]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - ITS/AliITSv11GeometrySPD.cxx
- fixing warnings/coverity
[u/mrichter/AliRoot.git] / ITS / AliITSv11GeometrySPD.cxx
index d015c757751cfca0232f9b8a8ec2c473a430860d..1f37c6fdc2c6a0e47917c9eaa4e55a919ac5604d 100644 (file)
  **************************************************************************/
 //
 // This class Defines the Geometry for the ITS services and support cones
-// outside of the ceneteral volume (except for the Ceneteral support 
-// cylinders. Other classes define the rest of the ITS. Specificaly the ITS
-// The SSD support cone, SSD Support central cylinder, SDD support cone,
-// The SDD cupport central cylinder, the SPD Thermal Sheald, The supports
+// outside of the central volume (except for the Central support
+// cylinders). Other classes define the rest of the ITS, specifically the
+// SSD support cone, the SSD Support central cylinder, the SDD support cone,
+// the SDD support central cylinder, the SPD Thermal Shield, The supports
 // and cable trays on both the RB26 (muon dump) and RB24 sides, and all of
 // the cabling from the ladders/stave ends out past the TPC.
 //
+//     Here is the calling sequence associated with this file
+//   SPDSector(TGeoVolume *moth,TGeoManager *mgr)
+//   -----CarbonFiberSector(TGeoVolume *moth,Double_t &xAAtubeCenter0,
+//                          Double_t &yAAtubeCenter0,TGeoManager *mgr)
+//        -----2* SPDsectorShape(Int_t n,const Double_t *xc,const Double_t *yc,
+//        |                      const Double_t *r,const Double_t *ths,
+//        |                      const Double_t *the,Int_t npr,Int_t &m,
+//        |                      Double_t **xp,Double_t **yp)
+//        -----StavesInSector(TGeoVolume *moth,TGeoManager *mgr)
+//             -----3* CreaeStave(Int_t layer,TArrayD &sizes,Bool_t addClips,
+//             |                  TGeoManager *mgr)
+//             |    -----2* CreateHalfStave(Boot_t isRight,Int_t layer,
+//             |                            Int_t idxCentral,Int_t idxSide,
+//             |                            TArrayD &sizes,Bool_t addClips,
+//             |                            TGeoManager *mgr)
+//             |         -----CreateGrondingFoil(Bool_t isRight,TArrayD &sizes,
+//             |         |                       TGeoManager *mgr)
+//             |         |    -----4* CreateGroundingFoilSingle(Int_t type,
+//             |         |                                     TArrayD &sizes,
+//             |         |                                     TGeoManger *mgr)
+//             |         |----CreateLadder(Int_t layer, TArrayD &sizes,
+//             |         |                 TGeoManager *mgr)
+//             |         |----CreateMCM(Bool_t isRight,TArrayD &sizes,
+//             |         |              TGeoManger *mgr)
+//             |         |----CreatePixelBus(Bool_t isRight,TArrayD &sizes,
+//             |         |                   TGeoManager *mgr)
+//             |         -----CreateClip(TArrayD &sizes,TGeoManager *mgr)
+//             |----GetSectorMountingPoints(Int_t index,Double_t &x0,
+//             |                            Double_t &y0,Double_t &x1,
+//             |                            Double_t y1)
+//             -----3* ParallelPosition(Double_t dist1,Double_t dist2,
+//                                      Double_t phi,Double_t &x,Double_t &y)
+//
+//     Obsoleate or presently unused routines are: setAddStave(Bool_t *mask),
+// CreatePixelBusAndExtensions(...) which calles CreateExtender(...).
+
+/* $Id$ */
+
+
+// General Root includes
+#include <Riostream.h>
+#include <TMath.h>
+#include <TLatex.h>
+#include <TCanvas.h>
+#include <TPolyLine.h>
+#include <TPolyMarker.h>
+
+// Root Geometry includes
+#include <TGeoCompositeShape.h>
+#include <TGeoEltu.h>
+#include <TGeoGlobalMagField.h>
+#include <TGeoMaterial.h>
+#include <TGeoMatrix.h>
+#include <TGeoMedium.h>
+#include <TGeoTube.h> // contains TGeoTubeSeg
+#include <TGeoVolume.h>
+#include <TGeoXtru.h>
+#include <TGeoPcon.h>
+
+// AliRoot includes
+#include "AliLog.h"
+#include "AliMagF.h"
+#include "AliRun.h"
+
+// Declaration file
+#include "AliITSv11GeometrySPD.h"
+
+// Constant definistions
+const Double_t AliITSv11GeometrySPD::fgkGapLadder    =
+                      AliITSv11Geometry::fgkmicron*75.; //  75 microns
+const Double_t AliITSv11GeometrySPD::fgkGapHalfStave =
+                     AliITSv11Geometry::fgkmicron*120.; // 120 microns
+
+ClassImp(AliITSv11GeometrySPD)
+//______________________________________________________________________
+AliITSv11GeometrySPD::AliITSv11GeometrySPD(/*Double_t gap*/):
+AliITSv11Geometry(),// Default constructor of base class
+fAddStave(),        // [DEBUG] must be TRUE for all staves which will be
+                    // mounted in the sector (used to check overlaps)
+fSPDsectorX0(0),    // X of first edge of sector plane for stave
+fSPDsectorY0(0),    // Y of first edge of sector plane for stave
+fSPDsectorX1(0),    // X of second edge of sector plane for stave
+fSPDsectorY1(0),    // Y of second edge of sector plane for stave
+fTubeEndSector()    // coordinate of cooling tube ends
+{
+    //
+    // Default constructor.
+    // This does not initialize anything and is provided just for
+    // completeness. It is recommended to use the other one.
+    // The alignment gap is specified as argument (default = 0.0075 cm).
+    // Inputs:
+    //    none.
+    // Outputs:
+    //    none.
+    // Return:
+    //    A default constructed AliITSv11GeometrySPD class.
+    //
+    Int_t i = 0,j=0,k=0;
+
+    for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
+    for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
+        this->fTubeEndSector[k][0][i][j] = 0.0;
+        this->fTubeEndSector[k][1][i][j] = 0.0;
+    } // end for i,j
+}
+//______________________________________________________________________
+AliITSv11GeometrySPD::AliITSv11GeometrySPD(Int_t debug/*, Double_t gap*/):
+AliITSv11Geometry(debug),// Default constructor of base class
+fAddStave(),        // [DEBUG] must be TRUE for all staves which will be
+                    // mounted in the sector (used to check overlaps)
+fSPDsectorX0(0),    // X of first edge of sector plane for stave
+fSPDsectorY0(0),    // Y of first edge of sector plane for stave
+fSPDsectorX1(0),    // X of second edge of sector plane for stave
+fSPDsectorY1(0),    // Y of second edge of sector plane for stave
+fTubeEndSector()    // coordinate of cooling tube ends
+{
+    //
+    // Constructor with debug setting argument
+    // This is the constructor which is recommended to be used.
+    // It sets a debug level, and initializes the name of the object.
+    // The alignment gap is specified as argument (default = 0.0075 cm).
+    // Inputs:
+    //    Int_t    debug               Debug level, 0= no debug output.
+    // Outputs:
+    //    none.
+    // Return:
+    //    A default constructed AliITSv11GeometrySPD class.
+    //
+    Int_t i = 0,j=0,k=0;
+
+    for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
+    for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
+        this->fTubeEndSector[k][0][i][j] = 0.0;
+        this->fTubeEndSector[k][1][i][j] = 0.0;
+    } // end for i,j
+}
+//______________________________________________________________________
+AliITSv11GeometrySPD::AliITSv11GeometrySPD(const AliITSv11GeometrySPD &s):
+AliITSv11Geometry(s),// Base Class Copy constructor
+fAddStave(),        // [DEBUG] must be TRUE for all staves which will be
+                    // mounted in the sector (used to check overlaps)
+fSPDsectorX0(s.fSPDsectorX0),    // X of first edge of sector plane for stave
+fSPDsectorY0(s.fSPDsectorY0),    // Y of first edge of sector plane for stave
+fSPDsectorX1(s.fSPDsectorX1),    // X of second edge of sector plane for stave
+fSPDsectorY1(s.fSPDsectorY1)     // Y of second edge of sector plane for stave
+{
+    //
+    // Copy Constructor
+    // Inputs:
+    //    AliITSv11GeometrySPD &s      source class
+    // Outputs:
+    //    none.
+    // Return:
+    //    A copy of a AliITSv11GeometrySPD class.
+    //
+    Int_t i=0,j=0,k=0;
+
+    for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i];
+    for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
+        this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j];
+        this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j];
+    } // end for i,j
+}
+//______________________________________________________________________
+AliITSv11GeometrySPD& AliITSv11GeometrySPD::operator=(const
+                                               AliITSv11GeometrySPD &s)
+{
+    //
+    // = operator
+    // Inputs:
+    //    AliITSv11GeometrySPD &s      source class
+    // Outputs:
+    //    none.
+    // Return:
+    //    A copy of a AliITSv11GeometrySPD class.
+    //
+    Int_t i=0,j=0,k=0;
+
+    if(this==&s) return *this;
+    for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i];
+    this->fSPDsectorX0=s.fSPDsectorX0;
+    this->fSPDsectorY0=s.fSPDsectorY0;
+    this->fSPDsectorX1=s.fSPDsectorX1;
+    this->fSPDsectorY1=s.fSPDsectorY1;
+    for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
+        this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j];
+        this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j];
+    } // end for i,j
+    return *this;
+}
+//______________________________________________________________________
+TGeoMedium* AliITSv11GeometrySPD::GetMedium(const char* mediumName,
+                                            TGeoManager *mgr) const
+{
+    //
+    // This function is used to recovery any medium
+    // used to build the geometry volumes.
+    // If the required medium does not exists,
+    // a NULL pointer is returned, and an error message is written.
+    //
+     Char_t itsMediumName[30];
+
+     snprintf(itsMediumName, 30, "ITS_%s", mediumName);
+     TGeoMedium* medium = mgr->GetMedium(itsMediumName);
+     if (!medium) AliError(Form("Medium <%s> not found", mediumName));
+
+     return medium;
+}
+
+//______________________________________________________________________
+void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth, TGeoManager *mgr)
+{
+    //
+    // Creates a single SPD carbon fiber sector and places it
+    // in a container volume passed as first argument ('moth').
+    // Second argument points to the TGeoManager which coordinates
+    // the overall volume creation.
+    // The position of the sector is based on distance of
+    // closest point of SPD stave to beam pipe
+    // (figures all-sections-modules.ps) of 7.22mm at section A-A.
+    //
+
+    // Begin_Html
+    /*
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
+     title="SPD     Sector    drawing   with all  cross     sections  defined">
+     <p>The    SPD  Sector    definition.    In
+     <a   href="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.hpgl">HPGL</a>    format.
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly-10-modules.ps"
+     titile="SPD    All  Sectors   end  view with thermal   sheald">
+     <p>The    SPD  all  sector    end  view with thermal   sheald.
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
+     title="SPD     side view cross     section">
+     <p>SPD    side view cross     section   with condes    and  thermal   shealds.
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-A_A.jpg"
+     title="Cross   section   A-A"><p>Cross  section   A-A.
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-B_B.jpg"
+     title="Cross  updated section   A-A"><p>Cross updated section   A-A.
+     <img src="http://physics.mps.ohio-state.edu/~nilsen/ITSfigures/Sezione_layerAA.pdf"
+     title="Cross   section   B-B"><p>Cross  section   B-B.
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-C_C.jpg"
+     title-"Cross   section   C-C"><p>Cross  section   C-C.
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-D_D.jpg"
+     title="Cross   section   D-D"><p>Cross  section   D-D.
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-E_E.jpg"
+     title="Cross   section   E-E"><p>Cross  section   E-E.
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-F_F.jpg"
+     title="Cross   section   F-F"><p>Cross  section   F-F.
+     <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-G_G.jpg"
+     title="Cross   section   G-G"><p>Cross  section   G-G.
+    */
+    // End_Html
+
+    // Inputs:
+    //    TGeoVolume *moth  Pointer to mother volume where this object
+    //                      is to be placed in
+    //    TGeoManager *mgr  Pointer to the TGeoManager used, defaule is
+    //                      gGeoManager.
+    // Outputs:
+    //    none.
+    // Return:
+    //    none.
+    // Updated values for kSPDclossesStaveAA, kBeamPipeRadius, and
+    // staveThicknessAA are taken from
+    // http://physics.mps.ohio-state.edu/~nilsen/ITSfigures/Sezione_layerAA.pdf
+    //
+    const Double_t kSPDclossesStaveAA   =   7.25* fgkmm;
+    const Double_t kSectorStartingAngle = -72.0 * fgkDegree;
+    const Int_t    kNSectorsTotal       =  10;
+    const Double_t kSectorRelativeAngle =  36.0 * fgkDegree;    // = 360.0 / 10
+    const Double_t kBeamPipeRadius      =   0.5 * 59.6 * fgkmm; // diam. = 59.6 mm
+  //const Double_t staveThicknessAA     =   0.9 *fgkmm;         // nominal thickness
+    const Double_t staveThicknessAA     =   1.02 * fgkmm;       // get from stave geometry.
+
+    Int_t i, j, k;
+    Double_t angle, radiusSector, xAAtubeCenter0, yAAtubeCenter0;
+    TGeoCombiTrans *secRot = new TGeoCombiTrans(), *comrot;
+    TGeoVolume *vCarbonFiberSector[10];
+    TGeoMedium *medSPDcf;
+
+    // Define an assembly and fill it with the support of
+    // a single carbon fiber sector and staves in it
+    medSPDcf = GetMedium("SPD C (M55J)$", mgr);
+    for(Int_t is=0; is<10; is++)
+    {
+           vCarbonFiberSector[is] = new TGeoVolumeAssembly("ITSSPDCarbonFiberSectorV");
+           vCarbonFiberSector[is]->SetMedium(medSPDcf);
+           CarbonFiberSector(vCarbonFiberSector[is], is, xAAtubeCenter0, yAAtubeCenter0, mgr);
+    }
+
+    // Compute the radial shift out of the sectors
+    radiusSector = kBeamPipeRadius + kSPDclossesStaveAA + staveThicknessAA;
+    radiusSector  = GetSPDSectorTranslation(fSPDsectorX0.At(1), fSPDsectorY0.At(1),
+                                            fSPDsectorX1.At(1), fSPDsectorY1.At(1), radiusSector);
+  //radiusSector *= radiusSector; // squaring;
+  //radiusSector -= xAAtubeCenter0 * xAAtubeCenter0;
+  //radiusSector  = -yAAtubeCenter0 + TMath::Sqrt(radiusSector);
+
+    AliDebug(1, Form("SPDSector : radiusSector=%f\n",radiusSector));
+    i = 1;
+    AliDebug(1, Form("i= %d x0=%f y0=%f x1=%f y1=%f\n", i,
+                     fSPDsectorX0.At(i), fSPDsectorY0.At(i),
+                     fSPDsectorX1.At(i),fSPDsectorY1.At(i)));
+
+    // add 10 single sectors, by replicating the virtual sector defined above
+    // and placing at different angles
+    Double_t shiftX, shiftY, tub[2][6][3];
+    for(i=0;i<2;i++)for(j=0;j<6;j++)for(k=0;k<3;k++) tub[i][j][k] = fTubeEndSector[0][i][j][k];
+    angle = kSectorStartingAngle;
+    secRot->RotateZ(angle);
+    TGeoVolumeAssembly *vcenteral = new TGeoVolumeAssembly("ITSSPD");
+    moth->AddNode(vcenteral, 1, 0);
+    for(i = 0; i < kNSectorsTotal; i++) {
+        shiftX = -radiusSector * TMath::Sin(angle/fgkRadian);
+        shiftY =  radiusSector * TMath::Cos(angle/fgkRadian);
+        //cout << "ANGLE = " << angle << endl;
+        shiftX += 0.1094 * TMath::Cos((angle + 196.)/fgkRadian);
+        shiftY += 0.1094 * TMath::Sin((angle + 196.)/fgkRadian);
+        //shiftX -= 0.105;
+        //shiftY -= 0.031;
+        //shiftX -= 0.11 * TMath::Cos(angle/fgkRadian); // add by Alberto
+        //shiftY -= 0.11 * TMath::Sin(angle/fgkRadian); // don't ask me where that 0.11 comes from!
+        secRot->SetDx(shiftX);
+        secRot->SetDy(shiftY);
+        comrot  = new TGeoCombiTrans(*secRot);
+        vcenteral->AddNode(vCarbonFiberSector[i],i+1,comrot);
+        for(j=0;j<2;j++)for(k=0;k<6;k++) // Transform Tube ends for each sector
+            comrot->LocalToMaster(tub[j][k],fTubeEndSector[i][j][k]);
+        if(GetDebug(5)) {
+            AliInfo(Form("i=%d angle=%g angle[rad]=%g radiusSector=%g "
+                         "x=%g y=%g \n",i, angle, angle/fgkRadian,
+                         radiusSector, shiftX, shiftY));
+        } // end if GetDebug(5)
+        angle += kSectorRelativeAngle;
+        secRot->RotateZ(kSectorRelativeAngle);
+    } // end for i
+    if(GetDebug(3)) moth->PrintNodes();
+    delete secRot;
+
+    CreateCones(moth);
+}
+//______________________________________________________________________
+void AliITSv11GeometrySPD::CarbonFiberSector(TGeoVolume *moth, Int_t sect,
+     Double_t &xAAtubeCenter0, Double_t &yAAtubeCenter0, TGeoManager *mgr)
+{
+    // The method has been modified in order to build a support sector
+    // whose shape is dependent on the sector number; the aim is to get
+    // as close as possible to the shape inferred from alignment
+    // and avoid as much as possible overlaps generated by alignment.
+    //
+    // Define the detail SPD Carbon fiber support Sector geometry.
+    // Based on the drawings:
+    /*
+      http:///QA-construzione-profilo-modulo.ps
+     */
+    // - ALICE-Pixel "Costruzione Profilo Modulo" (march 25 2004)
+    // - ALICE-SUPPORTO "Costruzione Profilo Modulo"
+    // ---
+    // Define outside radii as negative, where "outside" means that the
+    // center of the arc is outside of the object (feb 16 2004).
+    // ---
+    // Arguments [the one passed by ref contain output values]:
+    // Inputs:
+    //   TGeoVolume *moth             the voulme which will contain this object
+    //   TGeoManager *mgr             TGeo builder defauls is gGeoManager
+    // Outputs:
+    //   Double_t   &xAAtubeCenter0  (by ref) x location of the outer surface
+    //                               of the cooling tube center for tube 0.
+    //   Double_t   &yAAtubeCenter0  (by ref) y location of the outer surface
+    //                                of the cooling tube center for tube 0.
+    // Return:
+    //   none.
+    // ---
+    // Int the two variables passed by reference values will be stored
+    // which will then be used to correctly locate this sector.
+    // The information used for this is the distance between the
+    // center of the #0 detector and the beam pipe.
+    // Measurements are taken at cross section A-A.
+    //
+
+    //TGeoMedium *medSPDfs      = 0;//SPD support cone inserto stesalite 4411w
+    //TGeoMedium *medSPDfo      = 0;//SPD support cone foam, Rohacell 50A.
+    //TGeoMedium *medSPDal      = 0;//SPD support cone SDD mounting bracket Al
+    TGeoMedium *medSPDcf     = GetMedium("SPD C (M55J)$", mgr);
+    TGeoMedium *medSPDss     = GetMedium("INOX$", mgr);
+    TGeoMedium *medSPDair    = GetMedium("AIR$", mgr);
+    TGeoMedium *medSPDcoolfl = GetMedium("Freon$", mgr); //ITSspdCoolingFluid
+    //
+    const Double_t ksecDz           =  0.5 * 500.0 * fgkmm;
+    //const Double_t ksecLen        = 30.0 * fgkmm;
+    const Double_t ksecCthick       =  0.2 * fgkmm;
+    const Double_t ksecDipLength =  3.2 * fgkmm;
+    const Double_t ksecDipRadii  =  0.4 * fgkmm;
+    //const Double_t ksecCoolingTubeExtraDepth = 0.86 * fgkmm;
+    //
+    // The following positions ('ksecX#' and 'ksecY#') and radii ('ksecR#')
+    // are the centers and radii of curvature of all the rounded corners
+    // between the straight borders of the SPD sector shape.
+    // To draw this SPD sector, the following steps are followed:
+    // 1) the (ksecX, ksecY) points are plotted
+    //    and circles of the specified radii are drawn around them.
+    // 2) each pair of consecutive circles is connected by a line
+    //    tangent to them, in accordance with the radii being "internal"
+    //    or "external" with respect to the closed shape which describes
+    //    the sector itself.
+    // The resulting connected shape is the section
+    // of the SPD sector surface in the transverse plane (XY).
+    //
+    const Double_t ksecX0   = -10.725 * fgkmm;
+    const Double_t ksecY0   = -14.853 * fgkmm;
+    const Double_t ksecR0   =  -0.8   * fgkmm; // external
+
+    const Double_t ksecR1   =  +0.6   * fgkmm;
+    const Double_t ksecR2   =  +0.6   * fgkmm;
+    const Double_t ksecR3   =  -0.6   * fgkmm;
+    const Double_t ksecR4   =  +0.8   * fgkmm;
+    const Double_t ksecR5   =  +0.8   * fgkmm;
+    const Double_t ksecR6   =  +0.6   * fgkmm;
+    const Double_t ksecR7   =  -0.6   * fgkmm;
+    const Double_t ksecR8   =  +0.6   * fgkmm;
+    const Double_t ksecR9   =  -0.6   * fgkmm;
+    const Double_t ksecR10   =  +0.6   * fgkmm;
+    const Double_t ksecR11   =  -0.6   * fgkmm;
+    const Double_t ksecR12   =  +0.85   * fgkmm;
+
+//    // IDEAL GEOMETRY
+//     const Double_t ksecX1[10] ={-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187};
+//     const Double_t ksecY1[10] ={-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964};
+//     const Double_t ksecX2[10] ={-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833};
+//     const Double_t ksecY2[10] ={-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805};
+//     const Double_t ksecX3[10] ={-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123};
+//     const Double_t ksecY3[10] ={-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618};
+//     const Double_t ksecX4[10] ={+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280};
+//     const Double_t ksecY4[10] ={-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473};
+//     const Double_t ksecX5[10] ={+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544};
+//     const Double_t ksecY5[10] ={+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961};
+//     const Double_t ksecX6[10] ={+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830};
+//     const Double_t ksecY6[10] ={+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868};
+//     const Double_t ksecX7[10] ={+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581};
+//     const Double_t ksecY7[10] ={+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317};
+//     const Double_t ksecX8[10] ={-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733};
+//     const Double_t ksecY8[10] ={+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486};
+//     const Double_t ksecX9[10] ={+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562};
+//     const Double_t ksecY9[10] ={+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107};
+//     const Double_t ksecX10[10]={-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252};
+//     const Double_t ksecY10[10]={+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298};
+//     const Double_t ksecX11[10]={-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445};
+//     const Double_t ksecY11[10]={+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162};
+//     const Double_t ksecX12[10]={-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276};
+//     const Double_t ksecY12[10]={+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948};
+  
+
+//    MODIFIED GEOMETRY according with partial alignment of Staves relative to Sectors
+//    last numbers: 2010/06/11 (ML)
+
+    const Double_t ksecX1[10]={-1.305917, -1.322242, -1.300649, -1.298700, -1.290830, -1.274307, -1.276433, -1.286468, -1.274381, -1.314864};
+    const Double_t ksecY1[10]={-1.997857, -2.018611, -2.005854, -2.004897, -1.995517, -2.002552, -1.995860, -2.021062, -2.012931, -2.043967};
+    const Double_t ksecX2[10]={-0.366115, -0.385562, -0.372689, -0.365682, -0.348432, -0.348442, -0.342468, -0.354071, -0.346900, -0.381275};
+    const Double_t ksecY2[10]={-1.801679, -1.808306, -1.759315, -1.778851, -1.811655, -1.747888, -1.773811, -1.792427, -1.764514, -1.820324};
+//     const Double_t ksecX1[10]={-1.305917, -1.322242, -1.300649, -1.298700, -1.290830, -1.274307, -1.276433, -1.286468, -1.274381, -1.325864};
+//     const Double_t ksecY1[10]={-1.997857, -2.018611, -2.005854, -2.004897, -1.995517, -2.002552, -1.995860, -2.021062, -2.012931, -2.032967};
+//     const Double_t ksecX2[10]={-0.366115, -0.385562, -0.372689, -0.365682, -0.348432, -0.348442, -0.342468, -0.354071, -0.346900, -0.392275};
+//     const Double_t ksecY2[10]={-1.801679, -1.808306, -1.759315, -1.778851, -1.811655, -1.747888, -1.773811, -1.792427, -1.764514, -1.809324};
+    const Double_t ksecX3[10]={-0.314030, -0.315531, -0.347521, -0.337675, -0.300420, -0.378487, -0.330729, -0.330850, -0.362360, -0.321097};
+    const Double_t ksecY3[10]={-1.452488, -1.460418, -1.447060, -1.443146, -1.472410, -1.430019, -1.469073, -1.472048, -1.462010, -1.444355};
+    const Double_t ksecX4[10]={1.124299, 1.124162, 1.089523, 1.095520, 1.136171, 1.058616, 1.105626, 1.106433, 1.077455, 1.117946};
+    const Double_t ksecY4[10]={-1.458714, -1.452649, -1.465297, -1.492717, -1.494665, -1.447732, -1.493369, -1.488126, -1.452925, -1.443447};
+    const Double_t ksecX5[10]={1.951621, 1.939284, 1.931830, 1.935235, 1.952206, 1.939082, 1.924822, 1.940114, 1.918160, 1.960017};
+    const Double_t ksecY5[10]={1.092731, 1.118870, 1.129765, 1.129422, 1.081511, 1.127387, 1.103960, 1.101784, 1.121428, 1.150110};
+    const Double_t ksecX6[10]={1.070070, 1.048297, 1.035920, 1.049049, 1.083621, 1.045882, 1.050399, 1.067823, 1.037967, 1.070850};
+    const Double_t ksecY6[10]={1.667590, 1.678571, 1.681383, 1.696892, 1.676520, 1.683470, 1.689988, 1.691111, 1.698432, 1.712770};
+    const Double_t ksecX7[10]={1.139398, 1.150471, 1.150074, 1.132807, 1.150192, 1.124064, 1.124335, 1.137723, 1.143056, 1.130568};
+    const Double_t ksecY7[10]={1.345588, 1.356062, 1.342468, 1.320467, 1.335807, 1.334477, 1.328622, 1.347184, 1.319861, 1.308420};
+    const Double_t ksecX8[10]={-0.096963, -0.098603, -0.095286, -0.099990, -0.075132, -0.121593, -0.108673, -0.104237, -0.092082, -0.104044};
+    const Double_t ksecY8[10]={1.751207, 1.731467, 1.726908, 1.734219, 1.766159, 1.718203, 1.741891, 1.739743, 1.728288, 1.718046};
+    const Double_t ksecX9[10]={0.047615, 0.087875, 0.034917, 0.071603, 0.026468, 0.091619, 0.051994, 0.059947, 0.079785, 0.043443};
+    const Double_t ksecY9[10]={1.414699, 1.403187, 1.399061, 1.403430, 1.435056, 1.384557, 1.397692, 1.420269, 1.391372, 1.398954};
+    const Double_t ksecX10[10]={-1.233255, -1.186874, -1.246702, -1.213368, -1.259425, -1.190067, -1.225655, -1.224171, -1.197833, -1.237182};
+    const Double_t ksecY10[10]={1.635767, 1.646249, 1.617336, 1.608928, 1.636944, 1.602583, 1.630504, 1.629065, 1.624295, 1.620934};
+    const Double_t ksecX11[10]={-1.018270, -1.031317, -0.960524, -1.001155, -1.045437, -0.986867, -1.002685, -1.017369, -1.005614, -0.985385};
+    const Double_t ksecY11[10]={1.318108, 1.330683, 1.301572, 1.314410, 1.326680, 1.295226, 1.306372, 1.309414, 1.306542, 1.307086};
+    const Double_t ksecX12[10]={-2.199004, -2.214964, -2.139247, -2.180547, -2.224505, -2.165324, -2.175883, -2.193485, -2.183227, -2.161570};
+    const Double_t ksecY12[10]={1.317677, 1.303982, 1.317057, 1.324766, 1.339537, 1.312715, 1.359642, 1.343638, 1.330234, 1.340836};
+
+
+    const Double_t ksecR13  =  -0.8   * fgkmm; // external
+    const Double_t ksecAngleSide13 = 36.0 * fgkDegree;
+    //
+    const Int_t ksecNRadii = 20;
+    const Int_t ksecNPointsPerRadii = 4;
+    const Int_t ksecNCoolingTubeDips = 6;
+    //
+    // Since the rounded parts are approximated by a regular polygon
+    // and a cooling tube of the propper diameter must fit, a scaling factor
+    // increases the size of the polygon for the tube to fit.
+    //const Double_t ksecRCoolScale = 1./TMath::Cos(TMath::Pi()/
+    //                                      (Double_t)ksecNPointsPerRadii);
+    const Double_t ksecZEndLen   = 30.000 * fgkmm;
+    //const Double_t ksecZFlangLen = 45.000 * fgkmm;
+    const Double_t ksecTl        =  0.860 * fgkmm;
+    const Double_t ksecCthick2   =  0.600 * fgkmm;
+    //const Double_t ksecCthick3  =  1.80  * fgkmm;
+    //const Double_t ksecSidelen  = 22.0   * fgkmm;
+    //const Double_t ksecSideD5   =  3.679 * fgkmm;
+    //const Double_t ksecSideD12  =  7.066 * fgkmm;
+    const Double_t ksecRCoolOut  = 2.400 * fgkmm;
+    const Double_t ksecRCoolIn   = 2.000 * fgkmm;
+    const Double_t ksecDl1       = 5.900 * fgkmm;
+    const Double_t ksecDl2       = 8.035 * fgkmm;
+    const Double_t ksecDl3       = 4.553 * fgkmm;
+    const Double_t ksecDl4       = 6.978 * fgkmm;
+    const Double_t ksecDl5       = 6.978 * fgkmm;
+    const Double_t ksecDl6       = 6.978 * fgkmm;
+    const Double_t ksecCoolTubeThick  = 0.04  * fgkmm;
+    const Double_t ksecCoolTubeROuter = 2.6   * fgkmm;
+    const Double_t ksecCoolTubeFlatX  = 3.696 * fgkmm;
+    const Double_t ksecCoolTubeFlatY  = 0.68  * fgkmm;
+    //const Double_t ksecBeamX0 = 0.0 * fgkmm; // guess
+    //const Double_t ksecBeamY0 = (15.223 + 40.) * fgkmm; // guess
+    //
+    // redefine some of the points already defined above
+    // in the format of arrays (???)
+    const Int_t ksecNPoints = (ksecNPointsPerRadii + 1) * ksecNRadii + 8;
+    Double_t secX[ksecNRadii] = {
+        ksecX0,  ksecX1[sect],  -1000.0,
+        ksecX2[sect],  ksecX3[sect],  -1000.0,
+        ksecX4[sect],  ksecX5[sect],  -1000.0,
+        ksecX6[sect],  ksecX7[sect],  -1000.0,
+        ksecX8[sect],  ksecX9[sect],  -1000.0,
+        ksecX10[sect], ksecX11[sect], -1000.0,
+        ksecX12[sect], -1000.0
+    };
+    Double_t secY[ksecNRadii] = {
+        ksecY0,  ksecY1[sect],  -1000.0,
+        ksecY2[sect],  ksecY3[sect],  -1000.0,
+        ksecY4[sect],  ksecY5[sect],  -1000.0,
+        ksecY6[sect],  ksecY7[sect],  -1000.0,
+        ksecY8[sect],  ksecY9[sect],  -1000.0,
+        ksecY10[sect], ksecY11[sect], -1000.0,
+        ksecY12[sect], -1000.0
+    };
+    Double_t secR[ksecNRadii] = {
+        ksecR0,  ksecR1,  -.5 * ksecDipLength - ksecDipRadii,
+        ksecR2,  ksecR3,  -.5 * ksecDipLength - ksecDipRadii,
+        ksecR4,  ksecR5,  -.5 * ksecDipLength - ksecDipRadii,
+        ksecR6,  ksecR7,  -.5 * ksecDipLength - ksecDipRadii,
+        ksecR8,  ksecR9,  -.5 * ksecDipLength - ksecDipRadii,
+        ksecR10, ksecR11, -.5 * ksecDipLength - ksecDipRadii,
+        ksecR12, ksecR13
+    };
+
+    Double_t secX2[ksecNRadii];
+    Double_t secY2[ksecNRadii];
+    Double_t secR2[ksecNRadii] = {
+        ksecR0,  ksecR1,  ksecRCoolOut,
+        ksecR2,  ksecR3,  ksecRCoolOut,
+        ksecR4,  ksecR5,  ksecRCoolOut,
+        ksecR6,  ksecR7,  ksecRCoolOut,
+        ksecR8,  ksecR9,  ksecRCoolOut,
+        ksecR10, ksecR11, ksecRCoolOut,
+        ksecR12, ksecR13
+    };
+    Double_t secDip2[ksecNCoolingTubeDips] = {
+        ksecDl1, ksecDl2, ksecDl3,
+        ksecDl4, ksecDl5, ksecDl6
+    };
+    Double_t secX3[ksecNRadii];
+    Double_t secY3[ksecNRadii];
+    const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2, 5, 8, 11, 14, 17};
+    Double_t secAngleStart[ksecNRadii];
+    Double_t secAngleEnd[ksecNRadii];
+    for(Int_t i = 0; i < ksecNRadii; i++)secAngleEnd[i] = 0.;
+    Double_t secAngleStart2[ksecNRadii];
+    Double_t secAngleEnd2[ksecNRadii];
+    Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0., 0., 0., 0., 0., 0.0};
+    //Double_t secAngleStart3[ksecNRadii];
+    //Double_t secAngleEnd3[ksecNRadii];
+    Double_t  xpp[ksecNPoints],  ypp[ksecNPoints];
+    Double_t  xpp2[ksecNPoints], ypp2[ksecNPoints];
+    Double_t *xp[ksecNRadii],   *xp2[ksecNRadii];
+    Double_t *yp[ksecNRadii],   *yp2[ksecNRadii];
+    TGeoXtru *sA0,  *sA1, *sB0, *sB1,*sB2;
+    TGeoBBox *sB3;
+    TGeoEltu *sTA0, *sTA1;
+    TGeoTube *sTB0, *sTB1; //,*sM0;
+    TGeoRotation    *rot;
+    TGeoTranslation *trans;
+    TGeoCombiTrans  *rotrans;
+    Double_t t, t0, t1, a, b, x0, y0,z0, x1, y1;
+    Int_t i, j, k, m;
+    Bool_t tst;
+
+    if(!moth) {
+        AliError("Container volume (argument) is NULL");
+        return;
+    } // end if(!moth)
+    for(i = 0; i < ksecNRadii; i++) {
+        xp[i]  = &(xpp[i*(ksecNPointsPerRadii+1)]);
+        yp[i]  = &(ypp[i*(ksecNPointsPerRadii+1)]);
+        xp2[i] = &(xpp2[i*(ksecNPointsPerRadii+1)]);
+        yp2[i] = &(ypp2[i*(ksecNPointsPerRadii+1)]);
+        secX2[i] = secX[i];
+        secY2[i] = secY[i];
+        secX3[i] = secX[i];
+        secY3[i] = secY[i];
+    } // end for i
+    //
+    // find starting and ending angles for all but cooling tube sections
+    secAngleStart[0] = 0.5 * ksecAngleSide13;
+    for(i = 0; i < ksecNRadii - 2; i++) {
+        tst = kFALSE;
+        for(j=0;j<ksecNCoolingTubeDips;j++) tst = (tst||i==ksecDipIndex[j]);
+        if (tst) continue;
+        tst = kFALSE;
+        for(j=0;j<ksecNCoolingTubeDips;j++) tst =(tst||(i+1)==ksecDipIndex[j]);
+        if (tst) j = i+2; else j = i+1;
+        AnglesForRoundedCorners(secX[i],secY[i],secR[i],secX[j],secY[j],
+                                secR[j],t0,t1);
+        secAngleEnd[i]   = t0;
+        secAngleStart[j] = t1;
+        if(secR[i] > 0.0 && secR[j] > 0.0) {
+            if(secAngleStart[i] > secAngleEnd[i]) secAngleEnd[i] += 360.0;
+        } // end if(secR[i]>0.0 && secR[j]>0.0)
+        secAngleStart2[i] = secAngleStart[i];
+        secAngleEnd2[i]   = secAngleEnd[i];
+    } // end for i
+    secAngleEnd[ksecNRadii-2] = secAngleStart[ksecNRadii-2] +
+                   (secAngleEnd[ksecNRadii-5] - secAngleStart[ksecNRadii-5]);
+    if (secAngleEnd[ksecNRadii-2] < 0.0) secAngleEnd[ksecNRadii-2] += 360.0;
+    secAngleStart[ksecNRadii-1]  = secAngleEnd[ksecNRadii-2] - 180.0;
+    secAngleEnd[ksecNRadii-1]    = secAngleStart[0];
+    secAngleStart2[ksecNRadii-2] = secAngleStart[ksecNRadii-2];
+    secAngleEnd2[ksecNRadii-2]   = secAngleEnd[ksecNRadii-2];
+    secAngleStart2[ksecNRadii-1] = secAngleStart[ksecNRadii-1];
+    secAngleEnd2[ksecNRadii-1]   = secAngleEnd[ksecNRadii-1];
+    //
+    // find location of circle last rounded corner.
+    i = 0;
+    j = ksecNRadii - 2;
+    t0 = TanD(secAngleStart[i]-90.);
+    t1 = TanD(secAngleEnd[j]-90.);
+    t  = secY[i] - secY[j];
+    // NOTE: secR[i=0] < 0; secR[j=18] > 0; and secR[j+1=19] < 0
+    t += (-secR[i]+secR[j+1]) * SinD(secAngleStart[i]);
+    t -= (secR[j]-secR[j+1]) * SinD(secAngleEnd[j]);
+    t += t1 * secX[j] - t0*secX[i];
+    t += t1 * (secR[j] - secR[j+1]) * CosD(secAngleEnd[j]);
+    t -= t0 * (-secR[i]+secR[j+1]) * CosD(secAngleStart[i]);
+    secX[ksecNRadii-1] = t / (t1-t0);
+    secY[ksecNRadii-1] = TanD(90.0+0.5*ksecAngleSide13)*
+        (secX[ksecNRadii-1]-secX[0])+secY[0];
+    secX2[ksecNRadii-1] = secX[ksecNRadii-1];
+    secY2[ksecNRadii-1] = secY[ksecNRadii-1];
+    secX3[ksecNRadii-1] = secX[ksecNRadii-1];
+    secY3[ksecNRadii-1] = secY[ksecNRadii-1];
+
+    // find location of cooling tube centers
+    for(i = 0; i < ksecNCoolingTubeDips; i++) {
+        j = ksecDipIndex[i];
+        x0 = secX[j-1] + TMath::Abs(secR[j-1]) * CosD(secAngleEnd[j-1]);
+        y0 = secY[j-1] + TMath::Abs(secR[j-1]) * SinD(secAngleEnd[j-1]);
+        x1 = secX[j+1] + TMath::Abs(secR[j+1]) * CosD(secAngleStart[j+1]);
+        y1 = secY[j+1] + TMath::Abs(secR[j+1]) * SinD(secAngleStart[j+1]);
+        t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
+        t  = secDip2[i] / t0;
+        a  = x0+(x1-x0) * t;
+        b  = y0+(y1-y0) * t;
+        if(i == 0) {
+            // get location of tube center->Surface for locating
+            // this sector around the beam pipe.
+            // This needs to be double checked, but I need my notes for that.
+            // (Bjorn Nilsen)
+            xAAtubeCenter0 = x0 + (x1 - x0) * t * 0.5;
+            yAAtubeCenter0 = y0 + (y1 - y0) * t * 0.5;
+        }// end if i==0
+        if(a + b*(a - x0) / (b - y0) > 0.0) {
+            secX[j]  = a + TMath::Abs(y1-y0) * 2.0 * ksecDipRadii/t0;
+            secY[j]  = b - TMath::Sign(2.0*ksecDipRadii,y1-y0) * (x1-x0)/t0;
+            secX2[j] = a + TMath::Abs(y1-y0) * ksecTl/t0;
+            secY2[j] = b - TMath::Sign(ksecTl,y1-y0) * (x1-x0) / t0;
+            secX3[j] = a + TMath::Abs(y1-y0) *
+                       (2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0;
+            secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,
+                                       y1-y0)*(x1-x0)/t0;
+        } else {
+            secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0;
+            secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0;
+            secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0;
+            secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0;
+            secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii-0.5*
+                                                  ksecCoolTubeFlatY)/t0;
+            secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,
+                                       y1-y0)*(x1-x0)/t0;
+        } // end if(a+b*(a-x0)/(b-y0)>0.0)
+
+          // Set up Start and End angles to correspond to start/end of dips.
+        t1 = (secDip2[i]-TMath::Abs(secR[j])) / t0;
+        secAngleStart[j] =TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],
+                                                        x0+(x1-x0)*t1-secX[j]);
+        if (secAngleStart[j]<0.0) secAngleStart[j] += 360.0;
+        secAngleStart2[j] = secAngleStart[j];
+        t1 = (secDip2[i]+TMath::Abs(secR[j]))/t0;
+        secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],
+                                                        x0+(x1-x0)*t1-secX[j]);
+        if (secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0;
+        secAngleEnd2[j] = secAngleEnd[j];
+        if (secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0;
+        secR[j] = TMath::Sqrt(secR[j]*secR[j]+4.0*ksecDipRadii*ksecDipRadii);
+    } // end for i
+
+    // Special cases
+    secAngleStart2[8] -= 360.;
+    secAngleStart2[11] -= 360.;
+
+    SPDsectorShape(ksecNRadii, secX, secY, secR, secAngleStart, secAngleEnd,
+                   ksecNPointsPerRadii, m, xp, yp);
+
+    //  Fix up dips to be square.
+    for(i = 0; i < ksecNCoolingTubeDips; i++) {
+        j = ksecDipIndex[i];
+        t = 0.5*ksecDipLength+ksecDipRadii;
+        t0 = TMath::RadToDeg()*TMath::ATan(2.0*ksecDipRadii/t);
+        t1 = secAngleEnd[j] + t0;
+        t0 = secAngleStart[j] - t0;
+        x0 = xp[j][1] = secX[j] + t*CosD(t0);
+        y0 = yp[j][1] = secY[j] + t*SinD(t0);
+        x1 = xp[j][ksecNPointsPerRadii-1] = secX[j] + t*CosD(t1);
+        y1 = yp[j][ksecNPointsPerRadii-1] = secY[j] + t*SinD(t1);
+        t0 = 1./((Double_t)(ksecNPointsPerRadii-2));
+        for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
+            // extra points spread them out.
