    // define sizes of chips (last is the thickest)
+    Double_t chipLength[5]     = { 4.00, 6.15, 3.85, 5.60, 18.00 };
+    Double_t chipWidth[5]      = { 3.00, 4.10, 3.85, 5.60,  5.45 };
+    Double_t chipThickness[5]  = { 0.60, 0.30, 0.30, 1.00,  1.20 };
+    TString  name[5];
+    name[0] = "ITSSPDanalog";
+    name[1] = "ITSSPDpilot";
+    name[2] = "ITSSPDgol";
+    name[3] = "ITSSPDrx40";
+    name[4] = "ITSSPDoptical";
+    Color_t color[5] = { kCyan, kGreen, kYellow, kBlue, kOrange };
+
+    // define the sizes of the cover
+    Double_t capThickness = fgkmm * 0.3;
+    Double_t capHeight = fgkmm * 1.7;
+
+    // compute the total size of the virtual container box
+    sizes.Set(3);
+    Double_t &thickness = sizes[0];
+    Double_t &length = sizes[1];
+    Double_t &width = sizes[2];
+    length = sizeXtot;
+    width = sizeYsector[0];
+    thickness = mcmThickness + capHeight;
+
+    // define all the relevant vertices of the polygon
+    // which defines the transverse shape of the MCM.
+    // These values are used to several purposes, and
+    // for each one, some points must be excluded
+    Double_t xRef[9], yRef[9];
+    xRef[0] = -0.5*sizeXtot;
+    yRef[0] =  0.5*sizeYsector[0];
+    xRef[1] =  xRef[0] + sizeXsector[0] + sizeSep01;
+    yRef[1] =  yRef[0];
+    xRef[2] = -xRef[0];
+    yRef[2] =  yRef[0];
+    xRef[3] =  xRef[2];
+    yRef[3] =  yRef[2] - sizeYsector[2];
+    xRef[4] =  xRef[3] - sizeXsector[2];
+    yRef[4] =  yRef[3];
+    xRef[5] =  xRef[4] - sizeSep12;
+    yRef[5] =  yRef[4] - sizeSep12;
+    xRef[6] =  xRef[5] - sizeXsector[1];
+    yRef[6] =  yRef[5];
+    xRef[7] =  xRef[6] - sizeSep01;
+    yRef[7] =  yRef[6] - sizeSep01;
+    xRef[8] =  xRef[0];
+    yRef[8] = -yRef[0];
+
+    // the above points are defined for the "right" MCM (if ve view the
+    // stave from above) in order to change to the "left" one, we must
+    // change the sign to all X values:
+    if (isRight) for (i = 0; i < 9; i++) xRef[i] = -xRef[i];
+
+    // the shape of the MCM and glue layer are done excluding point 1,
+    // which is not necessary and cause the geometry builder to get confused
+    j = 0;
+    Double_t xBase[8], yBase[8];
+    for (i = 0; i < 9; i++) {
+        if (i == 1) continue;
+        xBase[j] = xRef[i];
+        yBase[j] = yRef[i];
+        j++;
+    } // end for i
+
+    // the MCM cover is superimposed over the zones 1 and 2 only
+    Double_t xCap[6], yCap[6];
+    j = 0;
+    for (i = 1; i <= 6; i++) {
+        xCap[j] = xRef[i];
+        yCap[j] = yRef[i];
+        j++;
+    } // end for i
+
+    // define positions of chips,
+    // which must be added to the bottom-left corner of MCM
+    // and divided by 1E4;
+    Double_t chipX[5], chipY[5];
+    if (isRight) {
+        chipX[0] = 666320.;
+        chipX[1] = 508320.;
+        chipX[2] = 381320.;
+        chipX[3] = 295320.;
+        chipX[4] = 150320.;
+        chipY[0] =  23750.;
+        chipY[1] =  27750.;
+        chipY[2] =  20750.;
+        chipY[3] =  42750.;
+        chipY[4] =  39750.;
+    } else {
+        chipX[0] = 389730.;
+        chipX[1] = 548630.;
+        chipX[2] = 674930.;
+        chipX[3] = 761430.;
+        chipX[4] = 905430.;
+        chipY[0] =  96250.;
+        chipY[1] =  91950.;
+        chipY[2] =  99250.;
+        chipY[3] = 107250.;
+        chipY[4] = 109750.;
+    } // end if isRight
+    for (i = 0; i < 5; i++) {
+        chipX[i] *= 0.00001;
+        chipY[i] *= 0.00001;
+        if (isRight) {
+            chipX[i] += xRef[3];
+            chipY[i] += yRef[3];
+        } else {
+            chipX[i] += xRef[8];
+            chipY[i] += yRef[8];
+        } // end for isRight
+        chipLength[i] *= fgkmm;
+        chipWidth[i] *= fgkmm;
+        chipThickness[i] *= fgkmm;
+    } // end for i
+
+    // create shapes for MCM
+    Double_t z1, z2;
+    TGeoXtru *shBase = new TGeoXtru(2);
+    z1 = -0.5*thickness;
+    z2 = z1 + mcmThickness;
+    shBase->DefinePolygon(8, xBase, yBase);
+    shBase->DefineSection(0, z1, 0., 0., 1.0);
+    shBase->DefineSection(1, z2, 0., 0., 1.0);
+
+    // create volumes of MCM
+    TGeoVolume *volBase = new TGeoVolume("ITSSPDbase", shBase, medBase);
+    volBase->SetLineColor(kRed);
+
+    // to create the border of the MCM cover, it is required the
+    // subtraction of two shapes the outer is created using the
+    // reference points defined here
+    TGeoXtru *shCapOut = new TGeoXtru(2);
+    shCapOut->SetName(Form("ITSSPDshCAPOUT%s", suf));
+    z1 = z2;
+    z2 = z1 + capHeight - capThickness;
+    shCapOut->DefinePolygon(6, xCap, yCap);
+    shCapOut->DefineSection(0, z1, 0., 0., 1.0);
+    shCapOut->DefineSection(1, z2, 0., 0., 1.0);
+    // the inner is built similarly but subtracting the thickness
+    Double_t angle, cs;
+    Double_t xin[6], yin[6];
+    if (!isRight) {
+        angle = 45.0;
+        cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
+        xin[0] = xCap[0] + capThickness;
+        yin[0] = yCap[0] - capThickness;
+        xin[1] = xCap[1] - capThickness;
+        yin[1] = yin[0];
+        xin[2] = xin[1];
+        yin[2] = yCap[2] + capThickness;
+        xin[3] = xCap[3] - capThickness*cs;
+        yin[3] = yin[2];
+        xin[4] = xin[3] - sizeSep12;
+        yin[4] = yCap[4] + capThickness;
+        xin[5] = xin[0];
+        yin[5] = yin[4];
+    } else {
+        angle = 45.0;
+        cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
+        xin[0] = xCap[0] - capThickness;
+        yin[0] = yCap[0] - capThickness;
+        xin[1] = xCap[1] + capThickness;
+        yin[1] = yin[0];
+        xin[2] = xin[1];
+        yin[2] = yCap[2] + capThickness;
+        xin[3] = xCap[3] - capThickness*cs;
+        yin[3] = yin[2];
+        xin[4] = xin[3] + sizeSep12;
+        yin[4] = yCap[4] + capThickness;
+        xin[5] = xin[0];
+        yin[5] = yin[4];
+    } // end if !isRight
+    TGeoXtru *shCapIn = new TGeoXtru(2);
+    shCapIn->SetName(Form("ITSSPDshCAPIN%s", suf));
+    shCapIn->DefinePolygon(6, xin, yin);
+    shCapIn->DefineSection(0, z1 - 0.01, 0., 0., 1.0);
+    shCapIn->DefineSection(1, z2 + 0.01, 0., 0., 1.0);
+    // compose shapes
+    TGeoCompositeShape *shCapBorder = new TGeoCompositeShape(
+                            Form("ITSSPDshBORDER%s", suf),
+                            Form("%s-%s", shCapOut->GetName(),
+                                 shCapIn->GetName()));
+    // create volume
+    TGeoVolume *volCapBorder = new TGeoVolume("ITSSPDcapBoarder",
+                                              shCapBorder,medCap);
+    volCapBorder->SetLineColor(kGreen);
+    // finally, we create the top of the cover, which has the same
+    // shape of outer border and a thickness equal of the one othe
+    // cover border one
+    TGeoXtru *shCapTop = new TGeoXtru(2);
+    z1 = z2;
+    z2 = z1 + capThickness;
+    shCapTop->DefinePolygon(6, xCap, yCap);
+    shCapTop->DefineSection(0, z1, 0., 0., 1.0);
+    shCapTop->DefineSection(1, z2, 0., 0., 1.0);
+    TGeoVolume *volCapTop = new TGeoVolume("ITSSPDcapTop", shCapTop, medCap);
+    volCapTop->SetLineColor(kBlue);
+
+    // create container assembly with right suffix
+    TGeoVolumeAssembly *mcmAssembly = new TGeoVolumeAssembly(
+        Form("ITSSPDmcm%s", suf));
+
+    // add mcm layer
+    mcmAssembly->AddNode(volBase, 1, gGeoIdentity);
+    // add chips
+    for (i = 0; i < 5; i++) {
+        TGeoVolume *box = gGeoManager->MakeBox(name[i],medChip,
+               0.5*chipLength[i], 0.5*chipWidth[i], 0.5*chipThickness[i]);
+        TGeoTranslation *tr = new TGeoTranslation(chipX[i],chipY[i],
+                      0.5*(-thickness + chipThickness[i]) + mcmThickness);
+        box->SetLineColor(color[i]);
+        mcmAssembly->AddNode(box, 1, tr);
+    } // end for i
+    // add cap border
+    mcmAssembly->AddNode(volCapBorder, 1, gGeoIdentity);
+    // add cap top
+    mcmAssembly->AddNode(volCapTop, 1, gGeoIdentity);
+
+    return mcmAssembly;
+}
+
+/*
+//__________________________________________________________________________________________
+TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus
+(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const
+{
+    //
+    // The pixel bus is implemented as a TGeoBBox with some objects on it,
+    // which could affect the particle energy loss.
+    // ---
+    // In order to avoid confusion, the bus is directly displaced
+    // according to the axis orientations which are used in the final stave:
+    // X --> thickness direction
+    // Y --> width direction
+    // Z --> length direction
+    //
+
+
+    // ** MEDIA **
+
+    //PIXEL BUS
+    TGeoMedium *medBus     = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr);
+    TGeoMedium *medPt1000  = GetMedium("CERAMICS$",mgr); // ??? PT1000
+    // Capacity
+    TGeoMedium *medCap     = GetMedium("SDD X7R capacitors$",mgr);
+    // ??? Resistance
+    // TGeoMedium *medRes     = GetMedium("SDD X7R capacitors$",mgr);
+    TGeoMedium *medRes     = GetMedium("ALUMINUM$",mgr);
+    TGeoMedium *medExt     = GetMedium("SDDKAPTON (POLYCH2)$", mgr);
+    // ** SIZES & POSITIONS **
+    Double_t busLength          = 170.501 * fgkmm; // length of plane part
+    Double_t busWidth           =  13.800 * fgkmm; // width
+    Double_t busThickness       =   0.280 * fgkmm; // thickness
+    Double_t pt1000Length       = fgkmm * 1.50;
+    Double_t pt1000Width        = fgkmm * 3.10;
+    Double_t pt1000Thickness    = fgkmm * 0.60;
+    Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus
+    Double_t capLength          = fgkmm * 2.55;
+    Double_t capWidth           = fgkmm * 1.50;
+    Double_t capThickness       = fgkmm * 1.35;
+    Double_t capY[2], capZ[2];
+
+    Double_t resLength          = fgkmm * 2.20;
+    Double_t resWidth           = fgkmm * 0.80;
+    Double_t resThickness       = fgkmm * 0.35;
+    Double_t resY[2], resZ[2];
+
+    Double_t extThickness       = fgkmm * 0.25;
+    Double_t ext1Length         = fgkmm * (26.7 - 10.0);
+    Double_t ext2Length         = fgkmm * (285.0 - ext1Length + extThickness);
+    Double_t extWidth           = fgkmm * 11.0;
+    Double_t extHeight          = fgkmm * 2.5;
+
+
+    // position of pt1000, resistors and capacitors depends on the
+    // bus if it's left or right one
+    if (!isRight) {
+        pt1000Y    =   64400.;
+        pt1000Z[0] =   66160.;
+        pt1000Z[1] =  206200.;
+        pt1000Z[2] =  346200.;
+        pt1000Z[3] =  486200.;
+        pt1000Z[4] =  626200.;
+        pt1000Z[5] =  776200.;
+        pt1000Z[6] =  916200.;
+        pt1000Z[7] = 1056200.;
+        pt1000Z[8] = 1196200.;
+        pt1000Z[9] = 1336200.;
+        resZ[0]    = 1397500.;
+        resY[0]    =   26900.;
+        resZ[1]    =  682500.;
+        resY[1]    =   27800.;
+        capZ[0]    = 1395700.;
+        capY[0]    =   45700.;
+        capZ[1]    =  692600.;
+        capY[1]    =   45400.;
+    } else {
+        pt1000Y    =   66100.;
+        pt1000Z[0] =  319700.;
+        pt1000Z[1] =  459700.;
+        pt1000Z[2] =  599700.;
+        pt1000Z[3] =  739700.;
+        pt1000Z[4] =  879700.;
+        pt1000Z[5] = 1029700.;
+        pt1000Z[6] = 1169700.;
+        pt1000Z[7] = 1309700.;
+        pt1000Z[8] = 1449700.;
+        pt1000Z[9] = 1589700.;
+        capY[0]    =   44500.;
+        capZ[0]    =  266700.;
+        capY[1]    =   44300.;
+        capZ[1]    =  974700.;
+        resZ[0]    =  266500.;
+        resY[0]    =   29200.;
+        resZ[1]    =  974600.;
+        resY[1]    =   29900.;
+    } // end if isRight
+    Int_t i;
+    pt1000Y *= 1E-4 * fgkmm;
+    for (i = 0; i < 10; i++) {
+        pt1000Z[i] *= 1E-4 * fgkmm;
+        if (i < 2) {
+            capZ[i] *= 1E-4 * fgkmm;
+            capY[i] *= 1E-4 * fgkmm;
+            resZ[i] *= 1E-4 * fgkmm;
+            resY[i] *= 1E-4 * fgkmm;
+        }  // end if iM2
+    } // end for i
+
+    Double_t &fullLength = sizes[1];
+    Double_t &fullWidth = sizes[2];
+    Double_t &fullThickness = sizes[0];
+    fullLength = busLength;
+    fullWidth = busWidth;
+    // add the thickness of the thickest component on bus (capacity)
+    fullThickness = busThickness + capThickness;
+    // ** VOLUMES **
+    TGeoVolumeAssembly *container = new TGeoVolumeAssembly("PixelBus");
+    TGeoVolume *bus = mgr->MakeBox("Bus", medBus, 0.5*busThickness, 0.5*busWidth, 0.5*busLength);
+    TGeoVolume *pt1000 = mgr->MakeBox("PT1000", medPt1000, 0.5*pt1000Thickness, 0.5*pt1000Width, 0.5*pt1000Length);
+    TGeoVolume *res = mgr->MakeBox("Resistor", medRes, 0.5*resThickness, 0.5*resWidth, 0.5*resLength);
+    TGeoVolume *cap = mgr->MakeBox("Capacitor", medCap, 0.5*capThickness, 0.5*capWidth, 0.5*capLength);
+    TGeoVolume *ext1 = mgr->MakeBox("Extender1", medExt, 0.5*extThickness, 0.5*extWidth, 0.5*ext1Length);
+    TGeoVolume *ext2 = mgr->MakeBox("Extender2", medExt, 0.5*extHeight - extThickness, 0.5*extWidth, 0.5*extThickness);
+    TGeoVolume *ext3 = mgr->MakeBox("Extender3", medExt, extThickness, 0.5*extWidth, 0.5*ext2Length);
+    bus->SetLineColor(kYellow + 2);
+    pt1000->SetLineColor(kGreen + 3);
+    res->SetLineColor(kRed + 1);
+    cap->SetLineColor(kBlue - 7);
+    ext1->SetLineColor(kGray);
+    ext2->SetLineColor(kGray);
+    ext3->SetLineColor(kGray);
+
+    // ** MOVEMENTS AND POSITIONEMENT **
+    // bus
+    TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness -
+                                                        fullThickness), 0.0, 0.0);
+    container->AddNode(bus, 0, trBus);
+    Double_t zRef, yRef, x, y, z;
+    if (isRight) {
+        zRef = -0.5*fullLength;
+        yRef = -0.5*fullWidth;
+    } else {
+        zRef = -0.5*fullLength;
+        yRef = -0.5*fullWidth;
+    } // end if isRight
+    // pt1000
+    x = 0.5*(pt1000Thickness - fullThickness) + busThickness;
+    for (i = 0; i < 10; i++) {
+        y = yRef + pt1000Y;
+        z = zRef + pt1000Z[i];
+        TGeoTranslation *tr = new TGeoTranslation(x, y, z);
+        container->AddNode(pt1000, i, tr);
+    } // end for i
+    // capacitors
+    x = 0.5*(capThickness - fullThickness) + busThickness;
+    for (i = 0; i < 2; i++) {
+        y = yRef + capY[i];
+        z = zRef + capZ[i];
+        TGeoTranslation *tr = new TGeoTranslation(x, y, z);
+        container->AddNode(cap, i, tr);
+    } // end for i
+    // resistors
+    x = 0.5*(resThickness - fullThickness) + busThickness;
+    for (i = 0; i < 2; i++) {
+        y = yRef + resY[i];
+        z = zRef + resZ[i];
+        TGeoTranslation *tr = new TGeoTranslation(x, y, z);
+        container->AddNode(res, i, tr);
+    } // end for i
+    // extender
+    if (isRight) {
+        y = 0.5 * (-fullWidth + extWidth);
+        z = 0.5 * (-fullLength + fgkmm * 10.0);
+    }
+    else {
+        y = 0.5 * (fullWidth - extWidth);
+        z = 0.5 * ( fullLength - fgkmm * 10.0);
+    }
+    x = 0.5 * (extThickness - fullThickness) + busThickness;
+    //y = 0.5 * (fullWidth - extWidth);
+    TGeoTranslation *trExt1 = new TGeoTranslation(x, y, z);
+    if (isRight) {
+        z -= 0.5 * (ext1Length - extThickness);
+    }
+    else {
+        z += 0.5 * (ext1Length - extThickness);
+    }
+    x += 0.5*(extHeight - extThickness);
+    TGeoTranslation *trExt2 = new TGeoTranslation(x, y, z);
+    if (isRight) {
+        z -= 0.5 * (ext2Length - extThickness);
+    }
+    else {
+        z += 0.5 * (ext2Length - extThickness);
+    }
+    x += 0.5*(extHeight - extThickness) + extThickness;
+    TGeoTranslation *trExt3 = new TGeoTranslation(x, y, z);
+    container->AddNode(ext1, 0, trExt1);
+    container->AddNode(ext2, 0, trExt2);
+    container->AddNode(ext3, 0, trExt3);
+
+
+    sizes[3] = yRef + pt1000Y;
+    sizes[4] = zRef + pt1000Z[2];
+    sizes[5] = zRef + pt1000Z[7];
+
+    return container;
+}
+*/
+
+//______________________________________________________________________
+TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus
+(Bool_t isRight, Int_t ilayer, TArrayD &sizes, TGeoManager *mgr) const
+{
+    //
+    // The pixel bus is implemented as a TGeoBBox with some objects on it,
+    // which could affect the particle energy loss.
