]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - MUON/AliMUONResponseV0.cxx
In AliMUONResponseV0::DisIntegrate():
[u/mrichter/AliRoot.git] / MUON / AliMUONResponseV0.cxx
index 089d2e5d752fce7cf2c4a527ca5abc3f6d348c09..65b9ad5ef22b144483ff2c22addfbd2d187c172f 100644 (file)
 
 /* $Id$ */
 
-#include <TMath.h>
-#include <TRandom.h>
+//-----------------------------------------------------------------------------
+// Class AliMUONResponseV0
+// --------------------------
+// Implementation of 
+// Mathieson response
+//-----------------------------------------------------------------------------
 
 #include "AliMUONResponseV0.h"
-#include "AliSegmentation.h"
+#include "AliMUON.h"
+#include "AliMUONConstants.h"
+#include "AliMUONDigit.h"
+#include "AliMUONGeometryTransformer.h"
+#include "AliMUONHit.h"
+#include "AliMUONConstants.h"
+
+#include "AliMpArea.h"
+#include "AliMpDEManager.h"
+#include "AliMpVPadIterator.h"
+#include "AliMpSegmentation.h"
+#include "AliMpVSegmentation.h"
+#include "AliMpCathodType.h"
+
+#include "AliRun.h"
+#include "AliLog.h"
+
+#include "Riostream.h"
+#include "TVector2.h"
+#include <TMath.h>
+#include <TRandom.h>
 
+/// \cond CLASSIMP
 ClassImp(AliMUONResponseV0)
+/// \endcond
        
+AliMUON* muon()
+{
+    return static_cast<AliMUON*>(gAlice->GetModule("MUON"));
+}
+
+void Global2Local(Int_t detElemId, Double_t xg, Double_t yg, Double_t zg,
+                  Double_t& xl, Double_t& yl, Double_t& zl)
+{  
+  /// ideally should be : 
+  /// Double_t x,y,z;
+  /// AliMUONGeometry::Global2Local(detElemId,xg,yg,zg,x,y,z);
+  /// but while waiting for this geometry singleton, let's go through
+  /// AliMUON still.
+  
+  const AliMUONGeometryTransformer* transformer = muon()->GetGeometryTransformer();
+  transformer->Global2Local(detElemId,xg,yg,zg,xl,yl,zl);
+}
+
 //__________________________________________________________________________
 AliMUONResponseV0::AliMUONResponseV0()
-  : AliMUONResponse() 
+  : AliMUONResponse(),
+  fChargeSlope(0.0),
+  fChargeSpreadX(0.0),
+  fChargeSpreadY(0.0),
+  fSigmaIntegration(0.0),
+  fMaxAdc(0),
+  fSaturation(0),
+  fZeroSuppression(0),
+  fChargeCorrel(0.0),
+  fMathieson(new AliMUONMathieson),
+  fChargeThreshold(1e-4),
+  fIsTailEffect(kFALSE)
 {
-// Default constructor
+    /// Normal constructor
+    AliDebug(1,Form("Default ctor"));
+}
 
-  fChargeCorrel = 0;
+//__________________________________________________________________________
+AliMUONResponseV0::AliMUONResponseV0(const AliMUONResponseV0& other)
+: AliMUONResponse(),
+fChargeSlope(0.0),
+fChargeSpreadX(0.0),
+fChargeSpreadY(0.0),
+fSigmaIntegration(0.0),
+fMaxAdc(0),
+fSaturation(0),
+fZeroSuppression(0),
+fChargeCorrel(0.0),
+fMathieson(0),
+fChargeThreshold(1e-4),
+fIsTailEffect(kFALSE)
+{
+  /// copy ctor
+  other.CopyTo(*this);
+}
+
+//__________________________________________________________________________
+AliMUONResponseV0& 
+AliMUONResponseV0::operator=(const AliMUONResponseV0& other)
+{
+  /// Assignment operator
+  other.CopyTo(*this);
+  return *this;
+}
+
+//__________________________________________________________________________
+AliMUONResponseV0::~AliMUONResponseV0()
+{
+/// Destructor
+
+  AliDebug(1,"");
+  delete fMathieson;
+}
+
+//______________________________________________________________________________
+void
+AliMUONResponseV0::CopyTo(AliMUONResponseV0& other) const
+{
+  /// Copy *this to other
+  other.fChargeSlope=fChargeSlope;
+  other.fChargeSpreadX=fChargeSpreadX;
+  other.fChargeSpreadY=fChargeSpreadY;
+  other.fSigmaIntegration=fSigmaIntegration;
+  other.fMaxAdc=fMaxAdc;
+  other.fSaturation=fSaturation;
+  other.fZeroSuppression=fZeroSuppression;
+  other.fChargeCorrel=fChargeCorrel;
+  delete other.fMathieson;
+  other.fMathieson = new AliMUONMathieson(*fMathieson);
+  other.fChargeThreshold=fChargeThreshold;
+}
+
+//______________________________________________________________________________
+void
+AliMUONResponseV0::Print(Option_t*) const
+{
+/// Printing
+
+  cout << " ChargeSlope=" << fChargeSlope
+    << " ChargeSpreadX,Y=" << fChargeSpreadX
+    << fChargeSpreadY
+    << " ChargeCorrelation=" << fChargeCorrel
+    << endl;
 }
 