+            t = ((Double_t)(k-1)) * t0;
+            xp[j][k] = x0+(x1-x0) * t;
+            yp[j][k] = y0+(y1-y0) * t;
+        } // end for k
+        secAngleTurbo[i] = -TMath::RadToDeg() * TMath::ATan2(y1-y0, x1-x0);
+        if(GetDebug(3)) {
+            AliInfo(
+                Form("i=%d -- angle=%f -- x0,y0=(%f, %f) -- x1,y1=(%f, %f)",
+                     i, secAngleTurbo[i], x0, y0, x1, y1));
+        } // end if GetDebug(3)
+    } // end for i
+    sA0 = new TGeoXtru(2);
+    sA0->SetName("ITS SPD Carbon fiber support Sector A0");
+    sA0->DefinePolygon(m, xpp, ypp);
+    sA0->DefineSection(0, -ksecDz);
+    sA0->DefineSection(1,  ksecDz);
+
+    // store the edges of each XY segment which defines
+    // one of the plane zones where staves will have to be placed
+    fSPDsectorX0.Set(ksecNCoolingTubeDips);
+    fSPDsectorY0.Set(ksecNCoolingTubeDips);
+    fSPDsectorX1.Set(ksecNCoolingTubeDips);
+    fSPDsectorY1.Set(ksecNCoolingTubeDips);
+    Int_t ixy0, ixy1;
+    for(i = 0; i < ksecNCoolingTubeDips; i++) {
+        // Find index in xpp[] and ypp[] corresponding to where the
+        // SPD ladders are to be attached. Order them according to
+        // the ALICE numbering schema. Using array of indexes (+-1 for
+        // cooling tubes. For any "bend/dip/edge, there are
+        // ksecNPointsPerRadii+1 points involved.
+        if(i == 0) j = 1;
+        else if (i == 1) j = 0;
+        else j = i;
+        ixy0 = (ksecDipIndex[j]-1)*(ksecNPointsPerRadii+1)+
+            (ksecNPointsPerRadii);
+        ixy1 = (ksecDipIndex[j]+1) * (ksecNPointsPerRadii+1);
+        fSPDsectorX0[i] = sA0->GetX(ixy0);
+        fSPDsectorY0[i] = sA0->GetY(ixy0);
+        fSPDsectorX1[i] = sA0->GetX(ixy1);
+        fSPDsectorY1[i] = sA0->GetY(ixy1);
+    } // end for i
+
+    //printf("SectorA#%d ",0);
+    InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1],ksecCthick,
+                xpp2[0],ypp2[0]);
+    for(i = 1; i < m - 1; i++) {
+        j = i / (ksecNPointsPerRadii+1);
+        //printf("SectorA#%d ",i);
+        InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1],
+                    ksecCthick,xpp2[i],ypp2[i]);
+    } // end for i
+    //printf("SectorA#%d ",m);
+    InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0],
+                ksecCthick,xpp2[m-1],ypp2[m-1]);
+    // Fix center value of cooling tube dip and
+    // find location of cooling tube centers
+    for(i = 0; i < ksecNCoolingTubeDips; i++) {
+        j = ksecDipIndex[i];
+        x0 = xp2[j][1];
+        y0 = yp2[j][1];
+        x1 = xp2[j][ksecNPointsPerRadii-1];
+        y1 = yp2[j][ksecNPointsPerRadii-1];
+        t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
+        t  = secDip2[i]/t0;
+        for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
+            // extra points spread them out.
+            t = ((Double_t)(k-1)) * t0;
+            xp2[j][k] = x0+(x1-x0) * t;
+            yp2[j][k] = y0+(y1-y0) * t;
+        } // end for k
+    } // end for i
+    sA1 = new TGeoXtru(2);
+    sA1->SetName("ITS SPD Carbon fiber support Sector Air A1");
+    sA1->DefinePolygon(m, xpp2, ypp2);
+    sA1->DefineSection(0, -ksecDz);
+    sA1->DefineSection(1,  ksecDz);
+    //
+    // Error in TGeoEltu. Semi-axis X must be < Semi-axis Y (?).
+    sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0", 0.5 * ksecCoolTubeFlatY,
+                        0.5 * ksecCoolTubeFlatX, ksecDz);
+    sTA1 = new TGeoEltu("ITS SPD Cooling Tube coolant TA1",
+                        sTA0->GetA() - ksecCoolTubeThick,
+                        sTA0->GetB()-ksecCoolTubeThick,ksecDz);
+    SPDsectorShape(ksecNRadii,secX2,secY2,secR2,secAngleStart2,secAngleEnd2,
+                   ksecNPointsPerRadii, m, xp, yp);
+    sB0 = new TGeoXtru(2);
+    sB0->SetName("ITS SPD Carbon fiber support Sector End B0");
+    sB0->DefinePolygon(m, xpp, ypp);
+    sB0->DefineSection(0, ksecDz);
+    sB0->DefineSection(1, ksecDz + ksecZEndLen);
+
+    //printf("SectorB#%d ",0);
+  // Points around the most sharpened tips have to be avoided - M.S. 24 feb 09
+    const Int_t nSpecialPoints = 5;
+    const Int_t kSpecialPoints[nSpecialPoints] = {7, 17, 47, 62, 77};
+    Int_t i2 = 0;
+    InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1],
+                ksecCthick2,xpp2[i2],ypp2[i2]);
+    for(i = 1; i < m - 1; i++) {
+        t = ksecCthick2;
+        for(k = 0; k < ksecNCoolingTubeDips; k++)
+            if((i/(ksecNPointsPerRadii+1))==ksecDipIndex[k])
+                if(!(ksecDipIndex[k]*(ksecNPointsPerRadii+1) == i ||
+                     ksecDipIndex[k]*(ksecNPointsPerRadii+1) +
+                     ksecNPointsPerRadii == i))
+                    t = ksecRCoolOut-ksecRCoolIn;
+        //printf("SectorB#%d ",i);
+       Bool_t useThisPoint = kTRUE;
+       for(Int_t ii = 0; ii < nSpecialPoints; ii++)
+         if ( (i == kSpecialPoints[ii] - 1) ||
+              (i == kSpecialPoints[ii] + 1)   ) useThisPoint = kFALSE;
+       if (useThisPoint) {
+         i2++;
+         InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1],t,
+                     xpp2[i2],ypp2[i2]);
+       }
+    }// end for i
+    //printf("SectorB#%d ",m);
+    i2++;
+    InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0],
+                ksecCthick2,xpp2[i2],ypp2[i2]);
+    sB1 = new TGeoXtru(2);
+    sB1->SetName("ITS SPD Carbon fiber support Sector Air End B1");
+    sB1->DefinePolygon(i2+1, xpp2, ypp2);
+    sB1->DefineSection(0,sB0->GetZ(0));
+    sB1->DefineSection(1,sB0->GetZ(1)-ksecCthick2);
+    const Double_t kspdEndHoleRadius1=5.698*fgkmm;
+    const Double_t kspdEndHoleRadius2=2.336*fgkmm;
+    const Double_t kspdEndHoleDisplacement=6.29*fgkmm;
+    k = (m-1)/4;
+    for(i=0;i<=k;i++){
+        t= ((Double_t)i)/((Double_t)(k));
+        if(!CFHolePoints(t,kspdEndHoleRadius1,kspdEndHoleRadius2,
+                         kspdEndHoleDisplacement,xpp2[i],ypp2[i])){
+            Warning("CarbonFiberSector","CFHolePoints failed "
+                    "i=%d m=%d k=%d t=%e",i,m,k,t);
+        } // end if
+        // simitry in each quadrant.
+        xpp2[2*k-i] = -xpp2[i];
+        ypp2[2*k-i] =  ypp2[i];
+        xpp2[2*k+i] = -xpp2[i];
+        ypp2[2*k+i] = -ypp2[i];
+        xpp2[4*k-i] =  xpp2[i];
+        ypp2[4*k-i] = -ypp2[i];
+    }// end for i
+    //xpp2[m-1] = xpp2[0]; // begining point in
+    //ypp2[m-1] = ypp2[0]; // comment with end point
+    sB2 = new TGeoXtru(2);
+    sB2->SetName("ITS SPD Hole in Carbon fiber support End plate");
+    sB2->DefinePolygon(4*k, xpp2, ypp2);
+    sB2->DefineSection(0,sB1->GetZ(1));
+    sB2->DefineSection(1,sB0->GetZ(1));
+    // SPD sector mount blocks
+    const Double_t kMountBlock[3] = {0.5*(1.8-0.2)*fgkmm,0.5*22.0*fgkmm,
+                                     0.5*45.0*fgkmm};
+    sB3 = new TGeoBBox((Double_t*)kMountBlock);
+    // SPD sector cooling tubes
+    sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0", 0.0,
+                   0.5*ksecCoolTubeROuter,0.5*(sB1->GetZ(1)-sB1->GetZ(0)));
+    sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0", 0.0,
+                        sTB0->GetRmax() - ksecCoolTubeThick,sTB0->GetDz());
+    //
+    if(GetDebug(3)) {
+        if(medSPDcf) medSPDcf->Dump(); else AliInfo("medSPDcf = 0");
+        if(medSPDss) medSPDss->Dump(); else AliInfo("medSPDss = 0");
+        if(medSPDair) medSPDair->Dump(); else AliInfo("medSPDAir = 0");
+        if(medSPDcoolfl) medSPDcoolfl->Dump();else AliInfo("medSPDcoolfl = 0");
+        sA0->InspectShape();
+        sA1->InspectShape();
+        sB0->InspectShape();
+        sB1->InspectShape();
+        sB2->InspectShape();
+    } // end if(GetDebug(3))
+
+    // create the assembly of the support and place staves on it
+    TGeoVolumeAssembly *vM0 = new TGeoVolumeAssembly(
+                                         "ITSSPDSensitiveVirtualvolumeM0");
+    StavesInSector(vM0);
+    // create other volumes with some graphical settings
+    TGeoVolume *vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0",
+                                     sA0, medSPDcf);
+    vA0->SetVisibility(kTRUE);
+    vA0->SetLineColor(4); // Blue
+    vA0->SetLineWidth(1);
+    vA0->SetFillColor(vA0->GetLineColor());
+    vA0->SetFillStyle(4010); // 10% transparent
+    TGeoVolume *vA1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorAirA1",
+                                     sA1, medSPDair);
+    vA1->SetVisibility(kTRUE);
+    vA1->SetLineColor(7); // light Blue
+    vA1->SetLineWidth(1);
+    vA1->SetFillColor(vA1->GetLineColor());
+    vA1->SetFillStyle(4090); // 90% transparent
+    TGeoVolume *vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0", sTA0, medSPDss);
+    vTA0->SetVisibility(kTRUE);
+    vTA0->SetLineColor(15); // gray
+    vTA0->SetLineWidth(1);
+    vTA0->SetFillColor(vTA0->GetLineColor());
+    vTA0->SetFillStyle(4000); // 0% transparent
+    TGeoVolume *vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1",
+                                      sTA1, medSPDcoolfl);
+    vTA1->SetVisibility(kTRUE);
+    vTA1->SetLineColor(6); // Purple
+    vTA1->SetLineWidth(1);
+    vTA1->SetFillColor(vTA1->GetLineColor());
+    vTA1->SetFillStyle(4000); // 0% transparent
+    TGeoVolume *vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0",
+                                     sB0, medSPDcf);
+    vB0->SetVisibility(kTRUE);
+    vB0->SetLineColor(1); // Black
+    vB0->SetLineWidth(1);
+    vB0->SetFillColor(vB0->GetLineColor());
+    vB0->SetFillStyle(4000); // 0% transparent
+    TGeoVolume *vB1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB1",
+                                     sB1, medSPDair);
+    vB1->SetVisibility(kTRUE);
+    vB1->SetLineColor(0); // white
+    vB1->SetLineWidth(1);
+    vB1->SetFillColor(vB1->GetLineColor());
+    vB1->SetFillStyle(4100); // 100% transparent
+    TGeoVolume *vB2 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB2",
+                                     sB2, medSPDair);
+    vB2->SetVisibility(kTRUE);
+    vB2->SetLineColor(0); // white
+    vB2->SetLineWidth(1);
+    vB2->SetFillColor(vB2->GetLineColor());
+    vB2->SetFillStyle(4100); // 100% transparent
+    TGeoVolume *vB3 = new TGeoVolume(
+        "ITSSPDCarbonFiberSupportSectorMountBlockB3",sB3, medSPDcf);
+    vB3->SetVisibility(kTRUE);
+    vB3->SetLineColor(1); // Black
+    vB3->SetLineWidth(1);
+    vB3->SetFillColor(vB3->GetLineColor());
+    vB3->SetFillStyle(4000); // 0% transparent
+    TGeoVolume *vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0",sTB0,medSPDss);
+    vTB0->SetVisibility(kTRUE);
+    vTB0->SetLineColor(15); // gray
+    vTB0->SetLineWidth(1);
+    vTB0->SetFillColor(vTB0->GetLineColor());
+    vTB0->SetFillStyle(4000); // 0% transparent
+    TGeoVolume *vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1",sTB1,
+                                      medSPDcoolfl);
+    vTB1->SetVisibility(kTRUE);
+    vTB1->SetLineColor(7); // light blue
+    vTB1->SetLineWidth(1);
+    vTB1->SetFillColor(vTB1->GetLineColor());
+    vTB1->SetFillStyle(4050); // 0% transparent
+
+    // add volumes to mother container passed as argument of this method
+    moth->AddNode(vM0,1,0); // Add virtual volume to mother
+    vA0->AddNode(vA1,1,0); // Put air inside carbon fiber.
+    vB0->AddNode(vB1,1,0); // Put air inside carbon fiber ends.
+    vB0->AddNode(vB2,1,0); // Put air wholes inside carbon fiber ends
+    vTA0->AddNode(vTA1,1,0); // Put cooling liquid indide tube middel.
+    vTB0->AddNode(vTB1,1,0); // Put cooling liquid inside tube end.
+    Double_t tubeEndLocal[3]={0.0,0.0,sTA0->GetDz()};
+    for(i = 0; i < ksecNCoolingTubeDips; i++) {
+        x0 = secX3[ksecDipIndex[i]];
+        y0 = secY3[ksecDipIndex[i]];
+        t = 90.0 - secAngleTurbo[i];
+        trans = new TGeoTranslation("",x0,y0,0.5*(sB1->GetZ(0)+sB1->GetZ(1)));
+        vB1->AddNode(vTB0, i+1, trans);
+        // Find location of tube ends for later use.
+        trans->LocalToMaster(tubeEndLocal,fTubeEndSector[0][0][i]);
+        rot = new TGeoRotation("", 0.0, 0.0, t);
+        rotrans = new TGeoCombiTrans("", x0, y0, 0.0, rot);
+        vM0->AddNode(vTA0, i+1, rotrans);
+    } // end for i
+    vM0->AddNode(vA0, 1, 0);
+    vM0->AddNode(vB0, 1, 0);
+    // Reflection.
+    rot = new TGeoRotation("", 90., 0., 90., 90., 180., 0.);
+    vM0->AddNode(vB0,2,rot);
+    // Find location of tube ends for later use.
+    for(i=0;i<ksecNCoolingTubeDips;i++) rot->LocalToMaster(
+                            fTubeEndSector[0][0][i],fTubeEndSector[0][1][i]);
+    // left side
+    t = -TMath::RadToDeg()*TMath::ATan2(
+                                   sB0->GetX(0)-sB0->GetX(sB0->GetNvert()-1),
+                                   sB0->GetY(0)-sB0->GetY(sB0->GetNvert()-1));
+    rot = new TGeoRotation("",t,0.0,0.0);// z axis rotation
+    x0 = 0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))+
+        sB3->GetDX()*TMath::Cos(t*TMath::DegToRad());
+    y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))+
+        sB3->GetDX()*TMath::Sin(t*TMath::DegToRad());
+    z0 = sB0->GetZ(0)+sB3->GetDZ();
+    rotrans = new TGeoCombiTrans("",x0,y0,z0,rot);
+    vM0->AddNode(vB3,1,rotrans); // Put Mounting bracket on sector
+    rotrans = new TGeoCombiTrans("",x0,y0,-z0,rot);
+    vM0->AddNode(vB3,2,rotrans); // Put Mounting bracket on sector
+    t *= -1.0;
+    rot = new TGeoRotation("",t,0.0,0.0); // z axis rotation
+  
+    x0 = -0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))-3.5*
+        sB3->GetDX()*TMath::Cos(t*TMath::DegToRad());
+    y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))-3.5*
+        sB3->GetDX()*TMath::Sin(t*TMath::DegToRad());
+    rotrans = new TGeoCombiTrans("",1.01*x0,y0,z0,rot);
+    vM0->AddNode(vB3,3,rotrans); // Put Mounting bracket on sector
+    rotrans = new TGeoCombiTrans("",1.01*x0,y0,-z0,rot);
+    vM0->AddNode(vB3,4,rotrans); // Put Mounting bracket on sector
+    if(GetDebug(3)){
+        vM0->PrintNodes();
+        vA0->PrintNodes();
+        vA1->PrintNodes();
+        vB0->PrintNodes();
+        vB1->PrintNodes();
+        vB2->PrintNodes();
+        vB3->PrintNodes();
+        vTA0->PrintNodes();
+        vTA1->PrintNodes();
+        vTB0->PrintNodes();
+        vTB1->PrintNodes();
+    } // end if(GetDebug(3))
+}
+//______________________________________________________________________
+Bool_t AliITSv11GeometrySPD::CFHolePoints(Double_t s,Double_t r1,
+                   Double_t r2,Double_t l,Double_t &x,Double_t &y) const
+{
+    //
+    // Step along arck a distancs ds and compute boundry of
+    // two holes (radius r1 and r2) a distance l apart (along
+    // x-axis).
+    // Inputs:
+    //   Double_t s   fractional Distance along arcs [0-1]
+    //                where 0-> alpha=beta=0, 1-> alpha=90 degrees.
+    //   Double_t r1  radius at center circle
+    //   Double_t r2  radius of displaced circle
+    //   Double_t l   Distance displaced circle is displaces (x-axis)
+    // Output:
+    //   Double_t x   x coordinate along double circle.
+    //   Double_t y   y coordinate along double circle.
+    // Return:
+    //   logical, kFALSE if an error
+    //
+    Double_t alpha,beta;
+    Double_t ac,bc,scb,sca,t,alphac,betac; // at intersection of two circles
+
+    x=y=0.0;
+    ac = r1*r1-l*l-r2*r2;
+    bc = 2.*l*r2;
+    if(bc==0.0) {printf("bc=0 l=%e r2=%e\n",l,r2);return kFALSE;}
+    betac = TMath::ACos(ac/bc);
+    alphac = TMath::Sqrt((bc-ac)*(bc+ac))/(2.*l*r1);
+    scb = r2*betac;
+    sca = r1*alphac;
+    t = r1*0.5*TMath::Pi() - sca + scb;
+    if(s<= scb/t){
+        beta = s*t/r2;
+        x = r2*TMath::Cos(beta) + l;
+        y = r2*TMath::Sin(beta);
+        //printf("betac=%e scb=%e t=%e s=%e beta=%e x=%e y=%e\n",
+        //       betac,scb,t,s,beta,x,y);
+        return kTRUE;
+    }else{
+        beta = (s*t-scb+sca)/(r1*0.5*TMath::Pi());
+        alpha = beta*0.5*TMath::Pi();
+        x = r1*TMath::Cos(alpha);
+        y = r1*TMath::Sin(alpha);
+        //printf("alphac=%e sca=%e t=%e s=%e beta=%e alpha=%e x=%e y=%e\n",
+        //       alphac,sca,t,s,beta,alpha,x,y);
+        return kTRUE;
+    } // end if
+    return kFALSE;
+}
+//______________________________________________________________________
+Bool_t AliITSv11GeometrySPD::GetSectorMountingPoints(Int_t index,Double_t &x0,
+                              Double_t &y0, Double_t &x1, Double_t &y1) const
+{
+    //
+    // Returns the edges of the straight borders in the SPD sector shape,
+    // which are used to mount staves on them.
+    // Coordinate system is that of the carbon fiber sector volume.
+    // ---
+    // Index numbering is as follows:
+    //                         /5
+    //                        /\/4
+    //                      1\   \/3
+    //                      0|___\/2
+    // ---
+    // Arguments [the ones passed by reference contain output values]:
+    //    Int_t    index   --> location index according to above scheme [0-5]
+    //    Double_t &x0     --> (by ref) x0 location or the ladder sector [cm]
+    //    Double_t &y0     --> (by ref) y0 location of the ladder sector [cm]
+    //    Double_t &x1     --> (by ref) x1 location or the ladder sector [cm]
+    //    Double_t &y1     --> (by ref) y1 location of the ladder sector [cm]
+    //    TGeoManager *mgr --> The TGeo builder
+    // ---
+    // The location is described by a line going from (x0, y0) to (x1, y1)
+    // ---
+    // Returns kTRUE if no problems encountered.
+    // Returns kFALSE if a problem was encountered (e.g.: shape not found).
+    //
+    Int_t isize = fSPDsectorX0.GetSize();
+
+    x0 = x1 = y0 = y1 = 0.0;
+    if(index < 0 || index > isize) {
+      AliError(Form("index = %d: allowed 0 --> %d", index, isize));
+      return kFALSE;
+    } // end if(index<0||index>isize)
+    x0 = fSPDsectorX0[index];
+    x1 = fSPDsectorX1[index];
+    y0 = fSPDsectorY0[index];
+    y1 = fSPDsectorY1[index];
+    return kTRUE;
+}
+//______________________________________________________________________
+void AliITSv11GeometrySPD::SPDsectorShape(Int_t n,const Double_t *xc,
+                              const Double_t *yc,  const Double_t *r,
+                              const Double_t *ths, const Double_t *the,
+                      Int_t npr, Int_t &m, Double_t **xp, Double_t **yp) const
+{
+    //
+    // Code to compute the points that make up the shape of the SPD
+    // Carbon fiber support sections
+    // Inputs:
+    //   Int_t n        size of arrays xc,yc, and r.
+    //   Double_t *xc   array of x values for radii centers.
+    //   Double_t *yc   array of y values for radii centers.
+    //   Double_t *r    array of signed radii values.
+    //   Double_t *ths  array of starting angles [degrees].
+    //   Double_t *the  array of ending angles [degrees].
+    //   Int_t     npr  the number of lines segments to aproximate the arc.
+    // Outputs (arguments passed by reference):
+    //   Int_t       m    the number of enetries in the arrays *xp[npr+1]
+    //                    and *yp[npr+1].
+    //   Double_t **xp    array of x coordinate values of the line segments
+    //                    which make up the SPD support sector shape.
+    //   Double_t **yp    array of y coordinate values of the line segments
+    //                    which make up the SPD support sector shape.
+    //
+    Int_t    i, k;
+    Double_t t, t0, t1;
+
+    m = n*(npr + 1);
+    if(GetDebug(2)) {
+        cout <<"  X    \t  Y  \t  R  \t  S  \t  E" << m << endl;
+        for(i = 0; i < n; i++) {
+            cout << "{"    << xc[i] << ", ";
+            cout << yc[i]  << ", ";
+            cout << r[i]   << ", ";
+            cout << ths[i] << ", ";
+            cout << the[i] << "}, " << endl;
+        } // end for i
+    } // end if(GetDebug(2))
+    if (GetDebug(3)) cout << "Double_t sA0 = [" << n*(npr+1)+1<<"][";
+    if (GetDebug(4)) cout << "3] {";
+    else if(GetDebug(3)) cout <<"2] {";
+    t0 = (Double_t)npr;
+    for(i = 0; i < n; i++) {
+        t1 = (the[i] - ths[i]) / t0;
+        if(GetDebug(5)) cout << "t1 = " << t1 << endl;
+        for(k = 0; k <= npr; k++) {
+            t = ths[i] + ((Double_t)k) * t1;
+            xp[i][k] = TMath::Abs(r[i]) * CosD(t) + xc[i];
+            yp[i][k] = TMath::Abs(r[i]) * SinD(t) + yc[i];
+            if(GetDebug(3)) {
+                cout << "{" << xp[i][k] << "," << yp[i][k];
+                if (GetDebug(4)) cout << "," << t;
+                cout << "},";
+            } // end if GetDebug
+        } // end for k
+        if(GetDebug(3)) cout << endl;
+    } // end of i
+    if(GetDebug(3)) cout << "{"  << xp[0][0] << ", " << yp[0][0];
+    if(GetDebug(4)) cout << ","  << ths[0];
+    if(GetDebug(3)) cout << "}}" << endl;
+}
+
+//______________________________________________________________________
+TGeoVolume* AliITSv11GeometrySPD::CreateLadder(Int_t layer,TArrayD &sizes,
+                                               TGeoManager *mgr) const
+{
+    //
+    // Creates the "ladder" = silicon sensor + 5 chips.
+    // Returns a TGeoVolume containing the following components:
+    //  - the sensor (TGeoBBox), whose name depends on the layer
+    //  - 5 identical chips (TGeoBBox)
+    //  - a guard ring around the sensor (subtraction of TGeoBBoxes),
+    //    which is separated from the rest of sensor because it is not
+    //    a sensitive part
+    //  - bump bondings (TGeoBBox stripes for the whole width of the
+    //    sensor, one per column).
+    // ---
+    // Arguments:
+    //  1 - the owner layer (MUST be 1 or 2 or a fatal error is raised)
+    //  2 - a TArrayD passed by reference, which will contain relevant
+    //      dimensions related to this object:
+    //      size[0] = 'thickness' (the smallest dimension)
+    //      size[1] = 'length' (the direction along the ALICE Z axis)
+    //      size[2] = 'width' (extension in the direction perp. to the
+    //                         above ones)
+    //  3 - the used TGeoManager
+
+    // ** CRITICAL CHECK **
+    // layer number can be ONLY 1 or 2
+    if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2");
+
+    // ** MEDIA **
+    TGeoMedium *medAir       = GetMedium("AIR$",mgr);
+    TGeoMedium *medSPDSiChip = GetMedium("SPD SI CHIP$",mgr); // SPD SI CHIP
+    TGeoMedium *medSi        = GetMedium("SI$",mgr);
+    TGeoMedium *medBumpBond  = GetMedium("COPPER$",mgr);  // ??? BumpBond
+
+    // ** SIZES **
+    Double_t chipThickness  = fgkmm *  0.150;
+    Double_t chipWidth      = fgkmm * 15.950;
+    Double_t chipLength     = fgkmm * 13.600;
+    Double_t chipSpacing    = fgkmm *  0.400; // separation of chips along Z
+    Double_t sensThickness  = fgkmm *  0.200;
+    Double_t sensLength     = fgkmm * 69.600;
+    Double_t sensWidth      = fgkmm * 12.800;
+    Double_t guardRingWidth = fgkmm *  0.560; // a border of this thickness
+                                              // all around the sensor
+    Double_t bbLength       = fgkmm * 0.042;
+    Double_t bbWidth        = sensWidth;
+    Double_t bbThickness    = fgkmm * 0.012;
+    Double_t bbPos          = 0.080;  // Z position w.r. to left pixel edge
+    // compute the size of the container volume which
+    // will also be returned in the referenced TArrayD;
+    // for readability, they are linked by reference to a more meaningful name
+    sizes.Set(3);
+    Double_t &thickness = sizes[0];
+    Double_t &length = sizes[1];
+    Double_t &width = sizes[2];
+    // the container is a box which exactly enclose all the stuff;
+    width = chipWidth;
+    length = sensLength + 2.0*guardRingWidth;
+    thickness = sensThickness + chipThickness + bbThickness;
+
+    // ** VOLUMES **
+    // While creating this volume, since it is a sensitive volume,
+    // we must respect some standard criteria for its local reference frame.
+    // Local X must correspond to x coordinate of the sensitive volume:
+    // this means that we are going to create the container with a local
+    // reference system that is **not** in the middle of the box.
+    // This is accomplished by calling the shape constructor with an
+    // additional option ('originShift'):
+    Double_t xSens = 0.5 * (width - sensWidth - 2.0*guardRingWidth);
+    Double_t originShift[3] = {-xSens, 0., 0.};
+    TGeoBBox *shapeContainer = new TGeoBBox(0.5*width,0.5*thickness,
+                                            0.5*length,originShift);
+    // then the volume is made of air, and using this shape
+    TGeoVolume *container = new TGeoVolume(Form("ITSSPDlay%d-Ladder",layer),
+                                           shapeContainer, medAir);
+    // the chip is a common box
+    TGeoVolume *volChip = mgr->MakeBox("ITSSPDchip",medSPDSiChip,
+                              0.5*chipWidth,0.5*chipThickness,0.5*chipLength);
+    // the sensor as well
+    TGeoVolume *volSens = mgr->MakeBox(GetSenstiveVolumeName(layer),medSi,
+                             0.5*sensWidth,0.5*sensThickness,0.5*sensLength);
+    // the guard ring shape is the subtraction of two boxes with the
+    // same center.
+    TGeoBBox  *shIn = new TGeoBBox(0.5*sensWidth,sensThickness,0.5*sensLength);
+    TGeoBBox  *shOut = new TGeoBBox(0.5*sensWidth+guardRingWidth,
+                              0.5*sensThickness,0.5*sensLength+guardRingWidth);
+    shIn->SetName("ITSSPDinnerBox");
+    shOut->SetName("ITSSPDouterBox");
+    TGeoCompositeShape *shBorder = new TGeoCompositeShape(
+      "ITSSPDgaurdRingBorder",Form("%s-%s",shOut->GetName(),shIn->GetName()));
+    TGeoVolume *volBorder = new TGeoVolume("ITSSPDgaurdRing",shBorder,medSi);
+    // bump bonds for one whole column
+    TGeoVolume *volBB = mgr->MakeBox("ITSSPDbb",medBumpBond,0.5*bbWidth,
+                                     0.5*bbThickness,0.5*bbLength);
+    // set colors of all objects for visualization
+    volSens->SetLineColor(kYellow + 1);
+    volChip->SetLineColor(kGreen);
+    volBorder->SetLineColor(kYellow + 3);
+    volBB->SetLineColor(kGray);
+
+    // ** MOVEMENTS **
+    // sensor is translated along thickness (X) and width (Y)
+    Double_t ySens = 0.5 * (thickness - sensThickness);
+    Double_t zSens = 0.0;
+    // we want that the x of the ladder is the same as the one of
+    // its sensitive volume
+    TGeoTranslation *trSens = new TGeoTranslation(0.0, ySens, zSens);
+    // bump bonds are translated along all axes:
+    // keep same Y used for sensors, but change the Z
+    TGeoTranslation *trBB[160];
+    Double_t x =  0.0;
+    Double_t y =  0.5 * (thickness - bbThickness) - sensThickness;
+    Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos;
+    Int_t i;
+    for (i = 0; i < 160; i++) {
+        trBB[i] = new TGeoTranslation(x, y, z);
+        switch(i) {
+        case  31:case  63:case  95:case 127:
+            z += fgkmm * 0.625 + fgkmm * 0.2;
+            break;
+        default:
+            z += fgkmm * 0.425;
+        } // end switch
+    } // end for i
+    // the chips are translated along the length (Z) and thickness (X)
+    TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0};
+    x = -xSens;
+    y = 0.5 * (chipThickness - thickness);
+    z = 0.0;
+    for (i = 0; i < 5; i++) {
+        z = -0.5*length + guardRingWidth
+            + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength;
+        trChip[i] = new TGeoTranslation(x, y, z);
+    } // end ofr i
+
+    // add nodes to container
+    container->AddNode(volSens, 1, trSens);
+    container->AddNode(volBorder, 1, trSens);
+    for (i = 0; i < 160; i++) container->AddNode(volBB,i+1,trBB[i]);
+    for (i = 0; i < 5; i++) container->AddNode(volChip,i+3,trChip[i]);
+    // return the container
+    return container;
+}
+
+//______________________________________________________________________
+TGeoVolume* AliITSv11GeometrySPD::CreateClip(TArrayD &sizes,Bool_t isDummy,
+                                             TGeoManager *mgr) const
+{
+    //
+    // Creates the carbon fiber clips which are added to the central ladders.
+    // They have a complicated shape which is approximated by a TGeoXtru
+    // Implementation of a single clip over an half-stave.
+    // It has a complicated shape which is approximated to a section like this:
+    //
+    //     6
+    //     /\   .
+    //  7 //\\  5
+    //    / 1\\___________________4
+    //   0    \___________________
+    //        2                   3
+    // with a finite thickness for all the shape
+    // Its local reference frame is such that point A corresponds to origin.
+    //
+
+  // MODIFIED geometry
+    Double_t sposty = fgkmm * -0.5; // lower internal side to avoid overlaps with modified geometry
+
+    Double_t fullLength      = fgkmm * 12.6;    // = x4 - x0
+    Double_t flatLength      = fgkmm *  5.4;    // = x4 - x3
+    Double_t inclLongLength  = fgkmm *  5.0;    // = 5-6
+    Double_t inclShortLength = fgkmm *  2.0;    // = 6-7
+    Double_t fullHeight      = fgkmm *  2.8;    // = y6 - y3
+    Double_t thickness       = fgkmm *  0.18;    // thickness
+    Double_t totalLength     = fgkmm * 52.0;    // total length in Z
+    Double_t holeSize        = fgkmm *  5.0;    // dimension of cubic
+                                                // hole inserted for pt1000
+    Double_t angle1          = 27.0;            // supplementary of angle DCB
+    Double_t angle2;                            // angle DCB
+    Double_t angle3;                            // angle of GH with vertical
+
+    angle2 = 0.5 * (180.0 - angle1);
+    angle3 = 90.0 - TMath::ACos(fullLength - flatLength -
+                                inclLongLength*TMath::Cos(angle1)) *
+                                TMath::RadToDeg();
+    angle1 *= TMath::DegToRad();
+    angle2 *= TMath::DegToRad();
+    angle3 *= TMath::DegToRad();
+
+    Double_t x[8], y[8];
+
+    x[0] =  0.0;
+    x[1] = x[0] + fullLength - flatLength - inclLongLength*TMath::Cos(angle1);
+    x[2] = x[0] + fullLength - flatLength;
+    x[3] = x[0] + fullLength;
+    x[4] = x[3];
+    x[5] = x[4] - flatLength + thickness * TMath::Cos(angle2);
+    x[6] = x[1];
+    x[7] = x[0];
+
+    y[0] = 0.0;
+    y[1] = y[0] + inclShortLength * TMath::Cos(angle3);
+    y[2] = y[1] - inclLongLength * TMath::Sin(angle1);
+    y[3] = y[2];
+    y[4] = y[3] + thickness;
+    y[5] = y[4];
+    y[6] = y[1] + thickness;
+    y[7] = y[0] + thickness;
+
+    y[0] += sposty;
+    y[7] += sposty;
+
+    sizes.Set(7);
+    sizes[0] = totalLength;
+    sizes[1] = fullHeight;
+    sizes[2] = y[2];
+    sizes[3] = y[6];
+    sizes[4] = x[0];
+    sizes[5] = x[3];
+    sizes[6] = x[2];
+
+    if(isDummy){// use this argument when on ewant just the
+                // positions without create any volume
+        return NULL;
+    } // end if isDummy
+
+    TGeoXtru *shClip = new TGeoXtru(2);
+    shClip->SetName("ITSSPDshclip");
+    shClip->DefinePolygon(8, x, y);
+    shClip->DefineSection(0, -0.5*totalLength, 0., 0., 1.0);
+    shClip->DefineSection(1,  0.5*totalLength, 0., 0., 1.0);
+
+    TGeoBBox *shHole = new TGeoBBox("ITSSPDSHClipHole",0.5*holeSize,
+                                    0.5*holeSize,0.5*holeSize);
+    TGeoTranslation *tr1 = new TGeoTranslation("ITSSPDTRClipHole1",x[2],0.0,
+                                               fgkmm*14.);
+    TGeoTranslation *tr2 = new TGeoTranslation("ITSSPDTRClipHole2",x[2],0.0,
+                                               0.0);
+    TGeoTranslation *tr3 = new TGeoTranslation("ITSSPDTRClipHole3",x[2],0.0,
+                                               -fgkmm*14.);
+    tr1->RegisterYourself();
+    tr2->RegisterYourself();
+    tr3->RegisterYourself();
+
+    //TString strExpr("ITSSPDshclip-(");
+    TString strExpr(shClip->GetName());
+    strExpr.Append("-(");
+    strExpr.Append(Form("%s:%s+", shHole->GetName(), tr1->GetName()));
+    strExpr.Append(Form("%s:%s+", shHole->GetName(), tr2->GetName()));
+    strExpr.Append(Form("%s:%s)", shHole->GetName(), tr3->GetName()));
+    TGeoCompositeShape *shClipHole = new TGeoCompositeShape(
+        "ITSSPDSHClipHoles",strExpr.Data());
+
+    TGeoMedium *mat = GetMedium("SPD C (M55J)$", mgr);
+    TGeoVolume *vClip = new TGeoVolume("ITSSPDclip", shClipHole, mat);
+    vClip->SetLineColor(kGray + 2);
+    return vClip;
+}
+
+//______________________________________________________________________
+TGeoVolume* AliITSv11GeometrySPD::CreatePatchPanel(TArrayD &sizes,
+                                                  TGeoManager *mgr) const
+{
+    //
+    // Creates the patch panel approximated with a "L"-shaped TGeoXtru
+    // with a finite thickness for all the shape
+    // Its local reference frame is such that point A corresponds to origin.
+    //
+    Double_t hLength         = fgkmm *  50.0;    // horizontal length
+    Double_t vLength         = fgkmm *  50.0;    // vertical length
+    Double_t angle           = 88.3;             // angle between hor and vert
+    Double_t thickness       = fgkmm *   4.0;    // thickness
+    Double_t width           = fgkmm * 100.0;    // width looking from cone
+
+    Double_t x[7], y[7];
+
+    y[0] =  0.0;
+    y[1] = y[0] + hLength;
+    y[2] = y[1];
+    y[3] = y[0] + thickness;
+    y[4] = y[3] + vLength * TMath::Cos(angle*TMath::DegToRad());
+    y[5] = y[4] - thickness / TMath::Sin(angle*TMath::DegToRad());
+    y[6] = y[0];
+
+    x[0] = 0.0;
+    x[1] = x[0];
+    x[2] = x[1] + thickness;
+    x[3] = x[2];
+    x[4] = x[3] + vLength * TMath::Sin(angle*TMath::DegToRad());
+    x[5] = x[4];
+    x[6] = x[0] + thickness;
+
+    sizes.Set(3);
+    sizes[0] = hLength;
+    sizes[1] = vLength;
+    sizes[2] = thickness;
+
+    TGeoXtru *shPatch = new TGeoXtru(2);
+    shPatch->SetName("ITSSPDpatchShape1");
+    shPatch->DefinePolygon(7, x, y);
+    shPatch->DefineSection(0, -0.5*width, 0., 0., 1.0);
+    shPatch->DefineSection(1,  0.5*width, 0., 0., 1.0);
+    
+    /*
+    Double_t subThickness = 10.0 * fgkmm;
+    Double_t subWidth     = 55.0 * fgkmm;
+    new TGeoBBox("ITSSPDpatchShape2", 0.5*subThickness, 60.0 * fgkmm, 0.5*subWidth);
+    TGeoRotation *rotSub = new TGeoRotation(*gGeoIdentity);
+    rotSub->SetName("shPatchSubRot");
+    rotSub->RotateZ(50.0);
+    rotSub->RegisterYourself();
+    TGeoCombiTrans *trSub = new TGeoCombiTrans(0.26*hLength, 0.26*vLength, 0.0, rotSub);
+    trSub->SetName("shPatchSubTr");
+    trSub->RegisterYourself();
+    
+    TGeoCompositeShape *shPatchFinal = new TGeoCompositeShape("ITSSPDpatchShape1-(ITSSPDpatchShape2:shPatchSubTr)");
+    */
+
+    TGeoMedium *mat = GetMedium("AL$", mgr);
+    //TGeoVolume *vPatch = new TGeoVolume("ITSSPDpatchPanel", shPatchFinal, mat);
+    TGeoVolume *vPatch = new TGeoVolume("ITSSPDpatchPanel", shPatch, mat);
+    vPatch->SetLineColor(kAzure);
+    
+    return vPatch;
+}
+
+//___________________________________________________________________
+TGeoCompositeShape* AliITSv11GeometrySPD::CreateGroundingFoilShape
+                       (Int_t itype,Double_t &length,Double_t &width,
+                        Double_t thickness,TArrayD &sizes)
+{
+    //
+    // Creates the typical composite shape of the grounding foil:
+    //
+    //  +---------------------------------------------------------+
+    //  |                         5           6      9            |
+    //  |                         +-----------+      +------------+ 10
+    //  |             O           |           |      |
+    //  |                 3 /-----+ 4         +------+
+    //  |     1            /                 7        8
+    //  |      /----------/
+    //  +-----/                2                                  +
+    //       0
+    //       Z                                                    + 11
+    //
+    // This shape is used 4 times: two layers of glue, one in kapton
+    // and one in aluminum, taking into account that the aliminum
+    // layer has small differences in the size of some parts.
+    // ---
+    // In order to overcome problems apparently due to a large number
+    // of points, the shape creation is done according the following
+    // steps:
+    //    1) a TGeoBBox is created with a size right enough to contain
+    //       the whole shape (0-1-X-13)
+    //    2) holes are defined as other TGeoBBox which are subtracted
+    //       from the main shape
+    //    3) a TGeoXtru is defined connecting the points (0-->11-->0)
+    //       and is also subtracted from the main shape
+    // ---
+    // The argument ("type") is used to choose between all these
+    // possibilities:
+    //   - type = 0 --> kapton layer
+    //   - type = 1 --> aluminum layer
+    //   - type = 2 --> glue layer between support and GF
+    //   - type = 3 --> glue layer between GF and ladders
+    // Returns: a TGeoCompositeShape which will then be used to shape
+    // several volumes. Since TGeoXtru is used, the local reference
+    // frame of this object has X horizontal and Y vertical w.r to
+    // the shape drawn above, and Z axis going perpendicularly to the screen.
+    // This is not the correct reference for the half stave, for which
+    // the "long" dimension is Z and the "short" is X, while Y goes in
+    // the direction of thickness. This will imply some rotations when
+    // using the volumes created with this shape.