+    // ---
+    // In order to avoid confusion, the bus is directly displaced
+    // according to the axis orientations which are used in the final stave:
+    // X --> thickness direction
+    // Y --> width direction
+    // Z --> length direction
+    //
+
+    // ** CRITICAL CHECK ******************************************************
+    // layer number can be ONLY 1 or 2
+    if (ilayer != 1 && ilayer != 2) AliFatal("Layer number MUST be 1 or 2");
+
+    // ** MEDIA **
+    //PIXEL BUS
+    TGeoMedium *medBus     = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr);
+    TGeoMedium *medPt1000  = GetMedium("CERAMICS$",mgr); // ??? PT1000
+    // Capacity
+    TGeoMedium *medCap     = GetMedium("SDD X7R capacitors$",mgr);
+    // ??? Resistance
+    //TGeoMedium *medRes     = GetMedium("SDD X7R capacitors$",mgr);
+    TGeoMedium *medRes     = GetMedium("ALUMINUM$",mgr);
+    TGeoMedium *medExt     = GetMedium("SDDKAPTON (POLYCH2)$", mgr);
+    // ** SIZES & POSITIONS **
+    Double_t busLength          = 170.501 * fgkmm; // length of plane part
+    Double_t busWidth           =  13.800 * fgkmm; // width
+    Double_t busThickness       =   0.280 * fgkmm; // thickness
+    Double_t pt1000Length       = fgkmm * 1.50;
+    Double_t pt1000Width        = fgkmm * 3.10;
+    Double_t pt1000Thickness    = fgkmm * 0.60;
+    Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus
+    Double_t capLength          = fgkmm * 2.55;
+    Double_t capWidth           = fgkmm * 1.50;
+    Double_t capThickness       = fgkmm * 1.35;
+    Double_t capY[2], capZ[2];
+
+    Double_t resLength          = fgkmm * 2.20;
+    Double_t resWidth           = fgkmm * 0.80;
+    Double_t resThickness       = fgkmm * 0.35;
+    Double_t resY[2], resZ[2];
+
+    Double_t extThickness       = fgkmm * 0.25;
+    Double_t ext1Length         = fgkmm * (26.7 - 10.0);
+    Double_t ext2Length         = fgkmm * 284.0 - ext1Length + extThickness;
+    Double_t extWidth           = fgkmm * 11.0;
+    Double_t extHeight          = fgkmm * 2.5;
+
+    // position of pt1000, resistors and capacitors depends on the
+    // bus if it's left or right one
+    if (!isRight) {
+        pt1000Y    =   64400.;
+        pt1000Z[0] =   66160.;
+        pt1000Z[1] =  206200.;
+        pt1000Z[2] =  346200.;
+        pt1000Z[3] =  486200.;
+        pt1000Z[4] =  626200.;
+        pt1000Z[5] =  776200.;
+        pt1000Z[6] =  916200.;
+        pt1000Z[7] = 1056200.;
+        pt1000Z[8] = 1196200.;
+        pt1000Z[9] = 1336200.;
+        resZ[0]    = 1397500.;
+        resY[0]    =   26900.;
+        resZ[1]    =  682500.;
+        resY[1]    =   27800.;
+        capZ[0]    = 1395700.;
+        capY[0]    =   45700.;
+        capZ[1]    =  692600.;
+        capY[1]    =   45400.;
+    } else {
+        pt1000Y    =   66100.;
+        pt1000Z[0] =  319700.;
+        pt1000Z[1] =  459700.;
+        pt1000Z[2] =  599700.;
+        pt1000Z[3] =  739700.;
+        pt1000Z[4] =  879700.;
+        pt1000Z[5] = 1029700.;
+        pt1000Z[6] = 1169700.;
+        pt1000Z[7] = 1309700.;
+        pt1000Z[8] = 1449700.;
+        pt1000Z[9] = 1589700.;
+        capY[0]    =   44500.;
+        capZ[0]    =  266700.;
+        capY[1]    =   44300.;
+        capZ[1]    =  974700.;
+        resZ[0]    =  266500.;
+        resY[0]    =   29200.;
+        resZ[1]    =  974600.;
+        resY[1]    =   29900.;
+    } // end if isRight
+    Int_t i;
+    pt1000Y *= 1E-4 * fgkmm;
+    for (i = 0; i < 10; i++) {
+        pt1000Z[i] *= 1E-4 * fgkmm;
+        if (i < 2) {
+            capZ[i] *= 1E-4 * fgkmm;
+            capY[i] *= 1E-4 * fgkmm;
+            resZ[i] *= 1E-4 * fgkmm;
+            resY[i] *= 1E-4 * fgkmm;
+        }  // end if iM2
+    } // end for i
+
+    Double_t &fullLength = sizes[1];
+    Double_t &fullWidth = sizes[2];
+    Double_t &fullThickness = sizes[0];
+    fullLength = busLength;
+    fullWidth = busWidth;
+    // add the thickness of the thickest component on bus (capacity)
+    fullThickness = busThickness + capThickness;
+
+    // ** VOLUMES **
+    TGeoVolumeAssembly *container = new TGeoVolumeAssembly("ITSSPDpixelBus");
+    TGeoVolume *bus = mgr->MakeBox("ITSSPDbus", medBus, 0.5*busThickness,
+                                   0.5*busWidth, 0.5*busLength);
+    TGeoVolume *pt1000 = mgr->MakeBox("ITSSPDpt1000",medPt1000,
+                        0.5*pt1000Thickness,0.5*pt1000Width, 0.5*pt1000Length);
+    TGeoVolume *res = mgr->MakeBox("ITSSPDresistor", medRes, 0.5*resThickness,
+                                   0.5*resWidth, 0.5*resLength);
+    TGeoVolume *cap = mgr->MakeBox("ITSSPDcapacitor", medCap, 0.5*capThickness,
+                                   0.5*capWidth, 0.5*capLength);
+
+    TGeoVolume *ext1 = mgr->MakeBox("Extender1", medExt, 0.5*extThickness, 0.5*extWidth, 0.5*ext1Length);
+    TGeoVolume *ext2 = mgr->MakeBox("Extender2", medExt, 0.5*extHeight - 2.*extThickness, 0.5*extWidth, 0.5*extThickness);
+    TGeoVolume *ext3 = mgr->MakeBox("Extender3", medExt, 0.5*extThickness, 0.5*(extWidth-0.8*fgkmm), 0.5*ext2Length + extThickness); // Hardcode fix of a small overlap
+    bus->SetLineColor(kYellow + 2);
+    pt1000->SetLineColor(kGreen + 3);
+    res->SetLineColor(kRed + 1);
+    cap->SetLineColor(kBlue - 7);
+    ext1->SetLineColor(kGray);
+    ext2->SetLineColor(kGray);
+    ext3->SetLineColor(kGray);
+
+    // ** MOVEMENTS AND POSITIONEMENT **
+    // bus
+    TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness -
+                                                   fullThickness), 0.0, 0.0);
+    container->AddNode(bus, 1, trBus);
+    Double_t zRef, yRef, x, y, z;
+    if (isRight) {
+        zRef = -0.5*fullLength;
+        yRef = -0.5*fullWidth;
+    } else {
+        zRef = -0.5*fullLength;
+        yRef = -0.5*fullWidth;
+    } // end if isRight
+    // pt1000
+    x = 0.5*(pt1000Thickness - fullThickness) + busThickness;
+    for (i = 0; i < 10; i++) {
+        y = yRef + pt1000Y;
+        z = zRef + pt1000Z[i];
+        TGeoTranslation *tr = new TGeoTranslation(x, y, z);
+        container->AddNode(pt1000, i+1, tr);
+    } // end for i
+    // capacitors
+    x = 0.5*(capThickness - fullThickness) + busThickness;
+    for (i = 0; i < 2; i++) {
+        y = yRef + capY[i];
+        z = zRef + capZ[i];
+        TGeoTranslation *tr = new TGeoTranslation(x, y, z);
+        container->AddNode(cap, i+1, tr);
+    } // end for i
+    // resistors
+    x = 0.5*(resThickness - fullThickness) + busThickness;
+    for (i = 0; i < 2; i++) {
+        y = yRef + resY[i];
+        z = zRef + resZ[i];
+        TGeoTranslation *tr = new TGeoTranslation(x, y, z);
+        container->AddNode(res, i+1, tr);
+    } // end for i
+
+    // extender
+        if (ilayer == 2) {
+       if (isRight) {
+          y = 0.5 * (fullWidth - extWidth) - 0.1;
+          z = 0.5 * (-fullLength + fgkmm * 10.0);
+       }
+       else {
+          y = 0.5 * (fullWidth - extWidth) - 0.1;
+          z = 0.5 * ( fullLength - fgkmm * 10.0);
+       }
+        }
+        else {
+            if (isRight) {
+                y = -0.5 * (fullWidth - extWidth);
+                z = 0.5 * (-fullLength + fgkmm * 10.0);
+            }
+            else {
+                y = -0.5 * (fullWidth - extWidth);
+                z = 0.5 * ( fullLength - fgkmm * 10.0);
+            }
+        }
+    x = 0.5 * (extThickness - fullThickness) + busThickness;
+    //y = 0.5 * (fullWidth - extWidth);
+    TGeoTranslation *trExt1 = new TGeoTranslation(x, y, z);
+    if (isRight) {
+        z -= 0.5 * (ext1Length - extThickness);
+    }
+    else {
+        z += 0.5 * (ext1Length - extThickness);
+    }
+    x += 0.5*(extHeight - 3.*extThickness);
+    TGeoTranslation *trExt2 = new TGeoTranslation(x, y, z);
+    if (isRight) {
+        z -= 0.5 * (ext2Length - extThickness) + 2.5*extThickness;
+    }
+    else {
+        z += 0.5 * (ext2Length - extThickness) + 2.5*extThickness;
+    }
+    x += 0.5*(extHeight - extThickness) - 2.*extThickness;
+    TGeoTranslation *trExt3 = new TGeoTranslation(x, y, z);
+    container->AddNode(ext1, 0, trExt1);
+    container->AddNode(ext2, 0, trExt2);
+    container->AddNode(ext3, 0, trExt3);
+
+    sizes[3] = yRef + pt1000Y;
+    sizes[4] = zRef + pt1000Z[2];
+    sizes[5] = zRef + pt1000Z[7];
+
+    return container;
+}
+
+//______________________________________________________________________
+TList* AliITSv11GeometrySPD::CreateConeModule(TGeoManager *mgr) const
+{
+    TGeoMedium *medInox  = GetMedium("INOX$",mgr);
+    TGeoMedium *medExt   = GetMedium("SDDKAPTON (POLYCH2)$", mgr);
+    TGeoMedium *medPlate = GetMedium("SPD C (M55J)$", mgr);
+
+    Double_t extThickness = fgkmm * 0.25;
+    Double_t ext1Length   = fgkmm * (26.7 - 10.0);
+    Double_t ext2Length   = fgkmm * (285.0 - ext1Length + extThickness);
+
+    Double_t cableThickness = 1.5 * fgkmm;
+    Double_t cableL1 = 350.0 * fgkmm - extThickness - ext1Length - ext2Length;
+    Double_t cableL2 = 340.0 * fgkmm;
+    //Double_t cableL3 = 570.0 * fgkmm;
+    Double_t cableL3 = 57.0 * fgkmm;
+    Double_t cableW1 =  11.0 * fgkmm;
+    Double_t cableW2 =  30.0 * fgkmm;
+    Double_t cableW3 =  50.0 * fgkmm;
+
+    Double_t mcmThickness = 1.2 *fgkmm;
+    Double_t mcmLength = cableL1 + cableL2 + cableL3;
+    Double_t mcmWidth = cableW1;
+
+    Double_t plateLength    = 200.0 * fgkmm;
+    Double_t plateWidth     =  50.0 * fgkmm;
+    Double_t plateThickness =   5.0 * fgkmm;
+
+    Double_t x[12], y[12];
+
+    x[0] = 7.5;
+    y[0] = 0.0 + 0.5 * cableW1;
+
+    x[1] = x[0] + cableL1 - 0.5*(cableW2 - cableW1);
+    y[1] = y[0];
+
+    x[2] = x[0] + cableL1;
+    y[2] = y[1] + 0.5*(cableW2 - cableW1);
+
+    x[3] = x[2] + cableL2;
+    y[3] = y[2];
+
+    x[4] = x[3] + 0.5*(cableW3 - cableW2);
+    y[4] = y[3] + 0.5*(cableW3 - cableW2);
+
+    x[5] = x[4] + cableL3 - 0.5*(cableW3 - cableW2);
+    y[5] = y[4];
+
+    for (Int_t i = 6; i < 12; i++) {
+        x[i] =  x[11 - i];
+        y[i] = -y[11 - i];
+    }
+
+    TGeoVolumeAssembly* container[2];
+    container[0] = new TGeoVolumeAssembly("ITSSPDConeModule");
+    container[1] = new TGeoVolumeAssembly("ITSSPDCoolingModule");
+
+    TGeoXtru *shCable = new TGeoXtru(2);
+    shCable->DefinePolygon(12, x, y);
+    shCable->DefineSection(0, 0., 0., 0., 1.0);
+    shCable->DefineSection(1, cableThickness, 0., 0., 1.0);
+
+    TGeoVolume *volCable = new TGeoVolume("ITSSPDExtender", shCable, medExt);
+    volCable->SetLineColor(kGreen);
+
+    TGeoVolume *volTube = gGeoManager->MakeTube("ITSSPDCoolingTubeCone", medInox, 5.*fgkmm, 6.*fgkmm, 0.5*(x[5] - x[0]));
+    volTube->SetLineColor(kGray);
+
+    Double_t thickness = cableThickness + mcmThickness;
+    TGeoBBox *shOut = new TGeoBBox("ITSSPD_shape_plateout", 0.5*plateThickness, 0.5*plateLength, 0.5*plateWidth);
+    TGeoBBox *shIn = new TGeoBBox("ITSSPD_shape_platein", 0.5*thickness, 0.52*plateLength, 0.5*cableW2);
+    Char_t string[255];
+    sprintf(string, "%s-%s", shOut->GetName(), shIn->GetName());
+    TGeoCompositeShape *shPlate = new TGeoCompositeShape("ITSSPDPlate_shape", string);
+    TGeoVolume *volPlate = new TGeoVolume("ITSSPDPlate", shPlate, medPlate);
+    volPlate->SetLineColor(kRed);
+
+    TGeoVolume *volMCMExt = gGeoManager->MakeBox("ITSSPDextenderMCM", medExt, 0.5*mcmThickness, 0.5*mcmLength, 0.5*mcmWidth);
+    volMCMExt->SetLineColor(kGreen+3);
+
+    TGeoRotation *rot = new TGeoRotation(*gGeoIdentity);
+    rot->RotateX(90.0);
+    rot->RotateZ(90.0);
+    container[0]->AddNode(volCable, 0, rot);
+
+    TGeoTranslation *combi = new TGeoTranslation(cableThickness + 0.5*mcmThickness, x[0] + 0.5*mcmLength, 0.0);
+    container[0]->AddNode(volMCMExt, 0, combi);
+
+    TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
+    rot1->RotateX(87.5);
+    TGeoCombiTrans *tr = new TGeoCombiTrans(1.15, x[0] + 0.5*(x[5] - x[0]), -2.95, rot1);
+    container[1]->AddNode(volTube, 0, tr);
+
+    TGeoTranslation *tr1 = new TGeoTranslation(0.5*plateThickness - 0.5*(plateThickness-thickness), x[3] - x[0] - 0.52*plateLength, 0.0);
+    container[0]->AddNode(volPlate, 0, tr1);
+
+    TList* conemodulelist = new TList();
+
+    conemodulelist->Add(container[0]);
+    conemodulelist->Add(container[1]);
+
+    return conemodulelist;
+}
+
+//______________________________________________________________________
+void AliITSv11GeometrySPD::CreateCones(TGeoVolume *moth) const
+{
+
+    TList* modulelist = CreateConeModule(gGeoManager);
+    TGeoVolumeAssembly* module;
+
+    //Double_t angle[10] = {18., 54., 90., 126., 162., -18., -54., -90., -126., -162.};
+    // angleNm for cone modules (cables), angleNc for cooling tubes
+    Double_t angle1m[10] = {18., 54., 90., 129., 165., 201.0, 237.0, 273.0, 309.0, 345.0};
+    Double_t angle2m[10] = {18., 53., 90., 126., 162., 198.0, 233.0, 270.0, 309.0, 342.0};
+    Double_t angle1c[10] = {18., 54., 90., 124., 165., 201.0, 237.0, 273.0, 304.0, 345.0};
+    Double_t angle2c[10] = {18., 44., 90., 126., 162., 198.0, 223.0, 270.0, 309.0, 342.0};
+
+    // First add the cables
+    module = (TGeoVolumeAssembly*)modulelist->At(0);
+    for (Int_t i = 0; i < 10; i++) {
+        TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
+        rot1->RotateY(-90.0);
+        rot1->RotateX(45.0);
+       angle1m[i] -= 1.5;
+        rot1->RotateZ(90.0 - angle1m[i]);
+        TGeoCombiTrans *tr1 = new TGeoCombiTrans(0.0, 0.0, 38.0, rot1);
+        moth->AddNode(module, 2*i, tr1);
+        TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
+        rot2->RotateY(90.0);
+        rot2->RotateX(-45.0);
+       angle2m[i] -= 1.5;
+        rot2->RotateZ(90.0 - angle2m[i]);
+        TGeoCombiTrans *tr2 = new TGeoCombiTrans(0.0, 0.0, -37.9, rot2);
+        moth->AddNode(module, 2*i+1, tr2);
+    }
+
+    // Then the cooling tubes
+    module = (TGeoVolumeAssembly*)modulelist->At(1);
+    for (Int_t i = 0; i < 10; i++) {
+        TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
+        rot1->RotateY(-90.0);
+        rot1->RotateX(45.0);
+       angle1c[i] -= 1.5;
+        rot1->RotateZ(90.0 - angle1c[i]);
+        TGeoCombiTrans *tr1 = new TGeoCombiTrans(0.0, 0.0, 38.0, rot1);
+        moth->AddNode(module, 2*i, tr1);
+        TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
+        rot2->RotateY(90.0);
+        rot2->RotateX(-45.0);
+       angle2c[i] -= 1.5;
+        rot2->RotateZ(90.0 - angle2c[i]);
+        TGeoCombiTrans *tr2 = new TGeoCombiTrans(0.0, 0.0, -37.9, rot2);
+        moth->AddNode(module, 2*i+1, tr2);
+    }
+}
+
+//______________________________________________________________________
+TGeoVolume* AliITSv11GeometrySPD::CreateExtender(
+    const Double_t *extenderParams, const TGeoMedium *extenderMedium,
+    TArrayD& sizes) const
+{
+    //
+    // ------------------   CREATE AN EXTENDER    ------------------------
+    //
+    // This function creates the following picture (in plane xOy)
+    // Should be useful for the definition of the pixel bus and MCM extenders
+    // The origin corresponds to point 0 on the picture, at half-width
+    // in Z direction
+    //
+    //   Y                         7     6                      5
+    //   ^                           +---+---------------------+
+    //   |                          /                          |
+    //   |                         /                           |
+    //   0------> X               /      +---------------------+
+    //                           /      / 3                     4
+    //                          /      /
+    //            9          8 /      /
+    //            +-----------+      /
+    //            |                 /
+    //            |                /
+    //      --->  +-----------+---+
+    //      |     0          1     2
+    //      |
+    //  origin (0,0,0)
+    //
+    //
+    // Takes 6 parameters in the following order :
+    //   |--> par 0 : inner length [0-1] / [9-8]
+    //   |--> par 1 : thickness ( = [0-9] / [4-5])
+    //   |--> par 2 : angle of the slope
+    //   |--> par 3 : total height in local Y direction
+    //   |--> par 4 : outer length [3-4] / [6-5]
+    //   |--> par 5 : width in local Z direction
+    //
+    Double_t slopeDeltaX = (extenderParams[3] - extenderParams[1]
+                            * TMath::Cos(extenderParams[2])) /
+                            TMath::Tan(extenderParams[2]);
+    Double_t extenderXtruX[10] = {
+        0 ,
+        extenderParams[0] ,
+        extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2]) ,
+        extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
+                                                              slopeDeltaX ,
+        extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
+                                           slopeDeltaX + extenderParams[4],
+        extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
+                                           slopeDeltaX + extenderParams[4],
+        extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
+                                                              slopeDeltaX ,
+        extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
+          slopeDeltaX - extenderParams[1] * TMath::Sin(extenderParams[2]) ,
+        extenderParams[0] ,
+        0
+    };
+    Double_t extenderXtruY[10] = {
+        0 ,
+        0 ,
+        extenderParams[1] * (1-TMath::Cos(extenderParams[2])) ,
+        extenderParams[3] - extenderParams[1] ,
+        extenderParams[3] - extenderParams[1] ,
+        extenderParams[3] ,
+        extenderParams[3] ,
+        extenderParams[3]-extenderParams[1]*(1-TMath::Cos(extenderParams[2])) ,
+        extenderParams[1] ,
+        extenderParams[1]
+    };
+
+    if (sizes.GetSize() != 3) sizes.Set(3);
+    Double_t &thickness = sizes[0];
+    Double_t &length    = sizes[1];
+    Double_t &width     = sizes[2];
+
+    thickness = extenderParams[3];
+    width     = extenderParams[5];
+    length    = extenderParams[0]+extenderParams[1]*
+            TMath::Sin(extenderParams[2])+slopeDeltaX+extenderParams[4];
+
+    // creation of the volume
+    TGeoXtru   *extenderXtru    = new TGeoXtru(2);
+    TGeoVolume *extenderXtruVol = new TGeoVolume("ITSSPDextender",extenderXtru,
+                                                 extenderMedium);
+    extenderXtru->DefinePolygon(10,extenderXtruX,extenderXtruY);
+    extenderXtru->DefineSection(0,-0.5*extenderParams[4]);
+    extenderXtru->DefineSection(1, 0.5*extenderParams[4]);
+    return extenderXtruVol;
+}
+//______________________________________________________________________
+TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBusAndExtensions
+(Bool_t /*zpos*/, TGeoManager *mgr) const
+{
+    //
+    // Creates an assembly which contains the pixel bus and its extension
+    // and the extension of the MCM.
+    // By: Renaud Vernet
+    // NOTE: to be defined its material and its extension in the outside
+    // direction
+    //
+    // ====   constants   =====
+    //get the media
+    // PIXEL BUS
+    //TGeoMedium   *medPixelBus    = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr);
+    // IXEL BUS EXTENDER
+    TGeoMedium *medPBExtender  = GetMedium("SDDKAPTON (POLYCH2)$",mgr);
+    //MCM EXTENDER
+    TGeoMedium *medMCMExtender = GetMedium("SDDKAPTON (POLYCH2)$",mgr);
+    //   //geometrical constants
+    const Double_t kPbextenderThickness     =   0.07 * fgkmm;
+    //design=?? 70 deg. seems OK
+    const Double_t kPbExtenderSlopeAngle    =  70.0  * TMath::Pi()/180.;
+    // = 2.6 - (0.28+0.05+0.35) cf design
+    const Double_t kPbExtenderHeight        =   1.92 * fgkmm;
+    const Double_t kPbExtenderWidthY        =  11.0  * fgkmm;
+    //design=?? 70 deg. seems OK
+    const Double_t kMcmExtenderSlopeAngle   =  70.0  * TMath::Pi()/180.;
+    const Double_t kMcmExtenderThickness    =   0.10 * fgkmm;
+    const Double_t kMcmExtenderHeight       =   1.8  * fgkmm;
+    const Double_t kMcmExtenderWidthY       =   kPbExtenderWidthY;
+    //   const Double_t groundingThickness    =   0.07  * fgkmm;
+    //   const Double_t grounding2pixelBusDz  =   0.625 * fgkmm;
+    //   const Double_t pixelBusThickness     =   0.28  * fgkmm;
+    //   const Double_t groundingWidthX       = 170.501 * fgkmm;
+    //   const Double_t pixelBusContactDx     =   1.099 * fgkmm;
+    //   const Double_t pixelBusWidthY        =  13.8   * fgkmm;
+    //design=20 deg.
