]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - PHOS/AliPHOSGeometry.cxx
Initialization of TVector3 data member is corrected
[u/mrichter/AliRoot.git] / PHOS / AliPHOSGeometry.cxx
index 105bf524526929317f7e396aec7b795d6fd7b375..0fae4bfa94c6e4aa879b42b97183d5f64df1f89a 100644 (file)
 
 //_________________________________________________________________________
 // Geometry class  for PHOS : singleton  
-// The EMC modules are parametrized so that any configuration can be easily implemented 
-// The title is used to identify the type of CPV used. So far only PPSD implemented
+// PHOS consists of the electromagnetic calorimeter (EMCA)
+// and a charged particle veto either in the Subatech's version (PPSD)
+// or in the IHEP's one (CPV).
+// The EMCA/PPSD/CPV modules are parametrized so that any configuration
+// can be easily implemented 
+// The title is used to identify the version of CPV used.
 //                  
-//*-- Author: Yves Schutz (SUBATECH)
+// -- Author: Yves Schutz (SUBATECH) & Dmitri Peressounko (RRC "KI" & SUBATECH)
 
 // --- ROOT system ---
 
 #include "TVector3.h"
 #include "TRotation.h" 
+#include "TParticle.h"
+#include <TGeoManager.h>
+#include <TGeoMatrix.h>
 
 // --- Standard library ---
 
-#include <iostream.h>
-
 // --- AliRoot header files ---
-
+#include "AliLog.h"
 #include "AliPHOSGeometry.h"
-#include "AliPHOSPpsdRecPoint.h"
-#include "AliConst.h"
+#include "AliPHOSEMCAGeometry.h" 
+#include "AliPHOSRecPoint.h"
 
-ClassImp(AliPHOSGeometry) ;
+ClassImp(AliPHOSGeometry)
 
-AliPHOSGeometry * AliPHOSGeometry::fgGeom = 0 ;
-Bool_t            AliPHOSGeometry::fgInit = kFALSE ;
+// these initialisations are needed for a singleton
+AliPHOSGeometry  * AliPHOSGeometry::fgGeom = 0 ;
+Bool_t             AliPHOSGeometry::fgInit = kFALSE ;
 
 //____________________________________________________________________________
-AliPHOSGeometry::~AliPHOSGeometry(void)
+AliPHOSGeometry::AliPHOSGeometry() : 
+                    AliPHOSGeoUtils(),
+                   fAngle(0.f),
+                   fPHOSAngle(0),
+                   fIPtoUpperCPVsurface(0),
+                   fCrystalShift(0),
+                   fCryCellShift(0),
+                   fRotMatrixArray(0)
 {
-  // dtor
-
-  fRotMatrixArray->Delete() ; 
-  delete fRotMatrixArray ; 
+    // default ctor 
+    // must be kept public for root persistency purposes, but should never be called by the outside world
+    fgGeom          = 0 ;
 
-  delete fPHOSAngle ; 
-}
+    fPHOSParams[0] = 0.;
+    fPHOSParams[1] = 0.;
+    fPHOSParams[2] = 0.;
+    fPHOSParams[3] = 0.;
+}  
 