+
+    // suffix to differentiate names
+    Char_t type[10];
+
+    // size of the virtual box containing exactly this volume
+    length = fgkmm * 243.18;
+    width  = fgkmm *  15.95;
+    if (itype == 1) {
+        length -= fgkmm * 0.4;
+        width  -= fgkmm * 0.4;
+    } // end if itype==1
+    switch (itype) {
+    case 0:
+        snprintf(type,10,"Kap");
+        break;
+    case 1:
+        snprintf(type,10, "Alu");
+        break;
+    case 2:
+        snprintf(type,10,"Glue1");
+        break;
+    case 3:
+        snprintf(type,10,"Glue2");
+        break;
+    }
+    // we divide the shape in several slices along the horizontal
+    // direction (local X) here we define define the length of all
+    // sectors (from leftmost to rightmost)
+    Int_t i;
+    Double_t sliceLength[] = { 140.71,  2.48,  26.78,   4.00,
+                                10.00, 24.40,  10.00,  24.81 };
+    for (i = 0; i < 8; i++) sliceLength[i] *= fgkmm;
+    if (itype == 1) {
+        sliceLength[0] -= fgkmm * 0.2;
+        sliceLength[4] -= fgkmm * 0.2;
+        sliceLength[5] += fgkmm * 0.4;
+        sliceLength[6] -= fgkmm * 0.4;
+    } // end if itype ==1
+
+    // as shown in the drawing, we have four different widths
+    // (along local Y) in this shape:
+    Double_t widthMax  = fgkmm * 15.95;
+    Double_t widthMed1 = fgkmm * 15.00;
+    Double_t widthMed2 = fgkmm * 11.00;
+    Double_t widthMin  = fgkmm *  4.40;
+    if (itype == 1) {
+        widthMax  -= fgkmm * 0.4;
+        widthMed1 -= fgkmm * 0.4;
+        widthMed2 -= fgkmm * 0.4;
+        widthMin  -= fgkmm * 0.4;
+    } // end if itype==1
+
+    // create the main shape
+    TGeoBBox *shGroundFull = 0;
+    shGroundFull = new TGeoBBox(Form("ITSSPDSHgFoil%sFull", type),
+                                0.5*length,0.5*width, 0.5*thickness);
+
+    if(GetDebug(5)) shGroundFull->Print(); // Avoid Coverity warning
+
+    // create the polygonal shape to be subtracted to give the correct
+    // shape to the borders its vertices are defined in sugh a way that
+    // this polygonal will be placed in the correct place considered
+    // that the origin of the local reference frame is in the center
+    // of the main box: we fix the starting point at the lower-left
+    // edge of the shape (point 12), and add all points in order,
+    // following a clockwise rotation
+
+    Double_t x[13], y[13];
+    x[ 0] = -0.5 * length + sliceLength[0];
+    y[ 0] = -0.5 * widthMax;
+
+    x[ 1] = x[0] + sliceLength[1];
+    y[ 1] = y[0] + (widthMax - widthMed1);
+
+    x[ 2] = x[1] + sliceLength[2];
+    y[ 2] = y[1];
+
+    x[ 3] = x[2] + sliceLength[3];
+    y[ 3] = y[2] + (widthMed1 - widthMed2);
+
+    x[ 4] = x[3] + sliceLength[4];
+    y[ 4] = y[3];
+
+    x[ 5] = x[4];
+    y[ 5] = y[4] + (widthMed2 - widthMin);
+
+    x[ 6] = x[5] + sliceLength[5];
+    y[ 6] = y[5];
+
+    x[ 7] = x[6];
+    y[ 7] = y[4];
+
+    x[ 8] = x[7] + sliceLength[6];
+    y[ 8] = y[7];
+
+    x[ 9] = x[8];
+    y[ 9] = y[6];
+
+    x[10] = x[9] + sliceLength[7] + 0.5;
+    y[10] = y[9];
+
+    x[11] = x[10];
+    y[11] = y[0] - 0.5;
+
+    x[12] = x[0];
+    y[12] = y[11];
+
+    // create the shape
+    TGeoXtru *shGroundXtru = new TGeoXtru(2);
+    shGroundXtru->SetName(Form("ITSSPDSHgFoil%sXtru", type));
+    shGroundXtru->DefinePolygon(13, x, y);
+    shGroundXtru->DefineSection(0, -thickness, 0., 0., 1.0);
+    shGroundXtru->DefineSection(1,  thickness, 0., 0., 1.0);
+
+    // define a string which will express the algebric operations among volumes
+    // and add the subtraction of this shape from the main one
+    TString strComposite(Form("ITSSPDSHgFoil%sFull-(%s+", type,
+                              shGroundXtru->GetName()));
+
+    // define the holes according to size information coming from drawings:
+    Double_t holeLength = fgkmm * 10.00;
+    Double_t holeWidth  = fgkmm *  7.50;
+    Double_t holeSepX0  = fgkmm *  7.05;  // separation between center
+                                          // of first hole and left border
+    Double_t holeSepXC  = fgkmm * 14.00;  // separation between the centers
+                                          // of two consecutive holes
+    Double_t holeSepX1  = fgkmm * 15.42;  // separation between centers of
+                                          // 5th and 6th hole
+    Double_t holeSepX2  = fgkmm * 22.00;  // separation between centers of
+                                          // 10th and 11th hole
+    if (itype == 1) {
+        holeSepX0  -= fgkmm * 0.2;
+        holeLength += fgkmm * 0.4;
+        holeWidth  += fgkmm * 0.4;
+    } // end if itype==1
+    sizes.Set(7);
+    sizes[0] = holeLength;
+    sizes[1] = holeWidth;
+    sizes[2] = holeSepX0;
+    sizes[3] = holeSepXC;
+    sizes[4] = holeSepX1;
+    sizes[5] = holeSepX2;
+    sizes[6] = fgkmm * 4.40;
+
+    // X position of hole center (will change for each hole)
+    Double_t holeX = -0.5*length;
+    // Y position of center of all holes (= 4.4 mm from upper border)
+    Double_t holeY = 0.5*(width - holeWidth) - widthMin;
+
+    // create a shape for the holes (common)
+    new TGeoBBox(Form("ITSSPD%sGfoilHole", type),0.5*holeLength,
+                       0.5*holeWidth, thickness);
+
+    // insert the holes in the XTRU shape:
+    // starting from the first value of X, they are simply
+    // shifted along this axis
+    char name[200];
+    TGeoTranslation *transHole[11];
+    for (i = 0; i < 11; i++) {
+        // set the position of the hole, depending on index
+        if (i == 0) {
+            holeX += holeSepX0;
+        }else if (i < 5) {
+            holeX += holeSepXC;
+        }else if (i == 5) {
+            holeX += holeSepX1;
+        }else if (i < 10) {
+            holeX += holeSepXC;
+        }else {
+            holeX += holeSepX2;
+        } // end if else if's
+        //cout << i << " --> X = " << holeX << endl;
+        snprintf(name,200,"ITSSPDTRgFoil%sHole%d", type, i);
+        transHole[i] = new TGeoTranslation(name, holeX, holeY, 0.0);
+        transHole[i]->RegisterYourself();
+        strComposite.Append(Form("ITSSPD%sGfoilHole:%s", type, name));
+        if (i < 10) strComposite.Append("+"); else strComposite.Append(")");
+    } // end for i
+
+    // create composite shape
+    TGeoCompositeShape *shGround = new TGeoCompositeShape(
+        Form("ITSSPDSHgFoil%s", type), strComposite.Data());
+
+    return shGround;
+}
+//______________________________________________________________________
+TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateGroundingFoil(Bool_t isRight,
+                                   TArrayD &sizes, TGeoManager *mgr)
+{
+    //
+    // Create a volume containing all parts of the grounding foil a
+    // for a half-stave.
+    // It consists of 4 layers with the same shape but different thickness:
+    // 1) a layer of glue
+    // 2) the aluminum layer
+    // 3) the kapton layer
+    // 4) another layer of glue
+    // ---
+    // Arguments:
+    //  1: a boolean value to know if it is the grounding foir for
+    //     the right or left side
+    //  2: a TArrayD which will contain the dimension of the container box:
+    //       - size[0] = length along Z (the beam line direction)
+    //       - size[1] = the 'width' of the stave, which defines, together
+    //                   with Z, the plane of the carbon fiber support
+    //       - size[2] = 'thickness' (= the direction along which all
+    //                    stave components are superimposed)
+    //  3: the TGeoManager
+    // ---
+    // The return value is a TGeoBBox volume containing all grounding
+    // foil components.
+    // to avoid strange behaviour of the geometry manager,
+    // create a suffix to be used in the names of all shapes
+    //
+    char suf[5];
+    if (isRight) strncpy(suf, "R", 5); else strncpy(suf, "L", 5);
+    // this volume will be created in order to ease its placement in
+    // the half-stave; then, it is added here the small distance of
+    // the "central" edge of each volume from the Z=0 plane in the stave
+    // reference (which coincides with ALICE one)
+    Double_t dist = fgkmm * 0.71;
+
+    // define materials
+    TGeoMedium *medKap  = GetMedium("SPD KAPTON(POLYCH2)$", mgr);
+    TGeoMedium *medAlu  = GetMedium("AL$", mgr);
+    TGeoMedium *medGlue = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT
+
+    // compute the volume shapes (thicknesses change from one to the other)
+    Double_t kpLength, kpWidth, alLength, alWidth;
+    TArrayD  kpSize, alSize, glSize;
+    Double_t kpThickness = fgkmm * 0.04;
+    Double_t alThickness = fgkmm * 0.01;
+//cout << "AL THICKNESS" << alThickness << endl;
+    //Double_t g0Thickness = fgkmm * 0.1175 - fgkGapHalfStave;
+    //Double_t g1Thickness = fgkmm * 0.1175 - fgkGapLadder;
+    Double_t g0Thickness = fgkmm * 0.1275 - fgkGapHalfStave;
+    Double_t g1Thickness = fgkmm * 0.1275 - fgkGapLadder;
+    TGeoCompositeShape *kpShape = CreateGroundingFoilShape(0,kpLength,kpWidth,
+                                                          kpThickness, kpSize);
+    TGeoCompositeShape *alShape = CreateGroundingFoilShape(1,alLength,alWidth,
+                                                          alThickness, alSize);
+    TGeoCompositeShape *g0Shape = CreateGroundingFoilShape(2,kpLength,kpWidth,
+                                                          g0Thickness, glSize);
+    TGeoCompositeShape *g1Shape = CreateGroundingFoilShape(3,kpLength,kpWidth,
+                                                          g1Thickness, glSize);
+    // create the component volumes and register their sizes in the
+    // passed arrays for readability reasons, some reference variables
+    // explicit the meaning of the array slots
+    TGeoVolume *kpVol = new TGeoVolume(Form("ITSSPDgFoilKap%s",suf),
+                                       kpShape, medKap);
+    TGeoVolume *alVol = new TGeoVolume(Form("ITSSPDgFoilAlu%s",suf),
+                                       alShape, medAlu);
+    TGeoVolume *g0Vol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf),
+                                       g0Shape, medGlue);
+    TGeoVolume *g1Vol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf),
+                                       g1Shape, medGlue);
+    // set colors for the volumes
+    kpVol->SetLineColor(kRed);
+    alVol->SetLineColor(kGray);
+    g0Vol->SetLineColor(kYellow);
+    g1Vol->SetLineColor(kYellow);
+    // create references for the final size object
+    if (sizes.GetSize() != 3) sizes.Set(3);
+    Double_t &fullThickness = sizes[0];
+    Double_t &fullLength = sizes[1];
+    Double_t &fullWidth = sizes[2];
+    // kapton leads the larger dimensions of the foil
+    // (including the cited small distance from Z=0 stave reference plane)
+    // the thickness is the sum of the ones of all components
+    fullLength    = kpLength + dist;
+    fullWidth     = kpWidth;
+    fullThickness = kpThickness + alThickness + g0Thickness + g1Thickness;
+    // create the container
+//    TGeoMedium *air = GetMedium("AIR$", mgr);
+    TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form("ITSSPDgFOIL-%s",suf));
+//    TGeoVolume *container = mgr->MakeBox(Form("ITSSPDgFOIL-%s",suf),
+//                 air, 0.5*fullThickness, 0.5*fullWidth, 0.5*fullLength);
+    // create the common correction rotation (which depends of what side
+    // we are building)
+    TGeoRotation *rotCorr = new TGeoRotation(*gGeoIdentity);
+    if (isRight) rotCorr->RotateY(90.0);
+    else rotCorr->RotateY(-90.0);
+    // compute the translations, which are in the length and
+    // thickness directions
+    Double_t x, y, z, shift = 0.0;
+    if (isRight) shift = dist;
+    // glue (bottom)
+    x = -0.5*(fullThickness - g0Thickness);
+    z =  0.5*(fullLength - kpLength) - shift;
+    TGeoCombiTrans *glTrans0 = new TGeoCombiTrans(x, 0.0, z, rotCorr);
+    // kapton
+    x += 0.5*(g0Thickness + kpThickness);
+    TGeoCombiTrans *kpTrans  = new TGeoCombiTrans(x, 0.0, z, rotCorr);
+    // aluminum
+    x += 0.5*(kpThickness + alThickness);
+    z  = 0.5*(fullLength - alLength) - shift - 0.5*(kpLength - alLength);
+    TGeoCombiTrans *alTrans  = new TGeoCombiTrans(x, 0.0, z, rotCorr);
+    // glue (top)
+    x += 0.5*(alThickness + g1Thickness);
+    z  = 0.5*(fullLength - kpLength) - shift;
+    TGeoCombiTrans *glTrans1 = new TGeoCombiTrans(x, 0.0, z, rotCorr);
+
+    //cout << fgkGapHalfStave << endl;
+    //cout << g0Thickness << endl;
+    //cout << kpThickness << endl;
+    //cout << alThickness << endl;
+    //cout << g1Thickness << endl;
+
+    // add to container
+    container->SetLineColor(kMagenta-10);
+    container->AddNode(kpVol, 1, kpTrans);
+    container->AddNode(alVol, 1, alTrans);
+    container->AddNode(g0Vol, 1, glTrans0);
+    container->AddNode(g1Vol, 2, glTrans1);
+    // to add the grease we remember the sizes of the holes, stored as
+    // additional parameters in the kapton layer size:
+    //   - sizes[3] = hole length
+    //   - sizes[4] = hole width
+    //   - sizes[5] = position of first hole center
+    //   - sizes[6] = standard separation between holes
+    //   - sizes[7] = separation between 5th and 6th hole
+    //   - sizes[8] = separation between 10th and 11th hole
+    //   - sizes[9] = separation between the upper hole border and
+    //                the foil border
+    Double_t holeLength      = kpSize[0];
+    Double_t holeWidth       = kpSize[1];
+    Double_t holeFirstZ      = kpSize[2];
+    Double_t holeSepZ        = kpSize[3];
+    Double_t holeSep5th6th   = kpSize[4];
+    Double_t holeSep10th11th = kpSize[5];
+    Double_t holeSepY        = kpSize[6];
+    // volume (common)
+    // Grease has not been defined to date. Need much more information
+    // no this material!
+    TGeoMedium *grease = GetMedium("SPD KAPTON(POLYCH2)$", mgr); // ??? GREASE
+    TGeoVolume *hVol   = mgr->MakeBox("ITSSPDGrease", grease,
+                           0.5*fullThickness, 0.5*holeWidth, 0.5*holeLength);
+    hVol->SetLineColor(kBlue);
+    // displacement of volumes in the container
+    Int_t    idx = 1;  // copy numbers start from 1.
+    x = 0.0;
+    y = 0.5*(fullWidth - holeWidth) - holeSepY;
+    if (isRight) z = holeFirstZ - 0.5*fullLength + dist;
+    else z = 0.5*fullLength - holeFirstZ - dist;
+    for (Int_t i = 0; i < 11; i++) {
+        TGeoTranslation *t = 0;
+        t = new TGeoTranslation(x, y, -z);
+        container->AddNode(hVol, idx++, t);
+        if (i < 4) shift = holeSepZ;
+        else if (i == 4) shift = holeSep5th6th;
+        else if (i < 9) shift = holeSepZ;
+        else shift = holeSep10th11th;
+        if (isRight) z += shift;
+        else z -= shift;
+    } // end for i
+    return container;
+}
+//___________________________________________________________________
+TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateMCM(Bool_t isRight,
+                                   TArrayD &sizes, TGeoManager *mgr) const
+{
+    //
+    // Create a TGeoAssembly containing all the components of the MCM.
+    // The TGeoVolume container is rejected due to the possibility of overlaps
+    // when placing this object on the carbon fiber sector.
+    // The assembly contains:
+    //  - the thin part of the MCM (integrated circuit)
+    //  - the MCM chips (specifications from EDMS)
+    //  - the cap which covers the zone where chips are bound to MCM
+    // ---
+    // The local reference frame of this assembly is defined in such a way
+    // that all volumes are contained in a virtual box whose center
+    // is placed exactly in the middle of the occupied space w.r to all
+    // directions. This will ease the positioning of this object in the
+    // half-stave. The sizes of this virtual box are stored in
+    // the array passed by reference.
+    // ---
+    // Arguments:
+    //  - a boolean flag to know if this is the "left" or "right" MCM, when
+    //    looking at the stave from above (i.e. the direction from which
+    //    one sees bus over ladders over grounding foil) and keeping the
+    //    continuous border in the upper part, one sees the thicker part
+    //    on the left or right.
+    //  - an array passed by reference which will contain the size of
+    //    the virtual container.
+    //  - a pointer to the used TGeoManager.
+    //
+
+    // to distinguish the "left" and "right" objects, a suffix is created
+    char suf[5];
+    if (isRight) strncpy(suf, "R", 5); else strncpy(suf, "L", 5);
+
+    // ** MEDIA **
+    TGeoMedium *medBase = GetMedium("SPD KAPTON(POLYCH2)$",mgr);// ??? MCM BASE
+    TGeoMedium *medChip = GetMedium("SPD SI CHIP$",mgr);
+    TGeoMedium *medCap  = GetMedium("AL$",mgr);
+
+    // The shape of the MCM is divided into 3 sectors with different
+    // widths (Y) and lengths (X), like in this sketch:
+    //
+    //   0                      1                                   2
+    //    +---------------------+-----------------------------------+
+    //    |                                    4       sect 2       |
+    //    |                    6      sect 1    /-------------------+
+    //    |      sect 0         /--------------/                    3
+    //    +--------------------/               5
+    //   8                     7
+    //
+    // the inclination of all oblique borders (6-7, 4-5) is always 45 degrees.
+    // From drawings we can parametrize the dimensions of all these sectors,
+    // then the shape of this part of the MCM is implemented as a
+    // TGeoXtru centerd in the virtual XY space.
+    // The first step is definig the relevant sizes of this shape:
+    Int_t i, j;
+    Double_t mcmThickness  = fgkmm * 0.35;
+    Double_t sizeXtot      = fgkmm * 105.6;   // total distance (0-2)
+    // resp. 7-8, 5-6 and 3-4
+    Double_t sizeXsector[3] = {fgkmm * 28.4, fgkmm * 41.4, fgkmm * 28.8};
+    // resp. 0-8, 1-6 and 2-3
+    Double_t sizeYsector[3] = {fgkmm * 15.0, fgkmm * 11.0, fgkmm *  8.0};
+    Double_t sizeSep01 = fgkmm * 4.0;      // x(6)-x(7)
+    Double_t sizeSep12 = fgkmm * 3.0;      // x(4)-x(5)
+
+    // define sizes of chips (last is the thickest)
+    Double_t chipLength[5]     = { 4.00, 6.15, 3.85, 5.60, 18.00 };
+    Double_t chipWidth[5]      = { 3.00, 4.10, 3.85, 5.60,  5.45 };
+    Double_t chipThickness[5]  = { 0.60, 0.30, 0.30, 1.00,  1.20 };
+    TString  name[5];
+    name[0] = "ITSSPDanalog";
+    name[1] = "ITSSPDpilot";
+    name[2] = "ITSSPDgol";
+    name[3] = "ITSSPDrx40";
+    name[4] = "ITSSPDoptical";
+    Color_t color[5] = { kCyan, kGreen, kYellow, kBlue, kOrange };
+
+    // define the sizes of the cover
+    Double_t capThickness = fgkmm * 0.3;
+    Double_t capHeight = fgkmm * 1.7;
+
+    // compute the total size of the virtual container box
+    sizes.Set(3);
+    Double_t &thickness = sizes[0];
+    Double_t &length = sizes[1];
+    Double_t &width = sizes[2];
+    length = sizeXtot;
+    width = sizeYsector[0];
+    thickness = mcmThickness + capHeight;
+
+    // define all the relevant vertices of the polygon
+    // which defines the transverse shape of the MCM.
+    // These values are used to several purposes, and
+    // for each one, some points must be excluded
+    Double_t xRef[9], yRef[9];
+    xRef[0] = -0.5*sizeXtot;
+    yRef[0] =  0.5*sizeYsector[0];
+    xRef[1] =  xRef[0] + sizeXsector[0] + sizeSep01;
+    yRef[1] =  yRef[0];
+    xRef[2] = -xRef[0];
+    yRef[2] =  yRef[0];
+    xRef[3] =  xRef[2];
+    yRef[3] =  yRef[2] - sizeYsector[2];
+    xRef[4] =  xRef[3] - sizeXsector[2];
+    yRef[4] =  yRef[3];
+    xRef[5] =  xRef[4] - sizeSep12;
+    yRef[5] =  yRef[4] - sizeSep12;
+    xRef[6] =  xRef[5] - sizeXsector[1];
+    yRef[6] =  yRef[5];
+    xRef[7] =  xRef[6] - sizeSep01;
+    yRef[7] =  yRef[6] - sizeSep01;
+    xRef[8] =  xRef[0];
+    yRef[8] = -yRef[0];
+
+    // the above points are defined for the "right" MCM (if ve view the
+    // stave from above) in order to change to the "left" one, we must
+    // change the sign to all X values:
+    if (isRight) for (i = 0; i < 9; i++) xRef[i] = -xRef[i];
+
+    // the shape of the MCM and glue layer are done excluding point 1,
+    // which is not necessary and cause the geometry builder to get confused
+    j = 0;
+    Double_t xBase[8], yBase[8];
+    for (i = 0; i < 9; i++) {
+        if (i == 1) continue;
+        xBase[j] = xRef[i];
+        yBase[j] = yRef[i];
+        j++;
+    } // end for i
+
+    // the MCM cover is superimposed over the zones 1 and 2 only
+    Double_t xCap[6], yCap[6];
+    j = 0;
+    for (i = 1; i <= 6; i++) {
+        xCap[j] = xRef[i];
+        yCap[j] = yRef[i];
+        j++;
+    } // end for i
+
+    // define positions of chips,
+    // which must be added to the bottom-left corner of MCM
+    // and divided by 1E4;
+    Double_t chipX[5], chipY[5];
+    if (isRight) {
+        chipX[0] = 666320.;
+        chipX[1] = 508320.;
+        chipX[2] = 381320.;
+        chipX[3] = 295320.;
+        chipX[4] = 150320.;
+        chipY[0] =  23750.;
+        chipY[1] =  27750.;
+        chipY[2] =  20750.;
+        chipY[3] =  42750.;
+        chipY[4] =  39750.;
+    } else {
+        chipX[0] = 389730.;
+        chipX[1] = 548630.;
+        chipX[2] = 674930.;
+        chipX[3] = 761430.;
+        chipX[4] = 905430.;
+        chipY[0] =  96250.;
+        chipY[1] =  91950.;
+        chipY[2] =  99250.;
+        chipY[3] = 107250.;
+        chipY[4] = 109750.;
+    } // end if isRight
+    for (i = 0; i < 5; i++) {
+        chipX[i] *= 0.00001;
+        chipY[i] *= 0.00001;
+        if (isRight) {
+            chipX[i] += xRef[3];
+            chipY[i] += yRef[3];
+        } else {
+            chipX[i] += xRef[8];
+            chipY[i] += yRef[8];
+        } // end for isRight
+        chipLength[i] *= fgkmm;
+        chipWidth[i] *= fgkmm;
+        chipThickness[i] *= fgkmm;
+    } // end for i
+
+    // create shapes for MCM
+    Double_t z1, z2;
+    TGeoXtru *shBase = new TGeoXtru(2);
+    z1 = -0.5*thickness;
+    z2 = z1 + mcmThickness;
+    shBase->DefinePolygon(8, xBase, yBase);
+    shBase->DefineSection(0, z1, 0., 0., 1.0);
+    shBase->DefineSection(1, z2, 0., 0., 1.0);
+
+    // create volumes of MCM
+    TGeoVolume *volBase = new TGeoVolume("ITSSPDbase", shBase, medBase);
+    volBase->SetLineColor(kRed);
+
+    // to create the border of the MCM cover, it is required the
+    // subtraction of two shapes the outer is created using the
+    // reference points defined here
+    TGeoXtru *shCapOut = new TGeoXtru(2);
+    shCapOut->SetName(Form("ITSSPDshCAPOUT%s", suf));
+    z1 = z2;
+    z2 = z1 + capHeight - capThickness;
+    shCapOut->DefinePolygon(6, xCap, yCap);
+    shCapOut->DefineSection(0, z1, 0., 0., 1.0);
+    shCapOut->DefineSection(1, z2, 0., 0., 1.0);
+    // the inner is built similarly but subtracting the thickness
+    Double_t angle, cs;
+    Double_t xin[6], yin[6];
+    if (!isRight) {
+        angle = 45.0;
+        cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
+        xin[0] = xCap[0] + capThickness;
+        yin[0] = yCap[0] - capThickness;
+        xin[1] = xCap[1] - capThickness;
+        yin[1] = yin[0];
+        xin[2] = xin[1];
+        yin[2] = yCap[2] + capThickness;
+        xin[3] = xCap[3] - capThickness*cs;
+        yin[3] = yin[2];
+        xin[4] = xin[3] - sizeSep12;
+        yin[4] = yCap[4] + capThickness;
+        xin[5] = xin[0];
+        yin[5] = yin[4];
+    } else {
+        angle = 45.0;
+        cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
+        xin[0] = xCap[0] - capThickness;
+        yin[0] = yCap[0] - capThickness;
+        xin[1] = xCap[1] + capThickness;
+        yin[1] = yin[0];
+        xin[2] = xin[1];
+        yin[2] = yCap[2] + capThickness;
+        xin[3] = xCap[3] - capThickness*cs;
+        yin[3] = yin[2];
+        xin[4] = xin[3] + sizeSep12;
+        yin[4] = yCap[4] + capThickness;
+        xin[5] = xin[0];
+        yin[5] = yin[4];
+    } // end if !isRight
+    TGeoXtru *shCapIn = new TGeoXtru(2);
+    shCapIn->SetName(Form("ITSSPDshCAPIN%s", suf));
+    shCapIn->DefinePolygon(6, xin, yin);
+    shCapIn->DefineSection(0, z1 - 0.01, 0., 0., 1.0);
+    shCapIn->DefineSection(1, z2 + 0.01, 0., 0., 1.0);
+    // compose shapes
+    TGeoCompositeShape *shCapBorder = new TGeoCompositeShape(
+                            Form("ITSSPDshBORDER%s", suf),
+                            Form("%s-%s", shCapOut->GetName(),
+                                 shCapIn->GetName()));
+    // create volume
+    TGeoVolume *volCapBorder = new TGeoVolume("ITSSPDcapBoarder",
+                                              shCapBorder,medCap);
+    volCapBorder->SetLineColor(kGreen);
+    // finally, we create the top of the cover, which has the same
+    // shape of outer border and a thickness equal of the one othe
+    // cover border one
+    TGeoXtru *shCapTop = new TGeoXtru(2);
+    z1 = z2;
+    z2 = z1 + capThickness;
+    shCapTop->DefinePolygon(6, xCap, yCap);
+    shCapTop->DefineSection(0, z1, 0., 0., 1.0);
+    shCapTop->DefineSection(1, z2, 0., 0., 1.0);
+    TGeoVolume *volCapTop = new TGeoVolume("ITSSPDcapTop", shCapTop, medCap);
+    volCapTop->SetLineColor(kBlue);
+
+    // create container assembly with right suffix
+    TGeoVolumeAssembly *mcmAssembly = new TGeoVolumeAssembly(
+        Form("ITSSPDmcm%s", suf));
+
+    // add mcm layer
+    mcmAssembly->AddNode(volBase, 1, gGeoIdentity);
+    // add chips
+    for (i = 0; i < 5; i++) {
+        TGeoVolume *box = gGeoManager->MakeBox(name[i],medChip,
+               0.5*chipLength[i], 0.5*chipWidth[i], 0.5*chipThickness[i]);
+        TGeoTranslation *tr = new TGeoTranslation(chipX[i],chipY[i],
+                      0.5*(-thickness + chipThickness[i]) + mcmThickness);
+        box->SetLineColor(color[i]);
+        mcmAssembly->AddNode(box, 1, tr);
+    } // end for i
+    // add cap border
+    mcmAssembly->AddNode(volCapBorder, 1, gGeoIdentity);
+    // add cap top
+    mcmAssembly->AddNode(volCapTop, 1, gGeoIdentity);
+
+    return mcmAssembly;
+}
+
+//______________________________________________________________________
+TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus
+(Bool_t isRight, Int_t ilayer, TArrayD &sizes, TGeoManager *mgr) const
+{
+    //
+    // The pixel bus is implemented as a TGeoBBox with some objects on it,
+    // which could affect the particle energy loss.
+    // ---
+    // In order to avoid confusion, the bus is directly displaced
+    // according to the axis orientations which are used in the final stave:
+    // X --> thickness direction
+    // Y --> width direction
+    // Z --> length direction
+    //
+
+    // ** CRITICAL CHECK ******************************************************
+    // layer number can be ONLY 1 or 2
+    if (ilayer != 1 && ilayer != 2) AliFatal("Layer number MUST be 1 or 2");
+
+    // ** MEDIA **
+    //PIXEL BUS
+    TGeoMedium *medBus     = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr);
+    TGeoMedium *medPt1000  = GetMedium("CERAMICS$",mgr); // ??? PT1000
+    // Capacity
+    TGeoMedium *medCap     = GetMedium("SDD X7R capacitors$",mgr);
+    // ??? Resistance
+    //TGeoMedium *medRes     = GetMedium("SDD X7R capacitors$",mgr);
+    TGeoMedium *medRes     = GetMedium("ALUMINUM$",mgr);
+    //TGeoMedium *medExt     = GetMedium("SDDKAPTON (POLYCH2)$", mgr);
+    TGeoMedium *medExt     = GetMedium("SPD-MIX CU KAPTON$", mgr);
+    // ** SIZES & POSITIONS **
+    Double_t busLength          = 170.501 * fgkmm; // length of plane part
+    Double_t busWidth           =  13.800 * fgkmm; // width
+    Double_t busThickness       =   0.280 * fgkmm; // thickness
+    Double_t pt1000Length       = fgkmm * 1.50;
+    Double_t pt1000Width        = fgkmm * 3.10;
+    Double_t pt1000Thickness    = fgkmm * 0.60;
+    Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus
+    Double_t capLength          = fgkmm * 2.55;
+    Double_t capWidth           = fgkmm * 1.50;
+    Double_t capThickness       = fgkmm * 1.35;
+    Double_t capY[2], capZ[2];
+
+    Double_t resLength          = fgkmm * 2.20;
+    Double_t resWidth           = fgkmm * 0.80;
+    Double_t resThickness       = fgkmm * 0.35;
+    Double_t resY[2], resZ[2];
+
+    Double_t extThickness       = fgkmm * 0.25;
+    Double_t ext1Length         = fgkmm * (26.7 - 10.0);
+    Double_t ext2Length         = fgkmm * 284.0 - ext1Length + extThickness;
+    Double_t extWidth           = fgkmm * 11.0;
+    Double_t extHeight          = fgkmm * 2.5;
+
+    // position of pt1000, resistors and capacitors depends on the
+    // bus if it's left or right one
+    if (!isRight) {
+        pt1000Y    =   64400.;
+        pt1000Z[0] =   66160.;
+        pt1000Z[1] =  206200.;
+        pt1000Z[2] =  346200.;
+        pt1000Z[3] =  486200.;
+        pt1000Z[4] =  626200.;
+        pt1000Z[5] =  776200.;
+        pt1000Z[6] =  916200.;
+        pt1000Z[7] = 1056200.;
+        pt1000Z[8] = 1196200.;
+        pt1000Z[9] = 1336200.;
+        resZ[0]    = 1397500.;
+        resY[0]    =   26900.;
+        resZ[1]    =  682500.;
+        resY[1]    =   27800.;
+        capZ[0]    = 1395700.;
+        capY[0]    =   45700.;
+        capZ[1]    =  692600.;
+        capY[1]    =   45400.;
+    } else {
+        pt1000Y    =   66100.;
+        pt1000Z[0] =  319700.;
+        pt1000Z[1] =  459700.;
+        pt1000Z[2] =  599700.;
+        pt1000Z[3] =  739700.;
+        pt1000Z[4] =  879700.;
+        pt1000Z[5] = 1029700.;
+        pt1000Z[6] = 1169700.;
+        pt1000Z[7] = 1309700.;
+        pt1000Z[8] = 1449700.;
+        pt1000Z[9] = 1589700.;
+        capY[0]    =   44500.;
+        capZ[0]    =  266700.;
+        capY[1]    =   44300.;
+        capZ[1]    =  974700.;
+        resZ[0]    =  266500.;
+        resY[0]    =   29200.;
+        resZ[1]    =  974600.;
+        resY[1]    =   29900.;
+    } // end if isRight
+    Int_t i;
+    pt1000Y *= 1E-4 * fgkmm;
+    for (i = 0; i < 10; i++) {
+        pt1000Z[i] *= 1E-4 * fgkmm;
+        if (i < 2) {
+            capZ[i] *= 1E-4 * fgkmm;
+            capY[i] *= 1E-4 * fgkmm;
+            resZ[i] *= 1E-4 * fgkmm;
+            resY[i] *= 1E-4 * fgkmm;
+        }  // end if iM2
+    } // end for i
+
+    Double_t &fullLength = sizes[1];
+    Double_t &fullWidth = sizes[2];
+    Double_t &fullThickness = sizes[0];
+    fullLength = busLength;
+    fullWidth = busWidth;
+    // add the thickness of the thickest component on bus (capacity)
+    fullThickness = busThickness + capThickness;
+
+    // ** VOLUMES **
+    TGeoVolumeAssembly *container = new TGeoVolumeAssembly("ITSSPDpixelBus");
+    TGeoVolume *bus = mgr->MakeBox("ITSSPDbus", medBus, 0.5*busThickness,
+                                   0.5*busWidth, 0.5*busLength);
+    TGeoVolume *pt1000 = mgr->MakeBox("ITSSPDpt1000",medPt1000,
+                        0.5*pt1000Thickness,0.5*pt1000Width, 0.5*pt1000Length);
+    TGeoVolume *res = mgr->MakeBox("ITSSPDresistor", medRes, 0.5*resThickness,
+                                   0.5*resWidth, 0.5*resLength);
+    TGeoVolume *cap = mgr->MakeBox("ITSSPDcapacitor", medCap, 0.5*capThickness,
+                                   0.5*capWidth, 0.5*capLength);
+
+    char extname[12];
+    snprintf(extname,12,"Extender1l%d",ilayer);
+    TGeoVolume *ext1 = mgr->MakeBox(extname, medExt, 0.5*extThickness, 0.5*extWidth, 0.5*ext1Length);
+    snprintf(extname,12,"Extender2l%d",ilayer);
+    TGeoVolume *ext2 = mgr->MakeBox(extname, medExt, 0.5*extHeight - 2.*extThickness, 0.5*extWidth, 0.5*extThickness);
+    TGeoVolume *ext3=0;
+    snprintf(extname,12,"Extender3l%d",ilayer);
+    if (ilayer==1) {
+      Double_t halflen=(0.5*ext2Length + extThickness);
+      Double_t xprof[6],yprof[6];
+      Double_t alpha=24;
+      xprof[0] = -halflen;
+      yprof[0] = -0.5*extThickness;
+      xprof[1] = halflen/2;
+      yprof[1] = yprof[0];
+      xprof[2] = xprof[1] + 0.5*halflen*CosD(alpha);
+      yprof[2] = yprof[1] + 0.5*halflen*SinD(alpha);
+      xprof[3] = xprof[2] - extThickness*SinD(alpha);
+      yprof[3] = yprof[2] + extThickness*CosD(alpha);
+      InsidePoint(xprof[0], yprof[0], xprof[1], yprof[1], xprof[2], yprof[2],
+                 extThickness, xprof[4], yprof[4]);
+      xprof[5] = xprof[0];
+      yprof[5] = 0.5*extThickness;
+      TGeoXtru *ext3sh = new TGeoXtru(2);
+      ext3sh->DefinePolygon(6, xprof, yprof);
+      ext3sh->DefineSection(0, -0.5*(extWidth-0.8*fgkmm));
+      ext3sh->DefineSection(1,  0.5*(extWidth-0.8*fgkmm));
+      ext3 = new TGeoVolume(extname, ext3sh, medExt);
+    } else
+      ext3 = mgr->MakeBox(extname, medExt, 0.5*extThickness, 0.5*(extWidth-0.8*fgkmm), 0.5*ext2Length + extThickness); // Hardcode fix of a small overlap
+    bus->SetLineColor(kYellow + 2);
+    pt1000->SetLineColor(kGreen + 3);
+    res->SetLineColor(kRed + 1);
+    cap->SetLineColor(kBlue - 7);
+    ext1->SetLineColor(kGray);
+    ext2->SetLineColor(kGray);
+    ext3->SetLineColor(kGray);
+
+    // ** MOVEMENTS AND POSITIONEMENT **
+    // bus
+    TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness -
+                                                   fullThickness), 0.0, 0.0);
+    container->AddNode(bus, 1, trBus);
+    Double_t zRef, yRef, x, y, z;
+    if (isRight) {
+        zRef = -0.5*fullLength;
+        yRef = -0.5*fullWidth;
+    } else {
+        zRef = -0.5*fullLength;
+        yRef = -0.5*fullWidth;
+    } // end if isRight
+    // pt1000
+    x = 0.5*(pt1000Thickness - fullThickness) + busThickness;
+    for (i = 0; i < 10; i++) {
+        y = yRef + pt1000Y;
+        z = zRef + pt1000Z[i];
+        TGeoTranslation *tr = new TGeoTranslation(x, y, z);
+        container->AddNode(pt1000, i+1, tr);
+    } // end for i
+    // capacitors
+    x = 0.5*(capThickness - fullThickness) + busThickness;
+    for (i = 0; i < 2; i++) {
+        y = yRef + capY[i];
+        z = zRef + capZ[i];
+        TGeoTranslation *tr = new TGeoTranslation(x, y, z);
+        container->AddNode(cap, i+1, tr);
+    } // end for i
+    // resistors
+    x = 0.5*(resThickness - fullThickness) + busThickness;
+    for (i = 0; i < 2; i++) {
+        y = yRef + resY[i];
+        z = zRef + resZ[i];
+        TGeoTranslation *tr = new TGeoTranslation(x, y, z);
+        container->AddNode(res, i+1, tr);
+    } // end for i
+
+    // extender
+        if (ilayer == 2) {
+       if (isRight) {
+          y = 0.5 * (fullWidth - extWidth) - 0.1;
+          z = 0.5 * (-fullLength + fgkmm * 10.0);
+       }
+       else {
+          y = 0.5 * (fullWidth - extWidth) - 0.1;
+          z = 0.5 * ( fullLength - fgkmm * 10.0);
+       }
+        }
+        else {
+            if (isRight) {
+                y = -0.5 * (fullWidth - extWidth);
+                z = 0.5 * (-fullLength + fgkmm * 10.0);
+            }
+            else {
+                y = -0.5 * (fullWidth - extWidth);
+                z = 0.5 * ( fullLength - fgkmm * 10.0);
+            }
+        }
+    x = 0.5 * (extThickness - fullThickness) + busThickness;
+    //y = 0.5 * (fullWidth - extWidth);
+    TGeoTranslation *trExt1 = new TGeoTranslation(x, y, z);
+    if (isRight) {
+        z -= 0.5 * (ext1Length - extThickness);
+    }
+    else {
+        z += 0.5 * (ext1Length - extThickness);
+    }
+    x += 0.5*(extHeight - 3.*extThickness);
+    TGeoTranslation *trExt2 = new TGeoTranslation(x, y, z);
+    if (isRight) {
+        z -= 0.5 * (ext2Length - extThickness) + 2.5*extThickness;
+    }
+    else {
+        z += 0.5 * (ext2Length - extThickness) + 2.5*extThickness;
+    }
+    x += 0.5*(extHeight - extThickness) - 2.*extThickness;
+    TGeoCombiTrans *trExt3=0;
+    if (ilayer==1) {
+      if (isRight)
+       trExt3 = new TGeoCombiTrans(x, y, z, new TGeoRotation("",0.,-90.,90.));
+      else
+       trExt3 = new TGeoCombiTrans(x, y, z, new TGeoRotation("",0., 90.,90.));
+    } else
+      trExt3 = new TGeoCombiTrans(x, y, z, 0);
+    container->AddNode(ext1, 0, trExt1);
+    container->AddNode(ext2, 0, trExt2);
+    container->AddNode(ext3, 0, trExt3);
+
+    sizes[3] = yRef + pt1000Y;
+    sizes[4] = zRef + pt1000Z[2];
+    sizes[5] = zRef + pt1000Z[7];
+
+    return container;
+}
+
+//______________________________________________________________________
+TList* AliITSv11GeometrySPD::CreateConeModule(Bool_t sideC, const Double_t angrot,
+                                             TGeoManager *mgr) const
+{
+    //
+    // Creates all services modules and places them in a TList
+    // angrot is the rotation angle (passed as an argument to avoid
+    // defining the same quantity in two different places)
+    //
+    // Created:      ?? ??? 2008  A. Pulvirenti
+    // Updated:      03 May 2010  M. Sitta
+    // Updated:      20 Jun 2010  A. Pulvirenti  Optical patch panels
+    // Updated:      22 Jun 2010  M. Sitta  Fiber cables
+    // Updated:      04 Jul 2010  M. Sitta  Water cooling
+    // Updated:      08 Jul 2010  A. Pulvirenti  Air cooling on Side C
+    //
+
+    TGeoMedium *medInox  = GetMedium("INOX$",mgr);
+    //TGeoMedium *medExt   = GetMedium("SDDKAPTON (POLYCH2)$", mgr);
+    TGeoMedium *medExtB  = GetMedium("SPD-BUS CU KAPTON$", mgr);
+    TGeoMedium *medExtM  = GetMedium("SPD-MCM CU KAPTON$", mgr);
+    TGeoMedium *medPlate = GetMedium("SPD C (M55J)$", mgr);
+    TGeoMedium *medFreon = GetMedium("Freon$", mgr);
+    TGeoMedium *medGas   = GetMedium("GASEOUS FREON$", mgr);
+    TGeoMedium *medFibs  = GetMedium("SDD OPTICFIB$",mgr);
+    TGeoMedium *medCopper= GetMedium("COPPER$",mgr);
+    TGeoMedium *medPVC   = GetMedium("PVC$",mgr);
+
+    Double_t extThickness = fgkmm * 0.25;
+    Double_t ext1Length   = fgkmm * (26.7 - 10.0);
+//    Double_t ext2Length   = fgkmm * (285.0 - ext1Length + extThickness);
+    Double_t ext2Length   = fgkmm * 285.0 - ext1Length + extThickness;
+
+    const Double_t kCableThickness  =   1.5  *fgkmm;
+    Double_t cableL0 =  10.0 * fgkmm;