+    //   const Double_t pixelBusContactPhi    =  20.0   * TMath::Pi()/180.
+    //   const Double_t pbExtenderTopZ        =   2.72  * fgkmm;
+    //   const Double_t mcmThickness          =   0.35  * fgkmm;
+    //   const Double_t halfStaveTotalLength  = 247.64  * fgkmm;
+    //   const Double_t deltaYOrigin          =  15.95/2.* fgkmm;
+    //   const Double_t deltaXOrigin          =   1.1    * fgkmm;
+    //   const Double_t deltaZOrigin          = halfStaveTotalLength / 2.;
+    //   const Double_t grounding2pixelBusDz2 = grounding2pixelBusDz+
+    //                           groundingThickness/2. + pixelBusThickness/2.;
+    //   const Double_t pixelBusWidthX        = groundingWidthX;
+    //   const Double_t pixelBusRaiseLength   = (pixelBusContactDx-
+    //                  pixelBusThickness*TMath::Sin(pixelBusContactPhi))/
+    //                                       TMath::Cos(pixelBusContactPhi);
+    //   const Double_t pbExtenderBaseZ       = grounding2pixelBusDz2 +
+    //        pixelBusRaiseLength*TMath::Sin(pixelBusContactPhi) +
+    //        2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)*
+    //        TMath::Tan(pixelBusContactPhi);
+    //   const Double_t pbExtenderDeltaZ      = pbExtenderTopZ-pbExtenderBaseZ;
+    //   const Double_t pbExtenderEndPointX   = 2*deltaZOrigin -
+    //    groundingWidthX - 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi);
+    //   const Double_t pbExtenderXtru3L   = 1.5 * fgkmm; //arbitrary ?
+    //   const Double_t pbExtenderXtru4L   = (pbExtenderDeltaZ +
+    //             pixelBusThickness*(TMath::Cos(extenderSlope)-2))/
+    //                                      TMath::Sin(extenderSlope);
+    //   const Double_t kMcmExtenderEndPointX  = deltaZOrigin - 48.2 * fgkmm;
+    //   const Double_t kMcmExtenderXtru3L     = 1.5  * fgkmm;
+    //   //=====  end constants  =====
+    const Double_t kPbExtenderInnerLength    = 10. * fgkmm;
+    const Double_t kPbExtenderOuterLength    = 15. * fgkmm;
+    const Double_t kMcmExtenderInnerLength   = 10. * fgkmm;
+    const Double_t kMcmExtenderOuterLength   = 15. * fgkmm;
+    Double_t pbExtenderParams[6]  = {kPbExtenderInnerLength,  //0
+                                     kPbextenderThickness,    //1
+                                     kPbExtenderSlopeAngle,   //2
+                                     kPbExtenderHeight,       //3
+                                     kPbExtenderOuterLength,  //4
+                                     kPbExtenderWidthY};      //5
+
+    Double_t mcmExtenderParams[6] = {kMcmExtenderInnerLength, //0
+                                     kMcmExtenderThickness,   //1
+                                     kMcmExtenderSlopeAngle,  //2
+                                     kMcmExtenderHeight,      //3
+                                     kMcmExtenderOuterLength, //4
+                                     kMcmExtenderWidthY};     //5
+
+    TArrayD sizes(3);
+    TGeoVolume* pbExtender  = CreateExtender(pbExtenderParams,medPBExtender,
+                                             sizes);
+    if(GetDebug(1))printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\t"
+              "LENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]);
+    TGeoVolume* mcmExtender = CreateExtender(mcmExtenderParams,medMCMExtender,
+                                             sizes);
+    if(GetDebug(1))printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\t"
+             "LENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]);
+    //   Double_t pixelBusValues[5]    = {pixelBusWidthX,        //0
+    //                     pixelBusThickness,     //1
+    //                     pixelBusContactPhi,    //2
+    //                     pixelBusRaiseLength,   //3
+    //                     pixelBusWidthY};      //4
+
+    //   Double_t pbExtenderValues[8]  = {pixelBusRaiseLength,   //0
+    //                     pixelBusContactPhi,     //1
+    //                     pbExtenderXtru3L,       //2
+    //                     pixelBusThickness,      //3
+    //                     extenderSlope,     //4
+    //                     pbExtenderXtru4L,      //5
+    //                     pbExtenderEndPointX,   //6
+    //                     kPbExtenderWidthY};    //7
+
+    //   Double_t mcmExtenderValues[6] = {mcmExtenderXtru3L,     //0
+    //                     mcmExtenderThickness,  //1
+    //                     extenderSlope,     //2
+    //                     deltaMcmMcmExtender,    //3
+    //                     mcmExtenderEndPointX,  //4
+    //                     mcmExtenderWidthY};    //5
+    //   TGeoVolumeAssembly *pixelBus=new TGeoVolumeAssembly("ITSSPDpixelBus");
+    //   CreatePixelBus(pixelBus,pixelBusValues,medPixelBus);
+    //   TGeoVolumeAssembly *pbExtender = new TGeoVolumeAssembly(
+    //                                              "ITSSPDpixelBusExtender");
+    //   CreatePixelBusExtender(pbExtender,pbExtenderValues,medPBExtender);
+    //   TGeoVolumeAssembly *mcmExtender = new TGeoVolumeAssembly(
+    //                                                 "ITSSPDmcmExtender");
+    //   CreateMCMExtender(mcmExtender,mcmExtenderValues,medMCMExtender);
+    //--------------   DEFINITION OF GEOMETRICAL TRANSFORMATIONS --------
+    //   TGeoRotation    * commonRot  = new TGeoRotation("commonRot",0,90,0);
+    //   commonRot->MultiplyBy(new TGeoRotation("rot",-90,0,0));
+    //   TGeoTranslation * pixelBusTrans   = new TGeoTranslation(
+    //                      pixelBusThickness/2. - deltaXOrigin + 0.52*fgkmm ,
+    //                                   -pixelBusWidthY/2.   + deltaYOrigin ,
+    //                                   -groundingWidthX/2.  + deltaZOrigin);
+    //   TGeoRotation    *pixelBusRot     = new TGeoRotation(*commonRot);
+    //   TGeoTranslation *pbExtenderTrans =new TGeoTranslation(*pixelBusTrans);
+    //   TGeoRotation    *pbExtenderRot   = new TGeoRotation(*pixelBusRot);
+    //   pbExtenderTrans->SetDz(*(pbExtenderTrans->GetTranslation()+2) -
+    //                          pixelBusWidthX/2. - 2*pixelBusThickness*
+    //                                    TMath::Sin(pixelBusContactPhi));
+    //   if (!zpos) {
+    //     pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) -
+    //                               (pixelBusWidthY - kPbExtenderWidthY)/2.);
+    //   } else {
+    //     pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) +
+    //                            (pixelBusWidthY - kPbExtenderWidthY)/2.);
+    //   }
+    //   pbExtenderTrans->SetDx(*(pbExtenderTrans->GetTranslation()) +
+    //                      pixelBusThickness/2 + 2*pixelBusThickness*
+    //                      TMath::Sin(pixelBusContactPhi)*
+    //                      TMath::Tan(pixelBusContactPhi));
+    //   TGeoTranslation * mcmExtenderTrans = new TGeoTranslation(0.12*fgkmm +
+    //                                    mcmThickness - deltaXOrigin,
+    //                                    pbExtenderTrans->GetTranslation()[1],
+    //                                    -4.82);
+    //   TGeoRotation    * mcmExtenderRot   = new TGeoRotation(*pbExtenderRot);
+    //   // add pt1000 components
+    //   Double_t pt1000Z = fgkmm * 64400. * 1E-4;
+    //   //Double_t pt1000X[10] = {319700.,  459700.,  599700.,  739700.,
+    //                             879700., 1029700., 1169700., 1309700.,
+    //                            1449700., 1589700.};
+    //   Double_t pt1000X[10] ={66160., 206200.,  346200.,  486200.,  626200.,
+    //                         776200., 916200., 1056200., 1196200., 1336200.};
+    //   Double_t pt1000size[3] = {fgkmm*1.5, fgkmm*0.6, fgkmm*3.1};
+    //   Int_t i;
+    //   for (i = 0; i < 10; i++) {
+    //     pt1000X[i] *= fgkmm * 1E-4;
+    //   }
+    //   TGeoVolume *pt1000 = mgr->MakeBox("ITSSPDpt1000",0,0.5*pt1000size[0],
+    //                              0.5*pt1000size[1], 0.5*pt1000size[2]);
+    //   pt1000->SetLineColor(kGray);
+    //   Double_t refThickness = - pixelBusThickness;
+    //   for (i = 0; i < 10; i++) {
+    //     TGeoTranslation *tr = new TGeoTranslation(pt1000X[i]-
+    //          0.5*pixelBusWidthX, 0.002+0.5*(-3.*refThickness+pt1000size[3]),
+    //                                            pt1000Z -0.5*pixelBusWidthY);
+    //     pixelBus->AddNode(pt1000, i+1, tr);
+    //   }
+
+    //CREATE FINAL VOLUME ASSEMBLY AND ROTATE IT
+    TGeoVolumeAssembly *assembly = new TGeoVolumeAssembly("ITSSPDextenders");
+    //   assembly->AddNode((TGeoVolume*)pixelBus,1,
+    //          new TGeoCombiTrans(*pixelBusTrans,*pixelBusRot));
+    //   assembly->AddNode((TGeoVolume*)pbExtender,1,
+    //           new TGeoCombiTrans(*pbExtenderTrans,*pbExtenderRot));
+    //   assembly->AddNode((TGeoVolume*)mcmExtender,1,
+    //         new TGeoCombiTrans(*mcmExtenderTrans,*mcmExtenderRot));
+    //   assembly->AddNode(mcmExtender,1,new TGeoIdentity());
+    assembly->AddNode(pbExtender,1);
+    assembly->AddNode(mcmExtender,1);
+    //   assembly->SetTransparency(50);
+
+    return assembly;
+}
+//______________________________________________________________________
+TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateHalfStave(Bool_t isRight,
+Int_t layer,Int_t idxCentral,Int_t idxSide,TArrayD &sizes,TGeoManager *mgr)
+{
+    //
+    // Implementation of an half-stave, which depends on the side where
+    // we are on the stave. The convention for "left" and "right" is the
+    // same as for the MCM. The return value is a TGeoAssembly which is
+    // structured in such a way that the origin of its local reference
+    // frame coincides with the origin of the whole stave.
+    // The TArrayD passed by reference will contain details of the shape:
+    //  - sizes[0] = thickness
+    //  - sizes[1] = length
+    //  - sizes[2] = width
+    //  - sizes[3] = common 'x' position for eventual clips
+    //  - sizes[4] = common 'y' position for eventual clips
+    //  - sizes[5] = 'z' position of first clip
+    //  - sizes[6] = 'z' position of second clip
+    //
+
+    // ** CHECK **
+
+    // idxCentral and idxSide must be different
+    if (idxCentral == idxSide) {
+        AliInfo("Ladders must be inserted in half-stave with "
+                "different indexes.");
+        idxSide = idxCentral + 1;
+        AliInfo(Form("Central ladder will be inserted with index %d",
+                     idxCentral));
+        AliInfo(Form("Side    ladder will be inserted with index %d",idxSide));
+    } // end if
+
+    // define the separations along Z direction between the objects
+    Double_t sepLadderLadder = fgkmm * 0.2; // sep. btw the 2 ladders
+    Double_t sepLadderCenter = fgkmm * 0.4; // sep. btw the "central" ladder
+                                            // and the Z=0 plane in stave ref.
+    Double_t sepLadderMCM    = fgkmm * 0.3; // sep. btw the "external" ladder
+                                            // and MCM
+    Double_t sepBusCenter    = fgkmm * 0.3; // sep. btw the bus central edge
+                                            // and the Z=0 plane in stave ref.
+
+    // ** VOLUMES **
+
+    // grounding foil
+    TArrayD grndSize(3);
+    // This one line repalces the 3 bellow, BNS.
+    TGeoVolume *grndVol = CreateGroundingFoil(isRight, grndSize, mgr);
+    Double_t &grndThickness = grndSize[0];
+    Double_t &grndLength = grndSize[1];
+
+    // ladder
+    TArrayD ladderSize(3);
+    TGeoVolume *ladder = CreateLadder(layer, ladderSize, mgr);
+    Double_t ladderThickness = ladderSize[0];
+    Double_t ladderLength = ladderSize[1];
+    Double_t ladderWidth = ladderSize[2];
+
+    // MCM
+    TArrayD mcmSize(3);
+    TGeoVolumeAssembly *mcm = CreateMCM(!isRight,mcmSize,mgr);
+    Double_t mcmThickness = mcmSize[0];
+    Double_t mcmLength = mcmSize[1];
+    Double_t mcmWidth = mcmSize[2];
+
+    // bus
+    TArrayD busSize(6);
+    TGeoVolumeAssembly *bus = CreatePixelBus(isRight, layer, busSize, mgr);
+    Double_t busThickness = busSize[0];
+    Double_t busLength = busSize[1];
+    Double_t busWidth = busSize[2];
+
+    // glue between ladders and pixel bus
+    TGeoMedium *medLadGlue = GetMedium("EPOXY$", mgr);
+    Double_t ladGlueThickness = fgkmm * 0.1175 - fgkGapLadder;
+    TGeoVolume *ladderGlue = mgr->MakeBox("ITSSPDladderGlue",medLadGlue,
+                           0.5*ladGlueThickness, 0.5*busWidth, 0.5*busLength);
+    ladderGlue->SetLineColor(kYellow + 5);
+
+    // create references for the whole object, as usual
+    sizes.Set(7);
+    Double_t &fullThickness = sizes[0];
+    Double_t &fullLength = sizes[1];
+    Double_t &fullWidth = sizes[2];
+
+    // compute the full size of the container
+    fullLength    = sepLadderCenter+2.0*ladderLength+sepLadderMCM+
+                       sepLadderLadder+mcmLength;
+    fullWidth     = ladderWidth;
+    fullThickness = grndThickness + fgkGapLadder + mcmThickness + busThickness;
+    //cout << "HSTAVE FULL THICKNESS = " << fullThickness << endl;
+
+    // ** MOVEMENTS **
+
+    // grounding foil (shifted only along thickness)
+    Double_t xGrnd = -0.5*fullThickness + 0.5*grndThickness;
+    Double_t zGrnd = -0.5*grndLength;
+    if (!isRight) zGrnd = -zGrnd;
+    TGeoTranslation *grndTrans = new TGeoTranslation(xGrnd, 0.0, zGrnd);
+
+    // ladders (translations along thickness and length)
+    // layers must be sorted going from the one at largest Z to the
+    // one at smallest Z:
+    // -|Zmax| ------> |Zmax|
+    //      3   2   1   0
+    // then, for layer 1 ladders they must be placed exactly this way,
+    // and in layer 2 at the opposite. In order to remember the placements,
+    // we define as "inner" and "outer" ladder respectively the one close
+    // to barrel center, and the one closer to MCM, respectively.
+    Double_t xLad, zLadIn, zLadOut;
+    xLad    = xGrnd + 0.5*(grndThickness + ladderThickness) +
+              0.01175 - fgkGapLadder;
+    zLadIn  = -sepLadderCenter - 0.5*ladderLength;
+    zLadOut = zLadIn - sepLadderLadder - ladderLength;
+    if (!isRight) {
+        zLadIn = -zLadIn;
+        zLadOut = -zLadOut;
+    } // end if !isRight
+    TGeoRotation *rotLad = new TGeoRotation(*gGeoIdentity);
+    rotLad->RotateZ(90.0);
+    rotLad->RotateY(180.0);
+    Double_t sensWidth      = fgkmm * 12.800;
+    Double_t chipWidth      = fgkmm * 15.950;
+    Double_t guardRingWidth = fgkmm *  0.560;
+    Double_t ladderShift = 0.5 * (chipWidth - sensWidth - 2.0*guardRingWidth);
+    TGeoCombiTrans *trLadIn  = new TGeoCombiTrans(xLad,ladderShift,zLadIn,
+                                                  rotLad);
+    TGeoCombiTrans *trLadOut = new TGeoCombiTrans(xLad,ladderShift,zLadOut,
+                                                  rotLad);
+
+    // MCM (length and thickness direction, placing at same level as the
+    // ladder, which implies to recompute the position of center, because
+    // ladder and MCM have NOT the same thickness) the two copies of the
+    // MCM are placed at the same distance from the center, on both sides
+    Double_t xMCM = xGrnd + 0.5*grndThickness + 0.5*mcmThickness +
+                    0.01175 - fgkGapLadder;
+    Double_t yMCM = 0.5*(fullWidth - mcmWidth);
+    Double_t zMCM = zLadOut - 0.5*ladderLength - 0.5*mcmLength - sepLadderMCM;
+    if (!isRight) zMCM = zLadOut + 0.5*ladderLength + 0.5*mcmLength +
+                         sepLadderMCM;
+
+    // create the correction rotations
+    TGeoRotation *rotMCM = new TGeoRotation(*gGeoIdentity);
+    rotMCM->RotateY(90.0);
+    TGeoCombiTrans *trMCM = new TGeoCombiTrans(xMCM, yMCM, zMCM, rotMCM);
+
+    // glue between ladders and pixel bus
+    Double_t xLadGlue = xLad + 0.5*ladderThickness + 0.01175 -
+                        fgkGapLadder + 0.5*ladGlueThickness;
+
+    // bus (length and thickness direction)
+    Double_t xBus = xLadGlue + 0.5*ladGlueThickness + 0.5*busThickness;
+    Double_t yBus  = 0.5*(fullWidth - busWidth) + 0.075; // Hardcode fix of a small overlap
+    Double_t zBus = -0.5*busLength - sepBusCenter;
+    if (!isRight) zBus = -zBus;
+    TGeoTranslation *trBus = new TGeoTranslation(xBus, yBus, zBus);
+
+    TGeoTranslation *trLadGlue = new TGeoTranslation(xLadGlue, 0.0, zBus);
+
+    // create the container
+    TGeoVolumeAssembly *container = 0;
+    if (idxCentral+idxSide==5) {
+        container = new TGeoVolumeAssembly("ITSSPDhalf-Stave1");
+    } else {
+        container = new TGeoVolumeAssembly("ITSSPDhalf-Stave0");
+    } // end if
+
+    // add to container all objects
+    container->AddNode(grndVol, 1, grndTrans);
+    // ladders are inserted in different order to respect numbering scheme
+    // which is inverted when going from outer to inner layer
+    container->AddNode(ladder, idxCentral+1, trLadIn);
+    container->AddNode(ladder, idxSide+1, trLadOut);
+    container->AddNode(ladderGlue, 1, trLadGlue);
+    container->AddNode(mcm, 1, trMCM);
+    container->AddNode(bus, 1, trBus);
+
+    // since the clips are placed in correspondence of two pt1000s,
+    // their position is computed here, but they are not added by default
+    // it will be the StavesInSector method which will decide to add them
+    // anyway, to recovery some size informations on the clip, it must be
+    // created
+    TArrayD clipSize;
+    //    TGeoVolume *clipDummy = CreateClip(clipSize, kTRUE, mgr);
+    CreateClip(clipSize, kTRUE, mgr);
+    // define clip movements (width direction)
+    sizes[3] = xBus + 0.5*busThickness;
+    sizes[4] = 0.5 * (fullWidth - busWidth) - clipSize[6] - fgkmm*0.48;
+    sizes[5] = zBus + busSize[4];
+    sizes[6] = zBus + busSize[5];
+
+    return container;
+}
+//______________________________________________________________________
+TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateStave(Int_t layer,
+                                    TArrayD &sizes, TGeoManager *mgr)
+{
+    //
+    // This method uses all other ones which create pieces of the stave
+    // and assemblies everything together, in order to return the whole
+    // stave implementation, which is returned as a TGeoVolumeAssembly,
+    // due to the presence of some parts which could generate fake overlaps
+    // when put on the sector.
+    // This assembly contains, going from bottom to top in the thickness
+    // direction:
+    //   - the complete grounding foil, defined by the "CreateGroundingFoil"
+    //     method which already joins some glue and real groudning foil
+    //     layers for the whole stave (left + right);
+    //   - 4 ladders, which are sorted according to the ALICE numbering
+    //     scheme, which depends on the layer we are building this stave for;
+    //   - 2 MCMs (a left and a right one);
+    //   - 2 pixel buses (a left and a right one);
+    // ---
+    // Arguments:
+    //   - the layer number, which determines the displacement and naming
+    //     of sensitive volumes
+    //   - a TArrayD passed by reference which will contain the size
+    //     of virtual box containing the stave
+    //   - the TGeoManager
+    //
+
+    // create the container
+    TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form(
+                                                 "ITSSPDlay%d-Stave",layer));
+    // define the indexes of the ladders in order to have the correct order
+    // keeping in mind that the staves will be inserted as they are on layer
+    // 2, while they are rotated around their local Y axis when inserted
+    // on layer 1, so in this case they must be put in the "wrong" order
+    // to turn out to be right at the end. The convention is:
+    //   -|Zmax| ------> |Zmax|
+    //      3   2   1   0
+    // with respect to the "native" stave reference frame, "left" is in
+    // the positive Z this leads the definition of these indexes:
+    Int_t idxCentralL, idxSideL, idxCentralR, idxSideR;
+
+    if (layer == 1) {
+        idxSideL = 3;
+        idxCentralL = 2;
+        idxCentralR = 1;
+        idxSideR = 0;
+    } else {
+        idxSideL = 0;
+        idxCentralL = 1;
+        idxCentralR = 2;
+        idxSideR = 3;
+    } // end if layer ==1
+
+     // create the two half-staves
+    TArrayD sizeL, sizeR;
+    TGeoVolumeAssembly *hstaveL = CreateHalfStave(kFALSE, layer, idxCentralL,
+                                             idxSideL, sizeL,mgr);
+    TGeoVolumeAssembly *hstaveR = CreateHalfStave(kTRUE, layer, idxCentralR,
+                                             idxSideR, sizeR, mgr);
+    // copy the size to the stave's one
+    sizes.Set(9);
+    sizes[0] = sizeL[0];
+    sizes[1] = sizeR[1] + sizeL[1];
+    sizes[2] = sizeL[2];
+    sizes[3] = sizeL[3];
+    sizes[4] = sizeL[4];
+    sizes[5] = sizeL[5];
+    sizes[6] = sizeL[6];
+    sizes[7] = sizeR[5];
+    sizes[8] = sizeR[6];
+
+    // add to container all objects
+    container->AddNode(hstaveL, 1);
+    container->AddNode(hstaveR, 1);
+
+    return container;
+}
+//______________________________________________________________________
+void AliITSv11GeometrySPD::SetAddStave(Bool_t *mask)
+{
+    //
+    // Define a mask which states qhich staves must be placed.