   //__________________________________________________________________________
 void AliMUONResponseV0::SetSqrtKx3AndDeriveKx2Kx4(Float_t SqrtKx3)
 {
-  // Set to "SqrtKx3" the Mathieson parameter K3 ("fSqrtKx3")
-  // in the X direction, perpendicular to the wires,
-  // and derive the Mathieson parameters K2 ("fKx2") and K4 ("fKx4")
-  // in the same direction
-  fSqrtKx3 = SqrtKx3;
-  fKx2 = TMath::Pi() / 2. * (1. - 0.5 * fSqrtKx3);
-  Float_t cx1 = fKx2 * fSqrtKx3 / 4. / TMath::ATan(Double_t(fSqrtKx3));
-  fKx4 = cx1 / fKx2 / fSqrtKx3;
+  /// Set to "SqrtKx3" the Mathieson parameter K3 ("fSqrtKx3")
+  /// in the X direction, perpendicular to the wires,
+  /// and derive the Mathieson parameters K2 ("fKx2") and K4 ("fKx4")
+  /// in the same direction
+  fMathieson->SetSqrtKx3AndDeriveKx2Kx4(SqrtKx3);
 }
        
   //__________________________________________________________________________
 void AliMUONResponseV0::SetSqrtKy3AndDeriveKy2Ky4(Float_t SqrtKy3)
 {
-  // Set to "SqrtKy3" the Mathieson parameter K3 ("fSqrtKy3")
-  // in the Y direction, along the wires,
-  // and derive the Mathieson parameters K2 ("fKy2") and K4 ("fKy4")
-  // in the same direction
-  fSqrtKy3 = SqrtKy3;
-  fKy2 = TMath::Pi() / 2. * (1. - 0.5 * fSqrtKy3);
-  Float_t cy1 = fKy2 * fSqrtKy3 / 4. / TMath::ATan(Double_t(fSqrtKy3));
-  fKy4 = cy1 / fKy2 / fSqrtKy3;
+  /// Set to "SqrtKy3" the Mathieson parameter K3 ("fSqrtKy3")
+  /// in the Y direction, along the wires,
+  /// and derive the Mathieson parameters K2 ("fKy2") and K4 ("fKy4")
+  /// in the same direction
+  fMathieson->SetSqrtKy3AndDeriveKy2Ky4(SqrtKy3);
 }
-
-Float_t AliMUONResponseV0::IntPH(Float_t eloss)
+  //__________________________________________________________________________
+Float_t AliMUONResponseV0::IntPH(Float_t eloss) const
 {
-  // Calculate charge from given ionization energy loss
+  /// Calculate charge from given ionization energy loss
   Int_t nel;
   nel= Int_t(eloss*1.e9/27.4);
   Float_t charge=0;
@@ -72,56 +188,163 @@ Float_t AliMUONResponseV0::IntPH(Float_t eloss)
   }
   return charge;
 }
-// -------------------------------------------
 