+    Double_t cableL1 = 340.0 * fgkmm - extThickness - ext1Length - ext2Length;
+    Double_t cableL2 = 300.0 * fgkmm;
+    //Double_t cableL3 = 570.0 * fgkmm;
+    Double_t cableL3 = 57.0 * fgkmm;
+    Double_t cableW1 =  11.0 * fgkmm;
+    Double_t cableW2 =  30.0 * fgkmm;
+    Double_t cableW3 =  50.0 * fgkmm;
+
+    const Double_t kMCMLength       =   cableL0 + cableL1 + cableL2 + cableL3;
+    const Double_t kMCMWidth        =   cableW1;
+    const Double_t kMCMThickness    =   1.2  *fgkmm;
+
+    const Double_t kPlateLength     = 200.0  *fgkmm;
+    const Double_t kPlateWidth      =  50.0  *fgkmm;
+    const Double_t kPlateThickness  =   5.0  *fgkmm;
+
+    const Double_t kConeTubeRmin    =   2.0  *fgkmm;
+    const Double_t kConeTubeRmax    =   3.0  *fgkmm;
+
+    const Double_t kHorizTubeLen    = 150.0  *fgkmm;
+    const Double_t kYtoHalfStave    =   9.5  *fgkmm;
+
+    const Double_t kWaterCoolRMax   =   2.6  *fgkmm;
+    const Double_t kWaterCoolThick  =   0.04 *fgkmm;
+    const Double_t kWaterCoolLen    = 250.0  *fgkmm;
+    const Double_t kWCPlateThick    =   0.5  *fgkmm;
+    const Double_t kWCPlateWide     =  33.0  *fgkmm;
+    const Double_t kWCPlateLen      = 230.0  *fgkmm;
+    const Double_t kWCFittingRext1  =   2.4  *fgkmm;
+    const Double_t kWCFittingRext2  =   3.7  *fgkmm;
+    const Double_t kWCFittingRint1  =   1.9  *fgkmm;
+    const Double_t kWCFittingRint2  = kWaterCoolRMax;
+    const Double_t kWCFittingLen1   =   7.0  *fgkmm;
+    const Double_t kWCFittingLen2   =   8.0  *fgkmm;
+    
+    const Double_t kCollWidth       =  40.0  *fgkmm;
+    const Double_t kCollLength      =  60.0  *fgkmm;
+    const Double_t kCollThickness   =  10.0  *fgkmm;
+    const Double_t kCollTubeThick   =   1.0  *fgkmm;
+    const Double_t kCollTubeRadius  =   7.0  *fgkmm;
+    const Double_t kCollTubeLength  = 190.0  *fgkmm;
+
+    const Double_t kOptFibDiamet    =   4.5  *fgkmm;
+
+    Double_t x[12], y[12];
+    Double_t xloc, yloc, zloc;
+
+    Int_t kPurple = 6; // Purple (Root does not define it)
+
+    TGeoVolumeAssembly* container[5];
+    container[0] = new TGeoVolumeAssembly("ITSSPDConeModule");
+    container[1] = new TGeoVolumeAssembly("ITSSPDCoolingModuleSideA");
+    container[2] = new TGeoVolumeAssembly("ITSSPDCoolingModuleSideC");
+    container[3] = new TGeoVolumeAssembly("ITSSPDPatchPanelModule");
+    container[4] = new TGeoVolumeAssembly("ITSSPDWaterCooling");
+
+    // The extender on the cone as a Xtru
+    x[0] = -cableL0;
+    y[0] = 0.0 + 0.5 * cableW1;
+
+    x[1] = x[0] + cableL0 + cableL1 - 0.5*(cableW2 - cableW1);
+    y[1] = y[0];
+
+    x[2] = x[0] + cableL0 + cableL1;
+    y[2] = y[1] + 0.5*(cableW2 - cableW1);
+
+    x[3] = x[2] + cableL2;
+    y[3] = y[2];
+
+    x[4] = x[3] + 0.5*(cableW3 - cableW2);
+    y[4] = y[3] + 0.5*(cableW3 - cableW2);
+
+    x[5] = x[4] + cableL3 - 0.5*(cableW3 - cableW2);
+    y[5] = y[4];
+
+    for (Int_t i = 6; i < 12; i++) {
+        x[i] =  x[11 - i];
+        y[i] = -y[11 - i];
+    }
+
+    TGeoXtru *shCable = new TGeoXtru(2);
+    shCable->DefinePolygon(12, x, y);
+    shCable->DefineSection(0, 0.0);
+    shCable->DefineSection(1, kCableThickness);
+
+    TGeoVolume *volCable = new TGeoVolume("ITSSPDExtender", shCable, medExtB);
+    volCable->SetLineColor(kGreen);
+
+    // The MCM extender on the cone as a Xtru
+    TGeoBBox *shMCMExt = new TGeoBBox(0.5*kMCMLength,
+                                     0.5*kMCMWidth,
+                                     0.5*kMCMThickness);
+
+    TGeoVolume *volMCMExt = new TGeoVolume("ITSSPDExtenderMCM",
+                                          shMCMExt, medExtM);
+    volMCMExt->SetLineColor(kGreen+3);
+
+    // The support plate on the cone as a composite shape
+    Double_t thickness = kCableThickness + kMCMThickness;
+    TGeoBBox *shOut = new TGeoBBox("ITSSPD_shape_plateout",
+                                  0.5*kPlateLength,
+                                  0.5*kPlateWidth,
+                                  0.5*kPlateThickness);
+    TGeoBBox *shIn  = new TGeoBBox("ITSSPD_shape_platein" ,
+                                  0.5*kPlateLength,
+                                  0.5*cableW2,
+                                  0.5*thickness);
+    Char_t string[255];
+    snprintf(string, 255, "%s-%s", shOut->GetName(), shIn->GetName());
+    TGeoCompositeShape *shPlate = new TGeoCompositeShape("ITSSPDPlate_shape",
+                                string);
+
+    TGeoVolume *volPlate = new TGeoVolume("ITSSPDPlate",
+                                         shPlate, medPlate);
+    volPlate->SetLineColor(kRed);
+    
+    // The air cooling tubes
+    TGeoBBox   *shCollBox   = new TGeoBBox("ITSSPD_shape_collector_box", 0.5*kCollLength, 0.5*kCollWidth, 0.5*kCollThickness);
+    TGeoTube   *shCollTube  = new TGeoTube("ITSSPD_shape_collector_tube",kCollTubeRadius - kCollTubeThick, kCollTubeRadius, 0.5*kCollTubeLength);
+    TGeoVolume *volCollBox  = new TGeoVolume("ITSSPDCollectorBox", shCollBox, medPVC);
+    TGeoVolume *volCollTube = new TGeoVolume("ITSSPDCollectorTube", shCollTube, medPVC);
+    volCollBox->SetLineColor(kAzure);
+    volCollTube->SetLineColor(kAzure);
+
+    // The cooling tube on the cone as a Ctub
+    Double_t tubeLength = shCable->GetX(5) - shCable->GetX(0) + kYtoHalfStave;
+    TGeoCtub *shTube = new TGeoCtub(0, kConeTubeRmax, 0.5*tubeLength, 0, 360,
+                                   0, SinD(angrot/2), -CosD(angrot/2),
+                                   0,              0,              1);
+
+    TGeoVolume *volTubeA = new TGeoVolume("ITSSPDCoolingTubeOnConeA",
+                                         shTube, medInox);
+    volTubeA->SetLineColor(kGray);
+
+    TGeoVolume *volTubeC = new TGeoVolume("ITSSPDCoolingTubeOnConeC",
+                                         shTube, medInox);
+    volTubeC->SetLineColor(kGray);
+
+    // The freon in the cooling tubes on the cone as a Ctub
+    TGeoCtub *shFreon = new TGeoCtub(0, kConeTubeRmin, 0.5*tubeLength, 0, 360,
+                                    0, SinD(angrot/2), -CosD(angrot/2),
+                                    0,              0,              1);
+
+    TGeoVolume *volFreon = new TGeoVolume("ITSSPDCoolingFreonOnCone",
+                                         shFreon, medFreon);
+    volFreon->SetLineColor(kPurple);
+
+    TGeoVolume *volGasFr = new TGeoVolume("ITSSPDCoolingFreonGasOnCone",
+                                         shFreon, medGas);
+    volGasFr->SetLineColor(kPurple);
+
+    // The cooling tube inside the cylinder as a Ctub
+    TGeoCtub *shCylTub = new TGeoCtub(0, kConeTubeRmax,
+                                     0.5*kHorizTubeLen, 0, 360,
+                                     0,            0,           -1,
+                                     0, SinD(angrot/2), CosD(angrot/2));
+
+    TGeoVolume *volCylTubA = new TGeoVolume("ITSSPDCoolingTubeOnCylA",
+                                           shCylTub, medInox);
+    volCylTubA->SetLineColor(kGray);
+
+    TGeoVolume *volCylTubC = new TGeoVolume("ITSSPDCoolingTubeOnCylC",
+                                           shCylTub, medInox);
+    volCylTubC->SetLineColor(kGray);
+
+    // The freon in the cooling tubes in the cylinder as a Ctub
+    TGeoCtub *shCylFr = new TGeoCtub(0, kConeTubeRmin,
+                                    0.5*kHorizTubeLen, 0, 360,
+                                    0,            0,           -1,
+                                    0, SinD(angrot/2), CosD(angrot/2));
+
+    TGeoVolume *volCylFr = new TGeoVolume("ITSSPDCoolingFreonOnCyl",
+                                         shCylFr, medFreon);
+    volCylFr->SetLineColor(kPurple);
+
+    TGeoVolume *volCylGasFr = new TGeoVolume("ITSSPDCoolingFreonGasOnCyl",
+                                            shCylFr, medGas);
+    volCylGasFr->SetLineColor(kPurple);
+
+    // The optical fibers bundle on the cone as a Tube
+    Double_t optLength = shCable->GetX(5) - shCable->GetX(0) + kYtoHalfStave;
+    TGeoTube *shOptFibs = new TGeoTube(0., 0.5*kOptFibDiamet, 0.5*optLength);
+
+    TGeoVolume *volOptFibs = new TGeoVolume("ITSSPDOpticalFibersOnCone",
+                                           shOptFibs, medFibs);
+    volOptFibs->SetLineColor(kOrange);
+
+    // The optical patch panels
+    TArrayD psizes;
+    TGeoVolume *volPatch = CreatePatchPanel(psizes, mgr);
+
+    // The water cooling tube as a Tube
+    TGeoTube *shWatCool = new TGeoTube(kWaterCoolRMax-kWaterCoolThick,
+                                      kWaterCoolRMax, kWaterCoolLen/2);
+
+    TGeoVolume *volWatCool = new TGeoVolume("ITSSPDWaterCoolingOnCone",
+                                           shWatCool, medInox);
+    volWatCool->SetLineColor(kGray);
+
+    // The support plate for the water tubes: a Tubs and a BBox
+    TGeoTubeSeg *shWCPltT = new TGeoTubeSeg(kWaterCoolRMax,
+                                           kWaterCoolRMax+kWCPlateThick,
+                                           kWCPlateLen/2, 180., 360.);
+
+    Double_t plateBoxWide = (kWCPlateWide - 2*kWaterCoolRMax)/2;
+    TGeoBBox *shWCPltB = new TGeoBBox(plateBoxWide/2,
+                                     kWCPlateThick/2,
+                                     kWCPlateLen/2);
+
+    TGeoVolume *volWCPltT = new TGeoVolume("ITSSPDWaterCoolingTubsPlate",
+                                         shWCPltT, medPlate);
+    volWCPltT->SetLineColor(kRed);
+
+    TGeoVolume *volWCPltB = new TGeoVolume("ITSSPDWaterCoolingBoxPlate",
+                                         shWCPltB, medPlate);
+    volWCPltB->SetLineColor(kRed);
+
+    // The fitting for the water cooling tube: a Pcon
+    TGeoPcon *shFitt = new TGeoPcon(0., 360., 4);
+    shFitt->Z(0)    = -kWCFittingLen1;
+    shFitt->Rmin(0) =  kWCFittingRint1;
+    shFitt->Rmax(0) =  kWCFittingRext1;
+
+    shFitt->Z(1)    =  0;
+    shFitt->Rmin(1) =  kWCFittingRint1;
+    shFitt->Rmax(1) =  kWCFittingRext1;
 
-/* $Id$ */
+    shFitt->Z(2)    =  0;
+    shFitt->Rmin(2) =  kWCFittingRint2;
+    shFitt->Rmax(2) =  kWCFittingRext2;
 
-// General Root includes
-#include <Riostream.h>
-#include <TMath.h>
-#include <TLatex.h>
-#include <TCanvas.h>
-#include <TPolyLine.h>
-#include <TPolyMarker.h>
+    shFitt->Z(3)    =  kWCFittingLen2;
+    shFitt->Rmin(3) =  kWCFittingRint2;
+    shFitt->Rmax(3) =  kWCFittingRext2;
 
-// Root Geometry includes
-#include <TGeoVolume.h>
-#include <TGeoPcon.h>
-#include <TGeoCone.h>
-#include <TGeoTube.h> // contains TGeoTubeSeg
-#include <TGeoArb8.h>
-#include <TGeoEltu.h>
-#include <TGeoXtru.h>
-#include <TGeoMatrix.h>
-#include <TGeoMaterial.h>
-#include <TGeoMedium.h>
-#include <TGeoCompositeShape.h>
+    TGeoVolume *volFitt = new TGeoVolume("ITSSPDWaterCoolingFitting",
+                                        shFitt, medCopper);
+    volFitt->SetLineColor(kOrange);
 
-// AliRoot includes
-#include "AliLog.h"
-#include "AliMagF.h"
-#include "AliRun.h"
+    // Now place everything in the containers
+    volTubeA->AddNode(volGasFr, 1, 0);
+    volTubeC->AddNode(volFreon, 1, 0);
 
-// Declaration file
-#include "AliITSv11GeometrySPD.h"
+    volCylTubA->AddNode(volCylGasFr, 1, 0);
+    volCylTubC->AddNode(volCylFr   , 1, 0);
 
-ClassImp(AliITSv11GeometrySPD)
+    container[0]->AddNode(volCable, 1, 0);
 
-//#define SQ(A) (A)*(A)
+    xloc = shMCMExt->GetDX() - cableL0;
+    zloc = shMCMExt->GetDZ();
+    container[0]->AddNode(volMCMExt, 1,
+                         new TGeoTranslation( xloc, 0.,-zloc));
 
-AliITSv11GeometrySPD::AliITSv11GeometrySPD(Double_t gap) :
-       AliITSv11Geometry(), fAlignmentGap(gap),
-       fSPDsectorX0(0), fSPDsectorY0(0), fSPDsectorX1(0), fSPDsectorY1(0)
-{
-       //
-       // Default constructor.
-       // This does not initialize anything and is provided just for completeness.
-       // It is recommended to use the other one.
-       // The alignment gap is specified as argument (default = 0.0075 cm).
-       //      
-       Int_t i = 0;
-       for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
-}
-//
-//__________________________________________________________________________________________
-AliITSv11GeometrySPD::AliITSv11GeometrySPD(Int_t debug, Double_t gap):
-       AliITSv11Geometry(debug), fAlignmentGap(gap),
-       fSPDsectorX0(0), fSPDsectorY0(0), fSPDsectorX1(0), fSPDsectorY1(0)
-{
-       //
-       // Constructor with debug setting argument
-       // This is the constructor which is recommended to be used.
-       // It sets a debug level, and initializes the name of the object.
-       // The alignment gap is specified as argument (default = 0.0075 cm).
-       //              
-       Int_t i = 0;
-       for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
-}
-//
-//__________________________________________________________________________________________
-TGeoMedium* AliITSv11GeometrySPD::GetMedium(const char* mediumName, TGeoManager *mgr) const
-{
-       //
-       // This function is used to recovery any medium 
-       // used to build the geometry volumes. 
-       // If the required medium does not exists, 
-       // a NULL pointer is returned, and an error message is written.
-       //
-       
-       Char_t itsMediumName[30];
-       sprintf(itsMediumName, "ITS_%s", mediumName);
-       TGeoMedium* medium = mgr->GetMedium(itsMediumName);
-       if (!medium) AliError(Form("Medium <%s> not found", mediumName));
-       
-       return medium;
-}
-//
-//__________________________________________________________________________________________
-Int_t AliITSv11GeometrySPD::CreateSPDCentralMaterials(Int_t &medOffset, Int_t &matOffset) const
-{
-       //
-       // Define the specific materials used for the ITS SPD central detectors.
-       // ---
-       // NOTE: These are the same old names. 
-       //       By the ALICE naming conventions, they start with "ITS SPD ...."
-       //       Data taken from ** AliITSvPPRasymmFMD::CreateMaterials() **.
-       // ---
-       // Arguments [the ones passed by reference contain output values]:
-       // - medOffset --> (by ref) starting number of the list of media
-       // - matOffset --> (by ref) starting number of the list of Materials
-       // ---
-       // Return value:
-       // - the last material index used + 1 (= next avaiable material index)
-       // ---
-       // Begin_Html
-       /*
-               <img    src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
-               title="SPD      Sector  drawing with    all     cross   sections        defined">
-               <p>The  SPD     Sector  definition.     In      
-               <a      href="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.hpgl">HPGL</a>       format.
-               <img    src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly-10-modules.ps"
-               titile="SPD     All     Sectors end     view    with    thermal sheald">
-               <p>The  SPD     all     sector  end     view    with    thermal sheald.
-               <img    src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
-               title="SPD      side    view    cross   section">
-               <p>SPD  side    view    cross   section with    condes  and     thermal shealds.
-               <img    src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-A_A.jpg"
-               title="Cross    section A-A"><p>Cross   section A-A.
-               <img    src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-B_B.jpg"
-               title="Cross    section B-B"><p>Cross   section B-B.
-               <img    src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-C_C.jpg"
-               title-"Cross    section C-C"><p>Cross   section C-C.
-               <img    src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-D_D.jpg"
-               title="Cross    section D-D"><p>Cross   section D-D.
-               <img    src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-E_E.jpg"
-               title="Cross    section E-E"><p>Cross   section E-E.
-               <img    src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-F_F.jpg"
-               title="Cross    section F-F"><p>Cross   section F-F.
-               <img    src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-G_G.jpg"
-               title="Cross    section G-G"><p>Cross   section G-G.
-       */
-       // End_Html
-       //
-       const Double_t ktmaxfd    = 0.1 * fgkDegree; // Degree
-       const Double_t kstemax    = 1.0 * fgkcm; // cm
-       const Double_t kdeemax    = 0.1;//Fraction of particle's energy 0<deemax<=1
-       const Double_t kepsil     = 1.0E-4; //
-       const Double_t kstmin     = 0.0 * fgkcm; // cm "Default value used"
-       const Double_t ktmaxfdAir = 0.1 * fgkDegree; // Degree
-       const Double_t kstemaxAir = 1.0000E+00 * fgkcm; // cm
-       const Double_t kdeemaxAir = 0.1; // Fraction of particle's energy 0<deemax<=1
-       const Double_t kepsilAir  = 1.0E-4;//
-       const Double_t kstminAir  = 0.0 * fgkcm; // cm "Default value used"
-       const Double_t ktmaxfdSi  = 0.1 * fgkDegree; // .10000E+01; // Degree
-       const Double_t kstemaxSi  = 0.0075 * fgkcm; //  .10000E+01; // cm
-       const Double_t kdeemaxSi  = 0.1; // Fraction of particle's energy 0<deemax<=1
-       const Double_t kepsilSi   = 1.0E-4;//
-       const Double_t kstminSi   = 0.0 * fgkcm; // cm "Default value used"
-       
-       Int_t matindex = matOffset;
-       Int_t medindex = medOffset;
-       TGeoMaterial *mat;
-       TGeoMixture  *mix;
-       TGeoMedium   *med;
-       
-       Int_t    ifield = (gAlice->Field()->Integ());
-       Double_t fieldm = (gAlice->Field()->Max());
-       Double_t params[8] = {8 * 0.0};
-       params[1] = (Double_t) ifield;
-       params[2] = fieldm;
-       params[3] = ktmaxfdSi;
-       params[4] = kstemaxSi;
-       params[5] = kdeemaxSi;
-       params[6] = kepsilSi;
-       params[7] = kstminSi;
-       
-       //
-       // Definition of materials and mediums.
-       // Last argument in material definition is its pressure,
-       // which is initialized to ZERO.
-       // For better readability, it is simply set to zero.
-       // Then the writing "0.0 * fgkPascal" is replaced by "0."
-       // (Alberto)
-       //
-       
-       // silicon definition for ITS (overall)
-       mat = new TGeoMaterial("ITS_SI", 28.086, 14.0, 2.33 * fgkgcm3,
-                              TGeoMaterial::kMatStateSolid, 25.0 * fgkCelsius, 0.);
-       mat->SetIndex(matindex);
-       med = new TGeoMedium("SI", medindex++, mat, params);
-       
-       // silicon for ladder chips
-       mat = new TGeoMaterial("SPD SI CHIP", 28.086, 14.0, 2.33 * fgkgcm3,
-                              TGeoMaterial::kMatStateSolid, 25.0 * fgkCelsius, 0.);
-       mat->SetIndex(matindex);
-       med = new TGeoMedium("SPD SI CHIP", medindex++, mat, params);
-       
-       // silicon for pixel bus
-       mat = new TGeoMaterial("SPD SI BUS", 28.086, 14.0, 2.33 * fgkgcm3,
-                              TGeoMaterial::kMatStateSolid, 25.0 * fgkCelsius, 0.);
-       mat->SetIndex(matindex);
-       med = new TGeoMedium("SPD SI BUS", medindex++, mat, params);
-       
-       // carbon fiber material is defined as a mix of C-O-N-H
-       // defined in terms of fractional weights according to 'C (M55J)'
-       // it is used for the support and clips
-       mix = new TGeoMixture("C (M55J)", 4, 1.9866 * fgkgcm3);
-       mix->SetIndex(matindex);
-       mix->DefineElement(0, 12.01070, 6.0, 0.908508078); // C by fractional weight
-       mix->DefineElement(1, 14.00670, 7.0, 0.010387573); // N by fractional weight
-       mix->DefineElement(2, 15.99940, 8.0, 0.055957585); // O by fractional weight
-       mix->DefineElement(3,  1.00794, 1.0, 0.025146765); // H by fractional weight
-       mix->SetPressure(0.0 * fgkPascal);
-       mix->SetTemperature(25.0 * fgkCelsius);
-       mix->SetState(TGeoMaterial::kMatStateSolid);
-       params[3] = ktmaxfd;
-       params[4] = kstemax;
-       params[5] = kdeemax;
-       params[6] = kepsil;
-       params[7] = kstmin;
-       med = new TGeoMedium("ITSspdCarbonFiber", medindex++, mix, params);
-       
-       // air defined as a mixture of C-N-O-Ar: 
-       // it is used to fill all containers
-       mix = new TGeoMixture("Air", 4, 1.20479E-3 * fgkgcm3);
-       mix->SetIndex(matindex);
-       mix->DefineElement(0, 12.0107,  6.0, 0.000124); // C by fractional weight
-       mix->DefineElement(1, 14.0067,  7.0, 0.755267); // N by fractional weight
-       mix->DefineElement(2, 15.9994,  8.0, 0.231781); // O by fractional weight
-       mix->DefineElement(3, 39.9480, 18.0, 0.012827); // Ar by fractional weight
-       mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere
-       mix->SetTemperature(25.0 * fgkCelsius);
-       mix->SetState(TGeoMaterial::kMatStateGas);
-       params[3] = ktmaxfdAir;
-       params[4] = kstemaxAir;
-       params[5] = kdeemaxAir;
-       params[6] = kepsilAir;
-       params[7] = kstminAir;
-       med = new TGeoMedium("ITSspdAir", medindex++, mix, params);
-       
-       // inox stainless steel, defined as a mixture
-       // used for all metallic parts
-       mix = new TGeoMixture("INOX", 9, 8.03 * fgkgcm3);
-       mix->SetIndex(matindex);
-       mix->DefineElement(0, 12.0107,  6., .0003);  // C  by fractional weight
-       mix->DefineElement(1, 54.9380, 25., .02);    // Fe by fractional weight
-       mix->DefineElement(2, 28.0855, 14., .01);    // Na by fractional weight
-       mix->DefineElement(3, 30.9738, 15., .00045); // P  by fractional weight
-       mix->DefineElement(4, 32.066 , 16., .0003);  // S  by fractional weight
-       mix->DefineElement(5, 58.6928, 28., .12);    // Ni by fractional weight
-       mix->DefineElement(6, 55.9961, 24., .17);    //    by fractional weight
-       mix->DefineElement(7, 95.84  , 42., .025);   //    by fractional weight
-       mix->DefineElement(8, 55.845 , 26., .654);   //    by fractional weight
-       mix->SetPressure(0.0 * fgkPascal);
-       mix->SetTemperature(25.0 * fgkCelsius);
-       mix->SetState(TGeoMaterial::kMatStateSolid);
-       params[3] = ktmaxfdAir;
-       params[4] = kstemaxAir;
-       params[5] = kdeemaxAir;
-       params[6] = kepsilAir;
-       params[7] = kstminAir;
-       med = new TGeoMedium("ITSspdStainlessSteel", medindex++, mix, params);
-       
-       // freon gas which fills the cooling system (C+F)
-       mix = new TGeoMixture("Freon", 2, 1.63 * fgkgcm3);
-       mix->SetIndex(matindex);
-       mix->DefineElement(0, 12.0107   , 6.0,  4);  // C by fractional weight
-       mix->DefineElement(1, 18.9984032, 9.0, 10); // F by fractional weight
-       mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere
-       mix->SetTemperature(25.0 * fgkCelsius);
-       mix->SetState(TGeoMaterial::kMatStateLiquid);
-       params[3] = ktmaxfdAir;
-       params[4] = kstemaxAir;
-       params[5] = kdeemaxAir;
-       params[6] = kepsilAir;
-       params[7] = kstminAir;
-       med = new TGeoMedium("ITSspdCoolingFluid", medindex++, mix, params);
-       
-       // return the next index to be used in case of adding new materials
-       medOffset = medindex;
-       matOffset = matindex;
-       return matOffset;
-}
-//
-//__________________________________________________________________________________________
-void AliITSv11GeometrySPD::InitSPDCentral(Int_t offset, TVirtualMC *vmc) const
-{
-       //
-       // Do all SPD Central detector initializations (e.g.: transport cuts).
-       // ---
-       // Here follow some GEANT3 physics switches, which are interesting 
-       // for these settings to be defined:
-       // - "MULTS" (MULtiple Scattering):
-       //   the variable IMULS controls this process. See [PHYS320/325/328]
-       //   0 - No multiple scattering.
-       //   1 - (DEFAULT) Multiple scattering according to Moliere theory.
-       //   2 - Same as 1. Kept for backward compatibility.
-       //   3 - Pure Gaussian scattering according to the Rossi formula.
-       // - "DRAY" (Delta RAY production)
-       //   The variable IDRAY controls this process. See [PHYS430]
-       //   0 - No delta rays production.
-       //   1 - (DEFAULT) Delta rays production with generation of.
-       //   2 - Delta rays production without generation of.
-       // - "LOSS" (continuous energy loss)
-       //   The variable ILOSS controls this process.
-       //   0 - No continuous energy loss, IDRAY is set to 0.
-       //   1 - Continuous energy loss with generation of delta rays above 
-       //       DCUTE (common/GCUTS/) and restricted Landau fluctuations below DCUTE.
-       //   2 - (DEFAULT) Continuous energy loss without generation of delta rays 
-       //       and full Landau-Vavilov-Gauss fluctuations.
-       //       In this case the variable IDRAY is forced to 0 to avoid
-       //       double counting of fluctuations.
-       //   3 - Same as 1, kept for backward compatibility.
-       //   4 - Energy loss without fluctuation.
-       //       The value obtained from the tables is used directly.
-       // ---
-       // Arguments:
-       //    Int_t offset    --> the material/medium index offset
-       //    TVirtualMC *vmc --> pointer to the virtual Monte Carlo default gMC
-       //
-
-       Int_t i, n = 4;
-       
-       for(i=0;i<n;i++) {
-               vmc->Gstpar(i+offset, "CUTGAM", 30.0 * fgkKeV);
-               vmc->Gstpar(i+offset, "CUTELE", 30.0 * fgkKeV);
-               vmc->Gstpar(i+offset, "CUTNEU", 30.0 * fgkKeV);
-               vmc->Gstpar(i+offset, "CUTHAD", 30.0 * fgkKeV);
-               vmc->Gstpar(i+offset, "CUTMUO", 30.0 * fgkKeV);
-               vmc->Gstpar(i+offset, "BCUTE",  30.0 * fgkKeV);
-               vmc->Gstpar(i+offset, "BCUTM",  30.0 * fgkKeV);
-               vmc->Gstpar(i+offset, "DCUTE",  30.0 * fgkKeV);
-               vmc->Gstpar(i+offset, "DCUTM",  30.0 * fgkKeV);
-               //vmc->Gstpar(i+offset, "PPCUTM", );
-               //vmc->Gstpar(i+offset, "PAIR", );
-               //vmc->Gstpar(i+offset, "COMPT", );
-               //vmc->Gstpar(i+offset, "PHOT", );
-               //vmc->Gstpar(i+offset, "PFIS", );
-               vmc->Gstpar(i+offset, "DRAY", 1);
-               //vmc->Gstpar(i+offset, "ANNI", );
-               //vmc->Gstpar(i+offset, "BREM", );
-               //vmc->Gstpar(i+offset, "HADR", );
-               //vmc->Gstpar(i+offset, "MUNU", );
-               //vmc->Gstpar(i+offset, "DCAY", );
-               vmc->Gstpar(i+offset, "LOSS", 1);
-               //vmc->Gstpar(i+offset, "MULS", );
-               //vmc->Gstpar(i+offset, "GHCOR1", );
-               //vmc->Gstpar(i+offset, "BIRK1", );
-               //vmc->Gstpar(i+offset, "BRIK2", );
-               //vmc->Gstpar(i+offset, "BRIK3", );
-               //vmc->Gstpar(i+offset, "LABS", );
-               //vmc->Gstpar(i+offset, "SYNC", );
-               //vmc->Gstpar(i+offset, "STRA", );
-       }
-}
-//
-//__________________________________________________________________________________________
-void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth, TGeoManager *mgr)
-{
-       //
-       // Creates a single SPD carbon fiber sector and places it 
-       // in a container volume passed as first argument ('moth').
-       // Second argument points to the TGeoManager which coordinates
-       // the overall volume creation.
-       // The position of the sector is based on distance of 
-       // closest point of SPD stave to beam pipe 
-       // (figures all-sections-modules.ps) of 7.22mm at section A-A.
-       //
-
-       const Double_t kSPDclossesStaveAA       =   7.22 * fgkmm;
-       const Double_t kSectorStartingAngle = -72.0 * fgkDegree;
-       const Double_t kNSectorsTotal       =  10.0;
-       const Double_t kSectorRelativeAngle = 360.0 / kNSectorsTotal * fgkDegree;
-       const Double_t kBeamPipeRadius     =   0.5 * 60.0 * fgkmm;
-       
-       Int_t i;
-       Double_t angle, radiusSector, xAAtubeCenter0, yAAtubeCenter0;
-       Double_t staveThicknessAA = 1.03 * fgkmm; // get from stave geometry.
-       TGeoCombiTrans *secRot = new TGeoCombiTrans();
-       TGeoVolume *vCarbonFiberSector;
-       TGeoMedium *medSPDcf;
-       
-       // define an assembly and fill it with the support of 
-       // a single carbon fiber sector and staves in it
-       medSPDcf = GetMedium("SPD C (M55J)$", mgr);
-       vCarbonFiberSector = new TGeoVolumeAssembly("ITSSPDCarbonFiberSectorV");
-       vCarbonFiberSector->SetMedium(medSPDcf);
-       CarbonFiberSector(vCarbonFiberSector, xAAtubeCenter0, yAAtubeCenter0, mgr);
-       vCarbonFiberSector->SetVisibility(kTRUE); // logical volume
-       
-       // Compute the radial shift out of the sectors
-       radiusSector  = kBeamPipeRadius + kSPDclossesStaveAA + staveThicknessAA;
-       radiusSector *= radiusSector; // squaring;
-       radiusSector -= xAAtubeCenter0 * xAAtubeCenter0;
-       radiusSector  = -yAAtubeCenter0 + TMath::Sqrt(radiusSector);
-       
-       // add 10 single sectors, by replicating the virtual sector defined above
-       // and placing at different angles
-       Double_t shiftX, shiftY;
-       angle = kSectorStartingAngle;
-       secRot->RotateZ(angle);
-       for(i = 0; i < (Int_t)kNSectorsTotal; i++) {
-               shiftX = -radiusSector * TMath::Sin(angle/fgkRadian);
-               shiftY =  radiusSector * TMath::Cos(angle/fgkRadian);
-               secRot->SetDx(shiftX);
-               secRot->SetDy(shiftY);
-               moth->AddNode(vCarbonFiberSector, i+1, new TGeoCombiTrans(*secRot));
-               if(GetDebug(5)) {
-                       AliInfo(Form("i=%d angle=%g angle[rad]=%g radiusSector=%g x=%g y=%g \n",
-                               i, angle, angle/fgkRadian, radiusSector, shiftX, shiftY));
-               }
-               angle += kSectorRelativeAngle;
-               secRot->RotateZ(kSectorRelativeAngle);
-       }
-       if(GetDebug(3)) moth->PrintNodes();
+    xloc = shMCMExt->GetDX();
+    zloc = shCable->GetZ(1)/2 - shMCMExt->GetDZ();
+    container[0]->AddNode(volPlate, 1,
+                         new TGeoTranslation( xloc, 0., zloc));
 
-       delete secRot;
-}
-//
-//__________________________________________________________________________________________
-void AliITSv11GeometrySPD::CarbonFiberSector
-(TGeoVolume *moth, Double_t &xAAtubeCenter0, Double_t &yAAtubeCenter0, TGeoManager *mgr)
-{
-       //
-       // Define the detail SPD Carbon fiber support Sector geometry.
-       // Based on the drawings:
-       // - ALICE-Pixel "Costruzione Profilo Modulo" (march 25 2004)
-       // - ALICE-SUPPORTO "Costruzione Profilo Modulo"
-       // ---
-       // Define outside radii as negative, where "outside" means that the
-       // center of the arc is outside of the object (feb 16 2004).
-       // ---
-       // Arguments [the one passed by ref contain output values]:
-       //   TGeoVolume *moth            --> the voulme which will contain this object
-       //   Double_t   &xAAtubeCenter0  --> (by ref) x location of the outer surface
-       //                                   of the cooling tube center for tube 0.
-       //   Double_t   &yAAtubeCenter0  --> (by ref) y location of the outer surface
-       //                                   of the cooling tube center for tube 0.
-       //   TGeoManager *mgr            --> TGeo builder
-       // ---
-       // Int the two variables passed by reference values will be stored
-       // which will then be used to correctly locate this sector.
-       // The information used for this is the distance between the
-       // center of the #0 detector and the beam pipe.
-       // Measurements are taken at cross section A-A.
-       //
-       
-       //TGeoMedium *medSPDfs      = 0; // SPD support cone inserto stesalite 4411w.
-       //TGeoMedium *medSPDfo      = 0; // SPD support cone foam, Rohacell 50A.
-       //TGeoMedium *medSPDal      = 0; // SPD support cone SDD mounting bracket Al
-       TGeoMedium *medSPDcf     = GetMedium("SPD C (M55J)$", mgr);
-       TGeoMedium *medSPDss     = GetMedium("INOX$", mgr);
-       TGeoMedium *medSPDair    = GetMedium("AIR$", mgr);
-       TGeoMedium *medSPDcoolfl = GetMedium("Freon$", mgr); //ITSspdCoolingFluid
-       
-       const Double_t ksecDz             =  0.5 * 500.0 * fgkmm;
-       const Double_t ksecLen       = 30.0 * fgkmm;
-       const Double_t ksecCthick         =  0.2 * fgkmm;
-       const Double_t ksecDipLength =  3.2 * fgkmm;
-       const Double_t ksecDipRadii  =  0.4 * fgkmm;
-       //const Double_t ksecCoolingTubeExtraDepth = 0.86 * fgkmm;
-
-       // The following positions ('ksecX#' and 'ksecY#') and radii ('ksecR#')
-       // are the centers and radii of curvature of all the rounded corners
-       // between the straight borders of the SPD sector shape.
-       // To draw this SPD sector, the following steps are followed:
-       // 1) the (ksecX, ksecY) points are plotted
-       //    and circles of the specified radii are drawn around them.
-       // 2) each pair of consecutive circles is connected by a line
-       //    tangent to them, in accordance with the radii being "internal" or "external"
-       //    with respect to the closed shape which describes the sector itself.
-       // The resulting connected shape is the section 
-       // of the SPD sector surface in the transverse plane (XY).
-       
-       const Double_t ksecX0   = -10.725 * fgkmm;
-       const Double_t ksecY0   = -14.853 * fgkmm;
-       const Double_t ksecR0   =  -0.8   * fgkmm; // external
-       const Double_t ksecX1   = -13.187 * fgkmm;
-       const Double_t ksecY1   = -19.964 * fgkmm;
-       const Double_t ksecR1   =  +0.6   * fgkmm; // internal
-       // const Double_t ksecDip0 = 5.9 * fgkmm;
-       
-       const Double_t ksecX2   =  -3.883 * fgkmm;
-       const Double_t ksecY2   = -17.805 * fgkmm;
-       const Double_t ksecR2   =  +0.80  * fgkmm; // internal (guess)
-       const Double_t ksecX3   =  -3.123 * fgkmm;
-       const Double_t ksecY3   = -14.618 * fgkmm;
-       const Double_t ksecR3   =  -0.6   * fgkmm; // external
-       //const Double_t ksecDip1 = 8.035 * fgkmm;
-       
-       const Double_t ksecX4   = +11.280 * fgkmm;
-       const Double_t ksecY4   = -14.473 * fgkmm;
-       const Double_t ksecR4   =  +0.8   * fgkmm; // internal
-       const Double_t ksecX5   = +19.544 * fgkmm;
-       const Double_t ksecY5   = +10.961 * fgkmm;
-       const Double_t ksecR5   =  +0.8   * fgkmm; // internal
-       //const Double_t ksecDip2 = 4.553 * fgkmm;
-       
-       const Double_t ksecX6   = +10.830 * fgkmm;
-       const Double_t ksecY6   = +16.858 * fgkmm;
-       const Double_t ksecR6   =  +0.6   * fgkmm; // internal
-       const Double_t ksecX7   = +11.581 * fgkmm;
-       const Double_t ksecY7   = +13.317 * fgkmm;
-       const Double_t ksecR7   =  -0.6   * fgkmm; // external
-       //const Double_t ksecDip3 = 6.978 * fgkmm;
-       
-       const Double_t ksecX8   =  -0.733 * fgkmm;
-       const Double_t ksecY8   = +17.486 * fgkmm;
-       const Double_t ksecR8   =  +0.6   * fgkmm; // internal
-       const Double_t ksecX9   =  +0.562 * fgkmm;
-       //const Double_t ksecY9 = +14.486 * fgkmm; // correction by
-       const Double_t ksecY9   = +14.107 * fgkmm; // Alberto
-       const Double_t ksecR9   =  -0.6   * fgkmm; // external
-       //const Double_t ksecDip4 = 6.978 * fgkmm;
-
-       const Double_t ksecX10  = -12.252 * fgkmm;
-       const Double_t ksecY10  = +16.298 * fgkmm;
-       const Double_t ksecR10  =  +0.6   * fgkmm; // internal
-       const Double_t ksecX11  = -10.445 * fgkmm;
-       const Double_t ksecY11  = +13.162 * fgkmm;
-       const Double_t ksecR11  =  -0.6   * fgkmm; // external
-       //const Double_t ksecDip5 = 6.978 * fgkmm;
-       
-       const Double_t ksecX12  = -22.276 * fgkmm;
-       const Double_t ksecY12  = +12.948 * fgkmm;
-       const Double_t ksecR12  =  +0.85  * fgkmm; // internal
-       const Double_t ksecR13  =  -0.8   * fgkmm; // external
-       const Double_t ksecAngleSide13 = 36.0 * fgkDegree;
-       
-       const Int_t ksecNRadii = 20;
-       const Int_t ksecNPointsPerRadii = 4;
-       const Int_t ksecNCoolingTubeDips = 6;
-       
-       // Since the rounded parts are approximated by a regular polygon
-       // and a cooling tube of the propper diameter must fit, a scaling factor
-       // increases the size of the polygon for the tube to fit.
-       //const Double_t ksecRCoolScale = 1./TMath::Cos(TMath::Pi()/(Double_t)ksecNPointsPerRadii);
-       const Double_t ksecZEndLen   = 30.000 * fgkmm;
-       //const Double_t ksecZFlangLen = 45.000 * fgkmm;
-       const Double_t ksecTl        =  0.860 * fgkmm;
-       const Double_t ksecCthick2   =  0.600 * fgkmm;
-       //const Double_t ksecCthick3  =  1.80  * fgkmm;
-       //const Double_t ksecSidelen  = 22.0   * fgkmm;
-       //const Double_t ksecSideD5   =  3.679 * fgkmm;
-       //const Double_t ksecSideD12  =  7.066 * fgkmm;
-       const Double_t ksecRCoolOut  = 2.400 * fgkmm;
-       const Double_t ksecRCoolIn   = 2.000 * fgkmm;
-       const Double_t ksecDl1       = 5.900 * fgkmm;
-       const Double_t ksecDl2       = 8.035 * fgkmm;
-       const Double_t ksecDl3       = 4.553 * fgkmm;
-       const Double_t ksecDl4       = 6.978 * fgkmm;
-       const Double_t ksecDl5       = 6.978 * fgkmm;
-       const Double_t ksecDl6       = 6.978 * fgkmm;
-       const Double_t ksecCoolTubeThick  = 0.04  * fgkmm;
-       const Double_t ksecCoolTubeROuter = 2.6   * fgkmm;
-       const Double_t ksecCoolTubeFlatX  = 3.696 * fgkmm;
-       const Double_t ksecCoolTubeFlatY  = 0.68  * fgkmm;
-       //const Double_t ksecBeamX0 = 0.0 * fgkmm; // guess
-       //const Double_t ksecBeamY0 = (15.223 + 40.) * fgkmm; // guess
-
-       // redefine some of the points already defined above
-       // in the format of arrays (???)