+    // It is a string which must contain '0' or '1' depending if
+    // a stave must be placed or not.
+    // Each place is referred to one of the staves, so the first
+    // six characters of the string will be checked.
+    //
+     Int_t i;
+
+     for (i = 0; i < 6; i++) fAddStave[i] = mask[i];
+}
+//______________________________________________________________________
+void AliITSv11GeometrySPD::StavesInSector(TGeoVolume *moth, TGeoManager *mgr)
+{
+    //
+    // Unification of essentially two methods:
+    // - the one which creates the sector structure
+    // - the one which returns the complete stave
+    // ---
+    // For compatibility, this method requires the same arguments
+    // asked by "CarbonFiberSector" method, which is recalled here.
+    // Like this cited method, this one does not return any value,
+    // but it inserts in the mother volume (argument 'moth') all the stuff
+    // which composes the complete SPD sector.
+    // ---
+    // In the following, the stave numbering order used for arrays is the
+    // same as defined in the GetSectorMountingPoints():
+    //                         /5
+    //                        /\/4
+    //                      1\   \/3
+    //                      0|___\/2
+    // ---
+    // Arguments: see description of "CarbonFiberSector" method.
+    //
+
+    Double_t shift[6];  // shift from the innermost position in the
+                        // sector placement plane (where the stave
+                        // edge is in the point where the rounded
+                        // corner begins)
+
+    shift[0] = fgkmm * -0.691;
+    shift[1] = fgkmm *  5.041;
+    shift[2] = fgkmm *  1.816;
+    shift[3] = fgkmm * -0.610;
+    shift[4] = fgkmm * -0.610;
+    shift[5] = fgkmm * -0.610;
+
+    // corrections after interaction with Andrea and CAD
+    Double_t corrX[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
+    Double_t corrY[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
+
+    corrX[0] =  0.0046;
+    corrX[1] = -0.0041;
+    corrX[2] = corrX[3] = corrX[4] = corrX[5] = -0.0016;
+
+    corrY[0] = -0.0007;
+    corrY[1] = -0.0009;
+    corrY[2] = corrY[3] = corrY[4] = corrY[5] = -0.0003;
+
+    corrX[0] +=  0.00026;
+    corrY[0] += -0.00080;
+
+    corrX[1] +=  0.00018;
+    corrY[1] += -0.00086;
+
+    corrX[2] +=  0.00020;
+    corrY[2] += -0.00062;
+
+    corrX[3] +=  0.00017;
+    corrY[3] += -0.00076;
+
+    corrX[4] +=  0.00016;
+    corrY[4] += -0.00096;
+
+    corrX[5] +=  0.00018;
+    corrY[5] += -0.00107;
+
+    // create stave volumes (different for layer 1 and 2)
+    TArrayD staveSizes1(9), staveSizes2(9), clipSize(5);
+    Double_t &staveHeight = staveSizes1[2], &staveThickness = staveSizes1[0];
+    TGeoVolume *stave1 = CreateStave(1, staveSizes1, mgr);
+    TGeoVolume *stave2 = CreateStave(2, staveSizes2, mgr);
+    TGeoVolume *clip   = CreateClip(clipSize, kFALSE, mgr);
+
+    Double_t xL, yL;      // leftmost edge of mounting point (XY projection)
+    Double_t xR, yR;      // rightmost edge of mounting point (XY projection)
+    Double_t xM, yM;      // middle point of the segment L-R
+    Double_t dx, dy;      // (xL - xR) and (yL - yR)
+    Double_t widthLR;     // width of the segment L-R
+    Double_t angle;       // stave rotation angle in degrees
+    Double_t diffWidth;   // difference between mounting plane width and
+                          // stave width (smaller)
+    Double_t xPos, yPos;  // final translation of the stave
+    Double_t parMovement; // translation in the LR plane direction
+
+    staveThickness += fgkGapHalfStave;
+
+    // loop on staves
+    Int_t i, iclip = 1;
+    for (i = 0; i < 6; i++) {
+        // in debug mode, if this stave is not required, it is skipped
+        if (!fAddStave[i]) continue;
+        // retrieve reference points
+        GetSectorMountingPoints(i, xL, yL, xR, yR);
+        xM = 0.5 * (xL + xR);
+        yM = 0.5 * (yL + yR);
+        dx = xL - xR;
+        dy = yL - yR;
+        angle = TMath::ATan2(dy, dx);
+        widthLR = TMath::Sqrt(dx*dx + dy*dy);
+        diffWidth = 0.5*(widthLR - staveHeight);
+        // first, a movement along this plane must be done
+        // by an amount equal to the width difference
+        // and then the fixed shift must also be added
+        parMovement = diffWidth + shift[i];
+        // due to stave thickness, another movement must be done
+        // in the direction normal to the mounting plane
+        // which is computed using an internal method, in a reference
+        // frame where the LR segment has its middle point in the origin
+        // and axes parallel to the master reference frame
+        if (i == 0) {
+            ParallelPosition(-0.5*staveThickness, -parMovement, angle,
+                                  xPos, yPos);
+        } // end if i==0
+        if (i == 1) {
+            ParallelPosition( 0.5*staveThickness, -parMovement, angle,
+                                  xPos, yPos);
+        }else {
+            ParallelPosition( 0.5*staveThickness,  parMovement, angle,
+                                  xPos, yPos);
+        } // end if i==1
+        // then we go into the true reference frame
+        xPos += xM;
+        yPos += yM;
+        xPos += corrX[i];
+        yPos += corrY[i];
+        // using the parameters found here, compute the
+        // translation and rotation of this stave:
+        TGeoRotation *rot = new TGeoRotation(*gGeoIdentity);
+        if (i == 0 || i == 1) rot->RotateX(180.0);
+        rot->RotateZ(90.0 + angle * TMath::RadToDeg());
+        TGeoCombiTrans *trans = new TGeoCombiTrans(xPos, yPos, 0.0, rot);
+        if (i == 0 || i == 1) {
+            moth->AddNode(stave1, i+1, trans);
+        }else {
+            moth->AddNode(stave2, i - 1, trans);
+            if (i != 2) {
+                // except in the case of stave #2,
+                // clips must be added, and this is done directly on the sector
+                Int_t j;
+                //TArrayD clipSize;
+                TGeoRotation *rotClip = new TGeoRotation(*gGeoIdentity);
+                rotClip->RotateZ(-90.0);
+                rotClip->RotateX(180.0);
+                Double_t x = staveSizes2[3] + fgkGapHalfStave;
+                Double_t y = staveSizes2[4];
+                Double_t z[4] = { staveSizes2[5], staveSizes2[6],
+                                  staveSizes2[7], staveSizes2[8] };
+                for (j = 0; j < 4; j++) {
+                    TGeoCombiTrans *trClip = new TGeoCombiTrans(x, y, z[j],
+                                                                rotClip);
+                    *trClip = *trans * *trClip;
+                    moth->AddNode(clip, iclip++, trClip);
+                } // end for j
+            } // end if i!=2
+        } // end if i==0||i==1 else
+    } // end for i
+}
+//______________________________________________________________________
+void AliITSv11GeometrySPD::ParallelPosition(Double_t dist1, Double_t dist2,
+                               Double_t phi, Double_t &x, Double_t &y) const
+{
+    //
+    // Performs the following steps:
+    // 1 - finds a straight line parallel to the one passing through
+    //     the origin and with angle 'phi' with X axis(phi in RADIANS);
+    // 2 - finds another line parallel to the previous one, with a
+    //     distance 'dist1' from it
+    // 3 - takes a reference point in the second line in the intersection
+    //     between the normal to both lines  passing through the origin
+    // 4 - finds a point whith has distance 'dist2' from this reference,
+    //     in the second line (point 2)
+    // ----
+    // According to the signs given to dist1 and dist2, the point is
+    // found in different position w.r. to the origin
+    // compute the point
+    //
+    Double_t cs = TMath::Cos(phi);
+    Double_t sn = TMath::Sin(phi);
+
+    x = dist2*cs - dist1*sn;
+    y = dist1*cs + dist2*sn;
+}
+//______________________________________________________________________
+Double_t AliITSv11GeometrySPD::GetSPDSectorTranslation(
+    Double_t x0,Double_t y0,Double_t x1,Double_t y1,Double_t r) const
+{
+    //
+    // Comutes the radial translation of a sector to give the
+    // proper distance between SPD detectors and the beam pipe.
+    // Units in are units out.
+    //
+
+    //Begin_Html
+    /*
+      <A HREF="http://www.physics.ohio-state.edu/HIRG/SoftWareDoc/SPD_Sector_Position.png">
+      Figure showing the geometry used in the computation below. </A>
+     */
+    //End_Html
+
+    // Inputs:
+    //   Double_t x0  Point x0 on Sector surface for the inner
+    //                most detector mounting
+    //   Double_t y0  Point y0 on Sector surface for the innor
+    //                most detector mounting
+    //   Double_t x1  Point x1 on Sector surface for the inner
+    //                most detector mounting
+    //   Double_t y1  Point y1 on Sector surface for the innor
+    //                most detector mounting
+    //   Double_t r   The radial distance this mounting surface
+    //                should be from the center of the beam pipe.
+    // Outputs:
+    //   none.
+    // Return:
+    //   The distance the SPD sector should be displaced radialy.
+    //
+    Double_t a,b,c;
+
+    a = x0-x1;
+    if(a==0.0) return 0.0;
+    a = (y0-y1)/a;
+    b = TMath::Sqrt(1.0+a*a);
+    c = y0-a*x0-r*b;
+    return -c;
+}
+//______________________________________________________________________
+void AliITSv11GeometrySPD::CreateFigure0(const Char_t *filepath,
+                                         const Char_t *type,
+                                         TGeoManager *mgr) const
+{
+    //
+    // Creates Figure 0 for the documentation of this class. In this
+    // specific case, it creates the X,Y cross section of the SPD suport
+    // section, center and ends. The output is written to a standard
+    // file name to the path specificed.
+    // Inputs:
+    //   const Char_t *filepath  Path where the figure is to be drawn
+    //   const Char_t *type      The type of file, default is gif.
+    //   TGeoManager  *mgr       The TGeoManager default gGeoManager
+    // Output:
+    //   none.
+    // Return:
+    //   none.
+    //
+    TGeoXtru *sA0,*sA1,*sB0,*sB1;
+    //TPolyMarker *pmA,*pmB;
+    TPolyLine plA0,plA1,plB0,plB1;
+    TCanvas *canvas;
+    TLatex txt;
+    Double_t x=0.0,y=0.0;
+    Int_t i,kNRadii=6;
+
+    if(strcmp(filepath,"")){
+        Error("CreateFigure0","filepath=%s type=%s",filepath,type);
+    } // end if
+    //
+    sA0 = (TGeoXtru*) mgr->GetVolume("ITSSPDCarbonFiberSupportSectorA0_1")->
+              GetShape();
+    sA1 = (TGeoXtru*) mgr->GetVolume("ITSSPDCarbonFiberSupportSectorAirA1_1")->
+              GetShape();
+    sB0 = (TGeoXtru*) mgr->GetVolume("ITSSPDCarbonFiberSupportSectorEndB0_1")->
+             GetShape();
+    sB1 = (TGeoXtru*) mgr->GetVolume("ITSSPDCarbonFiberSupportSectorEndAirB1_1"
+           )->GetShape();
+    //pmA = new TPolyMarker();
+    //pmA.SetMarkerStyle(2); // +
+    //pmA.SetMarkerColor(7); // light blue
+    //pmB = new TPolyMarker();
+    //pmB.SetMarkerStyle(5); // X
+    //pmB.SetMarkerColor(6); // purple
+    plA0.SetPolyLine(sA0->GetNvert());
+    plA0.SetLineColor(1); // black
+    plA0.SetLineStyle(1);
+    plA1.SetPolyLine(sA1->GetNvert());
+    plA1.SetLineColor(2); // red
+    plA1.SetLineStyle(1);
+    plB0.SetPolyLine(sB0->GetNvert());
+    plB0.SetLineColor(3); // Green
+    plB0.SetLineStyle(2);
+    plB1.SetPolyLine(sB1->GetNvert());
+    plB1.SetLineColor(4); // Blue
+    plB1.SetLineStyle(2);
+    //for(i=0;i<kNRadii;i++) pmA.SetPoint(i,xyB1p[i][0],xyB1p[i][1]);
+    //for(i=0;i<kNRadii;i++) pmB.SetPoint(i,xyB1p[i][0],xyB1p[i][1]);
+    for(i=0;i<sA0->GetNvert();i++) plA0.SetPoint(i,sA0->GetX(i),sA0->GetY(i));
+    for(i=0;i<sA1->GetNvert();i++) plA1.SetPoint(i,sA1->GetX(i),sA1->GetY(i));
+    for(i=0;i<sB0->GetNvert();i++) plB0.SetPoint(i,sB0->GetX(i),sB0->GetY(i));
+    for(i=0;i<sB1->GetNvert();i++) plB1.SetPoint(i,sB1->GetX(i),sB1->GetY(i));
+    canvas = new TCanvas("AliITSv11GeometrySPDFig0","",1000,1000);
+    canvas->Range(-3.,-3.,3.,3.);
+    txt.SetTextSize(0.05);
+    txt.SetTextAlign(33);
     txt.SetTextColor(1);
     txt.DrawLatex(2.9,2.9,"Section A-A outer Carbon Fiber surface");
     txt.SetTextColor(2);
@@ -1063,1623 +4025,208 @@ void AliITSv11GeometrySPD::CreateFigure0(const Char_t *filepath,
     txt.DrawLatex(x+2.5,y,"Section");
     //
 }
-
-//___________________________________________________________________________________________________________________
-TGeoVolume* AliITSv11GeometrySPD::CreateLadder
-(Int_t layer, Double_t &length, Double_t &width, Double_t &thickness, TGeoManager *mgr)
-{
-       //
-       // Creates the "ladder" = silicon sensor + 5 chips.
-       // All parts are implemented as TGeoBBox and inserted 
-       // into a container which is the return value of this method.
-       // The sizes of the components come from drawings 
-       // of the Technical office of INFN Padova.
-       // Due to the requirement to specify the sensitive volume separately from the rest,
-       // the sensor is implemented as the sum of a central sensitive part + a guard ring.
-       // Also the bump-bondings are added in form of small cylinders.
-       // ---
-       // Arguments:
-       //  - the layer which will own this ladder (MUST be 1 or 2)
-       //  - the used TGeoManager
-       // ---
-       // Returns:
-       //  - the container TGeoBBox (return value)
-       //  - the size of the container box (arguments passed by reference)
-       // ---
-       // NOTE 1
-       // Here and in the other methods which contribute to the stave definition
-       // a convention is used for the naming of the three dimensions of the volumes:
-       //  - 'length'    refers to the size in the Z direction of the ALICE reference frame
-       //  - 'width'     refers to the "large" dimension orthogonal to Z axis in the local reference 
-       //                frame of the object being implemented (e.g., 15.95 mm for the chips)
-       //  - 'thickness' refers to the "small" dimension orthogonal to Z axis, which is also
-       //                the direction along which the components are superimposed on each other
-       // ---
-       // NOTE 2
-       // all sizes taken are expressed in mm in drawings, and this is kept as is, to avoid confusion
-       // the conversion is made multiplying by the conversion factor
-       //
-       
-       // ** CRITICAL CHECK **
-       // layer number can be ONLY 1 or 2
-       if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2");
-       
-       // instantiate all required media
-       TGeoMedium *medAir       = mgr->GetMedium("Air");
-       TGeoMedium *medSPDSiChip = mgr->GetMedium("SPD SI CHIP");
-       TGeoMedium *medSi        = mgr->GetMedium("Si");
-       TGeoMedium *medBumpBond  = mgr->GetMedium("BumpBond");
-       
-       // ** Define sizes **
-       // they are expressed in mm in the drawings so they require conversion
-       // 'length'    is in the direction of the detector length (Z axis)
-       // 'thickness' is obvious
-       // 'width'     is in the direction orthogonal to 'width' and 'thickness'
-       
-       // for the chip, also the spacing between them is required
-       Double_t chipThickness  = fgkmm *  0.150;
-       Double_t chipWidth      = fgkmm * 15.950;
-       Double_t chipLength     = fgkmm * 13.600;
-       Double_t chipSpacing    = fgkmm *  0.400;
-       
-       // for the sensor, we define the area of sensitive volume
-       // while the guard ring is added as a separate piece
-       Double_t sensThickness  = fgkmm *  0.200;
-       Double_t sensLength     = fgkmm * 69.600;
-       Double_t sensWidth      = fgkmm * 13.920;
-       Double_t guardRingWidth = fgkmm *  0.560;
-       
-       // bump bond is defined as a small stripe of height = 0.012 mm
-       // and a suitable width to keep the same volume it has 
-       // before being compressed (a line of spheres of 0.025 mm radius)
-       Double_t bbLength    = fgkmm * 0.042;
-       Double_t bbWidth     = sensWidth;
-       Double_t bbThickness = fgkmm * 0.012;
-       Double_t bbPos       = 0.080;           // Z position w.r. to left pixel edge
-               
-       // ** Create volumes **
-       // the container is the return value, and is built as a box
-       // whose edges exactly enclose the stuff we inserted here, filled with air.
-       // Its name depends on the layer number.
-       width = chipWidth;
-       length = sensLength + 2.0*guardRingWidth;
-       thickness = sensThickness + chipThickness + bbThickness;
-       TGeoVolume *container = mgr->MakeBox(Form("LAY%d_LADDER", layer), medAir, 0.5*thickness, 0.5*width, 0.5*length);
-       
-       // the chip is a simple box:
-       TGeoVolume *volChip = mgr->MakeBox("CHIP", medSPDSiChip, 0.5*chipThickness, 0.5*chipWidth, 0.5*chipLength);
-       
-       // the sensor is the union of a box and a border, to separate sensitive part from the rest
-       // the sensitive volume (inner part) is named according to the owner layer.
-       // To compute the shape subtraction which is needed for this we create two shapes,
-       // which are two boxes with the same center.
-       // The smaller one is then used to define the sensor, while the subtraction of the two
-       // is used for the guard ring.
-       TGeoBBox  *shSens = new TGeoBBox(0.5*sensThickness, 0.5*sensWidth, 0.5*sensLength);
-       TGeoBBox  *shIn   = new TGeoBBox(sensThickness, 0.5*sensWidth, 0.5*sensLength);
-       TGeoBBox  *shOut  = new TGeoBBox(0.5*sensThickness, 0.5*sensWidth + guardRingWidth, 0.5*sensLength + guardRingWidth);
-       shIn->SetName("innerBox");
-       shOut->SetName("outerBox");
-       TGeoCompositeShape *shBorder = new TGeoCompositeShape("", "outerBox-innerBox");
-       TGeoVolume *volSens = new TGeoVolume(Form("LAY%d_SENSOR", layer), shSens, medSi);
-       TGeoVolume *volBorder = new TGeoVolume("GUARD_RING", shBorder, medSi);
-       
-       // one line of bumpbonds
-       TGeoVolume *volBB = mgr->MakeBox("BB", medBumpBond, 0.5*bbThickness, 0.5*bbWidth, 0.5*bbLength);
-                       
-       // set colors of all objects for visualization  
-       volSens->SetLineColor(kYellow + 1);
-       volChip->SetLineColor(kGreen);
-       volBorder->SetLineColor(kYellow + 3);
-
-       // translations for the chip box: direction of length and thickness (moved down)
-       TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0};
-       Double_t x = 0.5 * (chipThickness - thickness);
-       Double_t y = 0.0;
-       Double_t z = 0.0;
-       Int_t i;
-       for (i = 0; i < 5; i++) {
-               z = -0.5*length + guardRingWidth + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength;
-               trChip[i] = new TGeoTranslation(x, y, z);
-       }
-       
-       // translation for the sensor parts: direction of width (moved to edge of container) and thickness (moved up)
-       x = 0.5 * (thickness - sensThickness);
-       y = 0.5 * (width - sensWidth - 2.0*guardRingWidth);
-       z = 0.0;
-       TGeoTranslation *trSens = new TGeoTranslation(x, y, z);
-       
-       // translation for the bump bonds:
-       // keep same y used for sensors, but change the Z
-       TGeoTranslation *trBB[160];
-       //x = 0.5 * (thickness - bbThickness) + 0.5*sensThickness;
-       x = 0.5 * (thickness - bbThickness) - sensThickness;
-       z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos;
-       for (i = 0; i < 160; i++) {
-               trBB[i] = new TGeoTranslation(x, y, z);
-               switch(i) {
-                       case  31:
-                       case  63:
-                       case  95:
-                       case 127:
-                               z += fgkmm * 0.625 + fgkmm * 0.2;
-                               break;
-                       default:
-                               z += fgkmm * 0.425;
-               }
-       }
-               
-       // add nodes to container
-       container->AddNode(volSens, 1, trSens);
-       container->AddNode(volBorder, 1, trSens);
-       for (i = 0; i < 160; i++) container->AddNode(volBB, i, trBB[i]);
-       for (i = 0; i < 5; i++) container->AddNode(volChip, i + 2, trChip[i]);
-       
-       // return the container
-       return container;
-}
-
-/*
-//___________________________________________________________________________________________________________________
-TGeoVolume* AliITSv11GeometrySPD::CreateGroundingFoilSingle
-(Bool_t kaptonLayer, Double_t &length, Double_t &width, Double_t &thickness, TGeoManager *mgr)
-{
-       //
-       // Creates the grounding foil layer made in Kapton.