 //____________________________________________________________________________
-Bool_t AliPHOSGeometry::AbsToRelNumbering(const Int_t AbsId, Int_t * relid)
+AliPHOSGeometry::AliPHOSGeometry(const AliPHOSGeometry & rhs)
+                   : AliPHOSGeoUtils(rhs),
+                     fAngle(rhs.fAngle),
+                     fPHOSAngle(0),
+                     fIPtoUpperCPVsurface(rhs.fIPtoUpperCPVsurface),
+                     fCrystalShift(rhs.fCrystalShift),
+                     fCryCellShift(rhs.fCryCellShift),
+                     fRotMatrixArray(0)
 {
-  // Converts the absolute numbering into the following array/
-  //  relid[0] = PHOS Module number 1:fNModules 
-  //  relid[1] = 0 if PbW04
-  //           = PPSD Module number 1:fNumberOfModulesPhi*fNumberOfModulesZ*2 (2->up and bottom level)
-  //  relid[2] = Row number inside a PHOS or PPSD module
-  //  relid[3] = Column number inside a PHOS or PPSD module
-
-  Bool_t rv  = kTRUE ; 
-  Float_t id = AbsId ;
-
-  Int_t phosmodulenumber = (Int_t)TMath:: Ceil( id / ( GetNPhi() * GetNZ() ) ) ; 
-  
-  if ( phosmodulenumber >  GetNModules() ) { // its a PPSD pad
-
-    id -=  GetNPhi() * GetNZ() *  GetNModules() ; 
-    Float_t tempo = 2 *  GetNumberOfModulesPhi() * GetNumberOfModulesZ() *  GetNumberOfPadsPhi() * GetNumberOfPadsZ() ; 
-    relid[0] = (Int_t)TMath::Ceil( id / tempo ) ; 
-    id -= ( relid[0] - 1 ) * tempo ;
-    relid[1] = (Int_t)TMath::Ceil( id / ( GetNumberOfPadsPhi() * GetNumberOfPadsZ() ) ) ; 
-    id -= ( relid[1] - 1 ) * GetNumberOfPadsPhi() * GetNumberOfPadsZ() ;
-    relid[2] = (Int_t)TMath::Ceil( id / GetNumberOfPadsPhi() ) ;
-    relid[3] = (Int_t) ( id - ( relid[2] - 1 )  * GetNumberOfPadsPhi() ) ; 
-  } 
-  else { // its a PW04 crystal
-
-    relid[0] = phosmodulenumber ;
-    relid[1] = 0 ;
-    id -= ( phosmodulenumber - 1 ) *  GetNPhi() * GetNZ() ; 
-    relid[2] = (Int_t)TMath::Ceil( id / GetNPhi() ) ;
-    relid[3] = (Int_t)( id - ( relid[2] - 1 ) * GetNPhi() ) ; 
-  } 
-  return rv ; 
+  Fatal("cpy ctor", "not implemented") ; 
 }
-//____________________________________________________________________________  
-void AliPHOSGeometry::EmcModuleCoverage(const Int_t mod, Double_t & tm, Double_t & tM, Double_t & pm, Double_t & pM, Option_t * opt) 
-{
-  // calculates the angular coverage in theta and phi of a EMC module
-
- Double_t conv ; 
-  if ( opt == Radian() ) 
-    conv = 1. ; 
-  else if ( opt == Degre() )
-    conv = 180. / TMath::Pi() ; 
-  else {
-    cout << "<I>  AliPHOSGeometry::EmcXtalCoverage : " << opt << " unknown option; result in radian " << endl ; 
-    conv = 1. ;
-      }
-
-  Float_t phi =  GetPHOSAngle(mod) *  (TMath::Pi() / 180.)  ;  
-  Float_t y0  =  GetIPtoOuterCoverDistance() + GetUpperPlateThickness()
-                 + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()  ;  
-  
-  Double_t angle = TMath::ATan( GetCrystalSize(0)*GetNPhi() / (2 * y0) ) ;
-  phi = phi + 1.5 * TMath::Pi() ; // to follow the convention of the particle generator(PHOS is between 230 and 310 deg.)
-  Double_t max  = phi - angle ;
-  Double_t min   = phi + angle ;
-  pM = TMath::Max(max, min) * conv ;
-  pm = TMath::Min(max, min) * conv ; 
-  
-  angle =  TMath::ATan( GetCrystalSize(2)*GetNZ() / (2 * y0) ) ;
-  max  = TMath::Pi() / 2.  + angle ; // to follow the convention of the particle generator(PHOS is at 90 deg.)
-  min  = TMath::Pi() / 2.  - angle ;
-  tM = TMath::Max(max, min) * conv ;
-  tm = TMath::Min(max, min) * conv ; 
-}
-
-//____________________________________________________________________________  
-void AliPHOSGeometry::EmcXtalCoverage(Double_t & theta, Double_t & phi, Option_t * opt) 
-{
-  // calculates the angular coverage in theta and phi of a single crystal in a EMC module
-
-  Double_t conv ; 
-  if ( opt == Radian() ) 
-    conv = 1. ; 
-  else if ( opt == Degre() )
-    conv = 180. / TMath::Pi() ; 
-  else {
-    cout << "<I>  AliPHOSGeometry::EmcXtalCoverage : " << opt << " unknown option; result in radian " << endl ; 
-    conv = 1. ;
-      }
-
-  Float_t y0   =  GetIPtoOuterCoverDistance() + GetUpperPlateThickness()
-    + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()  ;  
-  theta = 2 * TMath::ATan( GetCrystalSize(2) / (2 * y0) ) * conv ;
-  phi   = 2 * TMath::ATan( GetCrystalSize(0) / (2 * y0) ) * conv ;
-}
 