-       const Int_t ksecNPoints = (ksecNPointsPerRadii + 1) * ksecNRadii + 8;
-       Double_t secX[ksecNRadii] = {
-               ksecX0,  ksecX1,  -1000.0,
-               ksecX2,  ksecX3,  -1000.0,
-               ksecX4,  ksecX5,  -1000.0,
-               ksecX6,  ksecX7,  -1000.0,
-               ksecX8,  ksecX9,  -1000.0,
-               ksecX10, ksecX11, -1000.0,
-               ksecX12, -1000.0
-       };
-       Double_t secY[ksecNRadii] = {
-               ksecY0,  ksecY1,  -1000.0,
-               ksecY2,  ksecY3,  -1000.0,
-               ksecY4,  ksecY5,  -1000.0,
-               ksecY6,  ksecY7,  -1000.0,
-               ksecY8,  ksecY9,  -1000.0,
-               ksecY10, ksecY11, -1000.0,
-               ksecY12, -1000.0
-       };
-       Double_t secR[ksecNRadii] = { 
-               ksecR0,  ksecR1,  -.5 * ksecDipLength - ksecDipRadii,
-               ksecR2,  ksecR3,  -.5 * ksecDipLength - ksecDipRadii,
-               ksecR4,  ksecR5,  -.5 * ksecDipLength - ksecDipRadii,
-               ksecR6,  ksecR7,  -.5 * ksecDipLength - ksecDipRadii,
-               ksecR8,  ksecR9,  -.5 * ksecDipLength - ksecDipRadii,
-               ksecR10, ksecR11, -.5 * ksecDipLength - ksecDipRadii,
-               ksecR12, ksecR13
-       };
-       /*
-       Double_t secDip[ksecNRadii] = {
-               0., 0., ksecDip0, 0., 0., ksecDip1,
-               0., 0., ksecDip2, 0., 0., ksecDip3,
-               0., 0., ksecDip4, 0., 0., ksecDip5,
-               0., 0.
-       };
-       */
-       Double_t secX2[ksecNRadii];
-       Double_t secY2[ksecNRadii];
-       Double_t secR2[ksecNRadii] = {
-               ksecR0,  ksecR1,  ksecRCoolOut,
-               ksecR2,  ksecR3,  ksecRCoolOut,
-               ksecR4,  ksecR5,  ksecRCoolOut,
-               ksecR6,  ksecR7,  ksecRCoolOut,
-               ksecR8,  ksecR9,  ksecRCoolOut,
-               ksecR10, ksecR11, ksecRCoolOut,
-               ksecR12, ksecR13
-       };
-       Double_t secDip2[ksecNCoolingTubeDips] = { 
-               ksecDl1, ksecDl2, ksecDl3, 
-               ksecDl4, ksecDl5, ksecDl6 
-       };
-       Double_t secX3[ksecNRadii];
-       Double_t secY3[ksecNRadii];
-       const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2, 5, 8, 11, 14, 17};
-       Double_t secAngleStart[ksecNRadii];
-       Double_t secAngleEnd[ksecNRadii];
-       Double_t secAngleStart2[ksecNRadii];
-       Double_t secAngleEnd2[ksecNRadii];
-       Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0., 0., 0., 0., 0., 0.0};
-       //Double_t secAngleStart3[ksecNRadii];
-       //Double_t secAngleEnd3[ksecNRadii];
-       Double_t  xpp[ksecNPoints],  ypp[ksecNPoints];
-       Double_t  xpp2[ksecNPoints], ypp2[ksecNPoints];
-       Double_t *xp[ksecNRadii],   *xp2[ksecNRadii];
-       Double_t *yp[ksecNRadii],   *yp2[ksecNRadii];
-       TGeoXtru *sA0,  *sA1, *sB0, *sB1;
-       TGeoEltu *sTA0, *sTA1;
-       TGeoTube *sTB0, *sTB1; //,*sM0;
-       TGeoRotation     *rot;
-       TGeoTranslation *trans;
-       TGeoCombiTrans  *rotrans;
-       Double_t t, t0, t1, a, b, x0, y0, x1, y1;
-       Int_t i, j, k, m;
-       Bool_t tst;
-
-       if(!moth) {
-               AliError("Container volume (argument) is NULL");
-               return;
-       }
-       for(i = 0; i < ksecNRadii; i++) {
-               xp[i]  = &(xpp[i*(ksecNPointsPerRadii+1)]);
-               yp[i]  = &(ypp[i*(ksecNPointsPerRadii+1)]);
-               xp2[i] = &(xpp2[i*(ksecNPointsPerRadii+1)]);
-               yp2[i] = &(ypp2[i*(ksecNPointsPerRadii+1)]);
-               secX2[i] = secX[i];
-               secY2[i] = secY[i];
-               secX3[i] = secX[i];
-               secY3[i] = secY[i];
-       }
-       
-       // find starting and ending angles for all but cooling tube sections
-       secAngleStart[0] = 0.5 * ksecAngleSide13;
-       for(i = 0; i < ksecNRadii - 2; i++) {
-               tst = kFALSE;
-               for(j = 0; j < ksecNCoolingTubeDips; j++) tst = (tst || i == ksecDipIndex[j]);
-               if (tst) continue;
-               tst = kFALSE;
-               for(j = 0; j < ksecNCoolingTubeDips; j++) tst = (tst || (i+1) == ksecDipIndex[j]);
-               if (tst) j = i+2; else j = i+1;
-               AnglesForRoundedCorners(secX[i], secY[i], secR[i], secX[j], secY[j], secR[j], t0, t1);
-               secAngleEnd[i]   = t0;
-               secAngleStart[j] = t1;
-               if(secR[i] > 0.0 && secR[j] > 0.0) {
-                       if(secAngleStart[i] > secAngleEnd[i]) secAngleEnd[i] += 360.0;
-               }
-               secAngleStart2[i] = secAngleStart[i];
-               secAngleEnd2[i]   = secAngleEnd[i];
-       } // end for i
-       secAngleEnd[ksecNRadii-2] = secAngleStart[ksecNRadii-2]
-                                 + (secAngleEnd[ksecNRadii-5] - secAngleStart[ksecNRadii-5]);
-       if (secAngleEnd[ksecNRadii-2] < 0.0) secAngleEnd[ksecNRadii-2] += 360.0;
-       secAngleStart[ksecNRadii-1]  = secAngleEnd[ksecNRadii-2] - 180.0;
-       secAngleEnd[ksecNRadii-1]    = secAngleStart[0];
-       secAngleStart2[ksecNRadii-2] = secAngleStart[ksecNRadii-2];
-       secAngleEnd2[ksecNRadii-2]   = secAngleEnd[ksecNRadii-2];
-       secAngleStart2[ksecNRadii-1] = secAngleStart[ksecNRadii-1];
-       secAngleEnd2[ksecNRadii-1]   = secAngleEnd[ksecNRadii-1];
-       
-       // find location of circle last rounded corner.
-       i = 0;
-       j = ksecNRadii - 2;
-       t0 = TanD(secAngleStart[i]-90.);
-       t1 = TanD(secAngleEnd[j]-90.);
-       t  = secY[i] - secY[j];
-       // NOTE: secR[i=0] < 0; secR[j=18] > 0; and secR[j+1=19] < 0
-       t += (-secR[i]+secR[j+1]) * SinD(secAngleStart[i]);
-       t -= (secR[j]-secR[j+1]) * SinD(secAngleEnd[j]);
-       t += t1 * secX[j] - t0*secX[i];
-       t += t1 * (secR[j] - secR[j+1]) * CosD(secAngleEnd[j]);
-       t -= t0 * (-secR[i]+secR[j+1]) * CosD(secAngleStart[i]);
-       secX[ksecNRadii-1] = t / (t1-t0);
-       secY[ksecNRadii-1] = TanD(90. + 0.5*ksecAngleSide13) * (secX[ksecNRadii-1] - secX[0]) + secY[0];
-       secX2[ksecNRadii-1] = secX[ksecNRadii-1];
-       secY2[ksecNRadii-1] = secY[ksecNRadii-1];
-       secX3[ksecNRadii-1] = secX[ksecNRadii-1];
-       secY3[ksecNRadii-1] = secY[ksecNRadii-1];
-       
-       // find location of cooling tube centers
-       for(i = 0; i < ksecNCoolingTubeDips; i++) {
-               j = ksecDipIndex[i];
-               x0 = secX[j-1] + TMath::Abs(secR[j-1]) * CosD(secAngleEnd[j-1]);
-               y0 = secY[j-1] + TMath::Abs(secR[j-1]) * SinD(secAngleEnd[j-1]);
-               x1 = secX[j+1] + TMath::Abs(secR[j+1]) * CosD(secAngleStart[j+1]);
-               y1 = secY[j+1] + TMath::Abs(secR[j+1]) * SinD(secAngleStart[j+1]);
-               t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
-               t  = secDip2[i] / t0;
-               a  = x0+(x1-x0) * t;
-               b  = y0+(y1-y0) * t;
-               if(i == 0) { 
-                       // get location of tube center->Surface for locating
-                       // this sector around the beam pipe.
-                       // This needs to be double checked, but I need my notes for that.
-                       // (Bjorn Nilsen)
-                       xAAtubeCenter0 = x0 + (x1 - x0) * t * 0.5;
-                       yAAtubeCenter0 = y0 + (y1 - y0) * t * 0.5;
-               }
-               if(a + b*(a - x0) / (b - y0) > 0.0) {
-                       secX[j]  = a + TMath::Abs(y1-y0) * 2.0 * ksecDipRadii/t0;
-                       secY[j]  = b - TMath::Sign(2.0*ksecDipRadii,y1-y0) * (x1-x0)/t0;
-                       secX2[j] = a + TMath::Abs(y1-y0) * ksecTl/t0;
-                       secY2[j] = b - TMath::Sign(ksecTl,y1-y0) * (x1-x0) / t0;
-                       secX3[j] = a + TMath::Abs(y1-y0) * (2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0;
-                       secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,y1-y0)*(x1-x0)/t0;
-               } 
-               else {
-                       secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0;
-                       secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0;
-                       secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0;
-                       secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0;
-                       secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0;
-                       secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,y1-y0)*(x1-x0)/t0;
-               }
-               
-               // Set up Start and End angles to correspond to start/end of dips.
-               t1 = (secDip2[i]-TMath::Abs(secR[j])) / t0;
-               secAngleStart[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],x0+(x1-x0)*t1-secX[j]);
-               if (secAngleStart[j]<0.0) secAngleStart[j] += 360.0;
-               secAngleStart2[j] = secAngleStart[j];
-               t1 = (secDip2[i]+TMath::Abs(secR[j]))/t0;
-               secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],x0+(x1-x0)*t1-secX[j]);
-               if (secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0;
-               secAngleEnd2[j] = secAngleEnd[j];
-               if (secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0;
-               secR[j] = TMath::Sqrt(secR[j]*secR[j]+4.0*ksecDipRadii*ksecDipRadii);
-       } // end for i
-       
-       // Special cases
-       secAngleStart2[8] -= 360.;
-       secAngleStart2[11] -= 360.;
-       
-       SPDsectorShape(ksecNRadii, secX, secY, secR, secAngleStart, secAngleEnd,
-                      ksecNPointsPerRadii, m, xp, yp);
-       
-       //  Fix up dips to be square.
-       for(i = 0; i < ksecNCoolingTubeDips; i++) {
-               j = ksecDipIndex[i];
-               t = 0.5*ksecDipLength+ksecDipRadii;
-               t0 = TMath::RadToDeg()*TMath::ATan(2.0*ksecDipRadii/t);
-               t1 = secAngleEnd[j] + t0;
-               t0 = secAngleStart[j] - t0;
-               x0 = xp[j][1] = secX[j] + t*CosD(t0);
-               y0 = yp[j][1] = secY[j] + t*SinD(t0);
-               x1 = xp[j][ksecNPointsPerRadii-1] = secX[j] + t*CosD(t1);
-               y1 = yp[j][ksecNPointsPerRadii-1] = secY[j] + t*SinD(t1);
-               t0 = 1./((Double_t)(ksecNPointsPerRadii-2));
-               for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
-                       // extra points spread them out.
-                       t = ((Double_t)(k-1)) * t0;
-                       xp[j][k] = x0+(x1-x0) * t;
-                       yp[j][k] = y0+(y1-y0) * t;
-               } // end for k
-               secAngleTurbo[i] = -TMath::RadToDeg() * TMath::ATan2(y1-y0, x1-x0);
-               if(GetDebug(3)) { 
-                       AliInfo(Form("i=%d -- angle=%f -- x0,y0=(%f, %f) -- x1,y1=(%f, %f)", i, secAngleTurbo[i], x0, y0, x1, y1));
-               }
-       } // end for i
-       sA0 = new TGeoXtru(2);
-       sA0->SetName("ITS SPD Carbon fiber support Sector A0");
-       sA0->DefinePolygon(m, xpp, ypp);
-       sA0->DefineSection(0, -ksecDz);
-       sA0->DefineSection(1,  ksecDz);
-       
-       // store the edges of each XY segment which defines
-       // one of the plane zones where staves will have to be placed
-       fSPDsectorX0.Set(ksecNCoolingTubeDips);
-       fSPDsectorY0.Set(ksecNCoolingTubeDips);
-       fSPDsectorX1.Set(ksecNCoolingTubeDips);
-       fSPDsectorY1.Set(ksecNCoolingTubeDips);
-       Int_t ixy0, ixy1;
-       for(i = 0; i < ksecNCoolingTubeDips; i++) {
-               // Find index in xpp[] and ypp[] corresponding to where the
-               // SPD ladders are to be attached. Order them according to
-               // the ALICE numbering schema. Using array of indexes (+-1 for
-               // cooling tubes. For any "bend/dip/edge, there are 
-               // ksecNPointsPerRadii+1 points involved.
-               if(i == 0) j = 1;
-               else if (i == 1) j = 0;
-               else j = i;
-               ixy0 = (ksecDipIndex[j]-1) * (ksecNPointsPerRadii+1) + (ksecNPointsPerRadii);
-               ixy1 = (ksecDipIndex[j]+1) * (ksecNPointsPerRadii+1);
-               fSPDsectorX0[i] = sA0->GetX(ixy0);
-               fSPDsectorY0[i] = sA0->GetY(ixy0);
-               fSPDsectorX1[i] = sA0->GetX(ixy1);
-               fSPDsectorY1[i] = sA0->GetY(ixy1);
-       }
-       
-       //printf("SectorA#%d ",0);
-       InsidePoint(xpp[m-1], ypp[m-1], xpp[0], ypp[0], xpp[1], ypp[1], ksecCthick, xpp2[0], ypp2[0]);
-       for(i = 1; i < m - 1; i++) {
-               j = i / (ksecNPointsPerRadii+1);
-               //printf("SectorA#%d ",i);
-               InsidePoint(xpp[i-1], ypp[i-1], xpp[i], ypp[i], xpp[i+1], ypp[i+1], ksecCthick, xpp2[i], ypp2[i]);
-       }
-       //printf("SectorA#%d ",m);
-       InsidePoint(xpp[m-2], ypp[m-2], xpp[m-1], ypp[m-1], xpp[0], ypp[0], ksecCthick, xpp2[m-1], ypp2[m-1]);
-       // Fix center value of cooling tube dip and
-       // find location of cooling tube centers
-       for(i = 0; i < ksecNCoolingTubeDips; i++) {
-               j = ksecDipIndex[i];
-               x0 = xp2[j][1];
-               y0 = yp2[j][1];
-               x1 = xp2[j][ksecNPointsPerRadii-1];
-               y1 = yp2[j][ksecNPointsPerRadii-1];
-               t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
-               t  = secDip2[i]/t0;
-               for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
-                       // extra points spread them out.
-                       t = ((Double_t)(k-1)) * t0;
-                       xp2[j][k] = x0+(x1-x0) * t;
-                       yp2[j][k] = y0+(y1-y0) * t;
-               }
-       } // end for i
-       sA1 = new TGeoXtru(2);
-       sA1->SetName("ITS SPD Carbon fiber support Sector Air A1");
-       sA1->DefinePolygon(m, xpp2, ypp2);
-       sA1->DefineSection(0, -ksecDz);
-       sA1->DefineSection(1,  ksecDz);
-       
-       // Error in TGeoEltu. Semi-axis X must be < Semi-axis Y (?).
-       sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0", 0.5 * ksecCoolTubeFlatY, 0.5 * ksecCoolTubeFlatX, ksecDz);
-       sTA1 = new TGeoEltu("ITS SPD Cooling Tube coolant TA1", 
-                           sTA0->GetA() - ksecCoolTubeThick,
-                           sTA0->GetB()-ksecCoolTubeThick,ksecDz);
-       
-       SPDsectorShape(ksecNRadii, secX2, secY2, secR2, secAngleStart2, secAngleEnd2,
-                      ksecNPointsPerRadii, m, xp, yp);
-
-       sB0 = new TGeoXtru(2);
-       sB0->SetName("ITS SPD Carbon fiber support Sector End B0");
-       sB0->DefinePolygon(m, xpp, ypp);
-       sB0->DefineSection(0, ksecDz);
-       sB0->DefineSection(1, ksecDz + ksecZEndLen);
-
-       //printf("SectorB#%d ",0);
-       InsidePoint(xpp[m-1], ypp[m-1], xpp[0], ypp[0], xpp[1], ypp[1], ksecCthick2, xpp2[0], ypp2[0]);
-       for(i = 1; i < m - 1; i++) {
-               t = ksecCthick2;
-               for(k = 0; k < ksecNCoolingTubeDips; k++)
-                       if((i/(ksecNPointsPerRadii+1))==ksecDipIndex[k])
-                               if(!(ksecDipIndex[k]*(ksecNPointsPerRadii+1) == i ||
-                                        ksecDipIndex[k]*(ksecNPointsPerRadii+1) + ksecNPointsPerRadii == i))
-                                       t = ksecRCoolOut-ksecRCoolIn;
-               //printf("SectorB#%d ",i);
-               InsidePoint(xpp[i-1], ypp[i-1], xpp[i], ypp[i], xpp[i+1], ypp[i+1], t, xpp2[i], ypp2[i]);
-       }
-       //printf("SectorB#%d ",m);
-       InsidePoint(xpp[m-2], ypp[m-2], xpp[m-1], ypp[m-1], xpp[0], ypp[0], ksecCthick2, xpp2[m-1], ypp2[m-1]);
-       sB1 = new TGeoXtru(2);
-       sB1->SetName("ITS SPD Carbon fiber support Sector Air End B1");
-       sB1->DefinePolygon(m, xpp2, ypp2);
-       sB1->DefineSection(0, ksecDz);
-       sB1->DefineSection(1, ksecDz + ksecLen);
-       sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0", 0.0,
-                           0.5 * ksecCoolTubeROuter, 0.5 * ksecLen);
-       sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0", 0.0,
-                           sTB0->GetRmax() - ksecCoolTubeThick, 0.5 * ksecLen);
-       
-       if(GetDebug(3)) {
-               if(medSPDcf) medSPDcf->Dump(); else AliInfo("medSPDcf = 0");
-               if(medSPDss) medSPDss->Dump(); else AliInfo("medSPDss = 0");
-               if(medSPDair) medSPDair->Dump(); else AliInfo("medSPDAir = 0");
-               if(medSPDcoolfl) medSPDcoolfl->Dump(); else AliInfo("medSPDcoolfl = 0");
-               sA0->InspectShape();
-               sA1->InspectShape();
-               sB0->InspectShape();
-               sB1->InspectShape();
-       }
-       
-       // create the assembly of the support and place staves on it
-       TGeoVolumeAssembly *vM0 = new TGeoVolumeAssembly("ITSSPDSensitiveVirtualvolumeM0");
-       StavesInSector(vM0);
-       // create other volumes with some graphical settings
-       TGeoVolume *vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0", sA0, medSPDcf);
-       vA0->SetVisibility(kTRUE);
-       vA0->SetLineColor(4); // Blue
-       vA0->SetLineWidth(1);
-       vA0->SetFillColor(vA0->GetLineColor());
-       vA0->SetFillStyle(4010); // 10% transparent
-       TGeoVolume *vA1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorAirA1", sA1, medSPDair);
-       vA1->SetVisibility(kTRUE);
-       vA1->SetLineColor(7); // light Blue
-       vA1->SetLineWidth(1);
-       vA1->SetFillColor(vA1->GetLineColor());
-       vA1->SetFillStyle(4090); // 90% transparent
-       TGeoVolume *vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0", sTA0, medSPDss);
-       vTA0->SetVisibility(kTRUE);
-       vTA0->SetLineColor(1); // Black
-       vTA0->SetLineWidth(1);
-       vTA0->SetFillColor(vTA0->GetLineColor());
-       vTA0->SetFillStyle(4000); // 0% transparent
-       TGeoVolume *vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1", sTA1, medSPDcoolfl);
-       vTA1->SetVisibility(kTRUE);
-       vTA1->SetLineColor(6); // Purple
-       vTA1->SetLineWidth(1);
-       vTA1->SetFillColor(vTA1->GetLineColor());
-       vTA1->SetFillStyle(4000); // 0% transparent
-       TGeoVolume *vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0", sB0, medSPDcf);
-       vB0->SetVisibility(kTRUE);
-       vB0->SetLineColor(4); // Blue
-       vB0->SetLineWidth(1);
-       vB0->SetFillColor(vB0->GetLineColor());
-       vB0->SetFillStyle(4010); // 10% transparent
-       TGeoVolume *vB1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB1", sB1, medSPDair);
-       vB1->SetVisibility(kTRUE);
-       vB1->SetLineColor(7); // light Blue
-       vB1->SetLineWidth(1);
-       vB1->SetFillColor(vB1->GetLineColor());
-       vB1->SetFillStyle(4090); // 90% transparent
-       TGeoVolume *vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0", sTB0, medSPDss);
-       vTB0->SetVisibility(kTRUE);
-       vTB0->SetLineColor(1); // Black
-       vTB0->SetLineWidth(1);
-       vTB0->SetFillColor(vTB0->GetLineColor());
-       vTB0->SetFillStyle(4000); // 0% transparent
-       TGeoVolume *vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1", sTB1, medSPDcoolfl);
-       vTB1->SetVisibility(kTRUE);
-       vTB1->SetLineColor(6); // Purple
-       vTB1->SetLineWidth(1);
-       vTB1->SetFillColor(vTB1->GetLineColor());
-       vTB1->SetFillStyle(4000); // 0% transparent
-       
-       // add volumes to mother container passed as argument of this method
-       moth->AddNode(vM0,1,0); // Add virtual volume to mother
-       vA0->AddNode(vA1,1,0); // Put air inside carbon fiber.
-       vB0->AddNode(vB1,1,0); // Put air inside carbon fiber.
-       vTA0->AddNode(vTA1,1,0); // Put air inside carbon fiber.
-       vTB0->AddNode(vTB1,1,0); // Put air inside carbon fiber.
-       for(i = 0; i < ksecNCoolingTubeDips; i++) {
-               x0 = secX3[ksecDipIndex[i]];
-               y0 = secY3[ksecDipIndex[i]];
-               t = 90.0 - secAngleTurbo[i];
-               trans = new TGeoTranslation("", x0, y0, 0.5 * (sB1->GetZ(0) + sB1->GetZ(1)));
-               vB1->AddNode(vTB0, i+1, trans);
-               rot = new TGeoRotation("", 0.0, 0.0, t);
-               rotrans = new TGeoCombiTrans("", x0, y0, 0.0, rot);
-               vM0->AddNode(vTA0, i+1, rotrans);
-       } // end for i
-       vM0->AddNode(vA0, 1, 0);
-       vM0->AddNode(vB0, 1, 0);
-       // Reflection.
-       vM0->AddNode(vB0, 2, new TGeoRotation("", 90., 0., 90., 90., 180., 0.));
-       if(GetDebug(3)){
-               vM0->PrintNodes();
-               vA0->PrintNodes();
-               vA1->PrintNodes();
-               vB0->PrintNodes();
-               vB1->PrintNodes();
-               vTA0->PrintNodes();
-               vTA1->PrintNodes();
-               vTB0->PrintNodes();
-               vTB1->PrintNodes();
-       }
-}
-//
-//__________________________________________________________________________________________
-Bool_t AliITSv11GeometrySPD::GetSectorMountingPoints
-(Int_t index, Double_t &x0, Double_t &y0, Double_t &x1, Double_t &y1) const
-{
-       //
-       // Returns the edges of the straight borders in the SPD sector shape,
-       // which are used to mount staves on them.
-       // Coordinate system is that of the carbon fiber sector volume.
-       // ---
-       // Index numbering is as follows:
-       //                         /5
-       //                        /\/4
-       //                      1\   \/3
-       //                      0|___\/2
-       // ---
-       // Arguments [the ones passed by reference contain output values]:
-       //    Int_t    index   --> location index according to above scheme [0-5]
-       //    Double_t &x0     --> (by ref) x0 location or the ladder sector [cm]
-       //    Double_t &y0     --> (by ref) y0 location of the ladder sector [cm]
-       //    Double_t &x1     --> (by ref) x1 location or the ladder sector [cm]
-       //    Double_t &y1     --> (by ref) y1 location of the ladder sector [cm]
-       //    TGeoManager *mgr --> The TGeo builder
-       // ---
-       // The location is described by a line going from (x0, y0) to (x1, y1)
-       // ---
-       // Returns kTRUE if no problems encountered.
-       // Returns kFALSE if a problem was encountered (e.g.: shape not found).
-       //
-       
-       Int_t isize = fSPDsectorX0.GetSize();
-       x0 = x1 = y0 = y1 = 0.0;
-       if(index < 0 || index > isize) {
-               AliError(Form("index = %d: allowed 0 --> %", index, isize));
-               return kFALSE;
-       }
-       
-       x0 = fSPDsectorX0[index];
-       x1 = fSPDsectorX1[index];
-       y0 = fSPDsectorY0[index];
-       y1 = fSPDsectorY1[index];
-       
-       return kTRUE;
+    TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
+    rot2->SetName("rotPatch");
+    rot2->RotateX(90.0);
+    rot2->RotateY(163.0);
+    //rot2->RotateZ(132.5);
+    
+    // add collectors only on side C
+    if (sideC)
+    {
+      TGeoTranslation *trCollBox   = new TGeoTranslation(xloc - 0.5*kPlateLength + 0.5*kCollLength, 0.0, +0.5*(kPlateThickness+1.1*kCollThickness));
+      TGeoRotation    *rotCollTube = new TGeoRotation(*gGeoIdentity);
+      rotCollTube->RotateY(90.0);
+      TGeoCombiTrans  *trCollTube  = new TGeoCombiTrans(xloc + 0.5*kCollTubeLength - (0.5*kPlateLength - kCollLength), 0.0, +0.5*(kPlateThickness+2.0*kCollTubeRadius+kCollTubeThick), rotCollTube);
+      container[0]->AddNode(volCollBox, 1, trCollBox);
+      container[0]->AddNode(volCollTube, 1, trCollTube);
+    }
+        
+    Double_t dxPatch = 2.9;
+    Double_t dzPatch = 2.8;
+    TGeoCombiTrans *tr2 = new TGeoCombiTrans(1.7*ext2Length - dxPatch, 0.0, dzPatch, rot2);
+    container[3]->AddNode(volPatch, 0, tr2);
+
+    xloc = shTube->GetRmax();
+    yloc = shTube->GetRmax();
+    zloc = shTube->GetDz() - shTube->GetRmax() - kYtoHalfStave;
+    container[1]->AddNode(volTubeA, 1,
+                         new TGeoTranslation(-xloc, -yloc, zloc));
+    container[2]->AddNode(volTubeC, 1,
+                         new TGeoTranslation(-xloc, -yloc, zloc));
+
+    xloc = shTube->GetRmax();
+    yloc = (shCylTub->GetDz())*SinD(angrot) - shTube->GetRmax();
+    zloc = (shCylTub->GetDz())*CosD(angrot) + shTube->GetRmax() +kYtoHalfStave;
+    container[1]->AddNode(volCylTubA, 1,
+                         new TGeoCombiTrans(-xloc, yloc,-zloc,
+                                    new TGeoRotation("",0.,angrot,0.)));
+    container[2]->AddNode(volCylTubC, 1,
+                         new TGeoCombiTrans(-xloc, yloc,-zloc,
+                                    new TGeoRotation("",0.,angrot,0.)));
+
+    xloc = shOptFibs->GetRmax() + 2*shTube->GetRmax();
+    yloc = 1.6*shOptFibs->GetRmax();
+    zloc = shOptFibs->GetDZ() - shTube->GetRmax() - kYtoHalfStave;
+    container[1]->AddNode(volOptFibs, 1,
+                         new TGeoTranslation(-xloc, -yloc, zloc));
+    container[2]->AddNode(volOptFibs, 1,
+                         new TGeoTranslation(-xloc, -yloc, zloc));
+
+    yloc = shWatCool->GetRmax();
+    zloc = (2*shTube->GetDz() - shTube->GetRmax() - kYtoHalfStave)/2;
+    container[4]->AddNode(volWatCool, 1,
+                         new TGeoTranslation(0, -yloc, zloc));
+
+    container[4]->AddNode(volWCPltT, 1,
+                         new TGeoTranslation(0, -yloc, zloc));
+
+    yloc -= shWCPltB->GetDY();
+    xloc = shWatCool->GetRmax() + shWCPltB->GetDX();
+    container[4]->AddNode(volWCPltB, 1,
+                         new TGeoTranslation( xloc, -yloc, zloc));
+    container[4]->AddNode(volWCPltB, 2,
+                         new TGeoTranslation(-xloc, -yloc, zloc));
+
+    yloc = shWatCool->GetRmax();
+    zloc -= shWatCool->GetDz();
+    container[4]->AddNode(volFitt, 1,
+                         new TGeoTranslation(0, -yloc, zloc));
+
+    // Finally create the list of assemblies and return it to the caller
+    TList* conemodulelist = new TList();
+    conemodulelist->Add(container[0]);
+    conemodulelist->Add(container[1]);
+    conemodulelist->Add(container[2]);
+    conemodulelist->Add(container[3]);
+    conemodulelist->Add(container[4]);
+
+    return conemodulelist;
 }
-//
-//__________________________________________________________________________________________
-void AliITSv11GeometrySPD::SPDsectorShape
-(Int_t n,
- const Double_t *xc,  const Double_t *yc,  const Double_t *r,
- const Double_t *ths, const Double_t *the, 
- Int_t npr, Int_t &m, Double_t **xp, Double_t **yp) const
+
+//______________________________________________________________________
+void AliITSv11GeometrySPD::CreateCones(TGeoVolume *moth) const
 {
-               
-       // Code to compute the points that make up the shape of the SPD
-       // Carbon fiber support sections
-       // Inputs:
-       //   Int_t n        size of arrays xc,yc, and r.
-       //   Double_t *xc   array of x values for radii centers.
-       //   Double_t *yc   array of y values for radii centers.
-       //   Double_t *r    array of signed radii values.
-       //   Double_t *ths  array of starting angles [degrees].
-       //   Double_t *the  array of ending angles [degrees].
-       //   Int_t     npr  the number of lines segments to aproximate the arc.
-       // Outputs (arguments passed by reference):
-       //   Int_t       m    the number of enetries in the arrays *xp[npr+1] and *yp[npr+1].
-       //   Double_t **xp    array of x coordinate values of the line segments
-       //                    which make up the SPD support sector shape.
-       //   Double_t **yp    array of y coordinate values of the line segments
-       //                    which make up the SPD support sector shape.
-       //
-       
-       Int_t    i, k;
-       Double_t t, t0, t1;
-
-       m = n*(npr + 1);
-       if(GetDebug(2)) {
-               cout <<"        X       \t  Y  \t  R  \t  S  \t  E" << m << endl;
-               for(i = 0; i < n; i++) {
-                       cout << "{"    << xc[i] << ", ";
-                       cout << yc[i]  << ", ";
-                       cout << r[i]   << ", ";
-                       cout << ths[i] << ", ";
-                       cout << the[i] << "}, " << endl;
-               }
+    //
+    // Places all services modules in the mother reference system
+    //
+    // Created:      ?? ??? 2008  Alberto Pulvirenti
+    // Updated:      03 May 2010  Mario Sitta
+    // Updated:      04 Jul 2010  Mario Sitta  Water cooling
+    //
+
+    const Int_t kNumberOfModules    =  10;
+
+    const Double_t kInnerRadius     =  80.775*fgkmm;
+    const Double_t kZTrans          = 452.000*fgkmm;
+    const Double_t kAlphaRot        =  46.500*fgkDegree;
+    const Double_t kAlphaSpaceCool  =   9.200*fgkDegree;
+
+    TList*  modulelistA = CreateConeModule(kFALSE, 90-kAlphaRot);
+    TList*  modulelistC = CreateConeModule(kTRUE , 90-kAlphaRot);
+    TList* &modulelist  = modulelistC;
+    TGeoVolumeAssembly* module, *moduleA, *moduleC;
+
+    Double_t xloc, yloc, zloc;
+
+    //Double_t angle[10] = {18., 54., 90., 126., 162., -18., -54., -90., -126., -162.};
+    // anglem for cone modules (cables and cooling tubes)
+    // anglep for pathc panels
+    Double_t anglem[10] = {18., 54., 90., 126., 162., 198., 234., 270., 306., 342.};
+    Double_t anglep[10] = {18., 62., 90., 115., 162., 198., 242., 270., 295., 342.};
+//    Double_t angle1m[10] = {23., 53., 90., 127., 157., 203.0, 233.0, 270.0, 307.0, 337.0};
+//    Double_t angle2m[10] = {18., 53., 90., 126., 162., 198.0, 233.0, 270.0, 309.0, 342.0};
+//    Double_t angle1c[10] = {23., 53., 90., 124., 157., 203.0, 233.0, 270.0, 304.0, 337.0};
+//    Double_t angle2c[10] = {18., 44., 90., 126., 162., 198.0, 223.0, 270.0, 309.0, 342.0};
+
+    // First add the cables
+    moduleA = (TGeoVolumeAssembly*)modulelistA->At(0);
+    moduleC = (TGeoVolumeAssembly*)modulelistC->At(0);
+    for (Int_t i = 0; i < kNumberOfModules; i++) {
+        TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
+       rot1->RotateY(-kAlphaRot);
+       rot1->RotateZ(anglem[i]);
+        xloc = kInnerRadius*CosD(anglem[i]);
+        yloc = kInnerRadius*SinD(anglem[i]);
+       zloc = kZTrans;
+        moth->AddNode(moduleA, 2*i+2,
+                     new TGeoCombiTrans( xloc, yloc, zloc, rot1));
+
+        TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
+       rot2->RotateY(180.-kAlphaRot);
+       rot2->RotateZ(anglem[i]);
+        xloc = kInnerRadius*CosD(anglem[i]);
+        yloc = kInnerRadius*SinD(anglem[i]);
+       zloc = kZTrans;
+        moth->AddNode(moduleC, 2*i+1,
+                     new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2));
+    }
+
+    // Then the cooling tubes on Side A
+    module = (TGeoVolumeAssembly*)modulelist->At(1);
+    Double_t anglec;
+    for (Int_t i = 0; i < kNumberOfModules; i++) {
+        anglec = anglem[i] + kAlphaSpaceCool;
+        TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
+        rot1->RotateX(-90.0+kAlphaRot-0.04); // 0.04 fixes small overlap
+       rot1->RotateZ(-90.0+anglec);
+        xloc = kInnerRadius*CosD(anglec);
+        yloc = kInnerRadius*SinD(anglec);
+       zloc = kZTrans+0.162; // 0.162 fixes small overlap
+        moth->AddNode(module, 2*i+2, 
+                     new TGeoCombiTrans( xloc, yloc, zloc, rot1));
+    }
+
+    // And the cooling tubes on Side C
+    module = (TGeoVolumeAssembly*)modulelist->At(2);
+    for (Int_t i = 0; i < kNumberOfModules; i++) {
+        anglec = anglem[i] - kAlphaSpaceCool;
+        TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
+        rot2->RotateX(-90.0+kAlphaRot-0.04); // 0.04 fixes small overlap
+       rot2->RotateY(180.);
+       rot2->RotateZ(90.0+anglec);
+        xloc = kInnerRadius*CosD(anglec);
+        yloc = kInnerRadius*SinD(anglec);
+       zloc = kZTrans+0.162; // 0.162 fixes small overlap
+        moth->AddNode(module, 2*i+1,
+                     new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2));
+    }
+
+    // Then the water cooling tubes
+    module = (TGeoVolumeAssembly*)modulelist->At(4);
+    for (Int_t i = 1; i < kNumberOfModules; i++) { // i = 1,2,...,9
+        if (i != 5) { // There is no tube in this position
+         anglec = (anglem[i-1]+anglem[i])/2;
+           TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
+           rot1->RotateX(-90.0+kAlphaRot);
+           rot1->RotateZ(-90.0+anglec);
+           xloc = kInnerRadius*CosD(anglec);
+           yloc = kInnerRadius*SinD(anglec);
+           zloc = kZTrans;
+           moth->AddNode(module, 2*i+2,
+                         new TGeoCombiTrans( xloc, yloc, zloc, rot1));
+
+           TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
+           rot2->RotateX(-90.0+kAlphaRot);
+           rot2->RotateY(180.);
+           rot2->RotateZ(90.0+anglec);
+           xloc = kInnerRadius*CosD(anglec);
+           yloc = kInnerRadius*SinD(anglec);
+           zloc = kZTrans;
+           moth->AddNode(module, 2*i+1,
+                         new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2));
        }
-       
-       if (GetDebug(3)) cout << "Double_t sA0 = [" << n*(npr+1)+1<<"][";
-       if (GetDebug(4)) cout << "3] {";
-       else if(GetDebug(3)) cout <<"2] {";
-       t0 = (Double_t)npr;
-       for(i = 0; i < n; i++) {
-               t1 = (the[i] - ths[i]) / t0;
-               if(GetDebug(5)) cout << "t1 = " << t1 << endl;
-               for(k = 0; k <= npr; k++) {
-                       t = ths[i] + ((Double_t)k) * t1;
-                       xp[i][k] = TMath::Abs(r[i]) * CosD(t) + xc[i];
-                       yp[i][k] = TMath::Abs(r[i]) * SinD(t) + yc[i];
-                       if(GetDebug(3)) {
-                               cout << "{" << xp[i][k] << "," << yp[i][k];
-                               if (GetDebug(4)) cout << "," << t;
-                               cout << "},";
-                       } // end if GetDebug
-               } // end for k
-               if(GetDebug(3)) cout << endl;
-       } // end of i
-       if(GetDebug(3)) cout << "{"  << xp[0][0] << ", " << yp[0][0];
-       if(GetDebug(4)) cout << ","  << ths[0];
-       if(GetDebug(3)) cout << "}}" << endl;
-}
-//
-//__________________________________________________________________________________________
-TGeoVolume* AliITSv11GeometrySPD::CreateLadder
-(Int_t layer,TArrayD &sizes, TGeoManager *mgr) const
-{
-       // Creates the "ladder" = silicon sensor + 5 chips.
-       // Returns a TGeoVolume containing the following components:
-       //  - the sensor (TGeoBBox), whose name depends on the layer
-       //  - 5 identical chips (TGeoBBox)
-       //  - a guard ring around the sensor (subtraction of TGeoBBoxes),
-       //    which is separated from the rest of sensor because it is not 
-       //    a sensitive part
-       //  - bump bondings (TGeoBBox stripes for the whole width of the 
-       //    sensor, one per column).
-       // ---
-       // Arguments:
-       //  1 - the owner layer (MUST be 1 or 2 or a fatal error is raised)
-       //  2 - a TArrayD passed by reference, which contains some relevant 
-       //      sizes of this object:
-       //      size[0] = 'thickness' (the direction orthogonal to the ALICE 
-       //                 Z axis, along which the different parts of the 
-       //                  stave are superimposed on each other)
-       //      size[1] = 'length' (the direction along the ALICE Z axis)
-       //      size[2] = 'width' (the direction orthogonal to both the 
-       //                above ones) 
-       //  3 - the used TGeoManager
-       
-       // ** CRITICAL CHECK ** 
-       // layer number can be ONLY 1 or 2
-       if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2");
-       
-       // ** MEDIA **
-       // instantiate all required media
-       TGeoMedium *medAir       = GetMedium("AIR$",mgr);
-       TGeoMedium *medSPDSiChip = GetMedium("SPD SI CHIP$",mgr);// SPD SI CHIP
-       TGeoMedium *medSi        = GetMedium("SI$",mgr);
-       TGeoMedium *medBumpBond  = GetMedium("COPPER$",mgr); // ??? BumpBond    
-       
-       // ** SIZES **
-       // for the chip, also the spacing between them is required
-       Double_t chipThickness  = fgkmm *  0.150;
-       Double_t chipWidth      = fgkmm * 15.950;
-       Double_t chipLength     = fgkmm * 13.600;
-       Double_t chipSpacing    = fgkmm *  0.400;       
-       // for the sensor, we define the area of sensitive volume
-       // while the guard ring is added as a separate piece
-       Double_t sensThickness  = fgkmm *  0.200;
-       Double_t sensLength     = fgkmm * 69.600;
-       Double_t sensWidth      = fgkmm * 12.800;
-       Double_t guardRingWidth = fgkmm *  0.560;
-       // bump bond is defined as a small stripe of height = 0.012 mm
-       // and a suitable width to keep the same volume it has 
-       // before being compressed (a line of spheres of 0.025 mm radius)
-       Double_t bbLength    = fgkmm * 0.042;
-       Double_t bbWidth     = sensWidth;
-       Double_t bbThickness = fgkmm * 0.012;
-       Double_t bbPos       = 0.080; // Z position w.r. to left pixel edge
-       
-       // ** VOLUMES **
-       // for readability reasons, create references to
-       // the overall sizes which will be returned in the TArrayD
-       if (sizes.GetSize() != 3) sizes.Set(3);
-       Double_t &thickness = sizes[0];
-       Double_t &length = sizes[1];
-       Double_t &width = sizes[2];             
-       // the container is a box which exactly enclose all the stuff;
-       // it is filled with air and named according to the layer number
-       width = chipWidth;
-       length = sensLength + 2.0*guardRingWidth;
-       thickness = sensThickness + chipThickness + bbThickness;
-       //TGeoVolume *container = mgr->MakeBox(Form("LAY%d_LADDER", layer),
-       //                       medAir, 0.5*width, 0.5*thickness, 0.5*length);
-       // We must have the x coordinate of this container conresponding to 
-       // the x corrdinate of the sensitive volume. In order to do that we 
-       // are going to create the container with a local reference system 
-       // that is not in the middle of the box. This need to call directly 
-       // the constructor of the shape, with an option :
-       Double_t xSens = 0.5 * (width - sensWidth - 2.0*guardRingWidth);
-       Double_t originShift[3] = {-xSens, 0., 0.};
-       TGeoBBox *shapeContainer = new TGeoBBox(0.5*width, 0.5*thickness, 0.5*length, originShift);
-       TGeoVolume *container = new TGeoVolume(Form("LAY%d_LADDER",layer), shapeContainer, medAir);
-       // the chip
-       TGeoVolume *volChip = mgr->MakeBox
-               ("CHIP", medSPDSiChip, 0.5*chipWidth, 0.5*chipThickness, 0.5*chipLength);
-       // the sensor
-       TGeoVolume *volSens = mgr->MakeBox
-               (GetSenstiveVolumeName(layer), medSi, 0.5*sensWidth, 0.5*sensThickness, 0.5*sensLength);
-       // the guard ring shape is the subtraction of two boxes with the same center.