-       // Both layers of the grounding foil have the same shape, but with small
-       // differences in the size of some parts (holes, overall size).
-       // The Kapton layer is a little bit wider and has smaller holes.
-       // ---
-       // The complete object is created as the superimposition of an XTRU with some holes
-       // ---
-       // Whenever possible, the size of the parts is parameterized with 
-       // variable names, even if their value is fixed according 
-       // to the design parameters given by engineers' drawings.
-       // ---
-       // Returns: a TGeoVolume object which contains all parts of this layer
-       //
-       
-       // The shape of the grounding foil is an irregular polygon, which can easily be implemented as 
-       // a TGeoXtru using the corners as reference points:
-       // 
-       // 0                                                                                                     1
-       //  +---------------------------------------------------------------------------------------------------+
-       //  |                                                            7              6      3                |
-       //  |                                                            +--------------+      +----------------+ 2
-       //  |                                                O           |              |      |
-       //  |                                                    9 /-----+ 8            +------+ 4
-       //  |                                                     /                    5
-       //  |                                  11 /--------------/ 10
-       //  +------------------------------------/ 
-       // 13                                    12
-       //
-       // in total: 14 points (X is just a referencem but is unused in the implementation.
-       // The whole shape can be subdivided into sectors delimited by vertical lines passing
-       // througth the points in the lower part of the shape. This convention is used to names
-       // their length which is different for each one (the widths, instead, are common for some)      
-
-       // instantiate the media:
-       // - kapton/aluminum for the pysical volumes
-       TGeoMedium *material = kaptonLayer ? mgr->GetMedium("KAPTON") : mgr->GetMedium("AL");
-       
-       // label
-       char type[3];
-       if (kaptonLayer) {
-               strcpy(type, "KP"); 
-               thickness = fgkmm * 0.05;
-       }
-       else {
-               strcpy(type, "AL");
-               thickness = fgkmm * 0.02;
-       }
-       
-       // define the length of all sectors (from leftmost to rightmost)
-       Int_t i;
-       Double_t sectorLength[] = { 140.71,  2.48,  26.78,  4.00,  10.00,  24.40,  10.00,  24.81 };
-       if (!kaptonLayer) {
-               sectorLength[0] -= 0.2;
-               sectorLength[4] -= 0.2;
-               sectorLength[5] += 0.4;
-               sectorLength[6] -= 0.4;
-       }
-       length = 0.0;
-       for (i = 0; i < 8; i++) {
-               sectorLength[i] *= fgkmm;
-               length += sectorLength[i];
-       }
-               
-       // as shown in the drawing, we have three different widths in this shape:
-       Double_t widthMax  = fgkmm * 15.95;
-       Double_t widthMed1 = fgkmm * 15.00;
-       Double_t widthMed2 = fgkmm * 11.00;
-       Double_t widthMin  = fgkmm *  4.40;
-       if (!kaptonLayer) {
-               widthMax  -= fgkmm * 0.4;
-               widthMed1 -= fgkmm * 0.4;
-               widthMed2 -= fgkmm * 0.4;
-               widthMin  -= fgkmm * 0.4;
-       }
-       width = widthMax;
-       
-       // the vertices of the polygon are arrays correctly ordered in the counterclockwise direction:
-       // initially we place the point 0 in the origin, and all others will be defined accordingly
-       Double_t x[14], y[14];
-       x[ 0] = 0.0;
-       y[ 0] = 0.0;
-       
-       x[ 1] = x[0] + length;
-       y[ 1] = 0.0;
-       
-       x[ 2] = x[1];
-       y[ 2] = -widthMin;
-       
-       x[ 3] = x[2] - sectorLength[7];
-       y[ 3] = y[2];
-       
-       x[ 4] = x[3];
-       y[ 4] = -widthMed2;
-       
-       x[ 5] = x[4] - sectorLength[6];
-       y[ 5] = y[4];
-       
-       x[ 6] = x[5];
-       y[ 6] = -widthMin;
-       
-       x[ 7] = x[6] - sectorLength[5];
-       y[ 7] = y[6];
-       
-       x[ 8] = x[7];
-       y[ 8] = -widthMed2;
-       
-       x[ 9] = x[8] - sectorLength[4];
-       y[ 9] = y[8];
-       
-       x[10] = x[9] - sectorLength[3];
-       y[10] = -widthMed1;
-        
-       x[11] = x[10] - sectorLength[2];
-       y[11] = y[10];
-       
-       x[12] = x[11] - sectorLength[1];
-       y[12] = -widthMax;
-       
-       x[13] = x[0];
-       y[13] = -widthMax;
-       
-       // then, we shift all points in such a way that the origin will be at the centers
-       for (i = 0; i < 14; i++) {
-               x[i] -= 0.5*length;
-               y[i] += 0.5*width;
-       }
-       
-       // create the shape
-       char shName[200];
-       sprintf(shName, "SH_%sGFOIL_FULL", type);
-       TGeoXtru *shGroundFull = new TGeoXtru(2);
-       shGroundFull->SetName(shName);
-       shGroundFull->DefinePolygon(14, x, y);
-       shGroundFull->DefineSection(0, -0.5*thickness, 0., 0., 1.0);
-       shGroundFull->DefineSection(1,  0.5*thickness, 0., 0., 1.0);
-       
-       // this volume contains some holes which are here implemented as simple boxes
-       // of fixed size, which are displaced along the shape itself and then composed
-       // using the facilities of the TGeo package
-       
-       Double_t holeLength = fgkmm * 10.00;
-       Double_t holeWidth  = fgkmm *  7.50;
-       Double_t holeSepX0  = fgkmm *  7.05;  // separation between center of first hole and left border
-       Double_t holeSepXC  = fgkmm * 14.00;  // separation between the centers of two consecutive holes
-       Double_t holeSepX1  = fgkmm * 15.42;  // separation between centers of 5th and 6th hole
-       Double_t holeSepX2  = fgkmm * 22.00;  // separation between centers of 10th and 11th hole
-       if (!kaptonLayer) {
-               holeSepX0  -= fgkmm * 0.2;
-               holeLength += fgkmm * 0.4;
-               holeWidth  += fgkmm * 0.4;
-       }
-       
-       // X position of hole center (will change for each hole)
-       Double_t holeX = -0.5*length;
-       // Y position of center of all holes (= 4.4 mm from upper border)
-       Double_t holeY = 0.5*(width - holeWidth) - widthMin;
-       //if (!kaptonLayer) holeY += 0.02;
-               
-       // create a shape for the holes (common)
-       char holeName[200];
-       sprintf(holeName, "%sHOLE", type);
-       TGeoBBox *shHole = 0;
-       shHole = new TGeoBBox(holeName, 0.5*holeLength, 0.5*holeWidth, thickness);
-       
-       // insert the holes in the XTRU shape:
-       // starting from the first value of X, they are simply shifted along this axis
-       char trName[200];
-       TGeoTranslation *transHole[11];
-       TString strComposite(shName);
-       strComposite.Append("-(");
-       for (Int_t i = 0; i < 11; i++) {
-               // set the position of the hole, depending on index
-               if (i == 0) {
-                       holeX += holeSepX0;
-               }
-               else if (i < 4) {
-                       holeX += holeSepXC;
-               }
-               else if (i == 4) {
-                       holeX += holeSepX1;
-               }
-               else if (i < 10) {
-                       holeX += holeSepXC;
-               }
-               else {
-                       holeX += holeSepX2;
-               }
-               sprintf(trName, "%sTR%d", type, i);
-               transHole[i] = new TGeoTranslation(trName, holeX, holeY, 0.0);
-               transHole[i]->RegisterYourself();
-               strComposite.Append(holeName);
-               strComposite.Append(":");
-               strComposite.Append(trName);
-               if (i < 10) strComposite.Append("+");
-               cout << holeX << endl;
-       }
-       strComposite.Append(")");
-       cout << strComposite.Data() << endl;
-       
-       // create composite shape (with holes)
-       TGeoCompositeShape *shGround = new TGeoCompositeShape(Form("SH_%sGFOIL", type), strComposite.Data());
-       
-       // create the volume
-       TGeoVolume *vol = new TGeoVolume(Form("%sGFOIL", type), shGround, material);
-       return vol;
-}
-*/
-
-//___________________________________________________________________________________________________________________
-TGeoVolume* AliITSv11GeometrySPD::CreateGroundingFoilSingle
-(Bool_t kaptonLayer, Double_t &length, Double_t &width, Double_t &thickness, TGeoManager *mgr)
-{
-       //
-       // Creates the grounding foil layer made in Kapton.
-       // Both layers of the grounding foil have the same shape, but with small
-       // differences in the size of some parts (holes, overall size).
-       // The Kapton layer is a little bit wider and has smaller holes.
-       // ---
-       // The complete object is created as the sum of the following parts:
-       // 1) the part which is connected to the chips, which is a 
-       //    simple BOX with some box-shaped holes at regular intervals
-       // 2) a trapezoidal connection where the Y size changes
-       // 3) another box with a unique hole of the same shape and size as above
-       // 4) another trapezoidal connection where the Y size changes
-       // 5) a final part which is built as a sequence of 4 BOX volumes
-       //    where the first and the third are equal and the others have same size in Y.
-       // ---
-       // Whenever possible, the size of the parts is parameterized with 
-       // variable names, even if their value is fixed according 
-       // to the design parameters given by engineers' drawings.
-       // ---
-       // Returns: a TGeoVolume object which contanis all parts of this layer
-       //
-
-       // instantiate the media:
-       // - vacuum for the container volume
-       // - kapton for the pysical volumes
-       TGeoMedium *vacuum   = mgr->GetMedium("VACUUM");
-       TGeoMedium *material = mgr->GetMedium("KAPTON");
-       
-       // === Define size of all elements ===
-       Double_t sizeZ      = fgkmm *   0.05;
-       
-       Double_t part1X     = fgkmm * 140.71;
-       Double_t part2X     = fgkmm *   2.48;
-       Double_t part3X     = fgkmm *  26.78;
-       Double_t part4X     = fgkmm *   4.00;
-       Double_t part5X     = fgkmm *  10.00;
-       Double_t part6X     = fgkmm *  24.40;
-       Double_t part7X     = fgkmm *  10.00;
-       Double_t part8X     = fgkmm *  24.81;
-       
-       Double_t sizeYMax   = fgkmm *  15.95;
-       Double_t sizeYMed1  = fgkmm *  15.00;
-       Double_t sizeYMed2  = fgkmm *  11.00;
-       Double_t sizeYMin   = fgkmm *   4.40;
-       
-       Double_t holeX      = fgkmm *  10.00;
-       Double_t holeY      = fgkmm *   7.50;
-       Double_t holeSepX   = fgkmm *  14.00;  // separation between the centers of two consecutive holes
-       Double_t holeSepX1  = fgkmm *   1.42;  // to be added after 4th hole in volume 1
-       Double_t holeFirstX = fgkmm *   7.05;  // position of center of first hole
-       Double_t holeSepY   = fgkmm *   4.40;  // dist between hole's and volume's upper border
-       Double_t holeAloneX = fgkmm *  13.28;  // position of hole center in box "part 3"
-       
-       // correct data in case we are on Aluminum foil
-       if (!kaptonLayer) {
-               material = mgr->GetMedium("AL");
-               sizeZ       = fgkmm * 0.02;
-               part1X     -= fgkmm * 0.2;
-               part5X     -= fgkmm * 0.2;
-               part6X     += fgkmm * 0.4;
-               part7X     -= fgkmm * 0.4;
-                       
-               sizeYMax   -= fgkmm * 0.4;
-               sizeYMed1  -= fgkmm * 0.4;
-               sizeYMed2  -= fgkmm * 0.4;
-               sizeYMin   -= fgkmm * 0.4;
-       
-               holeX      += fgkmm * 0.4;
-               holeY      += fgkmm * 0.4;
-               holeFirstX -= fgkmm * 0.2;
-               holeSepY   -= fgkmm * 0.4;
-       }
-       
-       // define names for the object
-       char type[4];
-       if (kaptonLayer) strcpy(type, "KAP"); else strcpy(type, "ALU");
-       
-       // compute full length and width
-       length = part1X + part2X + part3X + part4X + part5X + part6X + part7X + part8X;
-       width = sizeYMax;
-       thickness = sizeZ;
-               
-       // grounding foil world, bounded exactly around the limits of the structure
-       TGeoVolume *container = mgr->MakeBox(Form("GFOIL_%s", type), vacuum, 0.5*length, 0.5*sizeYMax, 0.5*sizeZ);
-       
-       // === PART 1: box with holes ===
-       
-       TGeoBBox *shBox1 = 0, *shHole = 0;
-       shBox1 = new TGeoBBox(Form("GF%s_BOX1", type), 0.5*part1X, 0.5*sizeYMax, 0.5*sizeZ);
-       shHole = new TGeoBBox(Form("GF%s_HOLE", type), 0.5*holeX, 0.5*holeY, 0.5*sizeZ + 0.01);
-       
-       // define the position of all holes and compose the expression
-       // to define the composite shape (box - holes)
-       Double_t firstX = -0.5*part1X + holeFirstX;
-       Double_t transY =  0.5*sizeYMax - holeSepY - 0.5*holeY;
-       Double_t transX;
-       TGeoTranslation *transHole[10];
-       TString strComposite(Form("%s - (", shBox1->GetName()));
-       for (Int_t i = 0; i < 10; i++) {
-               transX = firstX + (Double_t)i * holeSepX;
-               if (i > 4) transX += holeSepX1;
-               transHole[i] = new TGeoTranslation(Form("TGF%s_HOLE%d", type, i), transX, transY, 0.0);
-               transHole[i]->RegisterYourself();
-               strComposite.Append(Form("%s:%s", shHole->GetName(), transHole[i]->GetName()));
-               if (i < 9) strComposite.Append("+"); else strComposite.Append(")");
-}
-       // create composite shape
-       TGeoCompositeShape *shPart1 = new TGeoCompositeShape(Form("GF%s_PART1_SHAPE", type), strComposite.Data());
-       // create the volume
-       TGeoVolume *volPart1 = new TGeoVolume(Form("GF%s_PART1", type), shPart1, material);
-       
-       // === PART 2: first trapezoidal connection
-       
-       TGeoArb8 *shTrap1 = new TGeoArb8(0.5*sizeZ);
-       shTrap1->SetVertex(0, -0.5*part2X,  0.5*sizeYMax);
-       shTrap1->SetVertex(1,  0.5*part2X,  0.5*sizeYMax);
-       shTrap1->SetVertex(2,  0.5*part2X,  0.5*sizeYMax - sizeYMed1);
-       shTrap1->SetVertex(3, -0.5*part2X, -0.5*sizeYMax);
-       shTrap1->SetVertex(4, -0.5*part2X,  0.5*sizeYMax);
-       shTrap1->SetVertex(5,  0.5*part2X,  0.5*sizeYMax);
-       shTrap1->SetVertex(6,  0.5*part2X,  0.5*sizeYMax - sizeYMed1);
-       shTrap1->SetVertex(7, -0.5*part2X, -0.5*sizeYMax);
-       TGeoVolume *volPart2 = new TGeoVolume(Form("GF%s_PART2", type), shTrap1, material);
-       
-       // === PART 3: other box with one hole
-       
-       TGeoBBox *shBox2 = 0;
-       shBox2 = new TGeoBBox(Form("GF%s_BOX2", type), 0.5*part3X, 0.5*sizeYMed1, 0.5*sizeZ);
-               
-       // define the position of the hole
-       transX = holeAloneX - 0.5*part3X;
-       TGeoTranslation *transHoleAlone = new TGeoTranslation(Form("TGF%s_HOLE_ALONE", type), transX, transY, 0.0);
-       transHoleAlone->RegisterYourself();
-       // create composite shape
-       TGeoCompositeShape *shPart3 = new TGeoCompositeShape(Form("GF%sPART3_SHAPE", type), Form("%s - %s:%s", shBox2->GetName(), shHole->GetName(), transHoleAlone->GetName()));
-       // create the volume
-       TGeoVolume *volPart3 = new TGeoVolume(Form("GF%s_PART3", type), shPart3, material);
-               
-       // === PART 4: second trapezoidal connection
-       
-       TGeoArb8 *shTrap2 = new TGeoArb8(0.5*sizeZ);
-       shTrap2->SetVertex(0, -0.5*part4X,  0.5*sizeYMed1);
-       shTrap2->SetVertex(1,  0.5*part4X,  0.5*sizeYMed1);
-       shTrap2->SetVertex(2,  0.5*part4X,  0.5*sizeYMed1 - sizeYMed2);
-       shTrap2->SetVertex(3, -0.5*part4X, -0.5*sizeYMed1);
-       shTrap2->SetVertex(4, -0.5*part4X,  0.5*sizeYMed1);
-       shTrap2->SetVertex(5,  0.5*part4X,  0.5*sizeYMed1);
-       shTrap2->SetVertex(6,  0.5*part4X,  0.5*sizeYMed1 - sizeYMed2);
-       shTrap2->SetVertex(7, -0.5*part4X, -0.5*sizeYMed1);
-       TGeoVolume *volPart4 = new TGeoVolume(Form("GF%s_PART4", type), shTrap2, material);
-               
-       // === PART 5 --> 8: sequence of boxes ===
-       
-       TGeoVolume *volPart5 = mgr->MakeBox(Form("GF%s_BOX3", type), material, 0.5*part5X, 0.5*sizeYMed2, 0.5*sizeZ);
-       TGeoVolume *volPart6 = mgr->MakeBox(Form("GF%s_BOX4", type), material, 0.5*part6X, 0.5*sizeYMin , 0.5*sizeZ);
-       TGeoVolume *volPart7 = mgr->MakeBox(Form("GF%s_BOX5", type), material, 0.5*part7X, 0.5*sizeYMed2, 0.5*sizeZ);
-       TGeoVolume *volPart8 = mgr->MakeBox(Form("GF%s_BOX6", type), material, 0.5*part8X, 0.5*sizeYMin , 0.5*sizeZ);
-       
-       // === SET COLOR ===
-       if (kaptonLayer) {
-               volPart1->SetLineColor(kRed + 3);
-               volPart2->SetLineColor(kRed + 3);
-               volPart3->SetLineColor(kRed + 3);
-               volPart4->SetLineColor(kRed + 3);
-               volPart5->SetLineColor(kRed + 3);
-               volPart6->SetLineColor(kRed + 3);
-               volPart7->SetLineColor(kRed + 3);
-               volPart8->SetLineColor(kRed + 3);
-       }
-       else {
-               volPart1->SetLineColor(kGreen);
-               volPart2->SetLineColor(kGreen);
-               volPart3->SetLineColor(kGreen);
-               volPart4->SetLineColor(kGreen);
-               volPart5->SetLineColor(kGreen);
-               volPart6->SetLineColor(kGreen);
-               volPart7->SetLineColor(kGreen);
-               volPart8->SetLineColor(kGreen);
-       }
-               
-       // === TRANSLATION OF ALL PARTS ===
-       
-       transX = 0.5*(part1X - length);
-       TGeoTranslation *transPart1 = new TGeoTranslation(transX, 0.0, 0.0);
-       transX += 0.5*(part1X + part2X);
-       TGeoTranslation *transPart2 = new TGeoTranslation(transX, 0.0, 0.0);
-       transX += 0.5*(part2X + part3X);
-       transY  = 0.5*(sizeYMax - sizeYMed1);
-       TGeoTranslation *transPart3 = new TGeoTranslation(transX, transY, 0.0);
-       transX += 0.5*(part3X + part4X);
-       TGeoTranslation *transPart4 = new TGeoTranslation(transX, transY, 0.0);
-       transX += 0.5*(part4X + part5X);
-       transY  = 0.5*(sizeYMax - sizeYMed2);
-       TGeoTranslation *transPart5 = new TGeoTranslation(transX, transY, 0.0);
-       transX += 0.5*(part5X + part6X);
-       transY  = 0.5*(sizeYMax - sizeYMin);
-       TGeoTranslation *transPart6 = new TGeoTranslation(transX, transY, 0.0);
-       transX += 0.5*(part6X + part7X);
-       transY  = 0.5*(sizeYMax - sizeYMed2);
-       TGeoTranslation *transPart7 = new TGeoTranslation(transX, transY, 0.0);
-       transX += 0.5*(part7X + part8X);
-       transY  = 0.5*(sizeYMax - sizeYMin);
-       TGeoTranslation *transPart8 = new TGeoTranslation(transX, transY, 0.0);
-       
-       // add the partial volumes to the container
-       container->AddNode(volPart1, 1, transPart1);
-       container->AddNode(volPart2, 2, transPart2);
-       container->AddNode(volPart3, 3, transPart3);
-       container->AddNode(volPart4, 4, transPart4);
-       container->AddNode(volPart5, 5, transPart5);
-       container->AddNode(volPart6, 6, transPart6);
-       container->AddNode(volPart7, 7, transPart7);
-       container->AddNode(volPart8, 8, transPart8);
-                       
-       return container;
-}
-
-//___________________________________________________________________________________________________________________
-TGeoVolume* AliITSv11GeometrySPD::CreateGroundingFoil(Double_t &thickness, TGeoManager *mgr)
-{
-       //
-       // Joins two Kapton and two Aluminum layers of the grounding foil
-       // in order to create the complete grounding foil for a whole stave.