 //____________________________________________________________________________
-void AliPHOSGeometry::ImpactOnEmc(const Double_t theta, const Double_t phi, Int_t & ModuleNumber, Double_t & z, Double_t & x) 
-{
-  // calculates the impact coordinates of a neutral particle  
-  // emitted in direction theta and phi in ALICE
-
-  // searches for the PHOS EMC module
-  ModuleNumber = 0 ; 
-  Double_t tm, tM, pm, pM ; 
-  Int_t index = 1 ; 
-  while ( ModuleNumber == 0 && index <= GetNModules() ) { 
-    EmcModuleCoverage(index, tm, tM, pm, pM) ; 
-    if ( (theta >= tm && theta <= tM) && (phi >= pm && phi <= pM ) ) 
-      ModuleNumber = index ; 
-    index++ ;    
-  }
-  if ( ModuleNumber != 0 ) {
-    Float_t phi0 =  GetPHOSAngle(ModuleNumber) *  (TMath::Pi() / 180.) + 1.5 * TMath::Pi()  ;  
-    Float_t y0  =  GetIPtoOuterCoverDistance() + GetUpperPlateThickness()
-      + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()  ;   
-    Double_t angle = phi - phi0; 
-    x = y0 * TMath::Tan(angle) ; 
-    angle = theta - TMath::Pi() / 2 ; 
-    z = y0 * TMath::Tan(angle) ; 
-  }
-}
-
-//____________________________________________________________________________
-void AliPHOSGeometry::GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos, TMatrix & gmat)
-{
-  // Calculates the ALICE global coordinates of a RecPoint and the error matrix
-  AliPHOSRecPoint * tmpPHOS = (AliPHOSRecPoint *) RecPoint ;  
-  TVector3 localposition ;
-
-  tmpPHOS->GetLocalPosition(gpos) ;
-
-
-  if ( tmpPHOS->IsEmc() ) // it is a EMC crystal 
-    {  gpos.SetY( -(GetIPtoOuterCoverDistance() + GetUpperPlateThickness() +
-                   GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()) ) ;  
-
-    }
-  else
-    { // it is a PPSD pad
-      AliPHOSPpsdRecPoint * tmpPpsd = (AliPHOSPpsdRecPoint *) RecPoint ;
-      if (tmpPpsd->GetUp() ) // it is an upper module
-       {
-         gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() - 
-                      GetLeadToMicro2Gap() - GetLeadConverterThickness() -  
-                      GetMicro1ToLeadGap() - GetMicromegas1Thickness() / 2.0 )  ) ; 
-       } 
-      else // it is a lower module
-       gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() / 2.0) ) ; 
-    }  
-
-  Float_t phi           = GetPHOSAngle( tmpPHOS->GetPHOSMod()) ; 
-  Double_t const kRADDEG = 180.0 / kPI ;
-  Float_t rphi          = phi / kRADDEG ; 
-  
-  TRotation rot ;
-  rot.RotateZ(-rphi) ; // a rotation around Z by angle  
-  
-  TRotation dummy = rot.Invert() ;  // to transform from original frame to rotate frame
-  gpos.Transform(rot) ; // rotate the baby 
-
+AliPHOSGeometry::AliPHOSGeometry(const Text_t* name, const Text_t* title) 
+                 : AliPHOSGeoUtils(name, title),
+                   fAngle(0.f),
+                   fPHOSAngle(0),
+                   fIPtoUpperCPVsurface(0),
+                   fCrystalShift(0),
+                   fCryCellShift(0),
+                   fRotMatrixArray(0)
+{ 
+  // ctor only for internal usage (singleton)
+  Init() ; 
+  fgGeom = this;
 }
 