-       TGeoBBox  *shIn = new TGeoBBox(0.5*sensWidth, sensThickness, 0.5*sensLength);
-       TGeoBBox  *shOut = new TGeoBBox
-               (0.5*sensWidth + guardRingWidth, 0.5*sensThickness, 0.5*sensLength + guardRingWidth);
-       shIn->SetName("innerBox");
-       shOut->SetName("outerBox");
-       TGeoCompositeShape *shBorder = new TGeoCompositeShape("", "outerBox-innerBox");
-       TGeoVolume *volBorder = new TGeoVolume("GUARD_RING", shBorder, medSi);
-       // bump bonds for one whole column
-       TGeoVolume *volBB = mgr->MakeBox
-               ("BB", medBumpBond, 0.5*bbWidth, 0.5*bbThickness, 0.5*bbLength);
-       // set colors of all objects for visualization  
-       volSens->SetLineColor(kYellow + 1);
-       volChip->SetLineColor(kGreen);
-       volBorder->SetLineColor(kYellow + 3);
-       
-       // ** MOVEMENTS **
-       // translation for the sensor parts: direction of width and 
-       // thickness (moved up)
-       Double_t ySens = 0.5 * (thickness - sensThickness);
-       Double_t zSens = 0.0;
-       // We want that the x of the ladder is the same as the one of its sensitive volume
-       TGeoTranslation *trSens = new TGeoTranslation(xSens - xSens, ySens, zSens);
-       // translation for the bump bonds:
-       // keep same y used for sensors, but change the Z
-       TGeoTranslation *trBB[160];
-       Double_t x = xSens - xSens;
-       Double_t y = 0.5 * (thickness - bbThickness) - sensThickness;
-       Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos;
-       Int_t i;
-       for (i = 0; i < 160; i++) {
-               trBB[i] = new TGeoTranslation(x, y, z);
-               switch(i) {
-               case  31:
-               case  63:
-               case  95:
-               case 127:
-                       z += fgkmm * 0.625 + fgkmm * 0.2;
-                       break;
-               default:
-                       z += fgkmm * 0.425;
-               } // end switch
-       } // end for i
-       // translations for the chip box: direction of length and 
-       // thickness (moved down)
-       TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0};
-       x = -xSens;
-       y = 0.5 * (chipThickness - thickness);
-       z = 0.0;
-       for (i = 0; i < 5; i++) {
-               z = -0.5*length + guardRingWidth 
-                 + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength;
-               trChip[i] = new TGeoTranslation(x, y, z);
-       } // end for i
-       
-       // add nodes to container
-       container->AddNode(volSens, 1, trSens);
-       container->AddNode(volBorder, 1, trSens);
-       for (i = 0; i < 160; i++) container->AddNode(volBB, i, trBB[i]);
-       for (i = 0; i < 5; i++) container->AddNode(volChip, i + 2, trChip[i]);
-       
-       // return the container
-       return container;
-}
-//
-//__________________________________________________________________________________________
-TGeoVolume* AliITSv11GeometrySPD::CreateClip
-(TArrayD &sizes, TGeoManager *mgr) const
-{
-       //
-       // Creates the carbon fiber clips which are added to the central ladders.
-       // They have a complicated shape which is approximated by a TGeoXtru
-       // Implementation of a single clip over an half-stave.
-       // It has a complicated shape which is approximated to a section like this:
-       //   
-       //     6
-       //     /\   .
-       //  7 //\\  5
-       //    / 1\\___________________4
-       //   0    \___________________
-       //        2                   3
-       // with a finite thickness for all the shape 
-       // Its local reference frame is such that point A corresponds to origin.
-       //
-       
-       Double_t fullLength      = fgkmm * 12.6;    // = x4 - x0
-       Double_t flatLength      = fgkmm *  5.4;    // = x4 - x3
-       Double_t inclLongLength  = fgkmm *  5.0;    // = 5-6
-       Double_t inclShortLength = fgkmm *  2.0;    // = 6-7
-       Double_t fullHeight      = fgkmm *  2.8;    // = y6 - y3
-       Double_t thickness       = fgkmm *  0.2;    // thickness
-       Double_t totalLength     = fgkmm * 52.0;    // total length in Z
-       Double_t holeSize        = fgkmm *  4.0;    // dimension of cubic hole inserted for pt1000
-       Double_t angle1          = 27.0;            // supplementary of angle DCB
-       Double_t angle2;                            // angle DCB
-       Double_t angle3;                            // angle of GH with vertical
-       
-       angle2 = 0.5 * (180.0 - angle1);
-       angle3 = 90.0 - TMath::ACos(fullLength - flatLength - inclLongLength*TMath::Cos(angle1)) * TMath::RadToDeg();
-       
-       angle1 *= TMath::DegToRad();
-       angle2 *= TMath::DegToRad();
-       angle3 *= TMath::DegToRad();
-       
-       Double_t x[8], y[8];
-       
-       x[0] =  0.0;
-       x[1] = x[0] + fullLength - flatLength - inclLongLength*TMath::Cos(angle1);
-       x[2] = x[0] + fullLength - flatLength;
-       x[3] = x[0] + fullLength;
-       x[4] = x[3];
-       x[5] = x[4] - flatLength + thickness * TMath::Cos(angle2);
-       x[6] = x[1];
-       x[7] = x[0];
-       
-       y[0] = 0.0;
-       y[1] = y[0] + inclShortLength * TMath::Cos(angle3);
-       y[2] = y[1] - inclLongLength * TMath::Sin(angle1);
-       y[3] = y[2];
-       y[4] = y[3] + thickness;
-       y[5] = y[4];
-       y[6] = y[1] + thickness;
-       y[7] = y[0] + thickness;
-       
-       sizes.Set(7);
-       sizes[0] = totalLength;
-       sizes[1] = fullHeight;
-       sizes[2] = y[2];
-       sizes[3] = y[6];
-       sizes[4] = x[0];
-       sizes[5] = x[3];
-       sizes[6] = x[2];
-       
-       TGeoXtru *shClip = new TGeoXtru(2);
-       shClip->SetName("SHCLIP");
-       shClip->DefinePolygon(8, x, y);
-       shClip->DefineSection(0, -0.5*totalLength, 0., 0., 1.0);
-       shClip->DefineSection(1,  0.5*totalLength, 0., 0., 1.0);
-       
-       TGeoBBox *shHole = new TGeoBBox("SH_CLIPHOLE", 0.5*holeSize, 0.5*holeSize, 0.5*holeSize);
-       TGeoTranslation *tr1 = new TGeoTranslation("TR_CLIPHOLE1", x[2], 0.0,  fgkmm*14.);
-       TGeoTranslation *tr2 = new TGeoTranslation("TR_CLIPHOLE2", x[2], 0.0, 0.0);
-       TGeoTranslation *tr3 = new TGeoTranslation("TR_CLIPHOLE3", x[2], 0.0, -fgkmm*14.);
-       tr1->RegisterYourself();
-       tr2->RegisterYourself();
-       tr3->RegisterYourself();
-       
-       TString strExpr("SHCLIP-(");
-       strExpr.Append(Form("%s:%s+", shHole->GetName(), tr1->GetName()));
-       strExpr.Append(Form("%s:%s+", shHole->GetName(), tr2->GetName()));
-       strExpr.Append(Form("%s:%s)", shHole->GetName(), tr3->GetName()));
-       TGeoCompositeShape *shClipHole = new TGeoCompositeShape("SHCLIPHOLES", strExpr.Data());
-       
-       TGeoMedium *mat = GetMedium("ITSspdCarbonFiber", mgr);
-       TGeoVolume *vClip = new TGeoVolume("clip", shClipHole, mat);
-       vClip->SetLineColor(kGray + 2);
-       return vClip;
-}
-//
-//__________________________________________________________________________________________
-TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateGroundingFoilSingle
-(Int_t type, TArrayD &sizes, TGeoManager *mgr) const
-{
-       // Returns a TGeoVolume representing a single grounding foil layer.
-       // This shape is used to create the two real foils of the GF (one in 
-       // kapton, and one in aluminum), and also to implement the glue 
-       // layers which link the GF to the carbon fiber support, and to the 
-       // ladders.
-       // ---
-       // The glue and kapton layers have exactly the same size, while 
-       // the aluminum foil has some small differences in its overall size 
-       // and in the dimensions of its holes. The first argument passed to 
-       // the function ("type") is used to choose between all these 
-       // possibilities:
-       //   - type = 0 --> kapton layer
-       //   - type = 1 --> aluminum layer
-       //   - type = 2 --> glue layer between support and GF
-       //   - type = 3 --> glue layer between GF and ladders
-       // ---
-       // The complete object is created as the sum of the following parts:
-       // 1) the part which is connected to the chips, which is a 
-       //    simple box with some box-shaped holes at regular intervals
-       // 2) a trapezoidal connection where the Y size changes
-       // 3) another box with a unique hole of the same shape and size as above
-       // 4) another trapezoidal connection where the Y size changes
-       // 5) a final part which is built as a sequence of 4 BOX volumes
-       //    where the first and the third are equal and the others have 
-       //    same size in Y.
-       // ---
-       // The sizes of all parts are parameterized with variable names,
-       // even if their value is fixed according to engineers' drawings.
-       // ---
-       // The returns value is a TGeoVolume object which contains all parts 
-       // of this layer. The 'sizes' argument passed by reference will 
-       // contain the three dimensions of the container and some other 
-       // values which upper level methods (stave assemblier) must know:
-       //   - sizes[0] = full thickness
-       //   - sizes[1] = full length
-       //   - sizes[2] = full width
-       //   - sizes[3] = hole length
-       //   - sizes[4] = hole width
-       //   - sizes[5] = position of first hole center
-       //   - sizes[6] = standard separation between holes
-       //   - sizes[7] = separation between 5th and 6th hole
-       //   - sizes[8] = separation between 10th and 11th hole
-       //   - sizes[9] = separation between the upper hole border and the 
-       //                foil border
-       // ** MEDIA **
-       // - vacuum for the container volume
-       // - kapton/aluminum/glue for the pysical volume
-       TGeoMedium *mat = GetMedium("SPD KAPTON(POLYCH2)$", mgr);       
-       // ** SIZES **
-       Double_t sizeZ      = fgkmm *   0.05;
-       Double_t part1X     = fgkmm * 140.71;
-       Double_t part2X     = fgkmm *   2.48;
-       Double_t part3X     = fgkmm *  26.78;
-       Double_t part4X     = fgkmm *   4.00;
-       Double_t part5X     = fgkmm *  10.00;
-       Double_t part6X     = fgkmm *  24.40;
-       Double_t part7X     = fgkmm *  10.00;
-       Double_t part8X     = fgkmm *  24.81;
-       Double_t sizeYMax   = fgkmm *  15.95;
-       Double_t sizeYMed1  = fgkmm *  15.00;
-       Double_t sizeYMed2  = fgkmm *  11.00;
-       Double_t sizeYMin   = fgkmm *   4.40;
-       Double_t holeX      = fgkmm *  10.00;
-       Double_t holeY      = fgkmm *   7.50;
-       Double_t holeFirstX = fgkmm *   7.05;  // position of center of first hole
-       Double_t holeSepX   = fgkmm *  14.00;  // separation between the 
-       // centers of two consecutive holes
-       Double_t holeSepX1  = fgkmm *   1.42;  // to be added after 4th hole in 
-       // volume 1
-       Double_t holeSepY   = fgkmm *   4.40;  // dist between hole's and 
-       // volume's upper border
-       Double_t holeAloneX = fgkmm *  13.28;  // position of hole center in 
-       // box "part 3"
-       // correct sizes/material in case we are on Aluminum foil
-       if (type == 1) {
-               mat = GetMedium("AL$", mgr);
-               sizeZ       = fgkmm * 0.025;
-               part1X     -= fgkmm * 0.2;
-               part5X     -= fgkmm * 0.2;
-               part6X     += fgkmm * 0.4;
-               part7X     -= fgkmm * 0.4;
-               sizeYMax   -= fgkmm * 0.4;
-               sizeYMed1  -= fgkmm * 0.4;
-               sizeYMed2  -= fgkmm * 0.4;
-               sizeYMin   -= fgkmm * 0.4;
-               holeX      += fgkmm * 0.4;
-               holeY      += fgkmm * 0.4;
-               holeFirstX -= fgkmm * 0.2;
-               holeSepY   -= fgkmm * 0.4;
-       } // end if type==1
-       
-       // correct sizes/material in case we are in a glue layer
-       if (type == 2) {
-               mat = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT
-               sizeZ = fgkmm * 0.1175;
-       } // end if type ==2
-       if (type == 3) {
-               mat = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT
-               sizeZ = fgkmm * 0.1175 - fAlignmentGap;
-               if (sizeZ <= 0.0) {
-                       AliFatal("Too large gap thickness.");
-                       return 0;
-               } // end if sizeZ<=0
-       }// end if type==3
-     // initialize the argument TArrayD
-       if (sizes.GetSize() != 10) sizes.Set(10);
-       Double_t &thickness = sizes[0];
-       Double_t &length = sizes[1];
-       Double_t &width = sizes[2];
-       // compute full length and width
-       length = part1X+part2X+part3X+part4X+part5X+part6X+part7X+part8X;
-       width = sizeYMax;
-       thickness = sizeZ;
-       sizes[3] = holeX;
-       sizes[4] = holeY;
-       sizes[5] = holeFirstX;
-       sizes[6] = holeSepX;
-       sizes[7] = holeSepX + holeSepX1;
-       sizes[8] = fgkmm * 22.0; // the last separation is not used in the 
-       // rest, and is implemented from scratch
-       sizes[9] = holeSepY;
-       // ** OBJECT NAMES **
-       // define names for the object
-       char stype[20];
-       if (type == 0) strcpy(stype, "KAP");
-       else if (type == 1) strcpy(stype, "ALU");
-       else if (type == 2) strcpy(stype, "GLUE1");
-       else if (type == 3) strcpy(stype, "GLUE2");
-       else {
-               AliFatal(Form("Type %d not allowed for grounding foil", type));
-       } // end if else
-       // ** VOLUMES **
-       // grounding foil world, bounded exactly around the limits of the structure
-       // TGeoVolume *container = mgr->MakeBox(Form("GFOIL_%s", stype), 
-       // air, 0.5*length, 0.5*sizeYMax, 0.5*sizeZ);
-       TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form("GFOIL_%s",
-                                                                                                                               stype));
-       // === PART 1: box with holes ===
-       TGeoBBox *shBox1 = 0, *shHole = 0;
-       shBox1 = new TGeoBBox(Form("GF%s_BOX1", stype), 0.5*part1X, 0.5*sizeYMax, 
-                                                 0.5*sizeZ);
-       shHole = new TGeoBBox(Form("GF%s_HOLE", stype), 0.5*holeX, 0.5*holeY,
-                                                 0.5*sizeZ + 0.01);
-       // define the position of all holes and compose the expression
-       // to define the composite shape (box - holes)
-       Double_t firstX = -0.5*part1X + holeFirstX;
-       Double_t transY =  0.5*sizeYMax - holeSepY - 0.5*holeY;
-       Double_t transX;
-       TGeoTranslation *transHole[10];
-       TString strComposite(Form("%s - (", shBox1->GetName()));
-       for (Int_t i = 0; i < 10; i++) {
-               transX = firstX + (Double_t)i * holeSepX;
-               if (i > 4) transX += holeSepX1;
-               transHole[i] = new TGeoTranslation(Form("TGF%s_HOLE%d", stype, i), 
-                                                                                  transX, transY, 0.0);
-               transHole[i]->RegisterYourself();
-               strComposite.Append(Form("%s:%s", shHole->GetName(), 
-                                                                transHole[i]->GetName()));
-               if (i < 9) strComposite.Append("+"); else strComposite.Append(")");
-       } // end for i
-       // create composite shape
-       TGeoCompositeShape *shPart1 = new TGeoCompositeShape(
-                                                                                                                Form("GF%s_PART1_SHAPE", stype), strComposite.Data());
-       // create the volume
-       TGeoVolume *volPart1 = new TGeoVolume(Form("GF%s_PART1", stype), 
-                                                                                 shPart1, mat);
-       // === PART 2: first trapezoidal connection
-       TGeoArb8 *shTrap1 = new TGeoArb8(0.5*sizeZ);
-       shTrap1->SetVertex(0, -0.5*part2X,  0.5*sizeYMax);
-       shTrap1->SetVertex(1,  0.5*part2X,  0.5*sizeYMax);
-       shTrap1->SetVertex(2,  0.5*part2X,  0.5*sizeYMax - sizeYMed1);
-       shTrap1->SetVertex(3, -0.5*part2X, -0.5*sizeYMax);
-       shTrap1->SetVertex(4, -0.5*part2X,  0.5*sizeYMax);
-       shTrap1->SetVertex(5,  0.5*part2X,  0.5*sizeYMax);
-       shTrap1->SetVertex(6,  0.5*part2X,  0.5*sizeYMax - sizeYMed1);
-       shTrap1->SetVertex(7, -0.5*part2X, -0.5*sizeYMax);
-       TGeoVolume *volPart2 = new TGeoVolume(Form("GF%s_PART2", stype), 
-                                                                                 shTrap1, mat);
-       // === PART 3: other box with one hole
-       TGeoBBox *shBox2 = 0;
-       shBox2 = new TGeoBBox(Form("GF%s_BOX2", stype), 0.5*part3X, 
-                                                 0.5*sizeYMed1, 0.5*sizeZ);
-       // define the position of the hole
-       transX = holeAloneX - 0.5*part3X;
-       transY -= 0.5*(sizeYMax - sizeYMed1);
-       TGeoTranslation *transHoleAlone = new TGeoTranslation(
-                                                                                                                 Form("TGF%s_HOLE_ALONE", stype), transX, transY, 0.0);
-       transHoleAlone->RegisterYourself();
-       // create composite shape
-       TGeoCompositeShape *shPart3 = new TGeoCompositeShape(
-                                                                                                                Form("GF%sPART3_SHAPE", stype), 
-                                                                                                                Form("%s - %s:%s", shBox2->GetName(), 
-                                                                                                                         shHole->GetName(), transHoleAlone->GetName()));
-       // create the volume
-       TGeoVolume *volPart3 = new TGeoVolume(Form("GF%s_PART3", stype), 
-                                                                                 shPart3, mat);
-       // === PART 4: second trapezoidal connection
-       TGeoArb8 *shTrap2 = new TGeoArb8(0.5*sizeZ);
-       shTrap2->SetVertex(0, -0.5*part4X,  0.5*sizeYMed1);
-       shTrap2->SetVertex(1,  0.5*part4X,  0.5*sizeYMed1);
-       shTrap2->SetVertex(2,  0.5*part4X,  0.5*sizeYMed1 - sizeYMed2);
-       shTrap2->SetVertex(3, -0.5*part4X, -0.5*sizeYMed1);
-       shTrap2->SetVertex(4, -0.5*part4X,  0.5*sizeYMed1);
-       shTrap2->SetVertex(5,  0.5*part4X,  0.5*sizeYMed1);
-       shTrap2->SetVertex(6,  0.5*part4X,  0.5*sizeYMed1 - sizeYMed2);
-       shTrap2->SetVertex(7, -0.5*part4X, -0.5*sizeYMed1);
-       TGeoVolume *volPart4 = new TGeoVolume(Form("GF%s_PART4", stype), 
-                                                                                 shTrap2, mat);
-       // === PART 5 --> 8: sequence of boxes ===
-       TGeoVolume *volPart5 = mgr->MakeBox(Form("GF%s_BOX3", stype), mat, 
-                                                                               0.5*part5X, 0.5*sizeYMed2, 0.5*sizeZ);
-       TGeoVolume *volPart6 = mgr->MakeBox(Form("GF%s_BOX4", stype), mat, 
-                                                                               0.5*part6X, 0.5*sizeYMin , 0.5*sizeZ);
-       TGeoVolume *volPart7 = mgr->MakeBox(Form("GF%s_BOX5", stype), mat, 
-                                                                               0.5*part7X, 0.5*sizeYMed2, 0.5*sizeZ);
-       TGeoVolume *volPart8 = mgr->MakeBox(Form("GF%s_BOX6", stype), mat, 
-                                                                               0.5*part8X, 0.5*sizeYMin , 0.5*sizeZ);
-       // === SET COLOR ===
-       Color_t color = kRed + 3;
-       if (type == 1) color = kGreen;
-       if (type == 2 || type == 3) color = kYellow;
-       volPart1->SetLineColor(color);
-       volPart2->SetLineColor(color);
-       volPart3->SetLineColor(color);
-       volPart4->SetLineColor(color);
-       volPart5->SetLineColor(color);
-       volPart6->SetLineColor(color);
-       volPart7->SetLineColor(color);
-       volPart8->SetLineColor(color);
-       // ** MOVEMENTS **      
-       transX = 0.5*(part1X - length);
-       TGeoTranslation *transPart1 = new TGeoTranslation(transX, 0.0, 0.0);
-       transX += 0.5*(part1X + part2X);
-       TGeoTranslation *transPart2 = new TGeoTranslation(transX, 0.0, 0.0);
-       transX += 0.5*(part2X + part3X);
-       transY  = 0.5*(sizeYMax - sizeYMed1);
-       TGeoTranslation *transPart3 = new TGeoTranslation(transX, transY, 0.0);
-       transX += 0.5*(part3X + part4X);
-       TGeoTranslation *transPart4 = new TGeoTranslation(transX, transY, 0.0);
-       transX += 0.5*(part4X + part5X);
-       transY  = 0.5*(sizeYMax - sizeYMed2);
-       TGeoTranslation *transPart5 = new TGeoTranslation(transX, transY, 0.0);
-       transX += 0.5*(part5X + part6X);
-       transY  = 0.5*(sizeYMax - sizeYMin);
-       TGeoTranslation *transPart6 = new TGeoTranslation(transX, transY, 0.0);
-       transX += 0.5*(part6X + part7X);
-       transY  = 0.5*(sizeYMax - sizeYMed2);
-       TGeoTranslation *transPart7 = new TGeoTranslation(transX, transY, 0.0);
-       transX += 0.5*(part7X + part8X);
-       transY  = 0.5*(sizeYMax - sizeYMin);
-       TGeoTranslation *transPart8 = new TGeoTranslation(transX, transY, 0.0);
-       // add the partial volumes to the container
-       container->AddNode(volPart1, 1, transPart1);
-       container->AddNode(volPart2, 2, transPart2);
-       container->AddNode(volPart3, 3, transPart3);
-       container->AddNode(volPart4, 4, transPart4);
-       container->AddNode(volPart5, 5, transPart5);
-       container->AddNode(volPart6, 6, transPart6);
-       container->AddNode(volPart7, 7, transPart7);
-       container->AddNode(volPart8, 8, transPart8);
-       return container;
-}
-//
-//__________________________________________________________________________________________
-TGeoVolume* AliITSv11GeometrySPD::CreateGroundingFoil
-(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const
-{
-       // Create a volume containing all parts of the grounding foil a 
-       // half-stave. The use of the TGeoXtru shape causes that in each 
-       // single component volume the Z axis lies perpendicularly to the 
-       // polygonal basis of this shape. Since we want that the Z axis 
-       // of this volume must coincide with the one of the ALICE global 
-       // reference frame, this requires some rotations of each component, 
-       // besides the necessary translations to place it correctly with 
-       // respect to the whole stave volume.
-       // ---
-       // Arguments:
-       //  1: a boolean value to know if it is the grounding foir for 
-       //     the right or left side
-       //  2: a TArrayD which will contain the dimension of the container box:
-       //       - size[0] = length along Z (the beam line direction)
-       //       - size[1] = the 'width' of the stave, which defines, together 
-       //                   with Z, the plane of the carbon fiber support
-       //       - size[2] = 'thickness' (= the direction along which all 
-       //                    stave components are superimposed)
-       //  3: the TGeoManager
-       // ---
-       // The return value is a TGeoBBox volume containing all grounding 
-       // foil components.
-       // to avoid strange behaviour of the geometry manager,
-       // create a suffix to be used in the names of all shapes
-       char suf[5];
-       if (isRight) strcpy(suf, "R"); else strcpy(suf, "L");
-       // this volume will be created in order to ease its placement in 
-       // the half-stave; then, it is added here the small distance of 
-       // the "central" edge of each volume from the Z=0 plane in the stave 
-       // reference (which coincides with ALICE one)
-       Double_t dist = fgkmm * 0.71;           
-       // create the component volumes and register their sizes in the 
-       // passed arrays for readability reasons, some reference variables 
-       // explicit the meaning of the array slots
-       TArrayD kpSize(9), alSize(9), g1Size(9), g2Size(9);
-       TGeoVolume *kpVol = CreateGroundingFoilSingle(0, kpSize, mgr);
-       TGeoVolume *alVol = CreateGroundingFoilSingle(1, alSize, mgr);
-       TGeoVolume *g1Vol = CreateGroundingFoilSingle(2, g1Size, mgr);
-       TGeoVolume *g2Vol = CreateGroundingFoilSingle(3, g2Size, mgr);
-       Double_t &kpLength = kpSize[1],&kpThickness=kpSize[0];//,&kpWidth=kpSize[2];
-       Double_t &alLength = alSize[1],&alThickness=alSize[0];//,&alWidth=alSize[2];
-       Double_t &g1Thickness = g1Size[0], &g2Thickness = g2Size[0];
-
-       // create references for the final size object
-       if (sizes.GetSize() != 3) sizes.Set(3);
-       Double_t &fullThickness = sizes[0];
-       Double_t &fullLength = sizes[1];
-       Double_t &fullWidth = sizes[2];                 
-       // kapton leads the larger dimensions of the foil 
-       // (including the cited small distance from Z=0 stave reference plane)
-       // the thickness is the sum of the ones of all components
-       fullLength    = kpSize[1] + dist;
-       fullWidth     = kpSize[2];
-       fullThickness = kpSize[0] + alSize[0] + g1Size[0] + g2Size[0];
-       // create the container
-       TGeoMedium *air = GetMedium("AIR$", mgr);
-       TGeoVolume *container = mgr->MakeBox(Form("GFOIL_%s", suf), air, 
-                                                                                0.5*fullThickness, 0.5*fullWidth, 0.5*fullLength);
-       // create the common correction rotation (which depends of what side 
-       // we are building)
-       TGeoRotation *rotCorr = new TGeoRotation(*gGeoIdentity);
-       if (isRight) rotCorr->RotateY(90.0);
-       else rotCorr->RotateY(-90.0);           
-       // compute the translations, which are in the length and thickness 
-       // directions
-       Double_t x, y, z, shift = 0.0;
-       if (isRight) shift = dist;
-       // glue (bottom)
-       x = -0.5*(fullThickness - g1Thickness);
-       z =  0.5*(fullLength - kpLength) - shift;
-       TGeoCombiTrans *g1Trans = new TGeoCombiTrans(x, 0.0, z, rotCorr);
-       // kapton
-       x += 0.5*(g1Thickness + kpThickness);
-       TGeoCombiTrans *kpTrans  = new TGeoCombiTrans(x, 0.0, z, rotCorr);
-       // aluminum
-       x += 0.5*(kpThickness + alThickness);
-       z  = 0.5*(fullLength - alLength) - shift - 0.5*(kpLength - alLength);
-       TGeoCombiTrans *alTrans  = new TGeoCombiTrans(x, 0.0, z, rotCorr);
-       // glue (top)
-       x += 0.5*(alThickness + g2Thickness);
-       z  = 0.5*(fullLength - kpLength) - shift;
-       TGeoCombiTrans *g2Trans = new TGeoCombiTrans(x, 0.0, z, rotCorr);
-               
-       // add to container
-       container->AddNode(kpVol, 0, kpTrans);
-       container->AddNode(alVol, 0, alTrans);
-       container->AddNode(g1Vol, 0, g1Trans);
-       container->AddNode(g2Vol, 0, g2Trans);  
-       // to add the grease we remember the sizes of the holes, stored as 
-       // additional parameters in the kapton layer size:
-       //   - sizes[3] = hole length
-       //   - sizes[4] = hole width
-       //   - sizes[5] = position of first hole center
-       //   - sizes[6] = standard separation between holes
-       //   - sizes[7] = separation between 5th and 6th hole
-       //   - sizes[8] = separation between 10th and 11th hole
-       //   - sizes[9] = separation between the upper hole border and 
-       //                the foil border
-       Double_t holeLength      = kpSize[3];
-       Double_t holeWidth       = kpSize[4];
-       Double_t holeFirstZ      = kpSize[5];
-       Double_t holeSepZ        = kpSize[6];
-       Double_t holeSep5th6th   = kpSize[7];
-       Double_t holeSep10th11th = kpSize[8];
-       Double_t holeSepY        = kpSize[9];
-       // volume (common)
-       TGeoMedium *grease = GetMedium("SPD KAPTON(POLYCH2)$", mgr); // ??? GREASE
-       TGeoVolume *hVol   = mgr->MakeBox("GREASE", grease, 0.5*fullThickness, 
-                                                                         0.5*holeWidth, 0.5*holeLength);
-       hVol->SetLineColor(kBlue);
-       // displacement of volumes in the container
-       Int_t    idx = 0;
-       x = 0.0;
-       y = 0.5*(fullWidth - holeWidth) - holeSepY;
-       if (isRight) z = holeFirstZ - 0.5*fullLength + dist;
-       else z = 0.5*fullLength - holeFirstZ - dist;
-       for (Int_t i = 0; i < 11; i++) {
-               TGeoTranslation *t = 0;
-               t = new TGeoTranslation(x, y, -z);
-               container->AddNode(hVol, idx++, t);
-               if (i < 4) shift = holeSepZ;
-               else if (i == 4) shift = holeSep5th6th;
-               else if (i < 9) shift = holeSepZ;
-               else shift = holeSep10th11th;
-               if (isRight) z += shift;
-               else z -= shift;
-       }// end for i
-       return container;
-}
-//
-//__________________________________________________________________________________________
-TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateMCM
-(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const
-{
-       // Assemblies all the components of the MCM and builds it as an 
-       // assembly, because its large thickness could cause inexistent 
-       // overlaps if all components were put into a true TGeoBBox.
-       // This assembly contains:
-       //  - a layer of glue which has the same size of the MCM itself, 
-       //     and it the lowest part
-       //  - the thin part of the MCM
-       //  - the chips on the MCM, according to the specifications from EDMS
-       //  - the cover which is superimposed to the part of the MCM with the chips
-       // ---
-       // Even if this is an assembly, the placement of objects is made in 
-       // such a way that they are virtually contained in an imaginary box 
-       // whose center is placed exactly in the middle of the occupied space
-       // in all directions. This will ease the positioning of this object 
-       // in the final stave. The sizes of this virtual box are stored in 
-       // the array passed by reference.
-       // ---
-       // Arguments:
-       //  - a boolean flag to know if this is the left or right MCM, when 
-       //    looking at the stave from above (i.e. the direction from which 
-       //    one sees bus over ladders over grounding foil) and keeping the 
-       //    upper border continuous.
-       //  - an array passed by reference which will contain the size of a 
-       //    virtual box containing all this stuff
-       //  - a pointer to the used TGeoManager.
-       // to avoid strange behaviour of the geometry manager,
-       // create a suffix to be used in the names of all shapes
-       char suf[5];
-       if (isRight) strcpy(suf, "R"); else strcpy(suf, "L");   
-       // ** MEDIA **
-       TGeoMedium *medBase = GetMedium("SPD KAPTON(POLYCH2)$",mgr);// ??? MCM BASE
-       TGeoMedium *medGlue = GetMedium("EPOXY$",mgr);   // ??? GlueMCM
-       TGeoMedium *medChip = GetMedium("SPD SI CHIP$",mgr);
-       TGeoMedium *medCap  = GetMedium("AL$",mgr);
-       // The shape of the MCM is divided into 3 sectors with different 
-       // widths (Y) and lengths (X), like in this sketch:
-       //
-       //   0                      1                                   2 
-       //    +---------------------+-----------------------------------+
-       //    |                                    4       sect 2       |
-       //    |                    6      sect 1    /-------------------+
-       //    |      sect 0         /--------------/                    3
-       //    +--------------------/               5
-       //   8                     7
-       //
-       // the inclination of all oblique borders (6-7, 4-5) is always 45 degrees.
-       // From drawings we can parametrize the dimensions of all these sectors,
-       // then the shape of this part of the MCM is implemented as a 
-       // TGeoXtru centerd in the virtual XY space. Since this shape 
-       // is used twice (to define the MCM itself and the glue below it), 
-       // we need to define two different shapes with different thicknesses 
-       // and, since we place them in an assembly, we displace them 
-       // directly in the right place with respect to the local Z axis 
-       // (which is in the direction of thickness). The first step is 
-       // definig the relevant sizes of this shape:
-       Int_t i, j;
-       Double_t mcmThickness  = fgkmm * 0.35;
-       Double_t glueThickness = fAlignmentGap;
-       Double_t sizeXtot = fgkmm * 105.6;   // total distance 0-2
-       // resp. 7-8, 5-6 and 3-4
-       Double_t sizeXsector[3] = {fgkmm * 28.4, fgkmm * 41.4, fgkmm * 28.8};
-       // resp. 0-8, 1-6 and 2-3
-       Double_t sizeYsector[3] = {fgkmm * 15.0, fgkmm * 11.0, fgkmm *  8.0};
-       Double_t sizeSep01 = fgkmm * 4.0;      // x(6)-x(7)
-       Double_t sizeSep12 = fgkmm * 3.0;      // x(4)-x(5)
-       // define sizes of chips (last is the thickest)
-       Double_t chipLength[5]     = { 4.00, 6.15, 3.85, 5.60, 18.00 };
-       Double_t chipWidth[5]      = { 3.00, 4.10, 3.85, 5.60,  5.45 };
-       Double_t chipThickness[5]  = { 0.60, 0.30, 0.30, 1.00,  1.20 };
-       TString  name[5];
-       name[0] = "ANALOG";
-       name[1] = "PILOT";
-       name[2] = "GOL";
-       name[3] = "RX40";
-       name[4] = "OPTICAL";
-       Color_t color[5] = { kCyan, kGreen, kYellow, kBlue, kOrange };
-
-       // define the sizes of the cover
-       Double_t capThickness = fgkmm * 0.3;
-       Double_t capHeight = fgkmm * 1.7;
-       // compute the total size of the virtual container box
-       Double_t &thickness = sizes[0];
-       Double_t &length = sizes[1];
-       Double_t &width = sizes[2];
-       length = sizeXtot;
-       width = sizeYsector[0];
-       thickness = glueThickness + mcmThickness + capHeight;
-       // define all the relevant vertices of the polygon 
-       // which defines the transverse shape of the MCM.
-       // These values are used to several purposes, and 
-       // for each one, some points must be excluded
-       Double_t xRef[9], yRef[9];
-       xRef[0] = -0.5*sizeXtot;
-       yRef[0] =  0.5*sizeYsector[0];
-       xRef[1] =  xRef[0] + sizeXsector[0] + sizeSep01;
-       yRef[1] =  yRef[0];
-       xRef[2] = -xRef[0];
-       yRef[2] =  yRef[0];
-       xRef[3] =  xRef[2];
-       yRef[3] =  yRef[2] - sizeYsector[2];
-       xRef[4] =  xRef[3] - sizeXsector[2];
-       yRef[4] =  yRef[3];
-       xRef[5] =  xRef[4] - sizeSep12;
-       yRef[5] =  yRef[4] - sizeSep12;
-       xRef[6] =  xRef[5] - sizeXsector[1];
-       yRef[6] =  yRef[5];
-       xRef[7] =  xRef[6] - sizeSep01;
-       yRef[7] =  yRef[6] - sizeSep01;
-       xRef[8] =  xRef[0];
-       yRef[8] = -yRef[0];
-       // the above points are defined for the "right" MCM (if ve view the 
-       // stave from above) in order to change to the "left" one, we must 
-       // change the sign to all X values:
-       if (isRight) for (i = 0; i < 9; i++) xRef[i] = -xRef[i];
-       // the shape of the MCM and glue layer are done excluding point 1, 
-       // which is not necessary and cause the geometry builder to get confused
-       j = 0;
-       Double_t xBase[8], yBase[8];
-       for (i = 0; i < 9; i++) {
-               if (i == 1) continue;
-               xBase[j] = xRef[i];
-               yBase[j] = yRef[i];
-               j++;
-       } // end for i
-       
-       // the MCM cover is superimposed over the sectors 1 and 2 only
-       Double_t xCap[6], yCap[6];
-       j = 0;
-       for (i = 1; i <= 6; i++) {
-               xCap[j] = xRef[i];
-               yCap[j] = yRef[i];
-               j++;
-       } // end for i
-       
-       // define positions of chips, 
-       // which must be added to the bottom-left corner of MCM
-       // and divided by 1E4;
-       Double_t chipX[5], chipY[5];
-       if (isRight) {
-               chipX[0] = 666320.;
-               chipX[1] = 508320.;
-               chipX[2] = 381320.;
-               chipX[3] = 295320.;
-               chipX[4] = 150320.;
-               chipY[0] =  23750.;
-               chipY[1] =  27750.;
-               chipY[2] =  20750.;
-               chipY[3] =  42750.;
-               chipY[4] =  39750.;
-       } else {
-               chipX[0] = 389730.;
-               chipX[1] = 548630.;
-               chipX[2] = 674930.;
-               chipX[3] = 761430.;
-               chipX[4] = 905430.;
-               chipY[0] =  96250.;
-               chipY[1] =  91950.;
-               chipY[2] =  99250.;
-               chipY[3] = 107250.;
-               chipY[4] = 109750.;
-       } // end for isRight
-       for (i = 0; i < 5; i++) {
-               chipX[i] *= 0.00001;
-               chipY[i] *= 0.00001;
-               if (isRight) {
-                       chipX[i] += xRef[3];
-                       chipY[i] += yRef[3];
-               } else {
-                       chipX[i] += xRef[8];
-                       chipY[i] += yRef[8];
-               } // end for isRight
-               chipLength[i] *= fgkmm;
-               chipWidth[i] *= fgkmm;
-               chipThickness[i] *= fgkmm;
-       } // end for i
-       // create shapes for MCM 
-       Double_t z1, z2;
-       TGeoXtru *shBase = new TGeoXtru(2);
-       TGeoXtru *shGlue = new TGeoXtru(2);
-       z1 = -0.5*thickness;
-       z2 =  z1 + glueThickness;
-       shGlue->DefinePolygon(8, xBase, yBase);
-       shGlue->DefineSection(0, z1, 0., 0., 1.0);
-       shGlue->DefineSection(1, z2, 0., 0., 1.0);
-       z1 = z2;
-       z2 = z1 + mcmThickness;
-       shBase->DefinePolygon(8, xBase, yBase);
-       shBase->DefineSection(0, z1, 0., 0., 1.0);
-       shBase->DefineSection(1, z2, 0., 0., 1.0);
-       
-       // create volumes of MCM
-       TGeoVolume *volBase = new TGeoVolume("BASE", shBase, medBase);
-       volBase->SetLineColor(kRed);
-       TGeoVolume *volGlue = new TGeoVolume("GLUE", shGlue, medGlue);
-       volGlue->SetLineColor(kYellow + 1);
-       
-       // to create the border of the MCM cover, it is required the 
-       // subtraction of two shapes the outer is created using the 
-       // reference points defined here
-       TGeoXtru *shCapOut = new TGeoXtru(2);
-       shCapOut->SetName(Form("SHCAPOUT%s", suf));
-       z1 = z2;
-       z2 = z1 + capHeight - capThickness;
-       shCapOut->DefinePolygon(6, xCap, yCap);
-       shCapOut->DefineSection(0, z1, 0., 0., 1.0);
-       shCapOut->DefineSection(1, z2, 0., 0., 1.0);
-       // the inner is built similarly but subtracting the thickness
-       Double_t angle, cs;
-       Double_t xin[6], yin[6];
-       if (!isRight) {
-               angle = 45.0;
-               cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
-               xin[0] = xCap[0] + capThickness;
-               yin[0] = yCap[0] - capThickness;
-               xin[1] = xCap[1] - capThickness;
-               yin[1] = yin[0];
-               xin[2] = xin[1];
-               yin[2] = yCap[2] + capThickness;
-               xin[3] = xCap[3] - capThickness*cs;
-               yin[3] = yin[2];
-               xin[4] = xin[3] - sizeSep12;
-               yin[4] = yCap[4] + capThickness;
-               xin[5] = xin[0];
-               yin[5] = yin[4];
-       } else {
-               angle = 45.0;
-               cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
-               xin[0] = xCap[0] - capThickness;
-               yin[0] = yCap[0] - capThickness;
-               xin[1] = xCap[1] + capThickness;
-               yin[1] = yin[0];
-               xin[2] = xin[1];
-               yin[2] = yCap[2] + capThickness;
-               xin[3] = xCap[3] - capThickness*cs;
-               yin[3] = yin[2];
-               xin[4] = xin[3] + sizeSep12;
-               yin[4] = yCap[4] + capThickness;
-               xin[5] = xin[0];
-               yin[5] = yin[4];
-       } // end if isRight
-       TGeoXtru *shCapIn = new TGeoXtru(2);
-       shCapIn->SetName(Form("SHCAPIN%s", suf));
-       shCapIn->DefinePolygon(6, xin, yin);
-       shCapIn->DefineSection(0, z1 - 0.01, 0., 0., 1.0);
-       shCapIn->DefineSection(1, z2 + 0.01, 0., 0., 1.0);
-       // compose shapes
-       TGeoCompositeShape *shCapBorder = new TGeoCompositeShape(
-                                                                                                                        Form("SHBORDER%s", suf), 
-                                                                                                                        Form("%s-%s", shCapOut->GetName(),
-                                                                                                                                 shCapIn->GetName()));
-       // create volume
-       TGeoVolume *volCapBorder = new TGeoVolume("CAPBORDER",shCapBorder,medCap);
-       volCapBorder->SetLineColor(kGreen);
-       // finally, we create the top of the cover, which has the same 
-       // shape of outer border and a thickness equal of the one othe 
-       // cover border one
-       TGeoXtru *shCapTop = new TGeoXtru(2);
-       z1 = z2;
-       z2 = z1 + capThickness;
-       shCapTop->DefinePolygon(6, xCap, yCap);
-       shCapTop->DefineSection(0, z1, 0., 0., 1.0);
-       shCapTop->DefineSection(1, z2, 0., 0., 1.0);
-       TGeoVolume *volCapTop = new TGeoVolume("CAPTOP", shCapTop, medCap);
-       volCapTop->SetLineColor(kBlue);
-       
-       // create container assembly
-       TGeoVolumeAssembly *mcmAssembly = new TGeoVolumeAssembly("MCM");
-       
-       // add objects in the assembly
-       
-       // glue
-       mcmAssembly->AddNode(volGlue, 0, gGeoIdentity);
-       // mcm layer
-       mcmAssembly->AddNode(volBase, 0, gGeoIdentity);
-       // chips
-       for (i = 0; i < 5; i++) {
-               TGeoVolume *box = gGeoManager->MakeBox(name[i], medChip, 
-                                                                                          0.5*chipLength[i], 0.5*chipWidth[i], 0.5*chipThickness[i]);
-               TGeoTranslation *tr = new TGeoTranslation(chipX[i], chipY[i],
-                                                                                                 0.5*(-thickness + chipThickness[i]) + mcmThickness +
-                                                                                                 glueThickness);
-               box->SetLineColor(color[i]);
-               mcmAssembly->AddNode(box, 0, tr);
-       } // end for i
-       // cap border
-       mcmAssembly->AddNode(volCapBorder, 0, gGeoIdentity);
-       // cap top
-       mcmAssembly->AddNode(volCapTop, 0, gGeoIdentity);       
-       return mcmAssembly;
-}
-//
-//__________________________________________________________________________________________
-TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus
-(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const
-{
-       //
-       // The pixel bus is implemented as a TGeoBBox with some objects on it, 
-       // which could affect the particle energy loss.