-Float_t AliMUONResponseV0::IntXY(AliSegmentation * segmentation)
+//_____________________________________________________________________________
+Float_t
+AliMUONResponseV0::GetAnod(Float_t x) const
 {
-// Calculate charge on current pad according to Mathieson distribution
-// 
-    const Float_t kInversePitch = 1/fPitch;
-//
-//  Integration limits defined by segmentation model
-//  
-    Float_t xi1, xi2, yi1, yi2;
-    segmentation->IntegrationLimits(xi1,xi2,yi1,yi2);
-    xi1=xi1*kInversePitch;
-    xi2=xi2*kInversePitch;
-    yi1=yi1*kInversePitch;
-    yi2=yi2*kInversePitch;
-//
-// The Mathieson function 
-    Double_t ux1=fSqrtKx3*TMath::TanH(fKx2*xi1);
-    Double_t ux2=fSqrtKx3*TMath::TanH(fKx2*xi2);
-
-    Double_t uy1=fSqrtKy3*TMath::TanH(fKy2*yi1);
-    Double_t uy2=fSqrtKy3*TMath::TanH(fKy2*yi2);
+  /// Return wire coordinate closest to x.
 
-    
-    return Float_t(4.*fKx4*(TMath::ATan(ux2)-TMath::ATan(ux1))*
-                     fKy4*(TMath::ATan(uy2)-TMath::ATan(uy1)));
+  Int_t n = Int_t(x/Pitch());
+  Float_t wire = (x>0) ? n+0.5 : n-0.5;
+  return Pitch()*wire;
 }
 
-Int_t  AliMUONResponseV0::DigitResponse(Int_t digit, AliMUONTransientDigit* /*where*/)
+//______________________________________________________________________________
+void 
+AliMUONResponseV0::DisIntegrate(const AliMUONHit& hit, TList& digits, Float_t timeDif)
 {
-    // add white noise and do zero-suppression and signal truncation
-//     Float_t meanNoise = gRandom->Gaus(1, 0.2);
-    // correct noise for slat chambers;
-    // one more field to add to AliMUONResponseV0 to allow different noises ????
-    Float_t meanNoise = gRandom->Gaus(1., 0.2);
-    Float_t noise     = gRandom->Gaus(0., meanNoise);
-    digit+=(Int_t)noise; 
-    if ( digit <= ZeroSuppression()) digit = 0;
-    // if ( digit >  MaxAdc())          digit=MaxAdc();
-    if ( digit >  Saturation())          digit=Saturation();
-
-    return digit;
-}
-
-
-
+  /// Go from 1 hit to a list of digits.
+  /// The energy deposition of that hit is first converted into charge
+  /// (in IntPH() method), and then this charge is dispatched on several
+  /// pads, according to the Mathieson distribution.
+  
+  digits.Clear();
+  
+  Int_t detElemId = hit.DetElemId();
+  Double_t hitX = hit.X() ;
+  Double_t hitY = hit.Y() ;
+  Double_t hitZ = hit.Z() ;
 
+  // Width of the integration area
+  Double_t dx = SigmaIntegration()*ChargeSpreadX();
+  Double_t dy = SigmaIntegration()*ChargeSpreadY();
+  
+  //Modify to take the tailing effect.
+  if(fIsTailEffect){
+    Double_t locX,locY,locZ,globXCenter,globYCenter,globZ;
+    Int_t para = 5; // This parameter is a natural number(excluding zero), higher the value less is the tailing effect 
+    Double_t termA = 1.0;
+    Double_t termB = 1.0;
+    if(para>0){
+      for ( Int_t cath = AliMp::kCath0; cath <= AliMp::kCath1; ++cath )
+       {
+         // Get an iterator to loop over pads, within the given area.
+         const AliMpVSegmentation* seg = 
+           AliMpSegmentation::Instance()
+           ->GetMpSegmentation(detElemId,AliMp::GetCathodType(cath));
+         AliMp::PlaneType plane = seg->PlaneType();
+         
+         if(plane == AliMp::kBendingPlane) {
+           Global2Local(detElemId,hitX,hitY,hitZ,locX,locY,locZ);
+           AliMpPad pad = seg->PadByPosition(locX,locY,kFALSE);
+            if(pad.IsValid()){
+              Double_t locYCenter = pad.GetPositionY();
+              Double_t locXCenter = pad.GetPositionX();
+              const AliMUONGeometryTransformer* transformer = muon()->GetGeometryTransformer();
+              transformer->Local2Global(detElemId,locXCenter,locYCenter,locZ,globXCenter,globYCenter,globZ);
+              for(Int_t itime = 0; itime<para; itime++)
+                termA *= 10.0;
+            
+              for(Int_t itime = 0; itime<Int_t((2*para) + 1); itime++)
+                termB *= (hitY - globYCenter) ; 
+            
+              hitY = hitY + termA*termB;
+            }// if the pad is a valid one
+         }// if bending plane
+       }// cathode loop
+    }// if para > 0 condn
+  }// if tail effect
 