-       // into a unique container volume, which is returned as output.
-       // The use of the TGeoXtru shape requires that in the separate foils, the Z axis
-       // lies perpendicularly to the polygonal basis of this shape; this caused the components
-       // to have their Z axis corresponding to the X axis of the ALICE reference frame and 
-       // vieceversa; to correct this, a rotation is necessary around their middle axis, 
-       // to exchange X and Z axes and displace the object correctly in the ALICE frame.
-       // ---
-       // Arguments:
-       //  - the sizes of the container box (passed by reference and filled here)
-       //  - the TGeoManager
-       // ---
-       // Returns: 
-       //  - the container TGeoBBox (return value)
-       //  - the size of the container (reference variables)
-       //
-       
-       // sizes of the added volumes, which are filled by passing them 
-       // to the volume creation methods
-       Double_t kpLength, kpWidth, kpThick;
-       Double_t alLength, alWidth, alThick;
-       Double_t separation = fgkmm * 1.42;  // separation between left and right volumes
-       
-       // create the two component volumes (each one will be replicated twice)
-       // this gives also the size of their virtual container boxes (just a reference, not a volume)
-       TGeoVolume *kVol = CreateGroundingFoilSingle(kTRUE, kpLength, kpWidth, kpThick, mgr);
-       TGeoVolume *aVol = CreateGroundingFoilSingle(kFALSE, alLength, alWidth, alThick, mgr);
-       kVol->SetLineColor(kRed);
-       aVol->SetLineColor(kGray);
-       
-       // kapton leads the total size of the foil (including spagcing of 1.42 mm between them in the center)
-       Double_t length, width;
-       length    = 2.0 * kpLength + separation;
-       width     = kpWidth;
-       thickness = kpThick + alThick;
-       
-       // create the container
-       TGeoMedium *vacuum = mgr->GetMedium("VACUUM");
-       TGeoVolume *container = mgr->MakeBox("GFOIL", vacuum, 0.5*thickness, 0.5*width, 0.5*length);
-       
-       // create the common correction rotations
-       TGeoRotation *rotCorr1 = new TGeoRotation(*gGeoIdentity);
-       TGeoRotation *rotCorr2 = new TGeoRotation(*gGeoIdentity);
-       rotCorr1->RotateY(-90.0);
-       rotCorr2->RotateY( 90.0);
-               
-       // compute the translations to place the objects at the edges of the volume
-       // the kapton foils are also shifted down, and the aluminum foils are shifted up
-       // with respect to the thickness direction
-       TGeoTranslation *kTrans1 = new TGeoTranslation(0.5*(-thickness + kpThick), 0.0, 0.5*( length - kpLength));
-       TGeoTranslation *kTrans2 = new TGeoTranslation(0.5*(-thickness + kpThick), 0.0, 0.5*(-length + kpLength));
-       TGeoTranslation *aTrans1 = new TGeoTranslation(0.5*( thickness - alThick), 0.0, 0.5*( length - alLength) - 0.02);
-       TGeoTranslation *aTrans2 = new TGeoTranslation(0.5*( thickness - alThick), 0.0, 0.5*(-length + alLength) + 0.02);
-       
-       // combine translations and rotations
-       TGeoCombiTrans *kCombi1 = new TGeoCombiTrans(*kTrans1, *rotCorr1);
-       TGeoCombiTrans *kCombi2 = new TGeoCombiTrans(*kTrans2, *rotCorr2);
-       TGeoCombiTrans *aCombi1 = new TGeoCombiTrans(*aTrans1, *rotCorr1);
-       TGeoCombiTrans *aCombi2 = new TGeoCombiTrans(*aTrans2, *rotCorr2);
-               
-       // add to container
-       container->AddNode(kVol, 0, kCombi1);
-       container->AddNode(kVol, 1, kCombi2);
-       container->AddNode(aVol, 0, aCombi1);
-       container->AddNode(aVol, 1, aCombi2);
-       
-       return container;
-}
-
 //______________________________________________________________________
-TGeoVolume* AliITSv11GeometrySPD::CreateMCMBase(TGeoManager *geom)
+void AliITSv11GeometrySPD::PrintAscii(ostream *os) const
 {
-       //
-       // Creates the MCM basis volume.
-       // It is a little bit more complicated because this is a plain base
-       // with a poly shape similar to the one of grounding foil but there are also
-       // some chips glued to its base and covered with a cave cap.
-       // ---
-       // The complete MCM object is created as the sum of the following parts:
-       // 1) a planar basis shaped according to the MCM typical shape
-       // 2) some boxes which represent the chips and devices mounted on this base
-       // 3) a cave cap which covers the portion of MCM containing these chips
-       // ---
-       // Due to the different widths of MCM, it is implemented in a more complicated way:
-       // - cap and chips will define a sub-volume of this structure, which can be bounded
-       //   by a complete box
-       // - base of MCM will be a separate volume
-       // - these two objects will need to be glued together into an upper-level volume
-       // ---
-       // This metod creates only the thin base (point 1 in the list)
-       //
-       
-       // medium
-       TGeoMedium *medBase = geom->GetMedium("MCM BASE");
-       
-       // parameterize the interesting sizes of MCM
-       // it is divided into 3 sectors which have different size in X and Y and 
-       // are connected by trapezoidal-based shapes, where the oblique angle
-       // makes a 45 degrees angle with the vertical, so that the X size and Y size
-       // of these "intermezzo"'s is the same
-       // +--------------------------------+
-       // |                   sect 2       |
-       // | sect 1     --------------------+
-       // +-----------/
-       Double_t sizeZ = fgkmm * 0.35;
-       Double_t sizeXtot = fgkmm * 105.6;
-       Double_t sizeXsector[3] = {fgkmm * 28.4, fgkmm * 41.4, fgkmm * 28.8};
-       Double_t sizeYsector[3] = {fgkmm * 15.0, fgkmm * 11.0, fgkmm *  8.0};
-       Double_t sizeSep01 = fgkmm * 4.0, sizeSep12 = fgkmm * 3.0;
-       Double_t sizeHole = fgkmm * 1.0;
-       Double_t posHoleX = fgkmm * -0.5*sizeXtot + 26.7 + 0.5*sizeHole;
-       Double_t posHoleY = fgkmm * -0.5*sizeYsector[0] + 0.5*sizeHole;
-       
-       // define the shape of base volume as an XTRU with two identical faces 
-       // distantiated by the width of the  itself
-       Double_t x[8], y[8];
-       x[0] = -0.5*sizeXtot;
-       y[0] =  0.5*sizeYsector[0];
-       x[1] = -x[0];
-       y[1] =  y[0];
-       x[2] =  x[1];
-       y[2] =  y[1] - sizeYsector[2];
-       x[3] =  x[2] - sizeXsector[2];
-       y[3] =  y[2];
-       x[4] =  x[3] - sizeSep12;
-       y[4] =  y[3] - sizeSep12;
-       x[5] =  x[4] - sizeXsector[1];
-       y[5] =  y[4];
-       x[6] =  x[5] - sizeSep01;
-       y[6] =  y[5] - sizeSep01;
-       x[7] =  x[0];
-       y[7] = -y[0];
-       
-       // create shape
-       TGeoXtru *shPoly = new TGeoXtru(2);
-       shPoly->SetName("SH_MCMBASE_POLY");
-       shPoly->DefinePolygon(8, x, y);
-       shPoly->DefineSection(0, -0.5*sizeZ, 0., 0., 1.0);
-       shPoly->DefineSection(1,  0.5*sizeZ, 0., 0., 1.0);
-       
-       // create small hole
-       TGeoBBox *shHole = 0;
-       shHole = new TGeoBBox("SH_MCMBASE_HOLE", 0.5*sizeHole, 0.5*sizeHole, 0.5*sizeZ+0.01);
-       TGeoTranslation *transHole = new TGeoTranslation("TR_MCMBASE_HOLE", posHoleX, posHoleY, 0.0);
-       transHole->RegisterYourself(); 
-       
-       // create shape intersection
-       TGeoCompositeShape *shBase = new TGeoCompositeShape("SH_MCMBASE", "SH_MCMBASE_POLY - SH_MCMBASE_HOLE:TR_MCMBASE_HOLE");
-       
-       // create volume
-       TGeoVolume *volBase = new TGeoVolume("VOL_MCMBASE", shBase, medBase);
-       volBase->SetLineColor(kRed);
-       
-       return volBase;
-}
-
+    //
+    // Print out class data values in Ascii Form to output stream
+    // Inputs:
+    //   ostream *os   Output stream where Ascii data is to be writen
+    // Outputs:
+    //   none.
+    // Return:
+    //   none.
+    //
+    Int_t i,j,k;
+#if defined __GNUC__
+#if __GNUC__ > 2
+    ios::fmtflags fmt = cout.flags();
+#else
+    Int_t fmt;
+#endif
+#else
+#if defined __ICC || defined __ECC || defined __xlC__
+    ios::fmtflags fmt;
+#else
+    Int_t fmt;
+#endif
+#endif
 
-//______________________________________________________________________
-TGeoVolume* AliITSv11GeometrySPD::CreateMCMCoverBorder(TGeoManager *geom)
-{
-       //
-       // Creates the MCM basis volume.
-       // It is a little bit more complicated because this is a plain base
-       // with a poly shape similar to the one of grounding foil but there are also
-       // some chips glued to its base and covered with a cave cap.
-       // ---
-       // The complete MCM object is created as the sum of the following parts:
-       // 1) a planar basis shaped according to the MCM typical shape
-       // 2) some boxes which represent the chips and devices mounted on this base
-       // 3) a cave cap which covers the portion of MCM containing these chips
-       // ---
-       // Due to the different widths of MCM, it is implemented in a more complicated way:
-       // - cap and chips will define a sub-volume of this structure, which can be bounded
-       //   by a complete box
-       // - base of MCM will be a separate volume
-       // - these two objects will need to be glued together into an upper-level volume
-       // ---
-       // This metod creates the thicker cap and its contents (points 2-3 in the list).
-       // Since it covers only two of the three sectors of the MCM base with different width
-       // the computations and variables related to the largest sector are removed, while
-       // the other are the same as the other part of the MCM.
-       //
-       
-       // media
-       TGeoMedium *medCap  = geom->GetMedium("MCM COVER");
-       
-       // parameterize the interesting sizes of MCM
-       // it is divided into 3 sectors which have different size in X and Y and 
-       // are connected by trapezoidal-based shapes, where the oblique angle
-       // makes a 45 degrees angle with the vertical, so that the X size and Y size
-       // of these "intermezzo"'s is the same
-       // +--------------------------------+
-       // |                   sect 2       |
-       // | sect 1     --------------------+
-       // +-----------/
-       Double_t sizeZ = fgkmm * 0.3;
-       Double_t capHeight = fgkmm * 1.7 - sizeZ;
-       Double_t sizeXtot = fgkmm * 73.2;
-       Double_t sizeXsector[2] = {fgkmm * 41.4, fgkmm * 28.8};
-       Double_t sizeYsector[2] = {fgkmm * 11.0, fgkmm *  8.0};
-       Double_t sizeSep = fgkmm * 3.0;
-       
-       // === PART 1: border ===
-       
-       // define the shape of base volume as an XTRU with two identical faces 
-       // distantiated by the width of the  itself
-       Double_t x[6], y[6];
-       x[0] = -0.5*sizeXtot;
-       y[0] =  0.5*sizeYsector[0];
-       x[1] = -x[0];
-       y[1] =  y[0];
-       x[2] =  x[1];
-       y[2] =  y[1] - sizeYsector[1];
-       x[3] =  x[2] - sizeXsector[1];
-       y[3] =  y[2];
-       x[4] =  x[3] - sizeSep;
-       y[4] =  y[3] - sizeSep;
-       x[5] =  x[0];
-       y[5] = -y[0];
-       
-       // create outer border shape with above coordinates
-       TGeoXtru *capOut = new TGeoXtru(2);
-       capOut->SetName("SH_MCMCAPOUT");
-       capOut->DefinePolygon(6, x, y);
-       capOut->DefineSection(0, -0.5*capHeight, 0., 0., 1.0);
-       capOut->DefineSection(1,  0.5*capHeight, 0., 0., 1.0);
-       
-       // the inner border is built similarly but subtracting the thickness
-       Double_t angle = 45.0;
-       Double_t cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
-       Double_t xin[6], yin[6];
-       xin[0] = x[0] + sizeZ;
-       yin[0] = y[0] - sizeZ;
-       xin[1] = x[1] - sizeZ;
-       yin[1] = yin[0];
-       xin[2] = xin[1];
-       yin[2] = y[2] + sizeZ;
-       xin[3] = x[3] - sizeZ*cs;
-       yin[3] = yin[2];
-       xin[4] = xin[3] - sizeSep;
-       yin[4] = y[4] + sizeZ;
-       xin[5] = xin[0];
-       yin[5] = yin[4];
-               
-       // create inner border shape
-       TGeoXtru *capIn = new TGeoXtru(2);
-       capIn->SetName("SH_MCMCAPIN");
-       capIn->DefinePolygon(6, xin, yin);
-       capIn->DefineSection(0, -0.5*capHeight-0.01, 0., 0., 1.0);
-       capIn->DefineSection(1,  0.5*capHeight+0.01, 0., 0., 1.0);
-       
-       // compose shape
-       TGeoCompositeShape *shBorder = new TGeoCompositeShape("SH_MCMCAPBORDER", "SH_MCMCAPOUT-SH_MCMCAPIN");
-       
-       // create volume
-       TGeoVolume *volBorder = new TGeoVolume("VOL_MCMCAPBORDER", shBorder, medCap);
-       volBorder->SetLineColor(kGreen);
-       
-       return volBorder;
+    *os<< fgkGapLadder <<" "<< fgkGapHalfStave<<" "<< 6 <<" ";
+    for(i=0;i<6;i++) *os<< fAddStave[i] <<" "<<fSPDsectorX0.GetSize();
+    for(i=0;i<fSPDsectorX0.GetSize();i++) *os<< fSPDsectorX0.GetAt(i) << " ";
+    for(i=0;i<fSPDsectorX0.GetSize();i++) *os<< fSPDsectorY0.GetAt(i) << " ";
+    for(i=0;i<fSPDsectorX1.GetSize();i++) *os<< fSPDsectorX1.GetAt(i) << " ";
+    for(i=0;i<fSPDsectorX1.GetSize();i++) *os<< fSPDsectorY1.GetAt(i) << " ";
+    *os<<10<<" "<< 2 <<" " << 6 << " "<< 3 <<" ";
+    for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++)
+        *os<<fTubeEndSector[k][0][i][j]<<" ";
+    for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++)
+        *os<<fTubeEndSector[k][1][i][j]<<" ";
+    os->flags(fmt); // reset back to old Formating.
+    return;
 }
-
+//
 //______________________________________________________________________
-TGeoVolume* AliITSv11GeometrySPD::CreateMCMCoverTop(TGeoManager *geom)
+void AliITSv11GeometrySPD::ReadAscii(istream* is)
 {
-       //
-       // Creates the MCM basis volume.
-       // It is a little bit more complicated because this is a plain base
-       // with a poly shape similar to the one of grounding foil but there are also
-       // some chips glued to its base and covered with a cave cap.
-       // ---
-       // The complete MCM object is created as the sum of the following parts:
-       // 1) a planar basis shaped according to the MCM typical shape
-       // 2) some boxes which represent the chips and devices mounted on this base
-       // 3) a cave cap which covers the portion of MCM containing these chips
-       // ---
-       // Due to the different widths of MCM, it is implemented in a more complicated way:
-       // - cap and chips will define a sub-volume of this structure, which can be bounded
-       //   by a complete box
-       // - base of MCM will be a separate volume
-       // - these two objects will need to be glued together into an upper-level volume
-       // ---
-       // This metod creates the thicker cap and its contents (points 2-3 in the list).
-       // Since it covers only two of the three sectors of the MCM base with different width
-       // the computations and variables related to the largest sector are removed, while
-       // the other are the same as the other part of the MCM.
-       //
-       
-       // media
-       TGeoMedium *medCap  = geom->GetMedium("MCM COVER");
-       
-       // parameterize the interesting sizes of MCM
-       // it is divided into 3 sectors which have different size in X and Y and 
-       // are connected by trapezoidal-based shapes, where the oblique angle
-       // makes a 45 degrees angle with the vertical, so that the X size and Y size
-       // of these "intermezzo"'s is the same
-       // +--------------------------------+
-       // |                   sect 2       |
-       // | sect 1     --------------------+
-       // +-----------/
-       Double_t sizeZ = fgkmm * 0.3;
-       Double_t sizeXtot = fgkmm * 73.2;
-       Double_t sizeXsector[2] = {fgkmm * 41.4, fgkmm * 28.8};
-       Double_t sizeYsector[2] = {fgkmm * 11.0, fgkmm *  8.0};
-       Double_t sizeSep = fgkmm * 3.0;
-       
-       // === PART 1: border ===
-       
-       // define the shape of base volume as an XTRU with two identical faces 
-       // distantiated by the width of the  itself
-       Double_t x[6], y[6];
-       x[0] = -0.5*sizeXtot;
-       y[0] =  0.5*sizeYsector[0];
-       x[1] = -x[0];
-       y[1] =  y[0];
-       x[2] =  x[1];
-       y[2] =  y[1] - sizeYsector[1];
-       x[3] =  x[2] - sizeXsector[1];
-       y[3] =  y[2];
-       x[4] =  x[3] - sizeSep;
-       y[4] =  y[3] - sizeSep;
-       x[5] =  x[0];
-       y[5] = -y[0];
-       
-       // create outer border shape with above coordinates
-       TGeoXtru *capOut = new TGeoXtru(2);
-       capOut->SetName("SH_MCMCAPOUT");
-       capOut->DefinePolygon(6, x, y);
-       capOut->DefineSection(0, -0.5*sizeZ, 0., 0., 1.0);
-       capOut->DefineSection(1,  0.5*sizeZ, 0., 0., 1.0);
-       
-       // the inner border is built similarly but subtracting the thickness
-       Double_t angle = 45.0;
-       Double_t cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
-       Double_t xin[6], yin[6];
-       xin[0] = x[0] + sizeZ;
-       yin[0] = y[0] - sizeZ;
-       xin[1] = x[1] - sizeZ;
-       yin[1] = yin[0];
-       xin[2] = xin[1];
-       yin[2] = y[2] + sizeZ;
-       xin[3] = x[3] - sizeZ*cs;
-       yin[3] = yin[2];
-       xin[4] = xin[3] - sizeSep;
-       yin[4] = y[4] + sizeZ;
-       xin[5] = xin[0];
-       yin[5] = yin[4];
-               
-       // coverage of upper part (equal to external border, but full)
-       TGeoXtru *shCover = new TGeoXtru(2);
-       shCover->SetName("SH_MCMCAPCOVER");
-       shCover->DefinePolygon(6, x, y);
-       shCover->DefineSection(0, -0.5*sizeZ, 0., 0., 1.0);
-       shCover->DefineSection(1,  0.5*sizeZ, 0., 0., 1.0);
-       
-       // create volume
-       TGeoVolume *volCover  = new TGeoVolume("VOL_MCMCAPCOVER", shCover, medCap);
-       volCover->SetLineColor(kBlue);
-       
-       return volCover;
-}
+    //
+    // Read in class data values in Ascii Form to output stream
+    // Inputs:
+    //   istream *is   Input stream where Ascii data is to be read in from
+    // Outputs:
+    //   none.
+    // Return:
+    //   none.
+    //
+    Int_t i,j,k,n;
+    Double_t gapLadder,GapHalfStave;
 
-//______________________________________________________________________
-TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateStave
-(Int_t layer, Double_t &fullThickness, TGeoManager *mgr)
-{
-       //
-       // Creates the complete stave as an assembly which contains all the stuff defined
-       // in the "CreateStaveBase" method (which are the thin part of the structure)
-       // and adds to this the thick cover of the MCM and the Pixel bus.
-       // This is done as an assembly to avoid the problem of a "ghost" overlap which occurs
-       // when putting the stave on the carbon fiber sector, in the case that we define it
-       // as a volume container.