-       // ---
-       // In order to avoid confusion, the bus is directly displaced 
-       // according to the axis orientations which are used in the final stave:
-       // X --> thickness direction
-       // Y --> width direction
-       // Z --> length direction
-       //
-  
-       
-       // ** MEDIA **
-       
-       //PIXEL BUS
-       TGeoMedium *medBus     = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr);
-       TGeoMedium *medPt1000  = GetMedium("CERAMICS$",mgr); // ??? PT1000
-       // Capacity
-       TGeoMedium *medCap     = GetMedium("SDD X7R capacitors$",mgr);
-       // ??? Resistance
-       TGeoMedium *medRes     = GetMedium("SDD X7R capacitors$",mgr); 
-       // ** SIZES & POSITIONS **
-       Double_t busLength          = 170.501 * fgkmm; // length of plane part
-       Double_t busWidth           =  13.800 * fgkmm; // width
-       Double_t busThickness       =   0.280 * fgkmm; // thickness
-       Double_t pt1000Length       = fgkmm * 1.50;
-       Double_t pt1000Width        = fgkmm * 3.10;
-       Double_t pt1000Thickness    = fgkmm * 0.60;
-       Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus
-       Double_t capLength          = fgkmm * 2.55;
-       Double_t capWidth           = fgkmm * 1.50;
-       Double_t capThickness       = fgkmm * 1.35;
-       Double_t capY[2], capZ[2];
-       
-       Double_t resLength          = fgkmm * 2.20;
-       Double_t resWidth           = fgkmm * 0.80;
-       Double_t resThickness       = fgkmm * 0.35;
-       Double_t resY[2], resZ[2];
-                       
-       // position of pt1000, resistors and capacitors depends on the 
-       // bus if it's left or right one
-       if (!isRight) {
-               pt1000Y    =   64400.;
-               pt1000Z[0] =   66160.;
-               pt1000Z[1] =  206200.;
-               pt1000Z[2] =  346200.;
-               pt1000Z[3] =  486200.;
-               pt1000Z[4] =  626200.;
-               pt1000Z[5] =  776200.;
-               pt1000Z[6] =  916200.;
-               pt1000Z[7] = 1056200.;
-               pt1000Z[8] = 1196200.;
-               pt1000Z[9] = 1336200.;  
-               resZ[0]    = 1397500.;
-               resY[0]    =   26900.;
-               resZ[1]    =  682500.;
-               resY[1]    =   27800.;
-               capZ[0]    = 1395700.;
-               capY[0]    =   45700.;
-               capZ[1]    =  692600.;
-               capY[1]    =   45400.;
-       } else {
-               pt1000Y    =   66100.;
-               pt1000Z[0] =  319700.;
-               pt1000Z[1] =  459700.;
-               pt1000Z[2] =  599700.;
-               pt1000Z[3] =  739700.;
-               pt1000Z[4] =  879700.;
-               pt1000Z[5] = 1029700.;
-               pt1000Z[6] = 1169700.;
-               pt1000Z[7] = 1309700.;
-               pt1000Z[8] = 1449700.;
-               pt1000Z[9] = 1589700.;  
-               capY[0]    =   44500.;
-               capZ[0]    =  266700.;
-               capY[1]    =   44300.;
-               capZ[1]    =  974700.;
-               resZ[0]    =  266500.;
-               resY[0]    =   29200.;
-               resZ[1]    =  974600.;
-               resY[1]    =   29900.;
-       } // end if isRight
-       Int_t i;
-       pt1000Y *= 1E-4 * fgkmm;
-       for (i = 0; i < 10; i++) {
-               pt1000Z[i] *= 1E-4 * fgkmm;
-               if (i < 2) {
-                       capZ[i] *= 1E-4 * fgkmm;
-                       capY[i] *= 1E-4 * fgkmm;
-                       resZ[i] *= 1E-4 * fgkmm;
-                       resY[i] *= 1E-4 * fgkmm;
-               }  // end if iM2
-       } // end for i
-       
-       Double_t &fullLength = sizes[1];
-       Double_t &fullWidth = sizes[2];
-       Double_t &fullThickness = sizes[0];
-       fullLength = busLength;
-       fullWidth = busWidth;
-       // add the thickness of the thickest component on bus (capacity)
-       fullThickness = busThickness + capThickness; 
-       // ** VOLUMES **
-       TGeoVolumeAssembly *container = new TGeoVolumeAssembly("PixelBus");
-       TGeoVolume *bus = mgr->MakeBox("Bus", medBus, 0.5*busThickness, 
-                                                                  0.5*busWidth, 0.5*busLength);
-       TGeoVolume *pt1000 = mgr->MakeBox("PT1000", medPt1000, 
-                                                                         0.5*pt1000Thickness, 0.5*pt1000Width, 0.5*pt1000Length);
-       TGeoVolume *res = mgr->MakeBox("Resistor", medRes, 0.5*resThickness,
-                                                                  0.5*resWidth, 0.5*resLength);
-       TGeoVolume *cap = mgr->MakeBox("Capacitor", medCap, 0.5*capThickness,
-                                                                  0.5*capWidth, 0.5*capLength);
-       bus->SetLineColor(kYellow + 2);
-       pt1000->SetLineColor(kGreen + 3);
-       res->SetLineColor(kRed + 1);
-       cap->SetLineColor(kBlue - 7);
-       // ** MOVEMENTS AND POSITIONEMENT **
-       // bus
-       TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness - 
-                                                                                                               fullThickness), 0.0, 0.0);
-       container->AddNode(bus, 0, trBus);
-       Double_t zRef, yRef, x, y, z;
-       if (isRight) {
-               zRef = -0.5*fullLength;
-               yRef = -0.5*fullWidth;
-       } else {
-               zRef = -0.5*fullLength;
-               yRef = -0.5*fullWidth;
-       } // end if isRight
-       // pt1000
-       x = 0.5*(pt1000Thickness - fullThickness) + busThickness;
-       for (i = 0; i < 10; i++) {
-               y = yRef + pt1000Y;
-               z = zRef + pt1000Z[i];
-               TGeoTranslation *tr = new TGeoTranslation(x, y, z);
-               container->AddNode(pt1000, i, tr);
-       } // end for i
-       // capacitors
-       x = 0.5*(capThickness - fullThickness) + busThickness;
-       for (i = 0; i < 2; i++) {
-               y = yRef + capY[i];
-               z = zRef + capZ[i];
-               TGeoTranslation *tr = new TGeoTranslation(x, y, z);
-               container->AddNode(cap, i, tr);
-       } // end for i
-       // resistors
-       x = 0.5*(resThickness - fullThickness) + busThickness;
-       for (i = 0; i < 2; i++) {
-               y = yRef + resY[i];
-               z = zRef + resZ[i];
-               TGeoTranslation *tr = new TGeoTranslation(x, y, z);
-               container->AddNode(res, i, tr);
-       } // end for i
-       
-       sizes[3] = yRef + pt1000Y;
-       sizes[4] = zRef + pt1000Z[2];
-       sizes[5] = zRef + pt1000Z[7];
-       
-       return container;
+    }
+
+    // Finally the optical patch panels
+    module = (TGeoVolumeAssembly*)modulelist->At(3);
+    for (Int_t i = 0; i < kNumberOfModules; i++) {
+        TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
+       rot1->RotateY(-kAlphaRot);
+       rot1->RotateZ(anglep[i]);
+        xloc = kInnerRadius*CosD(anglep[i]);
+        yloc = kInnerRadius*SinD(anglep[i]);
+       zloc = kZTrans;
+        moth->AddNode(module, 2*i+2,
+                     new TGeoCombiTrans( xloc, yloc, zloc, rot1));
+
+        TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
+       rot2->RotateY(180.-kAlphaRot);
+       rot2->RotateZ(anglep[i]);
+        xloc = kInnerRadius*CosD(anglep[i]);
+        yloc = kInnerRadius*SinD(anglep[i]);
+       zloc = kZTrans;
+        moth->AddNode(module, 2*i+1,
+                     new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2));
+    }
+
 }
-//
-//__________________________________________________________________________________________
-TGeoVolume* AliITSv11GeometrySPD::CreateExtender
-(const Double_t *extenderParams, const TGeoMedium *extenderMedium, TArrayD& sizes) const
+
+
+//______________________________________________________________________
+TGeoVolume* AliITSv11GeometrySPD::CreateExtender(
+    const Double_t *extenderParams, const TGeoMedium *extenderMedium,
+    TArrayD& sizes) const
 {
-       // ------------------   CREATE AN EXTENDER    ------------------------
-       // 
-       // This function creates the following picture (in plane xOy)                          
-       // Should be useful for the definition of the pixel bus and MCM extenders              
-       // The origin corresponds to point 0 on the picture, at half-width in Z direction      
-       //                                                                                     
-       //   Y                         7     6                      5                          
-       //   ^                           +---+---------------------+                           
-       //   |                          /                          |                           
-       //   |                         /                           |                           
-       //   0------> X               /      +---------------------+                           
-       //                           /      / 3                     4                          
-       //                          /      /                                                   
-       //            9          8 /      /                                                    
-       //            +-----------+      /                                                     
-       //            |                 /                                                      
-       //            |                /                                                       
-       //      --->  +-----------+---+                                                        
-       //      |     0          1     2                                                       
-       //      |                                                                              
-       //  origin (0,0,0)                                                                     
-       //                                                                                     
-       //                                                                                     
-       // Takes 6 parameters in the following order :                                         
-       //   |--> par 0 : inner length [0-1] / [9-8]                                           
-       //   |--> par 1 : thickness ( = [0-9] / [4-5])                                         
-       //   |--> par 2 : angle of the slope                                                   
-       //   |--> par 3 : total height in local Y direction                                    
-       //   |--> par 4 : outer length [3-4] / [6-5]                                           
-       //   |--> par 5 : width in local Z direction                                           
-       //                                                                                     
-
-
-       Double_t slopeDeltaX = (extenderParams[3] - extenderParams[1] * TMath::Cos(extenderParams[2])) / TMath::Tan(extenderParams[2]);
-
-       Double_t extenderXtruX[10] = {
-               0 ,
-               extenderParams[0] ,
-               extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) , 
-               extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX ,
-               extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX + extenderParams[4], 
-               extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX + extenderParams[4], 
-               extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX , 
-               extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX - extenderParams[1] * TMath::Sin(extenderParams[2]) ,
-               extenderParams[0] ,
-               0
-       } ;
-
-       Double_t extenderXtruY[10] = {
-               0 ,
-               0 ,
-               extenderParams[1] * (1-TMath::Cos(extenderParams[2])) ,
-               extenderParams[3] - extenderParams[1] ,
-               extenderParams[3] - extenderParams[1] ,
-               extenderParams[3] ,
-               extenderParams[3] ,
-               extenderParams[3] - extenderParams[1] * (1-TMath::Cos(extenderParams[2])) ,
-               extenderParams[1] ,
-               extenderParams[1]
-       } ;
-
-       if (sizes.GetSize() != 3) sizes.Set(3);
-       Double_t &thickness = sizes[0] ;
-       Double_t &length    = sizes[1] ;
-       Double_t &width     = sizes[2] ;
-
-       thickness = extenderParams[3] ;
-       width     = extenderParams[5] ;
-       length    = extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX + extenderParams[4] ;
-
-       // creation of the volume
-       TGeoXtru   *extenderXtru    = new TGeoXtru(2);
-       TGeoVolume *extenderXtruVol = new TGeoVolume("EXTENDER",extenderXtru,extenderMedium) ;
-       extenderXtru->DefinePolygon(10,extenderXtruX,extenderXtruY);
-       extenderXtru->DefineSection(0,-0.5*extenderParams[4]);
-       extenderXtru->DefineSection(1, 0.5*extenderParams[4]);
-       return extenderXtruVol ;
+    //
+    // ------------------   CREATE AN EXTENDER    ------------------------
+    //
+    // This function creates the following picture (in plane xOy)
+    // Should be useful for the definition of the pixel bus and MCM extenders
+    // The origin corresponds to point 0 on the picture, at half-width
+    // in Z direction
+    //
+    //   Y                         7     6                      5
+    //   ^                           +---+---------------------+
+    //   |                          /                          |
+    //   |                         /                           |
+    //   0------> X               /      +---------------------+
+    //                           /      / 3                     4
+    //                          /      /
+    //            9          8 /      /
+    //            +-----------+      /
+    //            |                 /
+    //            |                /
+    //      --->  +-----------+---+
+    //      |     0          1     2
+    //      |
+    //  origin (0,0,0)
+    //
+    //
+    // Takes 6 parameters in the following order :
+    //   |--> par 0 : inner length [0-1] / [9-8]
+    //   |--> par 1 : thickness ( = [0-9] / [4-5])
+    //   |--> par 2 : angle of the slope
+    //   |--> par 3 : total height in local Y direction
+    //   |--> par 4 : outer length [3-4] / [6-5]
+    //   |--> par 5 : width in local Z direction
+    //
+    Double_t slopeDeltaX = (extenderParams[3] - extenderParams[1]
+                            * TMath::Cos(extenderParams[2])) /
+                            TMath::Tan(extenderParams[2]);
+    Double_t extenderXtruX[10] = {
+        0 ,
+        extenderParams[0] ,
+        extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2]) ,
+        extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
+                                                              slopeDeltaX ,
+        extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
+                                           slopeDeltaX + extenderParams[4],
+        extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
+                                           slopeDeltaX + extenderParams[4],
+        extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
+                                                              slopeDeltaX ,
+        extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
+          slopeDeltaX - extenderParams[1] * TMath::Sin(extenderParams[2]) ,
+        extenderParams[0] ,
+        0
+    };
+    Double_t extenderXtruY[10] = {
+        0 ,
+        0 ,
+        extenderParams[1] * (1-TMath::Cos(extenderParams[2])) ,
+        extenderParams[3] - extenderParams[1] ,
+        extenderParams[3] - extenderParams[1] ,
+        extenderParams[3] ,
+        extenderParams[3] ,
+        extenderParams[3]-extenderParams[1]*(1-TMath::Cos(extenderParams[2])) ,
+        extenderParams[1] ,
+        extenderParams[1]
+    };
+
+    if (sizes.GetSize() != 3) sizes.Set(3);
+    Double_t &thickness = sizes[0];
+    Double_t &length    = sizes[1];
+    Double_t &width     = sizes[2];
+
+    thickness = extenderParams[3];
+    width     = extenderParams[5];
+    length    = extenderParams[0]+extenderParams[1]*
+            TMath::Sin(extenderParams[2])+slopeDeltaX+extenderParams[4];
+
+    // creation of the volume
+    TGeoXtru   *extenderXtru    = new TGeoXtru(2);
+    TGeoVolume *extenderXtruVol = new TGeoVolume("ITSSPDextender",extenderXtru,
+                                                 extenderMedium);
+    extenderXtru->DefinePolygon(10,extenderXtruX,extenderXtruY);
+    extenderXtru->DefineSection(0,-0.5*extenderParams[4]);
+    extenderXtru->DefineSection(1, 0.5*extenderParams[4]);
+    return extenderXtruVol;
 }
 
 //______________________________________________________________________
-TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBusAndExtensions
-(Bool_t /*zpos*/, TGeoManager *mgr) const
+TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateHalfStave(Bool_t isRight,
+Int_t layer,Int_t idxCentral,Int_t idxSide,TArrayD &sizes,TGeoManager *mgr)
 {
-       //
-       // Creates an assembly which contains the pixel bus and its extension
-       // and the extension of the MCM.
-       // By: Renaud Vernet
-       // NOTE: to be defined its material and its extension in the outside direction
-       //
-  
-       // ====   constants   =====
-
-       //get the media
-       //TGeoMedium   *medPixelBus    = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr) ;  // ??? PIXEL BUS
-       TGeoMedium   *medPBExtender  = GetMedium("SDDKAPTON (POLYCH2)$",mgr) ;  // ??? IXEL BUS EXTENDER
-       TGeoMedium   *medMCMExtender = GetMedium("SDDKAPTON (POLYCH2)$",mgr) ;  // ??? MCM EXTENDER
-       
-       //   //geometrical constants
-       const Double_t kPbextenderThickness     =   0.07 * fgkmm ;
-       const Double_t kPbExtenderSlopeAngle    =  70.0  * TMath::Pi()/180. ; //design=?? 70 deg. seems OK
-       const Double_t kPbExtenderHeight        =   1.92 * fgkmm ;            // = 2.6 - (0.28+0.05+0.35) cf design
-       const Double_t kPbExtenderWidthY        =  11.0  * fgkmm ;
-       const Double_t kMcmExtenderSlopeAngle   =  70.0  * TMath::Pi()/180. ; //design=?? 70 deg. seems OK
-       const Double_t kMcmExtenderThickness    =   0.10 * fgkmm ;
-       const Double_t kMcmExtenderHeight       =   1.8  * fgkmm ;
-       const Double_t kMcmExtenderWidthY       =   kPbExtenderWidthY ;
-       //   const Double_t groundingThickness    =   0.07  * fgkmm ;
-       //   const Double_t grounding2pixelBusDz  =   0.625 * fgkmm ;
-       //   const Double_t pixelBusThickness     =   0.28  * fgkmm ;
-       //   const Double_t groundingWidthX       = 170.501 * fgkmm ;
-       //   const Double_t pixelBusContactDx     =   1.099 * fgkmm ;
-       //   const Double_t pixelBusWidthY        =  13.8   * fgkmm ;
-       //   const Double_t pixelBusContactPhi    =  20.0   * TMath::Pi()/180. ; //design=20 deg.
-       //   const Double_t pbExtenderTopZ        =   2.72  * fgkmm ;
-       //   const Double_t mcmThickness          =   0.35  * fgkmm ;
-       //   const Double_t halfStaveTotalLength  = 247.64  * fgkmm ;
-       //   const Double_t deltaYOrigin          =  15.95/2.* fgkmm ;
-       //   const Double_t deltaXOrigin          =   1.1    * fgkmm ;
-       //   const Double_t deltaZOrigin          = halfStaveTotalLength / 2. ;
-       //   const Double_t grounding2pixelBusDz2 = grounding2pixelBusDz+groundingThickness/2. + pixelBusThickness/2. ;
-       //   const Double_t pixelBusWidthX        = groundingWidthX ;
-       //   const Double_t pixelBusRaiseLength   = (pixelBusContactDx-pixelBusThickness*TMath::Sin(pixelBusContactPhi))/TMath::Cos(pixelBusContactPhi) ;
-
-       //   const Double_t pbExtenderBaseZ       = grounding2pixelBusDz2 + pixelBusRaiseLength*TMath::Sin(pixelBusContactPhi) + 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)*TMath::Tan(pixelBusContactPhi) ;
-       //   const Double_t pbExtenderDeltaZ      = pbExtenderTopZ-pbExtenderBaseZ ;
-       //   const Double_t pbExtenderEndPointX   = 2*deltaZOrigin - groundingWidthX - 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi) ;
-       //   const Double_t pbExtenderXtru3L   = 1.5 * fgkmm ; //arbitrary ?
-       //   const Double_t pbExtenderXtru4L   = (pbExtenderDeltaZ + pixelBusThickness*(TMath::Cos(extenderSlope)-2))/TMath::Sin(extenderSlope) ;
-
-       //   const Double_t kMcmExtenderEndPointX  = deltaZOrigin - 48.2 * fgkmm ;
-       //   const Double_t kMcmExtenderXtru3L     = 1.5  * fgkmm ;
-
-       //   //=====  end constants  =====
-
-
-       const Double_t kPbExtenderInnerLength    = 10. * fgkmm ;
-       const Double_t kPbExtenderOuterLength    = 15. * fgkmm ;
-       const Double_t kMcmExtenderInnerLength   = 10. * fgkmm ;
-       const Double_t kMcmExtenderOuterLength   = 15. * fgkmm ;
-  
-       Double_t pbExtenderParams[6]  = {kPbExtenderInnerLength,  //0
-                                                                        kPbextenderThickness,    //1
-                                                                        kPbExtenderSlopeAngle,   //2
-                                                                        kPbExtenderHeight,       //3
-                                                                        kPbExtenderOuterLength,  //4
-                                                                        kPbExtenderWidthY};      //5
-  
-       Double_t mcmExtenderParams[6] = {kMcmExtenderInnerLength, //0
-                                                                        kMcmExtenderThickness,   //1
-                                                                        kMcmExtenderSlopeAngle,  //2
-                                                                        kMcmExtenderHeight,      //3
-                                                                        kMcmExtenderOuterLength, //4
-                                                                        kMcmExtenderWidthY};     //5
-
-       TArrayD sizes(3);
-       TGeoVolume* pbExtender  = CreateExtender(pbExtenderParams,  medPBExtender, sizes)  ;
-       printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\tLENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]);
-       TGeoVolume* mcmExtender = CreateExtender(mcmExtenderParams, medMCMExtender, sizes) ;
-       printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\tLENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]);
-
-
-
-       //   Double_t pixelBusValues[5]    = {pixelBusWidthX,        //0
-       //                                 pixelBusThickness,     //1
-       //                                 pixelBusContactPhi,    //2
-       //                                 pixelBusRaiseLength,   //3
-       //                                 pixelBusWidthY} ;      //4
-
-       //   Double_t pbExtenderValues[8]  = {pixelBusRaiseLength,   //0
-       //                                 pixelBusContactPhi,    //1
-       //                                 pbExtenderXtru3L,      //2
-       //                                 pixelBusThickness,     //3
-       //                                 extenderSlope,         //4
-       //                                 pbExtenderXtru4L,      //5
-       //                                 pbExtenderEndPointX,   //6
-       //                                 kPbExtenderWidthY} ;    //7
-
-       //   Double_t mcmExtenderValues[6] = {mcmExtenderXtru3L,     //0
-       //                                 mcmExtenderThickness,  //1
-       //                                 extenderSlope,         //2
-       //                                 deltaMcmMcmExtender,   //3
-       //                                 mcmExtenderEndPointX,  //4
-       //                                 mcmExtenderWidthY};    //5
-  
-       //   TGeoVolumeAssembly *pixelBus = new TGeoVolumeAssembly("PIXEL BUS");
-       //   CreatePixelBus(pixelBus,pixelBusValues,medPixelBus) ; 
-       //   TGeoVolumeAssembly *pbExtender = new TGeoVolumeAssembly("PIXEL BUS EXTENDER");
-       //   CreatePixelBusExtender(pbExtender,pbExtenderValues,medPBExtender) ;
-       //   TGeoVolumeAssembly *mcmExtender = new TGeoVolumeAssembly("MCM EXTENDER");
-       //   CreateMCMExtender(mcmExtender,mcmExtenderValues,medMCMExtender) ;
-  
-       //   //--------------   DEFINITION OF GEOMETRICAL TRANSFORMATIONS -------------------
-       //   TGeoRotation    * commonRot       = new TGeoRotation("commonRot",0,90,0);
-       //   commonRot->MultiplyBy(new TGeoRotation("rot",-90,0,0)) ;
-       //   TGeoTranslation * pixelBusTrans   = new TGeoTranslation(pixelBusThickness/2. - deltaXOrigin + 0.52*fgkmm ,
-       //                                                        -pixelBusWidthY/2.     + deltaYOrigin , 
-       //                                                        -groundingWidthX/2.    + deltaZOrigin) ;
-       //   TGeoRotation    * pixelBusRot     = new TGeoRotation(*commonRot);
-       //   TGeoTranslation * pbExtenderTrans = new TGeoTranslation(*pixelBusTrans) ;
-       //   TGeoRotation    * pbExtenderRot   = new TGeoRotation(*pixelBusRot) ;
-       //   pbExtenderTrans->SetDz(*(pbExtenderTrans->GetTranslation()+2) - pixelBusWidthX/2. - 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)) ;  
-       //   if (!zpos) {
-       //     pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) - (pixelBusWidthY - kPbExtenderWidthY)/2.);
-       //   }
-       //   else {
-       //     pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) + (pixelBusWidthY - kPbExtenderWidthY)/2.);
-       //   }
-       //   pbExtenderTrans->SetDx(*(pbExtenderTrans->GetTranslation()) + pixelBusThickness/2 + 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)*TMath::Tan(pixelBusContactPhi)) ;
-       //   TGeoTranslation * mcmExtenderTrans = new TGeoTranslation(0.12*fgkmm + mcmThickness - deltaXOrigin,
-       //                                                         pbExtenderTrans->GetTranslation()[1],
-       //                                                         -4.82);
-       //   TGeoRotation    * mcmExtenderRot   = new TGeoRotation(*pbExtenderRot);
-  
-       //   // add pt1000 components
-       //   Double_t pt1000Z = fgkmm * 64400. * 1E-4;
-       //   //Double_t pt1000X[10] = {319700., 459700., 599700., 739700., 879700., 1029700., 1169700., 1309700., 1449700., 1589700.};
-       //   Double_t pt1000X[10] = {66160., 206200., 346200., 486200., 626200., 776200., 916200., 1056200., 1196200., 1336200.};
-       //   Double_t pt1000size[3] = {fgkmm*1.5, fgkmm*0.6, fgkmm*3.1};
-       //   Int_t i;
-       //   for (i = 0; i < 10; i++) {
-       //        pt1000X[i] *= fgkmm * 1E-4;
-       //   }
-       //   TGeoVolume *pt1000 = mgr->MakeBox("PT1000", 0, 0.5*pt1000size[0], 0.5*pt1000size[1], 0.5*pt1000size[2]);
-       //   pt1000->SetLineColor(kGray);
-       //   Double_t refThickness = - pixelBusThickness ;
-       //   for (i = 0; i < 10; i++) {
-       //        TGeoTranslation *tr = new TGeoTranslation(pt1000X[i]-0.5*pixelBusWidthX, 0.002+0.5*(-3.*refThickness+pt1000size[3]), pt1000Z -0.5*pixelBusWidthY);
-       //        pixelBus->AddNode(pt1000, i, tr);
-       //   }
-  
-       //CREATE FINAL VOLUME ASSEMBLY AND ROTATE IT
-       TGeoVolumeAssembly *assembly = new TGeoVolumeAssembly("EXTENDERS");
-       //   assembly->AddNode((TGeoVolume*)pixelBus    ,0, new TGeoCombiTrans(*pixelBusTrans,*pixelBusRot));
-       //   assembly->AddNode((TGeoVolume*)pbExtender  ,0, new TGeoCombiTrans(*pbExtenderTrans,*pbExtenderRot));
-       //   assembly->AddNode((TGeoVolume*)mcmExtender ,0, new TGeoCombiTrans(*mcmExtenderTrans,*mcmExtenderRot));
-       //   assembly->AddNode(mcmExtender,0,new TGeoIdentity());
-       assembly->AddNode(pbExtender,0);
-       assembly->AddNode(mcmExtender,0);
-       //   assembly->SetTransparency(50);
-  
-       return assembly ;
+    //
+    // Implementation of an half-stave, which depends on the side where
+    // we are on the stave. The convention for "left" and "right" is the
+    // same as for the MCM. The return value is a TGeoAssembly which is
+    // structured in such a way that the origin of its local reference
+    // frame coincides with the origin of the whole stave.
+    // The TArrayD passed by reference will contain details of the shape:
+    //  - sizes[0] = thickness
+    //  - sizes[1] = length
+    //  - sizes[2] = width
+    //  - sizes[3] = common 'x' position for eventual clips
+    //  - sizes[4] = common 'y' position for eventual clips
+    //  - sizes[5] = 'z' position of first clip
+    //  - sizes[6] = 'z' position of second clip
+    //
+
+    // ** CHECK **
+
+    // idxCentral and idxSide must be different
+    if (idxCentral == idxSide) {
+        AliInfo("Ladders must be inserted in half-stave with "
+                "different indexes.");
+        idxSide = idxCentral + 1;
+        AliInfo(Form("Central ladder will be inserted with index %d",
+                     idxCentral));
+        AliInfo(Form("Side    ladder will be inserted with index %d",idxSide));
+    } // end if
+
+    // define the separations along Z direction between the objects
+    Double_t sepLadderLadder = fgkmm * 0.2; // sep. btw the 2 ladders
+    Double_t sepLadderCenter = fgkmm * 0.4; // sep. btw the "central" ladder
+                                            // and the Z=0 plane in stave ref.
+    Double_t sepLadderMCM    = fgkmm * 0.3; // sep. btw the "external" ladder
+                                            // and MCM
+    Double_t sepBusCenter    = fgkmm * 0.3; // sep. btw the bus central edge
+                                            // and the Z=0 plane in stave ref.
+
+    // ** VOLUMES **
+
+    // grounding foil
+    TArrayD grndSize(3);
+    // This one line repalces the 3 bellow, BNS.
+    TGeoVolume *grndVol = CreateGroundingFoil(isRight, grndSize, mgr);
+    Double_t &grndThickness = grndSize[0];
+    Double_t &grndLength = grndSize[1];
+
+    // ladder
+    TArrayD ladderSize(3);
+    TGeoVolume *ladder = CreateLadder(layer, ladderSize, mgr);
+    Double_t ladderThickness = ladderSize[0];
+    Double_t ladderLength = ladderSize[1];
+    Double_t ladderWidth = ladderSize[2];
+
+    // MCM
+    TArrayD mcmSize(3);
+    TGeoVolumeAssembly *mcm = CreateMCM(!isRight,mcmSize,mgr);
+    Double_t mcmThickness = mcmSize[0];
+    Double_t mcmLength = mcmSize[1];
+    Double_t mcmWidth = mcmSize[2];
+
+    // bus
+    TArrayD busSize(6);
+    TGeoVolumeAssembly *bus = CreatePixelBus(isRight, layer, busSize, mgr);
+    Double_t busThickness = busSize[0];
+    Double_t busLength = busSize[1];
+    Double_t busWidth = busSize[2];
+
+    // glue between ladders and pixel bus
+    TGeoMedium *medLadGlue = GetMedium("EPOXY$", mgr);
+    Double_t ladGlueThickness = fgkmm * 0.1175 - fgkGapLadder;
+    TGeoVolume *ladderGlue = mgr->MakeBox("ITSSPDladderGlue",medLadGlue,
+                           0.5*ladGlueThickness, 0.5*busWidth, 0.5*busLength);
+    ladderGlue->SetLineColor(kYellow + 5);
+
+    // create references for the whole object, as usual
+    sizes.Set(7);
+    Double_t &fullThickness = sizes[0];
+    Double_t &fullLength = sizes[1];
+    Double_t &fullWidth = sizes[2];
+
+    // compute the full size of the container
+    fullLength    = sepLadderCenter+2.0*ladderLength+sepLadderMCM+
+                       sepLadderLadder+mcmLength;
+    fullWidth     = ladderWidth;
+    fullThickness = grndThickness + fgkGapLadder + mcmThickness + busThickness;
+    //cout << "HSTAVE FULL THICKNESS = " << fullThickness << endl;
+
+    // ** MOVEMENTS **
+
+    // grounding foil (shifted only along thickness)
+    Double_t xGrnd = -0.5*fullThickness + 0.5*grndThickness;
+    Double_t zGrnd = -0.5*grndLength;
+    if (!isRight) zGrnd = -zGrnd;
+    TGeoTranslation *grndTrans = new TGeoTranslation(xGrnd, 0.0, zGrnd);
+
+    // ladders (translations along thickness and length)
+    // layers must be sorted going from the one at largest Z to the
+    // one at smallest Z:
+    // -|Zmax| ------> |Zmax|
+    //      3   2   1   0
+    // then, for layer 1 ladders they must be placed exactly this way,
+    // and in layer 2 at the opposite. In order to remember the placements,
+    // we define as "inner" and "outer" ladder respectively the one close
+    // to barrel center, and the one closer to MCM, respectively.
+    Double_t xLad, zLadIn, zLadOut;
+    xLad    = xGrnd + 0.5*(grndThickness + ladderThickness) +
+              0.01175 - fgkGapLadder;
+    zLadIn  = -sepLadderCenter - 0.5*ladderLength;
+    zLadOut = zLadIn - sepLadderLadder - ladderLength;
+    if (!isRight) {
+        zLadIn = -zLadIn;
+        zLadOut = -zLadOut;
+    } // end if !isRight
+    TGeoRotation *rotLad = new TGeoRotation(*gGeoIdentity);
+    rotLad->RotateZ(90.0);
+    rotLad->RotateY(180.0);
+    Double_t sensWidth      = fgkmm * 12.800;
+    Double_t chipWidth      = fgkmm * 15.950;
+    Double_t guardRingWidth = fgkmm *  0.560;
+    Double_t ladderShift = 0.5 * (chipWidth - sensWidth - 2.0*guardRingWidth);
+    TGeoCombiTrans *trLadIn  = new TGeoCombiTrans(xLad,ladderShift,zLadIn,
+                                                  rotLad);
+    TGeoCombiTrans *trLadOut = new TGeoCombiTrans(xLad,ladderShift,zLadOut,
+                                                  rotLad);
+
+    // MCM (length and thickness direction, placing at same level as the
+    // ladder, which implies to recompute the position of center, because
+    // ladder and MCM have NOT the same thickness) the two copies of the
+    // MCM are placed at the same distance from the center, on both sides
+    Double_t xMCM = xGrnd + 0.5*grndThickness + 0.5*mcmThickness +
+                    0.01175 - fgkGapLadder;
+    Double_t yMCM = 0.5*(fullWidth - mcmWidth);
+    Double_t zMCM = zLadOut - 0.5*ladderLength - 0.5*mcmLength - sepLadderMCM;
+    if (!isRight) zMCM = zLadOut + 0.5*ladderLength + 0.5*mcmLength +
+                         sepLadderMCM;
+
+    // create the correction rotations
+    TGeoRotation *rotMCM = new TGeoRotation(*gGeoIdentity);
+    rotMCM->RotateY(90.0);
+    TGeoCombiTrans *trMCM = new TGeoCombiTrans(xMCM, yMCM, zMCM, rotMCM);
+
+    // glue between ladders and pixel bus
+    Double_t xLadGlue = xLad + 0.5*ladderThickness + 0.01175 -
+                        fgkGapLadder + 0.5*ladGlueThickness;
+
+    // bus (length and thickness direction)
+    Double_t xBus = xLadGlue + 0.5*ladGlueThickness + 0.5*busThickness;
+    Double_t yBus  = 0.5*(fullWidth - busWidth) + 0.075; // Hardcode fix of a small overlap
+    Double_t zBus = -0.5*busLength - sepBusCenter;
+    if (!isRight) zBus = -zBus;
+    TGeoTranslation *trBus = new TGeoTranslation(xBus, yBus, zBus);
+
+    TGeoTranslation *trLadGlue = new TGeoTranslation(xLadGlue, 0.0, zBus);
+
+    // create the container
+    TGeoVolumeAssembly *container = 0;
+    if (idxCentral+idxSide==5) {
+        container = new TGeoVolumeAssembly("ITSSPDhalf-Stave1");
+    } else {
+        container = new TGeoVolumeAssembly("ITSSPDhalf-Stave0");
+    } // end if
+
+    // add to container all objects
+    container->AddNode(grndVol, 1, grndTrans);
+    // ladders are inserted in different order to respect numbering scheme
+    // which is inverted when going from outer to inner layer
+    container->AddNode(ladder, idxCentral+1, trLadIn);
+    container->AddNode(ladder, idxSide+1, trLadOut);
+    container->AddNode(ladderGlue, 1, trLadGlue);
+    container->AddNode(mcm, 1, trMCM);
+    container->AddNode(bus, 1, trBus);
+
+    // since the clips are placed in correspondence of two pt1000s,
+    // their position is computed here, but they are not added by default
+    // it will be the StavesInSector method which will decide to add them
+    // anyway, to recovery some size informations on the clip, it must be
+    // created
+    TArrayD clipSize;
+    //    TGeoVolume *clipDummy = CreateClip(clipSize, kTRUE, mgr);
+    CreateClip(clipSize, kTRUE, mgr);
+    // define clip movements (width direction)
+    sizes[3] = xBus + 0.5*busThickness;
+    sizes[4] = 0.5 * (fullWidth - busWidth) - clipSize[6] - fgkmm*0.48;
+    sizes[5] = zBus + busSize[4];
+    sizes[6] = zBus + busSize[5];
+
+    return container;
 }
-//
-//__________________________________________________________________________________________
-TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateHalfStave
-(Bool_t isRight,
- Int_t layer, Int_t idxCentral, Int_t idxSide,
- TArrayD &sizes, Bool_t addClips, TGeoManager *mgr)
+//______________________________________________________________________
+TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateStave(Int_t layer,
+                                    TArrayD &sizes, TGeoManager *mgr)
 {
-       //
-       // Implementation of an half-stave, which depends on the side where we are on the stave.
-       // The convention for "left" and "right" is the same as for the MCM.
-       // The return value is a TGeoAssembly which is structured in such a way that the origin
-       // of its local reference frame coincides with the origin of the whole stave.
-       //
-       
-       // ** CHECK **
-       
-       // idxCentral and idxSide must be different
-       if (idxCentral == idxSide) {
-               AliInfo("Ladders must be inserted in half-stave with different indexes.");
-               idxSide = idxCentral + 1;
-               AliInfo(Form("Central ladder will be inserted with index %d", idxCentral));
-               AliInfo(Form("Side    ladder will be inserted with index %d", idxSide));
-       }
-               
-       // define the separations along Z direction between the objects
-       Double_t sepLadderLadder = fgkmm * 0.2; // sep. btw the 2 ladders
-       Double_t sepLadderCenter = fgkmm * 0.4; // sep. btw the "central" ladder and the Z=0 plane in stave ref.
-       Double_t sepLadderMCM    = fgkmm * 0.3; // sep. btw the "external" ladder and MCM
-       Double_t sepBusCenter    = fgkmm * 0.3; // sep. btw the bus central edge and the Z=0 plane in stave ref.
-       
-       // ** VOLUMES **
-       
-       // grounding foil
-       TArrayD grndSize(3);
-       // This one line repalces the 3 bellow, BNS.
-       TGeoVolume *grndVol = CreateGroundingFoil(isRight,grndSize,mgr);
-       //TGeoVolume *grndVol = 0;
-       //if (isRight) grndVol = CreateGroundingFoil(kTRUE, grndSize, mgr);
-       //else grndVol = CreateGroundingFoil(kFALSE, grndSize, mgr);
-       Double_t &grndThickness = grndSize[0];
-       Double_t &grndLength = grndSize[1];
-       
-       // ladder
-       TArrayD ladderSize(3);
-       TGeoVolume *ladder = CreateLadder(layer, ladderSize, mgr);
-       Double_t ladderThickness = ladderSize[0];
-       Double_t ladderLength = ladderSize[1];
-       Double_t ladderWidth = ladderSize[2];
-       
-       // glue between ladders and pixel bus
-       TGeoMedium *medLadGlue = GetMedium("EPOXY$", mgr); // ??? LadderBusGlue
-       Double_t ladGlueThickness = fgkmm * 0.12 - fAlignmentGap;
-       TGeoVolume *ladderGlue = mgr->MakeBox("LADDER_GLUE", medLadGlue, 0.5*ladGlueThickness, 0.5*ladderWidth, 0.5*ladderLength);
-       ladderGlue->SetLineColor(kRed);
-       
-       // MCM
-       TArrayD mcmSize(3);
-       TGeoVolumeAssembly *mcm = CreateMCM(!isRight,mcmSize,mgr);
-       //TGeoVolumeAssembly *mcm = 0;
-       //if (isRight) mcm = CreateMCM(kFALSE, mcmSize, mgr);
-       //else mcm = CreateMCM(kTRUE, mcmSize, mgr);
-       Double_t mcmThickness = mcmSize[0];
-       Double_t mcmLength = mcmSize[1];
-       Double_t mcmWidth = mcmSize[2];
-               
-       // bus
-       TArrayD busSize(6);
-       TGeoVolumeAssembly *bus = CreatePixelBus(isRight, busSize, mgr);
-       //TGeoVolume *bus = 0;
-       //if (isRight) bus = CreatePixelBus(kTRUE, busSize, mgr);
-       //else bus = CreatePixelBus(kFALSE, busSize, mgr);
-       Double_t busThickness = busSize[0];
-       Double_t busLength = busSize[1];
-       Double_t busWidth = busSize[2];
-       
-       // create references for the whole object, as usual
-       if (sizes.GetSize() != 3) sizes.Set(3);
-       Double_t &fullThickness = sizes[0];
-       Double_t &fullLength = sizes[1];
-       Double_t &fullWidth = sizes[2];
-               
-       // compute the full size of the container
-       fullLength    = sepLadderCenter + 2.0*ladderLength + sepLadderMCM + sepLadderLadder + mcmLength;
-       fullWidth     = ladderWidth;
-       fullThickness = grndThickness + fAlignmentGap + mcmThickness + busThickness;
-       
-       // ** MOVEMENTS **
-       
-       // grounding foil (shifted only along thickness)
-       Double_t xGrnd = -0.5*fullThickness + 0.5*grndThickness;
-       Double_t zGrnd = -0.5*grndLength;
-       if (!isRight) zGrnd = -zGrnd;
-       TGeoTranslation *grndTrans = new TGeoTranslation(xGrnd, 0.0, zGrnd);
-       
-       // ladders (translations along thickness and length)
-       // layers must be sorted going from the one at largest Z to the one at smallest Z:
-       // -|Zmax| ------> |Zmax|
-       //      3   2   1   0
-       // then, for layer 1 ladders they must be placed exactly this way, and in layer 2 at the opposite.