+  // Use that (dx,dy) to specify the area upon which
+  // we will iterate to spread charge into.
+  Double_t x,y,z;
+  Global2Local(detElemId,hitX,hitY,hitZ,x,y,z);
+  x = GetAnod(x);
+  AliMpArea area(x,y,dx,dy);
+  
+  // Get pulse height from energy loss.
+  Float_t qtot = IntPH(hit.Eloss());
+  
+  // If from a pileup event we apply a reduction factor to the charge
+  if (timeDif!=0){
+    qtot = AliMUONConstants::ReducedQTot(qtot,timeDif);
+  }
+  
+  // Get the charge correlation between cathodes.
+  Float_t currentCorrel = TMath::Exp(gRandom->Gaus(0.0,ChargeCorrel()/2.0));
 
+  for ( Int_t cath = AliMp::kCath0; cath <= AliMp::kCath1; ++cath )
+  {
+    Float_t qcath = qtot * ( cath == 0 ? currentCorrel : 1.0/currentCorrel);
+    
+    // Get an iterator to loop over pads, within the given area.
+    const AliMpVSegmentation* seg = 
+        AliMpSegmentation::Instance()
+          ->GetMpSegmentation(detElemId,AliMp::GetCathodType(cath));
+      
+    AliMpVPadIterator* it = seg->CreateIterator(area);
+      
+    if (!it)
+    {
+      AliError(Form("Could not get iterator for detElemId %d",detElemId));
+      return;
+    }
+    
+    // Start loop over pads.
+    it->First();
+    
+    if ( it->IsDone() )
+    {
+      // Exceptional case : iterator is built, but is invalid from the start.
+      AliMpPad pad = seg->PadByPosition(area.GetPositionX(),area.GetPositionY(),
+                                        kFALSE);
+      if ( pad.IsValid() )
+      {
+        AliDebug(1, Form("Got an invalid iterator bug (area.Position() is within "
+                      " DE but the iterator is void) for detElemId %d cath %d",
+                      detElemId,cath));        
+      }
+      else
+      {
+        AliDebug(1, Form("Got an invalid iterator bug for detElemId %d cath %d."
+                      "Might be a bad hit ? area.Position()=(%e,%e) "
+                      "Dimensions()=(%e,%e)",
+                      detElemId,cath,area.GetPositionX(),area.GetPositionY(),
+                      area.GetDimensionX(),area.GetDimensionY()));
+      }
+      delete it;
+      return;
+    }
+    
+    while ( !it->IsDone() )
+    {
+      // For each pad given by the iterator, compute the charge of that
+      // pad, according to the Mathieson distribution.
+      AliMpPad pad = it->CurrentItem();      
+      TVector2 lowerLeft(TVector2(x,y)-TVector2(pad.GetPositionX(),pad.GetPositionY())-
+                         TVector2(pad.GetDimensionX(),pad.GetDimensionY()));
+      TVector2 upperRight(lowerLeft + TVector2(pad.GetDimensionX(),pad.GetDimensionY())*2.0);
+      Float_t qp = TMath::Abs(fMathieson->IntXY(lowerLeft.X(),lowerLeft.Y(),
+                                                upperRight.X(),upperRight.Y()));
+            
+      Int_t icharge = Int_t(qp*qcath);
+      
+      if ( qp > fChargeThreshold )
+      {
+        // If we're above threshold, then we create a digit,
+        // and fill it with relevant information, including electronics.
+        AliMUONDigit* d = new AliMUONDigit(detElemId,pad.GetManuId(),
+                                           pad.GetManuChannel(),cath);
+        d->SetPadXY(pad.GetIx(),pad.GetIy());
+        d->SetCharge(icharge);
+        digits.Add(d);   
+      }       
+      it->Next();
+    }
+    delete it;
+  }
+}