-       // ---
-       // Arguments:
-       //     - the layer where the stave has to be put (hard check on this)
-       //     - the geometry manager
-       //
-       
-       // ** CRITICAL CHECK **
-       // layer number can be ONLY 1 or 2
-       if (layer != 1 && layer != 2) AliFatal("Required that layer number be 1 or 2");
-       
-       // sizes regarding the components
-       Double_t baseWidth, baseHeight, baseThickness;
-       Double_t mcmCapBorderThickness = fgkmm *  0.3;
-       Double_t mcmCapThickness       = fgkmm *  1.7 - mcmCapBorderThickness;
-       Double_t mcmCapHeight          = fgkmm * 11.0;
-       Double_t mcmCapWidth           = fgkmm * 73.2;
-       
-       // create container
-       TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form("LAY%d_FULLSTAVE", layer));
-       
-       // create subvolumes
-       TGeoVolume *staveBase = CreateStaveBase(layer, baseWidth, baseHeight, baseThickness, mgr);
-       TGeoVolume *mcmCapBorder = CreateMCMCoverBorder(mgr);
-       TGeoVolume *mcmCapTop = CreateMCMCoverTop(mgr);
-       TGeoVolumeAssembly *bus0 = CreatePixelBusAndExtensions(kTRUE, mgr);   // bus in z > 0
-       TGeoVolumeAssembly *bus1 = CreatePixelBusAndExtensions(kFALSE, mgr);  // bus in z < 0
-       
-       // the full width and height of the area which contains all components
-       // corresponds to the one of the stave base built with the "CreateStaveBase" method
-       // while the thickness must be computed as the sum of this base + the cover
-       fullThickness = baseThickness + mcmCapThickness + mcmCapBorderThickness;
-       
-       // 1 - MCM cover        
-               
-       // translations (in the X direction, MCM is at the same level as ladder)
-       Double_t xBase = -0.5*fullThickness + 0.5*baseThickness;
-       TGeoTranslation *trBase = new TGeoTranslation(xBase, 0.0, 0.0);
-       Double_t xMCMCapB = xBase + 0.5*baseThickness + 0.5*mcmCapThickness;
-       Double_t xMCMCapT = xMCMCapB + 0.5*mcmCapThickness + 0.5*mcmCapBorderThickness;
-       Double_t yMCMCap  = 0.5*(baseHeight - mcmCapHeight);
-       Double_t zMCMCap1 = 0.5*baseWidth - 0.5*mcmCapWidth;
-       Double_t zMCMCap0 = -zMCMCap1;
-       // correction rotations
-       TGeoRotation *rotCorr0 = new TGeoRotation(*gGeoIdentity);
-       TGeoRotation *rotCorr1 = new TGeoRotation(*gGeoIdentity);
-       rotCorr0->RotateY( 90.0);
-       rotCorr1->RotateY(-90.0);
-       TGeoCombiTrans  *trMCMCapBorder0 = new TGeoCombiTrans(xMCMCapB, yMCMCap, zMCMCap0, rotCorr0);
-       TGeoCombiTrans  *trMCMCapBorder1 = new TGeoCombiTrans(xMCMCapB, yMCMCap, zMCMCap1, rotCorr1);
-       TGeoCombiTrans  *trMCMCapTop0 = new TGeoCombiTrans(xMCMCapT, yMCMCap, zMCMCap0, rotCorr0);
-       TGeoCombiTrans  *trMCMCapTop1 = new TGeoCombiTrans(xMCMCapT, yMCMCap, zMCMCap1, rotCorr1);
-       // add to container
-       container->AddNode(staveBase, 0, trBase);
-       container->AddNode(mcmCapBorder, 0, trMCMCapBorder0);
-       container->AddNode(mcmCapBorder, 1, trMCMCapBorder1);
-       container->AddNode(mcmCapTop, 0, trMCMCapTop0);
-       container->AddNode(mcmCapTop, 1, trMCMCapTop1);
-       
-       // 2 - Pixel Bus
-       
-       // translations
-       // for the moment, a correction amount of 0.04 is required to place correctly the object in X
-       // and another correction of 0.015 in Z
-       Double_t busHeight  = fgkmm * 13.8;
-       Double_t xPixelBus  = xBase + baseThickness + 0.04;
-       Double_t yPixelBus1 = 0.5*baseHeight - 0.5*busHeight + 0.5*(baseHeight - busHeight);
-       Double_t zPixelBus0 = -0.25*baseWidth + 0.015 - 0.03;
-       //Double_t zPixelBus0 = -0.5*(0.5*baseWidth - 0.04);
-       Double_t zPixelBus1 = -zPixelBus0;
-       // correction rotations
-       TGeoRotation *rotCorrBus1 = new TGeoRotation(*gGeoIdentity);
-       rotCorrBus1->RotateX(180.0);
-       //TGeoCombiTrans *trBus0 = new TGeoCombiTrans(xPixelBus, 0.0, zPixelBus0, rotCorrBus);
-       TGeoTranslation *trBus0 = new TGeoTranslation(xPixelBus, 0.0, zPixelBus0);
-       //TGeoTranslation *trBus1 = new TGeoTranslation(xPixelBus, 0.0, zPixelBus1);
-       TGeoCombiTrans *trBus1 = new TGeoCombiTrans(xPixelBus, yPixelBus1, zPixelBus1, rotCorrBus1);
-
-       // add to container
-       container->AddNode(bus0, 0, trBus0);
-       container->AddNode(bus1, 1, trBus1);
-       
-       return container;
+    *is>>gapLadder>>GapHalfStave>>n;
+    if(n!=6){
+        Warning("ReadAscii","fAddStave Array !=6 n=%d",n);
+        return;
+    } // end if
+    for(i=0;i<n;i++) *is>>fAddStave[i];
+    *is>>n;
+    fSPDsectorX0.Set(n);
+    fSPDsectorY0.Set(n);
+    fSPDsectorX1.Set(n);
+    fSPDsectorY1.Set(n);
+    for(i=0;i<n;i++) *is>>fSPDsectorX0[i];
+    for(i=0;i<n;i++) *is>>fSPDsectorY0[i];
+    for(i=0;i<n;i++) *is>>fSPDsectorX1[i];
+    for(i=0;i<n;i++) *is>>fSPDsectorY1[i];
+    *is>> i>>j>>n;
+    if(i!=2||j!=6||n!=3){
+        Warning("ReadAscii","fTubeEndSector array wrong size [2][6][3],"
+                "found [%d][%d][%d]",i,j,n);
+        return;
+    } // end if
+    for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++)
+        *is>>fTubeEndSector[k][0][i][j];
+    for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++)
+        *is>>fTubeEndSector[k][1][i][j];
+    return;
 }
-
+//
 //______________________________________________________________________
-TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBusAndExtensions(Bool_t zpos, TGeoManager *mgr)
+ostream &operator<<(ostream &os,const AliITSv11GeometrySPD &s)
 {
-  //
-  // Creates an assembly which contains the pixel bus and its extension
-  // and the extension of the MCM.
-  // By: Renaud Vernet
-  // NOTE: to be defined its material and its extension in the outside direction
-  //
-  
-  // ====   constants   =====
-
-  //get the media
-  TGeoMedium   *medPixelBus    = mgr->GetMedium("PIXEL BUS") ;
-  TGeoMedium   *medPBExtender  = mgr->GetMedium("PIXEL BUS EXTENDER") ;
-  TGeoMedium   *medMCMExtender = mgr->GetMedium("MCM EXTENDER") ;
-
-  //geometrical constants
-  const Double_t groundingThickness    =   0.07  * fgkmm ;
-  const Double_t grounding2pixelBusDz  =   0.625 * fgkmm ;
-  const Double_t pixelBusThickness     =   0.28  * fgkmm ;
-  const Double_t groundingWidthX       = 170.501 * fgkmm ;
-  const Double_t pixelBusContactDx     =   1.099 * fgkmm ;
-  const Double_t pixelBusWidthY        =  13.8   * fgkmm ;
-  const Double_t pixelBusContactPhi    =  20.0   * TMath::Pi()/180. ; //design=20 deg.
-  const Double_t pbExtenderPsi         =  70.0   * TMath::Pi()/180. ; //design=?? 70 deg. seems OK
-  const Double_t pbExtenderWidthY      =  11.0   * fgkmm ;
-  const Double_t pbExtenderTopZ        =   2.72  * fgkmm ;
-  const Double_t mcmThickness          =   0.35  * fgkmm ;
-  const Double_t mcmExtenderThickness  =   0.20  * fgkmm ;
-  const Double_t deltaMcmMcmextender   =   1.6   * fgkmm ;
-  const Double_t halfStaveTotalLength  = 247.64  * fgkmm ;
-  const Double_t deltaYOrigin          =  15.95/2.* fgkmm ;
-  const Double_t deltaXOrigin          =   1.1    * fgkmm ;
-  const Double_t deltaZOrigin          = halfStaveTotalLength / 2. ;
-
-  const Double_t grounding2pixelBusDz2 = grounding2pixelBusDz+groundingThickness/2. + pixelBusThickness/2. ;
-  const Double_t pixelBusWidthX        = groundingWidthX ;
-  const Double_t pixelBusRaiseLength   = (pixelBusContactDx-pixelBusThickness*TMath::Sin(pixelBusContactPhi))/TMath::Cos(pixelBusContactPhi) ;
-  const Double_t pbExtenderBaseZ       = grounding2pixelBusDz2 + pixelBusRaiseLength*TMath::Sin(pixelBusContactPhi) + 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)*TMath::Tan(pixelBusContactPhi) ;
-  const Double_t pbExtenderDeltaZ      = pbExtenderTopZ-pbExtenderBaseZ ;
-
-  const Double_t pbExtenderEndPointX   = 2*deltaZOrigin - groundingWidthX - 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi) ;
-  const Double_t mcmextenderEndPointX  = deltaZOrigin - 48.2 * fgkmm ;
-  const Double_t mcmExtenderWidthY     = pbExtenderWidthY ;
-
-  //=====  end constants  =====
-
-  
-
-  // -----------------   CREATE THE PIXEL BUS --------------------------
-  // At the end of the pixel bus, a small piece is added for the contact 
-  // with the pixel bus extender.
-  // The whole piece is made with an extrusion, using 7 points
-  //
-  //                                   4
-  //                                  /\
-  // 6                            5  /  \ 3
-  //  +-----------------------------+    /
-  //  |                                 /
-  //  +-----------------------------+--+
-  // 0                              1   2
-  //
-  // The length of the pixel bus is defined (170.501mm) by the technical design
-  // this length corresponds to distance [0-1] and [6-5]
-
-
-
-  TGeoVolumeAssembly *pixelBus = new TGeoVolumeAssembly("PIXEL BUS");
-
-  // definition of the 7 points for the extrusion
-  Double_t pixelBusXtruX[7] = {
-    -pixelBusWidthX/2. ,
-    pixelBusWidthX/2. ,
-    pixelBusWidthX/2. + pixelBusThickness * TMath::Sin(pixelBusContactPhi) ,
-    pixelBusWidthX/2. + pixelBusThickness * TMath::Sin(pixelBusContactPhi) + pixelBusRaiseLength * TMath::Cos(pixelBusContactPhi) ,
-    pixelBusWidthX/2. + pixelBusRaiseLength * TMath::Cos(pixelBusContactPhi) ,
-    pixelBusWidthX/2. ,
-    -pixelBusWidthX/2.
-  } ;
-  Double_t pixelBusXtruY[7] = {
-    -pixelBusThickness/2. ,
-    -pixelBusThickness/2. ,
-    -pixelBusThickness/2. + pixelBusThickness * (1 - TMath::Cos(pixelBusContactPhi)) ,
-    -pixelBusThickness/2. + pixelBusThickness * (1 - TMath::Cos(pixelBusContactPhi)) + pixelBusRaiseLength * TMath::Sin(pixelBusContactPhi) ,
-    pixelBusThickness/2.  + pixelBusRaiseLength * TMath::Sin(pixelBusContactPhi) ,
-    pixelBusThickness/2. ,
-    pixelBusThickness/2.
-  } ;
-
-  // creation of the volume
-  TGeoXtru   *pixelBusXtru    = new TGeoXtru(2);
-  TGeoVolume* pixelBusXtruVol = new TGeoVolume("pixelBusXtru",pixelBusXtru,medPixelBus) ;
-  pixelBusXtru->DefinePolygon(7,pixelBusXtruX,pixelBusXtruY);
-  pixelBusXtru->DefineSection(0,-pixelBusWidthY/2.);
-  pixelBusXtru->DefineSection(1, pixelBusWidthY/2.);
-  // --------------- END PIXEL BUS ----------------------------------------------------
-
-
-  // ------------------------- CREATE THE PIXEL BUS EXTENDER --------------------------
-  // The geometry of the extender is a bit complicated sinceit is constrained
-  // to be in contact with the pixel bus.
-  // It consists of an extrusion using 13 points as shows the scheme below :
-  //                                                                                     
-  //                             8     7                       6                         
-  //                               +---+---------------------+                           
-  //                              /                          |                           
-  //                             /                           |                           
-  //                            /      +---------------------+                           
-  //                           /      / 4                     5                          
-  //                          /      /                                                   
-  //       11  10          9 /      /                                                    
-  //        +---+-----------+      /                                                     
-  //       /                      /                                                      
-  //      /                      /                                                       
-  //     /      +-----------+---+                                                        
-  // 12 +      / 1         2     3                                                       
-  //     \    /                                                                          
-  //      \  /                                                                           
-  //        +                                                                            
-  //        0                                                                            
-  //                                                                                     
-
-
-  // ====   constants   =====
-  const Double_t pbExtenderXtru3L   = 1.5 * fgkmm ; //arbitrary ?
-  const Double_t pbExtenderXtru4L   = (pbExtenderDeltaZ + pixelBusThickness*(TMath::Cos(pbExtenderPsi)-2))/TMath::Sin(pbExtenderPsi) ;
-  //=====  end constants  =====
-
-  TGeoVolumeAssembly *pbExtender = new TGeoVolumeAssembly("PIXEL BUS EXTENDER");
-
-  Double_t pbExtenderXtruX[13] = {
-    0, 
-    pixelBusRaiseLength * TMath::Cos(pixelBusContactPhi) , 
-    pixelBusRaiseLength * TMath::Cos(pixelBusContactPhi) + pbExtenderXtru3L ,
-    pixelBusRaiseLength * TMath::Cos(pixelBusContactPhi) + pbExtenderXtru3L + pixelBusThickness * TMath::Sin(pbExtenderPsi) , 
-    pixelBusRaiseLength * TMath::Cos(pixelBusContactPhi) + pbExtenderXtru3L + pixelBusThickness * TMath::Sin(pbExtenderPsi) + pbExtenderXtru4L * TMath::Cos(pbExtenderPsi) ,
-    pbExtenderEndPointX ,
-    pbExtenderEndPointX ,
-    pixelBusRaiseLength * TMath::Cos(pixelBusContactPhi) + pbExtenderXtru3L + pixelBusThickness * TMath::Sin(pbExtenderPsi) + pbExtenderXtru4L * TMath::Cos(pbExtenderPsi) ,
-    pixelBusRaiseLength * TMath::Cos(pixelBusContactPhi)  + pbExtenderXtru3L + pixelBusThickness * TMath::Sin(pbExtenderPsi) + pbExtenderXtru4L * TMath::Cos(pbExtenderPsi) - pixelBusThickness * TMath::Sin(pbExtenderPsi),
-    pixelBusRaiseLength * TMath::Cos(pixelBusContactPhi) + pbExtenderXtru3L ,
-    pixelBusRaiseLength * TMath::Cos(pixelBusContactPhi) , 
-    pixelBusRaiseLength * TMath::Cos(pixelBusContactPhi) - pixelBusThickness*TMath::Sin(pixelBusContactPhi) , 
-    -pixelBusThickness * TMath::Sin(pixelBusContactPhi)
-  } ;
-  Double_t pbExtenderXtruY[13] = {
-    0, 
-    pixelBusRaiseLength * TMath::Sin(pixelBusContactPhi) , 
-    pixelBusRaiseLength * TMath::Sin(pixelBusContactPhi) ,
-    pixelBusRaiseLength * TMath::Sin(pixelBusContactPhi) + pixelBusThickness * (1-TMath::Cos(pbExtenderPsi)) ,
-    pixelBusRaiseLength * TMath::Sin(pixelBusContactPhi) + pixelBusThickness * (1-TMath::Cos(pbExtenderPsi)) + pbExtenderXtru4L * TMath::Sin(pbExtenderPsi) ,
-    pixelBusRaiseLength * TMath::Sin(pixelBusContactPhi) + pixelBusThickness * (1-TMath::Cos(pbExtenderPsi)) + pbExtenderXtru4L * TMath::Sin(pbExtenderPsi) ,
-    pixelBusRaiseLength * TMath::Sin(pixelBusContactPhi) + pixelBusThickness * (1-TMath::Cos(pbExtenderPsi)) + pbExtenderXtru4L * TMath::Sin(pbExtenderPsi) + pixelBusThickness ,
-    pixelBusRaiseLength * TMath::Sin(pixelBusContactPhi) + pixelBusThickness * (1-TMath::Cos(pbExtenderPsi)) + pbExtenderXtru4L * TMath::Sin(pbExtenderPsi) + pixelBusThickness ,
-    pixelBusRaiseLength * TMath::Sin(pixelBusContactPhi) + pixelBusThickness + pbExtenderXtru4L * TMath::Sin(pbExtenderPsi)
-    ,
-    pixelBusRaiseLength * TMath::Sin(pixelBusContactPhi) + pixelBusThickness ,
-    pixelBusRaiseLength * TMath::Sin(pixelBusContactPhi) + pixelBusThickness ,
-    pixelBusRaiseLength * TMath::Sin(pixelBusContactPhi) + pixelBusThickness*TMath::Cos(pixelBusContactPhi) ,
-    pixelBusThickness * TMath::Cos(pixelBusContactPhi)
-  } ;
-  
-  // creation of the volume
-  TGeoXtru   *pbExtenderXtru    = new TGeoXtru(2);
-  TGeoVolume *pbExtenderXtruVol = new TGeoVolume("pbExtenderXtru",pbExtenderXtru,medPBExtender) ;
-  pbExtenderXtru->DefinePolygon(13,pbExtenderXtruX,pbExtenderXtruY);
-  pbExtenderXtru->DefineSection(0,-pbExtenderWidthY/2.);
-  pbExtenderXtru->DefineSection(1, pbExtenderWidthY/2.);
-  // -------------- END PIXEL BUS EXTENDER -------------------------------------------------
-
-
-  // ------------------   CREATE THE MCM EXTENDER    ------------------------------------
-  // 
-  // The MCM extender is located betwen the MCM and the Pixel Bus Extender
-  // It consists of an extrusion using 10 points as shows the scheme below :
-  //                                                                                     
-  //                             7     6                       5                         
-  //                               +---+---------------------+                           
-  //                              /                          |                           
-  //                             /                           |                           
-  //                            /      +---------------------+                           
-  //                           /      / 3                     4                          
-  //                          /      /                                                   
-  //            9          8 /      /                                                    
-  //            +-----------+      /                                                     
-  //            |                 /                                                      
-  //            |                /                                                       
-  //            +-----------+---+                                                        
-  //            0          1     2                                                       
-  //                                                                                     
-
-
-  //constants
-  const Double_t mcmExtenderXtru3L  = 1.5  * fgkmm ;
-  //end constants
-
-  TGeoVolumeAssembly *mcmExtender   = new TGeoVolumeAssembly("MCM EXTENDER");
-  Double_t mcmExtenderXtruX[10] = {
-    0 ,
-    mcmExtenderXtru3L ,
-    mcmExtenderXtru3L + mcmExtenderThickness * TMath::Sin(pbExtenderPsi) , 
-    mcmExtenderXtru3L + mcmExtenderThickness * TMath::Sin(pbExtenderPsi) + deltaMcmMcmextender / TMath::Tan(pbExtenderPsi) ,
-    mcmextenderEndPointX ,
-    mcmextenderEndPointX ,
-    mcmExtenderXtru3L + mcmExtenderThickness * TMath::Sin(pbExtenderPsi) + deltaMcmMcmextender / TMath::Tan(pbExtenderPsi) ,
-    mcmExtenderXtru3L + deltaMcmMcmextender / TMath::Tan(pbExtenderPsi) ,
-    mcmExtenderXtru3L ,
-    0
-  } ;
-
-  Double_t mcmExtenderXtruY[10] = {
-    0 ,
-    0 ,
-    mcmExtenderThickness * (1-TMath::Cos(pbExtenderPsi)) ,
-    mcmExtenderThickness * (1-TMath::Cos(pbExtenderPsi)) + deltaMcmMcmextender ,
-    mcmExtenderThickness * (1-TMath::Cos(pbExtenderPsi)) + deltaMcmMcmextender ,
-    mcmExtenderThickness * (2-TMath::Cos(pbExtenderPsi)) + deltaMcmMcmextender ,
-    mcmExtenderThickness * (2-TMath::Cos(pbExtenderPsi)) + deltaMcmMcmextender ,
-    mcmExtenderThickness + deltaMcmMcmextender ,
-    mcmExtenderThickness ,
-    mcmExtenderThickness ,
-  } ;
-
-  // creation of the volume
-  TGeoXtru   *mcmExtenderXtru    = new TGeoXtru(2);
-  TGeoVolume *mcmExtenderXtruVol = new TGeoVolume("mcmExtenderXtru",mcmExtenderXtru,medMCMExtender) ;
-  mcmExtenderXtru->DefinePolygon(10,mcmExtenderXtruX,mcmExtenderXtruY);
-  mcmExtenderXtru->DefineSection(0,-mcmExtenderWidthY/2.);
-  mcmExtenderXtru->DefineSection(1, mcmExtenderWidthY/2.);
-
-
-  //--------------   DEFINITION OF GEOMETRICAL TRANSFORMATIONS -------------------
-  TGeoRotation    * commonRot       = new TGeoRotation("commonRot",0,90,0);
-  commonRot->MultiplyBy(new TGeoRotation("rot",-90,0,0)) ;
-  TGeoTranslation * pixelBusTrans   = new TGeoTranslation(pixelBusThickness/2. - deltaXOrigin + 0.52*fgkmm ,
-                                                         -pixelBusWidthY/2.     + deltaYOrigin , 
-                                                         -groundingWidthX/2.    + deltaZOrigin) ;
-  TGeoRotation    * pixelBusRot     = new TGeoRotation(*commonRot);
-  TGeoTranslation * pbExtenderTrans = new TGeoTranslation(*pixelBusTrans) ;
-  TGeoRotation    * pbExtenderRot   = new TGeoRotation(*pixelBusRot) ;
-  pbExtenderTrans->SetDz(*(pbExtenderTrans->GetTranslation()+2) - pixelBusWidthX/2. - 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)) ;  
-  if (!zpos) {
-    pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) - (pixelBusWidthY - pbExtenderWidthY)/2.);
-  }
-  else {
-    pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) + (pixelBusWidthY - pbExtenderWidthY)/2.);
-  }
-  pbExtenderTrans->SetDx(*(pbExtenderTrans->GetTranslation()) + pixelBusThickness/2 + 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)*TMath::Tan(pixelBusContactPhi)) ;
-  TGeoTranslation * mcmExtenderTrans = new TGeoTranslation(0.12*fgkmm + mcmThickness - deltaXOrigin,
-                                                          pbExtenderTrans->GetTranslation()[1],
-                                                          -4.82);
-  TGeoRotation    * mcmExtenderRot   = new TGeoRotation(*pbExtenderRot);
-  
-
-  //ADD NODES TO ASSEMBLIES
-  pixelBus    ->AddNode((TGeoVolume*)pixelBusXtruVol,0);
-  pbExtender  ->AddNode((TGeoVolume*)pbExtenderXtruVol,0);
-  mcmExtender ->AddNode((TGeoVolume*)mcmExtenderXtruVol,0);
-//   mcmExtender ->AddNode((TGeoVolume*)mcmExtenderXtru3Vol,0);
-//   mcmExtender ->AddNode((TGeoVolume*)mcmExtenderXtru3PrimVol,1);
-//   mcmExtender ->AddNode((TGeoVolume*)mcmExtenderXtru4Vol,2);
-//   mcmExtender ->AddNode((TGeoVolume*)mcmExtenderXtru4PrimVol,3);
-//   mcmExtender ->AddNode((TGeoVolume*)mcmExtenderXtru5Vol,4);
-
-
-  //CREATE FINAL VOLUME ASSEMBLY AND ROTATE IT
-  TGeoVolumeAssembly *assembly = new TGeoVolumeAssembly("EXTENDERS");
-  assembly->AddNode((TGeoVolume*)pixelBus    ,0, new TGeoCombiTrans(*pixelBusTrans,*pixelBusRot));
-  assembly->AddNode((TGeoVolume*)pbExtender  ,0, new TGeoCombiTrans(*pbExtenderTrans,*pbExtenderRot));
-  assembly->AddNode((TGeoVolume*)mcmExtender ,0, new TGeoCombiTrans(*mcmExtenderTrans,*mcmExtenderRot));
-assembly->SetTransparency(50);
-  return assembly ;
+    //
+    // Standard output streaming function
+    // Inputs:
+    //   ostream            &os  output steam
+    //   AliITSvPPRasymmFMD &s class to be streamed.