-       // In order to remember the placements, we define as "inner" and "outer" ladder respectively
-       // the one close to barrel center, and the one closer to MCM, respectively.
-       Double_t xLad, zLadIn, zLadOut;
-       xLad    = xGrnd + 0.5*(grndThickness + ladderThickness) + 0.01175 - fAlignmentGap;
-       zLadIn  = -sepLadderCenter - 0.5*ladderLength;
-       zLadOut = zLadIn - sepLadderLadder - ladderLength;
-       if (!isRight) {
-               zLadIn = -zLadIn;
-               zLadOut = -zLadOut;
-       }
-       TGeoRotation *rotLad = new TGeoRotation(*gGeoIdentity);
-       rotLad->RotateZ(90.0);
-       rotLad->RotateY(180.0);
-       Double_t sensWidth      = fgkmm * 12.800;
-       Double_t chipWidth      = fgkmm * 15.950;
-       Double_t guardRingWidth = fgkmm *  0.560;
-       Double_t ladderShift = 0.5 * (chipWidth - sensWidth - 2.0*guardRingWidth);
-       TGeoCombiTrans *trLadIn  = new TGeoCombiTrans(xLad, ladderShift, zLadIn, rotLad);
-       TGeoCombiTrans *trLadOut = new TGeoCombiTrans(xLad, ladderShift, zLadOut, rotLad);
-       
-       // glue between ladders and pixel bus
-       Double_t xLadGlue = xLad + 0.5*ladderThickness + fAlignmentGap - 0.5*ladGlueThickness;
-       TGeoTranslation *trLadGlueIn = new TGeoTranslation(xLadGlue, 0.0, zLadIn);
-       TGeoTranslation *trLadGlueOut = new TGeoTranslation(xLadGlue, 0.0, zLadOut);
-               
-       // MCM (length and thickness direction, placing at same level as the ladder, which implies to
-       // recompute the position of center, because ladder and MCM have NOT the same thickness)
-       // the two copies of the MCM are placed at the same distance from the center, on both sides
-       Double_t xMCM = xGrnd + 0.5*grndThickness + 0.5*mcmThickness + fAlignmentGap;
-       Double_t yMCM = 0.5*(fullWidth - mcmWidth);
-       Double_t zMCM = zLadOut - 0.5*ladderLength - 0.5*mcmLength - sepLadderMCM;
-       if (!isRight) zMCM = zLadOut + 0.5*ladderLength + 0.5*mcmLength + sepLadderMCM;
-       
-       // create the correction rotations
-       TGeoRotation *rotMCM = new TGeoRotation(*gGeoIdentity);
-       rotMCM->RotateY(90.0);
-       TGeoCombiTrans *trMCM = new TGeoCombiTrans(xMCM, yMCM, zMCM, rotMCM);
-       
-       // bus (length and thickness direction)
-       Double_t xBus = xLad + 0.5*ladderThickness + 0.5*busThickness + fAlignmentGap + ladGlueThickness;
-       Double_t yBus  = 0.5*(fullWidth - busWidth);
-       Double_t zBus = -0.5*busLength - sepBusCenter;
-       if (!isRight) zBus = -zBus;
-       TGeoTranslation *trBus = new TGeoTranslation(xBus, yBus, zBus);
-       
-       // create the container
-       TGeoVolumeAssembly *container = 0;
-       if (idxCentral+idxSide==5) {
-               container = new TGeoVolumeAssembly("HALF-STAVE1");
-       } else {
-               container = new TGeoVolumeAssembly("HALF-STAVE0");
-       }
+    //
+    // This method uses all other ones which create pieces of the stave
+    // and assemblies everything together, in order to return the whole
+    // stave implementation, which is returned as a TGeoVolumeAssembly,
+    // due to the presence of some parts which could generate fake overlaps
+    // when put on the sector.
+    // This assembly contains, going from bottom to top in the thickness
+    // direction:
+    //   - the complete grounding foil, defined by the "CreateGroundingFoil"
+    //     method which already joins some glue and real groudning foil
+    //     layers for the whole stave (left + right);
+    //   - 4 ladders, which are sorted according to the ALICE numbering
+    //     scheme, which depends on the layer we are building this stave for;
+    //   - 2 MCMs (a left and a right one);
+    //   - 2 pixel buses (a left and a right one);
+    // ---
+    // Arguments:
+    //   - the layer number, which determines the displacement and naming
+    //     of sensitive volumes
+    //   - a TArrayD passed by reference which will contain the size
+    //     of virtual box containing the stave
+    //   - the TGeoManager
+    //
 
-       // add to container all objects
-       container->AddNode(grndVol, 1, grndTrans);
-       // ladders are inserted in different order to respect numbering scheme
-       // which is inverted when going from outer to inner layer
-       container->AddNode(ladder, idxCentral, trLadIn);
-       container->AddNode(ladder, idxSide, trLadOut);
-       container->AddNode(ladderGlue, 0, trLadGlueIn);
-       container->AddNode(ladderGlue, 1, trLadGlueOut);
-       container->AddNode(mcm, 0, trMCM);
-       container->AddNode(bus, 0, trBus);
-       
-       if (addClips) {
-       
-       // ad clips if requested
-               // create clip volume
-       TArrayD clipSize(3);
-       TGeoVolume *clip = CreateClip(clipSize, mgr);
-               
-       // define clip movements (width direction)
-       TGeoRotation *rotClip = new TGeoRotation(*gGeoIdentity);
-       rotClip->RotateZ(-90.0);
-       rotClip->RotateX(180.0);
-       Double_t x  = xBus + 0.5*busThickness;//clipSize[3] - clipSize[2];
-       Double_t y  = 0.5 * (fullWidth - busWidth) - clipSize[6] - fgkmm*0.48;
-       Double_t z1 = zBus + busSize[4];
-       Double_t z2 = zBus + busSize[5];
-       cout << z1 << ' ' << z2 << endl;
-       TGeoCombiTrans *trClip1 = new TGeoCombiTrans(x, y, z1, rotClip);
-       TGeoCombiTrans *trClip2 = new TGeoCombiTrans(x, y, z2, rotClip);
-       container->AddNode(clip, 0, trClip1);
-       container->AddNode(clip, 1, trClip2);
-       }
-       
-       
-       return container;
-}
-//
-//__________________________________________________________________________________________
-TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateStave
-(Int_t layer,
-                                                                                                         TArrayD &sizes, Bool_t addClips, TGeoManager *mgr) {
-       // This method uses all other ones which create pieces of the stave
-       // and assemblies everything together, in order to return the whole
-       // stave implementation, which is returned as a TGeoVolumeAssembly,
-       // due to the presence of some parts which could generate fake overlaps
-       // when put on the sector.
-       // This assembly contains, going from bottom to top in the thickness direction:
-       //   - the complete grounding foil, defined by the "CreateGroundingFoil" method which
-       //     already joins some glue and real groudning foil layers for the whole stave (left + right);
-       //   - 4 ladders, which are sorted according to the ALICE numbering scheme, which depends
-       //     on the layer we are building this stave for;
-       //   - 2 MCMs (a left and a right one);
-       //   - 2 pixel buses (a left and a right one);
-       // ---
-       // Arguments:
-       //   - the layer number, which determines the displacement and naming of sensitive volumes
-       //   - a TArrayD passed by reference which will contain the size of virtual box containing the stave
-       //   - the TGeoManager
-       //
-       
-       // create the container
-       TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form("LAY%d_STAVE", layer));
-       
-       // define the indexes of the ladders in order to have the correct order
-       // keeping in mind that the staves will be inserted as they are on layer 2, while
-       // they are rotated around their local Y axis when inserted on layer 1, so in this case
-       // they must be put in the "wrong" order to turn out to be right at the end
-       // The convention is:   
-       //   -|Zmax| ------> |Zmax|
-       //      3   2   1   0
-       // with respect to the "native" stave reference frame, "left" is in the positive Z
-       // this leads the definition of these indexes:
-
-       Int_t idxCentralL, idxSideL, idxCentralR, idxSideR;
-       if (layer == 1) {
-               idxSideL = 3;
-               idxCentralL = 2;
-               idxCentralR = 1;
-               idxSideR = 0;
-       }
-       else {
-               idxSideL = 0;
-               idxCentralL = 1;
-               idxCentralR = 2;
-               idxSideR = 3;
-       }
-               
-       // create the two half-staves
-       TArrayD sizeL(3), sizeR(3);
-       TGeoVolumeAssembly *hstaveL = CreateHalfStave(kFALSE, layer, idxCentralL, idxSideL, sizeL, addClips, mgr);
-       TGeoVolumeAssembly *hstaveR = CreateHalfStave(kTRUE, layer, idxCentralR, idxSideR, sizeR, addClips, mgr);
-       
-       // copy the size to the stave's one
-       sizes[0] = sizeL[0];
-       sizes[1] = sizeR[1] + sizeL[1];
-       sizes[2] = sizeL[2];
-       
-       // add to container all objects
-       container->AddNode(hstaveL, 1);
-       container->AddNode(hstaveR, 1);
-       
-       return container;
+    // create the container
+    TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form(
+                                                 "ITSSPDlay%d-Stave",layer));
+    // define the indexes of the ladders in order to have the correct order
+    // keeping in mind that the staves will be inserted as they are on layer
+    // 2, while they are rotated around their local Y axis when inserted
+    // on layer 1, so in this case they must be put in the "wrong" order
+    // to turn out to be right at the end. The convention is:
+    //   -|Zmax| ------> |Zmax|
+    //      3   2   1   0
+    // with respect to the "native" stave reference frame, "left" is in
+    // the positive Z this leads the definition of these indexes:
+    Int_t idxCentralL, idxSideL, idxCentralR, idxSideR;
+
+    if (layer == 1) {
+        idxSideL = 3;
+        idxCentralL = 2;
+        idxCentralR = 1;
+        idxSideR = 0;
+    } else {
+        idxSideL = 0;
+        idxCentralL = 1;
+        idxCentralR = 2;
+        idxSideR = 3;
+    } // end if layer ==1
+
+     // create the two half-staves
+    TArrayD sizeL, sizeR;
+    TGeoVolumeAssembly *hstaveL = CreateHalfStave(kFALSE, layer, idxCentralL,
+                                             idxSideL, sizeL,mgr);
+    TGeoVolumeAssembly *hstaveR = CreateHalfStave(kTRUE, layer, idxCentralR,
+                                             idxSideR, sizeR, mgr);
+    // copy the size to the stave's one
+    sizes.Set(9);
+    sizes[0] = sizeL[0];
+    sizes[1] = sizeR[1] + sizeL[1];
+    sizes[2] = sizeL[2];
+    sizes[3] = sizeL[3];
+    sizes[4] = sizeL[4];
+    sizes[5] = sizeL[5];
+    sizes[6] = sizeL[6];
+    sizes[7] = sizeR[5];
+    sizes[8] = sizeR[6];
+
+    // add to container all objects
+    container->AddNode(hstaveL, 1);
+    container->AddNode(hstaveR, 1);
+
+    return container;
 }
-//
-//__________________________________________________________________________________________
+//______________________________________________________________________
 void AliITSv11GeometrySPD::SetAddStave(Bool_t *mask)
 {
-       //
-       // Define a mask which states qhich staves must be placed.
-       // It is a string which must contain '0' or '1' depending if 
-       // a stave must be placed or not.
-       // Each place is referred to one of the staves, so the first 
-       // six characters of the string will be checked.
-       //
-       
-       Int_t i;
-       for (i = 0; i < 6; i++) fAddStave[i] = mask[i];
+    //
+    // Define a mask which states qhich staves must be placed.
+    // It is a string which must contain '0' or '1' depending if
+    // a stave must be placed or not.
+    // Each place is referred to one of the staves, so the first
+    // six characters of the string will be checked.
+    //
+     Int_t i;
+
+     for (i = 0; i < 6; i++) fAddStave[i] = mask[i];
 }
-//
-//__________________________________________________________________________________________
-void AliITSv11GeometrySPD::StavesInSector(TGeoVolume *moth, TGeoManager *mgr) {
-       //
-       // Unification of essentially two methods:
-       // - the one which creates the sector structure
-       // - the one which returns the complete stave
-       // ---
-       // For compatibility, this method requires the same arguments
-       // asked by "CarbonFiberSector" method, which is recalled here.
-       // Like this cited method, this one does not return any value,
-       // but it inserts in the mother volume (argument 'moth') all the stuff
-       // which composes the complete SPD sector.
-       // ---
-       // In the following, the stave numbering order used for arrays is the same as
-       // defined in the GetSectorMountingPoints():
-       //                         /5
-       //                        /\/4
-       //                      1\   \/3
-       //                      0|___\/2
-       // ---
-       // Arguments: see description of "CarbonFiberSector" method.
-       //
-       
-       Double_t shift[6];  // shift from the innermost position in the sector placement plane
-                           // (where the stave edge is in the point where the rounded corner begins)
-       
-       shift[0] = fgkmm * -0.691;
-       shift[1] = fgkmm *  1.300;
-       shift[2] = fgkmm *  1.816;
-       shift[3] = fgkmm * -0.610;
-       shift[4] = fgkmm * -0.610;
-       shift[5] = fgkmm * -0.610;
-       
-       // create stave volumes (different for layer 1 and 2)
-       TArrayD staveSizes1(3), staveSizes2(3);
-       Double_t &staveHeight = staveSizes1[2], &staveThickness = staveSizes1[0];
-       TGeoVolume *stave1        = CreateStave(1, staveSizes1, kFALSE, mgr);
-       //TGeoVolume *stave2clips   = CreateStave(2, staveSizes2, kTRUE, mgr);
-       TGeoVolume *stave2noclips = CreateStave(2, staveSizes2, kFALSE, mgr);
-       
-       Double_t xL, yL;      // leftmost edge of mounting point (XY projection)
-       Double_t xR, yR;      // rightmost edge of mounting point (XY projection)
-       Double_t xM, yM;      // middle point of the segment L-R
-       Double_t dx, dy;      // (xL - xR) and (yL - yR)
-       Double_t widthLR;     // width of the segment L-R
-       Double_t angle;       // stave rotation angle in degrees
-       Double_t diffWidth;   // difference between mounting plane width and stave width (smaller)
-       Double_t xPos, yPos;  // final translation of the stave
-       Double_t parMovement; // translation in the LR plane direction
-       
-       // loop on staves
-       for (Int_t i = 0; i < 6; i++) {
-               // in debug mode, if this stave is not required, it is skipped
-               if (!fAddStave[i]) continue;
-               // retrieve reference points
-               GetSectorMountingPoints(i, xL, yL, xR, yR);
-               xM = 0.5 * (xL + xR);
-               yM = 0.5 * (yL + yR);
-               dx = xL - xR;
-               dy = yL - yR;
-               angle = TMath::ATan2(dy, dx);
-               widthLR = TMath::Sqrt(dx*dx + dy*dy);
-               diffWidth = 0.5*(widthLR - staveHeight);
-               // first, a movement along this plane must be done
-               // by an amount equal to the width difference
-               // and then the fixed shift must also be added
-               parMovement = diffWidth + shift[i];
-               // due to stave thickness, another movement must be done 
-               // in the direction normal to the mounting plane
-               // which is computed using an internal method, in a reference frame where the LR segment
-               // has its middle point in the origin and axes parallel to the master reference frame
-               if (i == 0) {
-                       ParallelPosition(-0.5*staveThickness, -parMovement, angle, xPos, yPos);
-               }
-               if (i == 1) {
-                       ParallelPosition( 0.5*staveThickness, -parMovement, angle, xPos, yPos);
-               }
-               else {
-                       ParallelPosition( 0.5*staveThickness,  parMovement, angle, xPos, yPos);
-               }
-               // then we go into the true reference frame
-               xPos += xM;
-               yPos += yM;
-               // using the parameters found here, compute the 
-               // translation and rotation of this stave:
-               TGeoRotation *rot = new TGeoRotation(*gGeoIdentity);
-               if (i == 0 || i == 1) rot->RotateX(180.0);
-               rot->RotateZ(90.0 + angle * TMath::RadToDeg());
-               TGeoCombiTrans *trans = new TGeoCombiTrans(xPos, yPos, 0.0, rot);
-               if (i == 0 || i == 1) {
-                       moth->AddNode(stave1, i, trans);
-               }
-               else {
-                       if (i == 2) {
-                               moth->AddNode(stave2noclips, i - 2, trans);
-                       }
-                       else {
-                               moth->AddNode(stave2noclips, i - 2, trans);
-                       }
-               }
-       }
+//______________________________________________________________________
+void AliITSv11GeometrySPD::StavesInSector(TGeoVolume *moth, TGeoManager *mgr)
+{
+    //
+    // Unification of essentially two methods:
+    // - the one which creates the sector structure
+    // - the one which returns the complete stave
+    // ---
+    // For compatibility, this method requires the same arguments
+    // asked by "CarbonFiberSector" method, which is recalled here.
+    // Like this cited method, this one does not return any value,
+    // but it inserts in the mother volume (argument 'moth') all the stuff
+    // which composes the complete SPD sector.
+    // ---
+    // In the following, the stave numbering order used for arrays is the
+    // same as defined in the GetSectorMountingPoints():
+    //                         /5
+    //                        /\/4
+    //                      1\   \/3
+    //                      0|___\/2
+    // ---
+    // Arguments: see description of "CarbonFiberSector" method.
+    //
+
+    Double_t shift[6];  // shift from the innermost position in the
+                        // sector placement plane (where the stave
+                        // edge is in the point where the rounded
+                        // corner begins)
+
+    shift[0] = fgkmm * -0.691;
+    shift[1] = fgkmm *  5.041;
+    shift[2] = fgkmm *  1.816;
+    shift[3] = fgkmm * -0.610;
+    shift[4] = fgkmm * -0.610;
+    shift[5] = fgkmm * -0.610;
+
+    // corrections after interaction with Andrea and CAD
+    Double_t corrX[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
+    Double_t corrY[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
+
+    corrX[0] =  0.0046;
+    corrX[1] = -0.0041;
+    corrX[2] = corrX[3] = corrX[4] = corrX[5] = -0.0016;
+
+    corrY[0] = -0.0007;
+    corrY[1] = -0.0009;
+    corrY[2] = corrY[3] = corrY[4] = corrY[5] = -0.0003;
+
+    corrX[0] +=  0.00026;
+    corrY[0] += -0.00080;
+
+    corrX[1] +=  0.00018;
+    corrY[1] += -0.00086;
+
+    corrX[2] +=  0.00020;
+    corrY[2] += -0.00062;
+
+    corrX[3] +=  0.00017;
+    corrY[3] += -0.00076;
+
+    corrX[4] +=  0.00016;
+    corrY[4] += -0.00096;
+
+    corrX[5] +=  0.00018;
+    corrY[5] += -0.00107;
+
+    // create stave volumes (different for layer 1 and 2)
+    TArrayD staveSizes1(9), staveSizes2(9), clipSize(5);
+    Double_t &staveHeight = staveSizes1[2], &staveThickness = staveSizes1[0];
+    TGeoVolume *stave1 = CreateStave(1, staveSizes1, mgr);
+    TGeoVolume *stave2 = CreateStave(2, staveSizes2, mgr);
+    TGeoVolume *clip   = CreateClip(clipSize, kFALSE, mgr);
+
+    Double_t xL, yL;      // leftmost edge of mounting point (XY projection)
+    Double_t xR, yR;      // rightmost edge of mounting point (XY projection)
+    Double_t xM, yM;      // middle point of the segment L-R
+    Double_t dx, dy;      // (xL - xR) and (yL - yR)
+    Double_t widthLR;     // width of the segment L-R
+    Double_t angle;       // stave rotation angle in degrees
+    Double_t diffWidth;   // difference between mounting plane width and
+                          // stave width (smaller)
+    Double_t xPos, yPos;  // final translation of the stave
+    Double_t parMovement; // translation in the LR plane direction
+
+    staveThickness += fgkGapHalfStave;
+
+    // loop on staves
+    Int_t i, iclip = 1;
+    for (i = 0; i < 6; i++) {
+        // in debug mode, if this stave is not required, it is skipped
+        if (!fAddStave[i]) continue;
+        // retrieve reference points
+        GetSectorMountingPoints(i, xL, yL, xR, yR);
+        xM = 0.5 * (xL + xR);
+        yM = 0.5 * (yL + yR);
+        dx = xL - xR;
+        dy = yL - yR;
+        angle = TMath::ATan2(dy, dx);
+        widthLR = TMath::Sqrt(dx*dx + dy*dy);
+        diffWidth = 0.5*(widthLR - staveHeight);
+        // first, a movement along this plane must be done
+        // by an amount equal to the width difference
+        // and then the fixed shift must also be added
+        parMovement = diffWidth + shift[i];
+        // due to stave thickness, another movement must be done
+        // in the direction normal to the mounting plane
+        // which is computed using an internal method, in a reference
+        // frame where the LR segment has its middle point in the origin
+        // and axes parallel to the master reference frame
+        if (i == 0) {
+            ParallelPosition(-0.5*staveThickness, -parMovement, angle,
+                                  xPos, yPos);
+        } // end if i==0
+        if (i == 1) {
+            ParallelPosition( 0.5*staveThickness, -parMovement, angle,
+                                  xPos, yPos);
+        }else {
+            ParallelPosition( 0.5*staveThickness,  parMovement, angle,
+                                  xPos, yPos);
+        } // end if i==1
+        // then we go into the true reference frame
+        xPos += xM;
+        yPos += yM;
+        xPos += corrX[i];
+        yPos += corrY[i];
+        // using the parameters found here, compute the
+        // translation and rotation of this stave:
+        TGeoRotation *rot = new TGeoRotation(*gGeoIdentity);
+        if (i == 0 || i == 1) rot->RotateX(180.0);
+        rot->RotateZ(90.0 + angle * TMath::RadToDeg());
+        TGeoCombiTrans *trans = new TGeoCombiTrans(xPos, yPos, 0.0, rot);
+        if (i == 0 || i == 1) {
+            moth->AddNode(stave1, i+1, trans);
+        }else {
+            moth->AddNode(stave2, i - 1, trans);
+            if (i != 2) {
+                // except in the case of stave #2,
+                // clips must be added, and this is done directly on the sector
+                Int_t j;
+                //TArrayD clipSize;
+                TGeoRotation *rotClip = new TGeoRotation(*gGeoIdentity);
+                rotClip->RotateZ(-90.0);
+                rotClip->RotateX(180.0);
+                Double_t x = staveSizes2[3] + fgkGapHalfStave;
+                Double_t y = staveSizes2[4];
+                Double_t z[4] = { staveSizes2[5], staveSizes2[6],
+                                  staveSizes2[7], staveSizes2[8] };
+                for (j = 0; j < 4; j++) {
+                    TGeoCombiTrans *trClip = new TGeoCombiTrans(x, y, z[j],
+                                                                rotClip);
+                    *trClip = *trans * *trClip;
+                    moth->AddNode(clip, iclip++, trClip);
+                } // end for j
+            } // end if i!=2
+        } // end if i==0||i==1 else
+    } // end for i
+    
+    
+    // Add a box representing the collector for cooling tubes
+    Double_t collWidth     = fgkmm * 22.0;
+    Double_t collLength    = fgkmm * 50.0;
+    Double_t collThickness = fgkmm *  7.0;
+    Double_t collInSize    = fgkmm * 10.5;
+    
+    TGeoMedium *medColl   = GetMedium("INOX$");
+    TGeoMedium *medCollIn = GetMedium("COPPER$");
+    TGeoVolume *vColl     = mgr->MakeBox("ITSSPDSectorTubeColl"  , medColl, 0.5*collWidth, 0.5*collThickness, 0.5*collLength);
+    TGeoVolume *vCollIn   = mgr->MakeBox("ITSSPDSectorTubeCollIn", medCollIn, 0.5*collInSize, 0.5*collInSize, 0.5*collInSize);
+    vColl->SetLineColor(kGreen+2);
+    vCollIn->SetLineColor(kYellow);
+    
+    TGeoTranslation *tr1 = new TGeoTranslation( 0.1, 1.2,  35.0);
+    TGeoTranslation *tr2 = new TGeoTranslation(-0.1, 1.2, -35.0);
+    TGeoTranslation *tr3 = new TGeoTranslation( 0.1, 1.2 - 0.5*(collThickness+collInSize),  35.0 + 0.5*(collLength - collInSize));
+    TGeoTranslation *tr4 = new TGeoTranslation(-0.1, 1.2 - 0.5*(collThickness+collInSize), -35.0 - 0.5*(collLength - collInSize));
+    
+    moth->AddNode(vColl, 0, tr1);
+    moth->AddNode(vColl, 1, tr2);
+    moth->AddNode(vCollIn, 0, tr3);
+    moth->AddNode(vCollIn, 1, tr4);
+    
 }
-//
-//__________________________________________________________________________________________
+//______________________________________________________________________
 void AliITSv11GeometrySPD::ParallelPosition(Double_t dist1, Double_t dist2,
-                                                                                       Double_t phi, Double_t &x, Double_t &y) const {
-       // Performs the following steps:
-       // 1 - finds a straight line parallel to the one passing through the origin and with angle 'phi' with X axis
-       //     (phi in RADIANS);
-       // 2 - finds another line parallel to the previous one, with a distance 'dist1' from it
-       // 3 - takes a reference point in the second line in the intersection between the normal to both lines 
-       //     passing through the origin
-       // 4 - finds a point whith has distance 'dist2' from this reference, in the second line (point 2)
-       // ----
-       // According to the signs given to dist1 and dist2, the point is found in different position w.r. to the origin
-       //
-       
-       // compute the point
-       Double_t cs = TMath::Cos(phi);
-       Double_t sn = TMath::Sin(phi);
-       
-       x = dist2*cs - dist1*sn;
-       y = dist1*cs + dist2*sn;
+                               Double_t phi, Double_t &x, Double_t &y) const
+{
+    //
+    // Performs the following steps:
+    // 1 - finds a straight line parallel to the one passing through
+    //     the origin and with angle 'phi' with X axis(phi in RADIANS);
+    // 2 - finds another line parallel to the previous one, with a
+    //     distance 'dist1' from it
+    // 3 - takes a reference point in the second line in the intersection
+    //     between the normal to both lines  passing through the origin
+    // 4 - finds a point whith has distance 'dist2' from this reference,
+    //     in the second line (point 2)
+    // ----
+    // According to the signs given to dist1 and dist2, the point is
+    // found in different position w.r. to the origin
+    // compute the point
+    //
+    Double_t cs = TMath::Cos(phi);
+    Double_t sn = TMath::Sin(phi);
+
+    x = dist2*cs - dist1*sn;
+    y = dist1*cs + dist2*sn;
 }
-//
-//__________________________________________________________________________________________
-void AliITSv11GeometrySPD::CreateFigure0(const Char_t *filepath,
-                                         const Char_t *type,
-                                                                                TGeoManager *mgr) const {
-    // Creates Figure 0 for the documentation of this class. In this
-    // specific case, it creates the X,Y cross section of the SPD suport
-    // section, center and ends. The output is written to a standard
-    // file name to the path specificed.
+//______________________________________________________________________
+Double_t AliITSv11GeometrySPD::GetSPDSectorTranslation(
+    Double_t x0,Double_t y0,Double_t x1,Double_t y1,Double_t r) const
+{
+    //
+    // Comutes the radial translation of a sector to give the
+    // proper distance between SPD detectors and the beam pipe.
+    // Units in are units out.
+    //
+
+    //Begin_Html
+    /*
+      <A HREF="http://www.physics.ohio-state.edu/HIRG/SoftWareDoc/SPD_Sector_Position.png">
+      Figure showing the geometry used in the computation below. </A>
+     */
+    //End_Html
+
     // Inputs:
-    //   const Char_t *filepath  Path where the figure is to be drawn
-    //   const Char_t *type      The type of file, default is gif.
-    //   TGeoManager  *mgr       The TGeoManager default gGeoManager
-    // Output:
+    //   Double_t x0  Point x0 on Sector surface for the inner
+    //                most detector mounting
+    //   Double_t y0  Point y0 on Sector surface for the innor
+    //                most detector mounting
+    //   Double_t x1  Point x1 on Sector surface for the inner
+    //                most detector mounting
+    //   Double_t y1  Point y1 on Sector surface for the innor
+    //                most detector mounting
+    //   Double_t r   The radial distance this mounting surface
+    //                should be from the center of the beam pipe.
+    // Outputs:
     //   none.
     // Return:
-    //   none.
-    TGeoXtru *sA0,*sA1,*sB0,*sB1;
-    //TPolyMarker *pmA,*pmB;
-    TPolyLine plA0,plA1,plB0,plB1;
-    TCanvas *canvas;
-    TLatex txt;
-    Double_t x=0.0,y=0.0;
-    Int_t i,kNRadii=6;
-
-    if(strcmp(filepath,"")){
-        Error("CreateFigure0","filepath=%s type=%s",filepath,type);
-    } // end if
-    //
-    sA0 = (TGeoXtru*) mgr->GetVolume(
-                                                                        "ITSSPDCarbonFiberSupportSectorA0_1")->GetShape();
-    sA1 = (TGeoXtru*) mgr->GetVolume(
-                                                                        "ITSSPDCarbonFiberSupportSectorAirA1_1")->GetShape();
-    sB0 = (TGeoXtru*) mgr->GetVolume(
-                                                                        "ITSSPDCarbonFiberSupportSectorEndB0_1")->GetShape();
-    sB1 = (TGeoXtru*) mgr->GetVolume(
-                                                                        "ITSSPDCarbonFiberSupportSectorEndAirB1_1")->GetShape();
-    //pmA = new TPolyMarker();
-    //pmA.SetMarkerStyle(2); // +
-    //pmA.SetMarkerColor(7); // light blue
-    //pmB = new TPolyMarker();
-    //pmB.SetMarkerStyle(5); // X
-    //pmB.SetMarkerColor(6); // purple
-    plA0.SetPolyLine(sA0->GetNvert());
-    plA0.SetLineColor(1); // black
-    plA0.SetLineStyle(1);
-    plA1.SetPolyLine(sA1->GetNvert());
-    plA1.SetLineColor(2); // red
-    plA1.SetLineStyle(1);
-    plB0.SetPolyLine(sB0->GetNvert());
-    plB0.SetLineColor(3); // Green
-    plB0.SetLineStyle(2);
-    plB1.SetPolyLine(sB1->GetNvert());
-    plB1.SetLineColor(4); // Blue
-    plB1.SetLineStyle(2);
-    //for(i=0;i<kNRadii;i++) pmA.SetPoint(i,xyB1p[i][0],xyB1p[i][1]);
-    //for(i=0;i<kNRadii;i++) pmB.SetPoint(i,xyB1p[i][0],xyB1p[i][1]);
-    for(i=0;i<sA0->GetNvert();i++) plA0.SetPoint(i,sA0->GetX(i),sA0->GetY(i));
-    for(i=0;i<sA1->GetNvert();i++) plA1.SetPoint(i,sA1->GetX(i),sA1->GetY(i));
-    for(i=0;i<sB0->GetNvert();i++) plB0.SetPoint(i,sB0->GetX(i),sB0->GetY(i));
-    for(i=0;i<sB1->GetNvert();i++) plB1.SetPoint(i,sB1->GetX(i),sB1->GetY(i));
-    canvas = new TCanvas("AliITSv11GeometrySPDFig0","",1000,1000);
-    canvas->Range(-3.,-3.,3.,3.);
-    txt.SetTextSize(0.05);
-    txt.SetTextAlign(33);
-    txt.SetTextColor(1);
-    txt.DrawLatex(2.9,2.9,"Section A-A outer Carbon Fiber surface");
-    txt.SetTextColor(2);
-    txt.DrawLatex(2.9,2.5,"Section A-A Inner Carbon Fiber surface");
-    txt.SetTextColor(3);
-    txt.DrawLatex(2.9,2.1,"Section E-E outer Carbon Fiber surface");
-    txt.SetTextColor(4);
-    txt.DrawLatex(2.9,1.7,"Section E-E Inner Carbon Fiber surface");
-    plA0.Draw();
-    plA1.Draw();
-    plB0.Draw();
-    plB1.Draw();
-    //pmA.Draw();
-    //pmB.Draw();
-    //
-    x = 1.0;
-    y = -2.5;
-    Char_t chr[3];
-    for(i=0;i<kNRadii;i++){
-        sprintf(chr,"%2d",i);txt.DrawLatex(x-0.1,y,chr);
-        sprintf(chr,"%8.4f",5.000);txt.DrawLatex(x,y,chr);
-        sprintf(chr,"%8.4f",5.000);txt.DrawLatex(x+0.5,y,chr);
-        sprintf(chr,"%8.4f",5.000);txt.DrawLatex(x+1.0,y,chr);
-        sprintf(chr,"%8.4f",5.000);txt.DrawLatex(x+1.5,y,chr);
-        sprintf(chr,"%8.4f",5.000);txt.DrawLatex(x+2.0,y,chr);
-        if(kTRUE) txt.DrawLatex(x+2.5,y,"A-A/E-E");
-        else txt.DrawLatex(x+2.5,y,"E-E");
-    } // end for i
-    txt.DrawLatex(x,y,"x_{c} mm");
-    txt.DrawLatex(x+0.5,y,"y_{c} mm");
-    txt.DrawLatex(x+1.0,y,"R mm");
-    txt.DrawLatex(x+1.5,y,"#theta_{start}^{#circle}");
-    txt.DrawLatex(x+2.0,y,"#theta_{end}^{#circle}");
-    txt.DrawLatex(x+2.5,y,"Section");
+    //   The distance the SPD sector should be displaced radialy.
     //
+    Double_t a,b,c;
+
+    a = x0-x1;
+    if(a==0.0) return 0.0;
+    a = (y0-y1)/a;
+    b = TMath::Sqrt(1.0+a*a);
+    c = y0-a*x0-r*b;
+    return -c;
 }
-//
-//__________________________________________________________________________________________
-void AliITSv11GeometrySPD::PrintAscii(ostream *os)const{
+
+//______________________________________________________________________
+void AliITSv11GeometrySPD::PrintAscii(ostream *os) const
+{
+    //
     // Print out class data values in Ascii Form to output stream
     // Inputs:
     //   ostream *os   Output stream where Ascii data is to be writen
@@ -2949,6 +3648,8 @@ void AliITSv11GeometrySPD::PrintAscii(ostream *os)const{
     //   none.
     // Return:
     //   none.
+    //
+    Int_t i,j,k;
 #if defined __GNUC__
 #if __GNUC__ > 2
     ios::fmtflags fmt = cout.flags();
@@ -2962,12 +3663,26 @@ void AliITSv11GeometrySPD::PrintAscii(ostream *os)const{
     Int_t fmt;
 #endif
 #endif
+
+    *os<< fgkGapLadder <<" "<< fgkGapHalfStave<<" "<< 6 <<" ";
+    for(i=0;i<6;i++) *os<< fAddStave[i] <<" "<<fSPDsectorX0.GetSize();
+    for(i=0;i<fSPDsectorX0.GetSize();i++) *os<< fSPDsectorX0.GetAt(i) << " ";
+    for(i=0;i<fSPDsectorX0.GetSize();i++) *os<< fSPDsectorY0.GetAt(i) << " ";
+    for(i=0;i<fSPDsectorX1.GetSize();i++) *os<< fSPDsectorX1.GetAt(i) << " ";
+    for(i=0;i<fSPDsectorX1.GetSize();i++) *os<< fSPDsectorY1.GetAt(i) << " ";
+    *os<<10<<" "<< 2 <<" " << 6 << " "<< 3 <<" ";
+    for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++)
+        *os<<fTubeEndSector[k][0][i][j]<<" ";
+    for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++)
+        *os<<fTubeEndSector[k][1][i][j]<<" ";
     os->flags(fmt); // reset back to old Formating.
     return;
 }
 //
-//__________________________________________________________________________________________
-void AliITSv11GeometrySPD::ReadAscii(istream* /* is */){
+//______________________________________________________________________
+void AliITSv11GeometrySPD::ReadAscii(istream* is)
+{
+    //
     // Read in class data values in Ascii Form to output stream
     // Inputs:
     //   istream *is   Input stream where Ascii data is to be read in from
@@ -2975,10 +3690,46 @@ void AliITSv11GeometrySPD::ReadAscii(istream* /* is */){
     //   none.
     // Return:
     //   none.
+    //
+    Int_t i,j,k,n;
+    Double_t gapLadder,GapHalfStave;
+    const Int_t kLimits = 100;
+    *is>>gapLadder>>GapHalfStave>>n;
+    if(n!=6){
+      AliError(Form("fAddStave Array !=6 n=%d",n));
+        return;
+    } // end if
+    for(i=0;i<n;i++) *is>>fAddStave[i];
+    *is>>n;
+    if(n<0 || n> kLimits){
+      AliError("Anomalous value for parameter n");
+      return;
+    } 
+    fSPDsectorX0.Set(n);
+    fSPDsectorY0.Set(n);
+    fSPDsectorX1.Set(n);
+    fSPDsectorY1.Set(n);
+    for(i=0;i<n;i++) *is>>fSPDsectorX0[i];
+    for(i=0;i<n;i++) *is>>fSPDsectorY0[i];
+    for(i=0;i<n;i++) *is>>fSPDsectorX1[i];
+    for(i=0;i<n;i++) *is>>fSPDsectorY1[i];
+    *is>> i>>j>>n;
+    if(i!=2||j!=6||n!=3){
+        Warning("ReadAscii","fTubeEndSector array wrong size [2][6][3],"
+                "found [%d][%d][%d]",i,j,n);
+        return;
+    } // end if
+    for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++)
+        *is>>fTubeEndSector[k][0][i][j];
+    for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++)
+        *is>>fTubeEndSector[k][1][i][j];
+    return;
 }
 //
-//__________________________________________________________________________________________
-ostream &operator<<(ostream &os,const AliITSv11GeometrySPD &s){
+//______________________________________________________________________
+ostream &operator<<(ostream &os,const AliITSv11GeometrySPD &s)
+{
+    //
     // Standard output streaming function
     // Inputs:
     //   ostream            &os  output steam
@@ -2987,13 +3738,15 @@ ostream &operator<<(ostream &os,const AliITSv11GeometrySPD &s){
     //   none.
     // Return:
     //   ostream &os  The stream pointer
-
+    //
     s.PrintAscii(&os);
     return os;
 }
 //
-//__________________________________________________________________________________________
-istream &operator>>(istream &is,AliITSv11GeometrySPD &s){
+//______________________________________________________________________
+istream &operator>>(istream &is,AliITSv11GeometrySPD &s)
+{
+    //
     // Standard inputput streaming function
     // Inputs:
     //   istream            &is  input steam
@@ -3002,91 +3755,8 @@ istream &operator>>(istream &is,AliITSv11GeometrySPD &s){
     //   none.
     // Return:
     //   ostream &os  The stream pointer
-
+    //
     s.ReadAscii(&is);
     return is;
 }
-//
-//__________________________________________________________________________________________
-Bool_t AliITSv11GeometrySPD::Make2DCrossSections(TPolyLine &a0,TPolyLine &a1,
-                                                                                                TPolyLine &b0,TPolyLine &b1,TPolyMarker &p)const{
-    // Fill the objects with the points representing
-    // a0 the outer carbon fiber SPD sector shape Cross Section A
-    // a1 the inner carbon fiber SPD sector shape Cross Section A
-    // b0 the outer carbon fiber SPD sector shape Cross Section B
-    // b1 the inner carbon fiber SPD sector shape Cross Section B
-    //
-    // Inputs:
-    //   TPolyLine &a0   The outer carbon fiber SPD sector shape
-    //   TPolyLine &a1   The Inner carbon fiber SPD sector shape
-    //   TPolyLine &b0   The outer carbon fiber SPD sector shape
-    //   TPolyLine &b1   The Inner carbon fiber SPD sector shape
-    //   TPolyMarker &p  The points where the ladders are to be placed
-    // Outputs:
-    //   TPolyLine &a0   The shape filled with the points
-    //   TPolyLine &a1   The shape filled with the points
-    //   TPolyLine &b0   The shape filled with the points
-    //   TPolyLine &b1   The shape filled with the points
-    //   TPolyMarker &p  The filled array of points
-    // Return:
-    //     An error flag.
-    Int_t n0,n1,i;
-    Double_t x,y;
-    TGeoVolume *a0V,*a1V,*b0V,*b1V;
-    TGeoXtru *a0S,*a1S,*b0S,*b1S;
-    TGeoManager *mgr = gGeoManager;
-
-    a0V = mgr->GetVolume("ITS SPD Carbon fiber support Sector A0");
-    a0S = dynamic_cast<TGeoXtru*>(a0V->GetShape());
-    n0 = a0S->GetNvert();
-    a0.SetPolyLine(n0+1);
-    //for(i=0;i<fSPDsectorPoints0.GetSize();i++) 
-    //  printf("%d %d %d\n",i,fSPDsectorPoints0[i],fSPDsectorPoints1[i]);
-    for(i=0;i<n0;i++){
-        x = a0S->GetX(i);
-               y = a0S->GetY(i);
-               //printf("%d %g %g\n",i,x,y);
-        a0.SetPoint(i,x,y);
-               if(i==0) a0.SetPoint(n0,x,y);
-    } // end for i
-    a1V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorAirA1");
-    a1S = dynamic_cast<TGeoXtru*>(a1V->GetShape());
-    n1 = a1S->GetNvert();
-    a1.SetPolyLine(n1+1);
-    for(i=0;i<n1;i++){
-        x = a1S->GetX(i);
-               y = a1S->GetY(i);
-        a1.SetPoint(i,x,y);
-               if(i==0) a1.SetPoint(n1,x,y);
-    } // end for i
-    // Cross Section B
-    b0V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorEndB0");
-    b0S = dynamic_cast<TGeoXtru*>(b0V->GetShape());
-    n0 = b0S->GetNvert();
-    b0.SetPolyLine(n0+1);
-    for(i=0;i<n0;i++){
-        x = b0S->GetX(i);
-               y = b0S->GetY(i);
-        b0.SetPoint(i,x,y);
-               if(i==0) b0.SetPoint(n0,x,y);
-    } // end for i
-    b1V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorEndAirB1");
-    b1S = dynamic_cast<TGeoXtru*>(b1V->GetShape());
-    n1 = b1S->GetNvert();
-    b1.SetPolyLine(n1+1);
-    for(i=0;i<n1;i++){
-        x = b1S->GetX(i);
-               y = b1S->GetY(i);
-        b1.SetPoint(i,x,y);
-               if(i==0) b1.SetPoint(n1,x,y);
-    } // end for i
-    //
-    Double_t x0,y0,x1,y1;
-    p.SetPolyMarker(2*fSPDsectorX0.GetSize());
-    for(i=0;i<fSPDsectorX0.GetSize();i++){
-               GetSectorMountingPoints(i,x0,y0,x1,y1);
-               p.SetPoint(2*i,x0,y0);
-               p.SetPoint(2*i+1,x1,y1);
-    } // end for i
-    return kTRUE;
-}
+