+    // Output:
+    //   none.
+    // Return:
+    //   ostream &os  The stream pointer
+    //
+    s.PrintAscii(&os);
+    return os;
 }
-
+//
 //______________________________________________________________________
-TGeoVolume* AliITSv11GeometrySPD::CreateStaveBase
-(Int_t layer, Double_t &fullWidth, Double_t &fullHeight, Double_t &fullThickness, TGeoManager *mgr)
+istream &operator>>(istream &is,AliITSv11GeometrySPD &s)
 {
-       //
-       // Creates a box which contains the followin parts of the whole stave:
-       // - the two layers of grounding foil
-       // - the ladders
-       // - the thin base of the MCM (except its thick cover)
-       // - the pixel bus
-       // ---
-       // Since it is required by detector numbering conventions, 
-       // it is required as argument the layer which owns this stave.
-       // This number will be used to define the name of the ladder volume, 
-       // which must be different for layer1 and layer2 objects.
-       // ---
-       // Arguments:
-       //    - layer number (will be checked to be 1 or 2)
-       //    - geometry manager
-       // ---
-       // Returns:
-       //    - a TGeoBBox volume containing all this stuff
-       //    - the size of the container box are stored in the reference-passed variables
-       //
-       
-       // sizes of all objects to be inserted
-       // these values are used to compute the total volume of the container
-       // and to compute parametrically the position of each piece, instead
-       // of putting hard-coded number (this helps in eventually modifying everything)
-       Double_t mcmThickness    = fgkmm * 0.35;
-       Double_t grndThickness   = fgkmm * 0.07; // = 0.05 + 0.02
-       Double_t sepThickness    = fgkmm * 0.05;
-
-       Double_t ladderWidth     = fgkmm *  70.72;
-       Double_t mcmWidth        = fgkmm * 105.60;
-       Double_t sepLaddersWidth = fgkmm *   0.20;
-       Double_t sepMCMWidth     = fgkmm *   0.30;
-       Double_t sepLaddersCtr   = fgkmm *   0.40; // separations between central ladders in the two half-staves 
-
-       Double_t mcmHeight       = fgkmm *  15.00;
-       
-       // compute the size of the container
-       fullWidth     = 2.0*sepLaddersCtr + 4.0*ladderWidth + 2.0*sepMCMWidth + 2.0*sepLaddersWidth + 2.0*mcmWidth;
-       fullHeight    = fgkmm * 15.95;
-       fullThickness = grndThickness + sepThickness + mcmThickness;
-       
-       // create the container
-       TGeoVolume *container = mgr->MakeBox(Form("LAY%d_STAVE", layer), mgr->GetMedium("VACUUM"), 0.5*fullThickness, 0.5*fullHeight, 0.5*fullWidth);
-               
-       // fill the container going from bottom to top 
-       // with respect to the thickness direction
-       
-       // 1 - Grounding foil
-       // volume
-       TGeoVolume *grndVol = CreateGroundingFoil(grndThickness);
-       // translation
-       Double_t xGrnd = -0.5*fullThickness + 0.5*grndThickness;
-       TGeoTranslation *grndTrans = new TGeoTranslation(xGrnd, 0.0, 0.0);
-       // add to container
-       container->AddNode(grndVol, 1, grndTrans);
-       
-       // 2 - Ladders
-       // volume (will be replicated 4 times)
-       Double_t ladderLength, ladderThickness;
-       TGeoVolume *ladder = CreateLadder(layer, ladderLength, ladderWidth, ladderThickness, mgr);
-       // translations (in thickness direction, the MCM thickness is used)
-       // layers are sorted going from the one at largest Z to the one at smallest Z:
-       // -|Zmax| ------> |Zmax|
-       //      0   1   2   3
-       // but it is more comfortable to start defining their Z position from center
-       Double_t xLad  = xGrnd + 0.5*grndThickness + 0.5*mcmThickness + sepThickness;
-       Double_t zLad1 = -0.5*ladderWidth - sepLaddersCtr;
-       Double_t zLad0 = zLad1 - ladderWidth - sepLaddersWidth;
-       Double_t zLad2 = -zLad1;
-       Double_t zLad3 = -zLad0;
-       TGeoRotation   *rotLad = new TGeoRotation(*gGeoIdentity);// rotLad->RotateZ(180.0);
-       TGeoCombiTrans *trLad0 = new TGeoCombiTrans(xLad, 0.0, zLad0, rotLad);
-       TGeoCombiTrans *trLad1 = new TGeoCombiTrans(xLad, 0.0, zLad1, rotLad);
-       TGeoCombiTrans *trLad2 = new TGeoCombiTrans(xLad, 0.0, zLad2, rotLad);
-       TGeoCombiTrans *trLad3 = new TGeoCombiTrans(xLad, 0.0, zLad3, rotLad);
-       // add to container
-       container->AddNode(ladder, 0, trLad0);
-       container->AddNode(ladder, 1, trLad1);
-       container->AddNode(ladder, 2, trLad2);
-       container->AddNode(ladder, 3, trLad3);
-       
-       // 3 - MCM (only the base, the cover is added as a separate volume in a more global 'stave' assembly
-       // volume (will be replicated twice)
-       TGeoVolume *mcm = CreateMCMBase(mgr);
-       // translations (in the X direction, MCM is at the same level as ladder)
-       // the two copies of the MCM are placed at the same distance from the center, on both sides
-       // and their sorting is the same as ladders' one (MCM0 is at Z < 0, MCM1 at Z > 0);
-       Double_t xMCM  = xLad;
-       Double_t yMCM  = 0.5*(fullHeight - mcmHeight);
-       Double_t zMCM1 = zLad3 + 0.5*ladderWidth + 0.5*mcmWidth + sepMCMWidth;
-       Double_t zMCM0 = -zMCM1;
-       // create the common correction rotations
-       TGeoRotation *rotCorr0 = new TGeoRotation(*gGeoIdentity);
-       TGeoRotation *rotCorr1 = new TGeoRotation(*gGeoIdentity);
-       rotCorr0->RotateY( 90.0);
-       rotCorr1->RotateY(-90.0);
-       TGeoCombiTrans *trMCM0 = new TGeoCombiTrans(xMCM, yMCM, zMCM0, rotCorr0);
-       TGeoCombiTrans *trMCM1 = new TGeoCombiTrans(xMCM, yMCM, zMCM1, rotCorr1);
-       // add to container
-       container->AddNode(mcm, 0, trMCM0);
-       container->AddNode(mcm, 1, trMCM1);
-               
-       return container;
+    //
+    // Standard inputput streaming function
+    // Inputs:
+    //   istream            &is  input steam
+    //   AliITSvPPRasymmFMD &s class to be streamed.
+    // Output:
+    //   none.
+    // Return:
+    //   ostream &os  The stream pointer
+    //
+    s.ReadAscii(&is);
+    return is;
 }
-
+//
 //______________________________________________________________________
-void AliITSv11GeometrySPD::StavesInSector(TGeoVolume *moth, TGeoManager *mgr)
+Bool_t AliITSv11GeometrySPD::Make2DCrossSections(TPolyLine &a0,TPolyLine &a1,
+                             TPolyLine &b0,TPolyLine &b1,TPolyMarker &p)const
 {
-       //
-       // Unification of essentially two methods:
-       // - the one which creates the sector structure
-       // - the one which returns the complete stave
-       // ---
-       // For compatibility, this method requires the same arguments
-       // asked by "CarbonFiberSector" method, which is recalled here.
-       // Like this cited method, this one does not return any value,
-       // but it inserts in the mother volume (argument 'moth') all the stuff
-       // which composes the complete SPD sector.
-       // ---
-       // Arguments: see description of "CarbonFiberSector" method.
-       //
-       
-       // This service class is useful to this method only
-       // to store in a meaningful way the data about the 
-       // rounded corners of the support, and some computations
-       // which could turn out to be useful for stave placement
-       // 'left' and 'right' (L/R) here are considered looking the support
-       // from the positive Z side.
-       // The sign of the radius is used to know what kind of tangent
-       // must be found for the two circles which describe the rounded angles.
-       class clsSupportPlane {
-       public:
-               Double_t xL, yL, rL, sL;  // curvature center and radius (with sign) of left corner
-               Double_t xR, yR, rR, sR;  // curvature center and radius (with sign) of right corner
-               Double_t shift;           // shift from the innermost position (where the stave edge is
-                                         // in the point where the rounded corner begins
-               
-               // Constructor with arguments which allow to set directly everything
-               // since the values are given in millimiters from drawings, they must be converted to cm
-               clsSupportPlane
-               (Double_t xLin, Double_t yLin, Double_t rLin, Double_t sLin, 
-                Double_t xRin, Double_t yRin, Double_t rRin, Double_t sRin, Double_t shiftin) :
-                xL(xLin), yL(yLin), rL(rLin), sL(sLin), xR(xRin), yR(yRin), rR(rRin), sR(sRin), shift(shiftin) 
-               {
-                       xL *= fgkmm;
-                       yL *= fgkmm;
-                       rL *= fgkmm;
-                       xR *= fgkmm;
-                       yR *= fgkmm;
-                       rR *= fgkmm;
-                       shift *= fgkmm;
-               }
-               
-               // Computation of the line tangent to both circles defined here
-               // which is taken above or below the center according to the radius sign.
-               // This method returns:
-               //   - the mid-popint of the segment between the two points where the tangent touches the two circles, 
-               //   - the inclination of this segment
-               //   - the half-length of this segment
-               Double_t TangentSegment(Double_t &midX, Double_t &midY, Double_t &phi)
-               {
-                       // compute the straight line which is tangent to the two circles
-                       // and extract its inclination 'phi' w.r. to X axis
-                       Double_t dx = xL - xR;
-                       Double_t dy = yL - yR;
-                       Double_t R  = rL*sL + rR*sR;
-                       Double_t delta = dy*dy + dx*dx - R*R;
-                       Double_t tan05phi = (-dy + TMath::Sqrt(delta)) / (R - dx);
-                       phi = 2.0 * TMath::ATan(tan05phi);
-                       // compute the points where this line touchs the two circles
-                       Double_t leftX  = xL + sL*rL*TMath::Cos(phi);
-                       Double_t leftY  = yL + sL*rL*TMath::Sin(phi);
-                       Double_t rightX = xR + sR*rR*TMath::Cos(phi);
-                       Double_t rightY = yR + sR*rR*TMath::Sin(phi);
-                       // compute the mid point
-                       midX = 0.5 * (leftX + rightX);
-                       midY = 0.5 * (leftY + rightY);
-                       // compute angular coefficient for the line joining
-                       // the two points found using the above method
-                       dx = rightX - leftX;
-                       dy = rightY - leftY;
-                       phi = TMath::ATan2(dy, dx);
-                       // compute the half-length of this segment
-                       Double_t len = 0.5*TMath::Sqrt((rightX-leftX)*(rightX-leftX) + (rightY-leftY)*(rightY-leftY));
-                       cout << 2.0*len << endl;
-                       return len;
-               }
-       };
-       
-       // instantiate this class for each layer1 and layer2 corners
-       clsSupportPlane *plane[6] = {0, 0, 0, 0, 0, 0};
-       
-       // layer 2
-       plane[0] = new clsSupportPlane( 10.830,  16.858, 0.60,  1.,  19.544,  10.961, 0.8,  1.,  1.816);
-       plane[1] = new clsSupportPlane(- 0.733,  17.486, 0.60,  1.,  11.581,  13.371, 0.6, -1., -0.610);
-       plane[2] = new clsSupportPlane(-12.252,  16.298, 0.60,  1.,   0.562,  14.107, 0.6, -1., -0.610);
-       plane[3] = new clsSupportPlane(-22.276,  12.948, 0.85,  1., -10.445,  13.162, 0.6, -1., -0.610);
-       // layer 1
-       plane[4] = new clsSupportPlane(- 3.123, -14.618, 0.50,  1.,  11.280, -14.473, 0.9, -1., -0.691);
-       plane[5] = new clsSupportPlane(-13.187, -19.964, 0.50, -1., - 3.833, -17.805, 0.6, -1.,  1.300);
-       
-       // put the sector in the container
-       //CarbonFiberSector(moth, xAAtubeCenter0, yAAtubeCenter0, mgr);
-       
-       // create stave volume
-       Double_t staveHeight = 1.595, staveThickness;
-       TGeoVolume *stave1 = CreateStave(1, staveThickness, gGeoManager);
-       TGeoVolume *stave2 = CreateStave(2, staveThickness, gGeoManager);
-               
-       // compute positions and rotation angles
-       Double_t xm, ym, halfPlaneHeight, heightDiff, position, phi, xPos, yPos;
-       for (Int_t i = 0; i < 6; i++) {
-               // recall the geometry computations defined for the classe
-               halfPlaneHeight = plane[i]->TangentSegment(xm, ym, phi);
-               // compute the difference between plane and stave heights
-               heightDiff = halfPlaneHeight - 0.5*staveHeight;
-               // It is necessary to shift the stave by at least 
-               // an amount equal to this difference
-               // to avoid overlaps.
-               // Moreover, some more shift is done for building reasons,
-               // and it depends on the single plane (data-member 'shift')
-               position = heightDiff + plane[i]->shift;
-               // taking into account this shift plus another in the direction
-               // normal to the support plane, due to the stave thickness,
-               // the final position of the stave is computed in a temporary reference frame
-               // where the mid-point of the support plane is in the origin
-               if (i < 4) {
-                       ParallelPosition(0.5*staveThickness, position, phi, xPos, yPos);
-               }
-               else if (i == 4) {
-                       ParallelPosition(-0.5*staveThickness, -position, phi, xPos, yPos);
-               }
-               else {
-                       ParallelPosition(-0.5*staveThickness, -position, phi, xPos, yPos);
-               }
-               // then we go into the true reference frame
-               xPos += xm;
-               yPos += ym;
-               /*
-               // TEMP
-               TGeoVolume *tubeTemp1 = mgr->MakeTube("tubeTemp1", NULL, 0.0, 0.01, 50.0);
-               TGeoTranslation *trTemp1 = new TGeoTranslation(xm, ym, 0.0);
-               tubeTemp1->SetLineColor(kRed);
-               moth->AddNode(tubeTemp1, i + 1, trTemp1);
-               TGeoVolume *tubeTemp2 = mgr->MakeTube("tubeTemp2", NULL, 0.0, 0.01, 50.0);
-               TGeoTranslation *trTemp2 = new TGeoTranslation(xPos, yPos, 0.0);
-               tubeTemp2->SetLineColor(kBlue);
-               moth->AddNode(tubeTemp2, i + 1, trTemp2);
-               // END TEMP
-               */
-               // using the parameters found here, compute the 
-               // translation and rotation of this stave:
-               TGeoRotation *rot = new TGeoRotation(*gGeoIdentity);
-               if (i >= 4) rot->RotateY(180.0);
-               rot->RotateZ(90.0 + phi * TMath::RadToDeg());
-               TGeoCombiTrans *trans = new TGeoCombiTrans(xPos, yPos, 0.0, rot);
-               if (i < 4) {
-                       moth->AddNode(stave2, i, trans);
-               }
-               else {
-                       moth->AddNode(stave1, i - 4, trans);
-               }
-       }
-}
+    //
+    // Fill the objects with the points representing
+    // a0 the outer carbon fiber SPD sector shape Cross Section A
+    // a1 the inner carbon fiber SPD sector shape Cross Section A
+    // b0 the outer carbon fiber SPD sector shape Cross Section B
+    // b1 the inner carbon fiber SPD sector shape Cross Section B
+    //
+    // Inputs:
+    //   TPolyLine &a0   The outer carbon fiber SPD sector shape
+    //   TPolyLine &a1   The Inner carbon fiber SPD sector shape
+    //   TPolyLine &b0   The outer carbon fiber SPD sector shape
+    //   TPolyLine &b1   The Inner carbon fiber SPD sector shape
+    //   TPolyMarker &p  The points where the ladders are to be placed
+    // Outputs:
+    //   TPolyLine &a0   The shape filled with the points
+    //   TPolyLine &a1   The shape filled with the points
+    //   TPolyLine &b0   The shape filled with the points
+    //   TPolyLine &b1   The shape filled with the points
+    //   TPolyMarker &p  The filled array of points
+    // Return:
+    //     An error flag.
+    //
+    Int_t n0,n1,i;
+    Double_t x,y;
+    TGeoVolume *a0V,*a1V,*b0V,*b1V;
+    TGeoXtru *a0S,*a1S,*b0S,*b1S;
+    TGeoManager *mgr = gGeoManager;
 
-//______________________________________________________________________
-void AliITSv11GeometrySPD::ParallelPosition(Double_t dist1, Double_t dist2, Double_t phi, Double_t &x, Double_t &y)
-{
-       //
-       // Performs the following steps:
-       // 1 - finds a straight line parallel to the one passing through the origin and with angle 'phi' with X axis
-       //     (phi in RADIANS);
-       // 2 - finds another line parallel to the previous one, with a distance 'dist1' from it
-       // 3 - takes a reference point in the second line in the intersection between the normal to both lines 
-       //     passing through the origin
-       // 4 - finds a point whith has distance 'dist2' from this reference, in the second line (point 2)
-       // ----
-       // According to the signs given to dist1 and dist2, the point is found in different position w.r. to the origin
-       //
-       
-       // compute the point
-       Double_t cs = TMath::Cos(phi);
-       Double_t sn = TMath::Sin(phi);
-       
-       x = dist2*cs - dist1*sn;
-       y = dist1*cs + dist2*sn;
+    a0V = mgr->GetVolume("ITS SPD Carbon fiber support Sector A0");
+    a0S = dynamic_cast<TGeoXtru*>(a0V->GetShape());
+    n0 = a0S->GetNvert();
+    a0.SetPolyLine(n0+1);
+    //for(i=0;i<fSPDsectorPoints0.GetSize();i++)
+    //  printf("%d %d %d\n",i,fSPDsectorPoints0[i],fSPDsectorPoints1[i]);
+    for(i=0;i<n0;i++){
+        x = a0S->GetX(i);
+          y = a0S->GetY(i);
+          //printf("%d %g %g\n",i,x,y);
+        a0.SetPoint(i,x,y);
+          if(i==0) a0.SetPoint(n0,x,y);
+    } // end for i
+    a1V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorAirA1");
+    a1S = dynamic_cast<TGeoXtru*>(a1V->GetShape());
+    n1 = a1S->GetNvert();
+    a1.SetPolyLine(n1+1);
+    for(i=0;i<n1;i++){
+        x = a1S->GetX(i);
+          y = a1S->GetY(i);
+        a1.SetPoint(i,x,y);
+          if(i==0) a1.SetPoint(n1,x,y);
+    } // end for i
+    // Cross Section B
+    b0V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorEndB0");
+    b0S = dynamic_cast<TGeoXtru*>(b0V->GetShape());
+    n0 = b0S->GetNvert();
+    b0.SetPolyLine(n0+1);
+    for(i=0;i<n0;i++){
+        x = b0S->GetX(i);
+          y = b0S->GetY(i);
+        b0.SetPoint(i,x,y);
+          if(i==0) b0.SetPoint(n0,x,y);
+    } // end for i
+    b1V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorEndAirB1");
+    b1S = dynamic_cast<TGeoXtru*>(b1V->GetShape());
+    n1 = b1S->GetNvert();
+    b1.SetPolyLine(n1+1);
+    for(i=0;i<n1;i++){
+        x = b1S->GetX(i);
+          y = b1S->GetY(i);
+        b1.SetPoint(i,x,y);
+          if(i==0) b1.SetPoint(n1,x,y);
+    } // end for i
+    //
+    Double_t x0,y0,x1,y1;
+    p.SetPolyMarker(2*fSPDsectorX0.GetSize());
+    for(i=0;i<fSPDsectorX0.GetSize();i++){
+          GetSectorMountingPoints(i,x0,y0,x1,y1);
+          p.SetPoint(2*i,x0,y0);
+          p.SetPoint(2*i+1,x1,y1);
+    } // end for i
+    return kTRUE;
 }
-