 //____________________________________________________________________________
-void AliPHOSGeometry::GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos)
+AliPHOSGeometry::~AliPHOSGeometry(void)
 {
-  // Calculates the ALICE global coordinates of a RecPoint 
-
-  AliPHOSRecPoint * tmpPHOS = (AliPHOSRecPoint *) RecPoint ;  
-  TVector3 localposition ;
-  tmpPHOS->GetLocalPosition(gpos) ;
-
+  // dtor
 
-  if ( tmpPHOS->IsEmc() ) // it is a EMC crystal 
-    {  gpos.SetY( -(GetIPtoOuterCoverDistance() + GetUpperPlateThickness() +
-                   GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()) ) ;  
-    }
-  else
-    { // it is a PPSD pad
-      AliPHOSPpsdRecPoint * tmpPpsd = (AliPHOSPpsdRecPoint *) RecPoint ;
-      if (tmpPpsd->GetUp() ) // it is an upper module
-       {
-         gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() - 
-                      GetLeadToMicro2Gap() - GetLeadConverterThickness() -  
-                      GetMicro1ToLeadGap() - GetMicromegas1Thickness() / 2.0 )  ) ; 
-       } 
-      else // it is a lower module
-       gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() / 2.0) ) ; 
-    }  
-
-  Float_t phi           = GetPHOSAngle( tmpPHOS->GetPHOSMod()) ; 
-  Double_t const kRADDEG = 180.0 / kPI ;
-  Float_t rphi          = phi / kRADDEG ; 
-  
-  TRotation rot ;
-  rot.RotateZ(-rphi) ; // a rotation around Z by angle  
-  
-  TRotation dummy = rot.Invert() ;  // to transform from original frame to rotate frame
-  gpos.Transform(rot) ; // rotate the baby 
+  if (fRotMatrixArray) fRotMatrixArray->Delete() ; 
+  if (fRotMatrixArray) delete fRotMatrixArray ; 
+  if (fPHOSAngle     ) delete[] fPHOSAngle ; 
 }
 
 //____________________________________________________________________________
 void AliPHOSGeometry::Init(void)
 {
-  // Initializes the PHOS parameters
-
-  cout << "PHOS geometry setup: parameters for option " << fName << " " << fTitle << endl ;
-  if ( ((strcmp( fName, "default" )) == 0)  || ((strcmp( fName, "GPS2" )) == 0) ) {
-    fgInit     = kTRUE ; 
-    this->InitPHOS() ; 
-    this->InitPPSD() ;
-    this->SetPHOSAngles() ; 
-    fRotMatrixArray = new TObjArray(fNModules) ; 
-  }
- else {
-   fgInit = kFALSE ; 
-   cout << "PHOS Geometry setup: option not defined " << fName << endl ; 
- }
-}
-
-//____________________________________________________________________________
-void AliPHOSGeometry::InitPHOS(void)
-{
-  // Initializes the EMC parameters
-
-  fNPhi     = 64 ; 
-  fNZ       = 64 ; 
-  fNModules =  5 ; 
-
-  fPHOSAngle = new Float_t[fNModules] ;
-  Int_t index ;
-  for ( index = 0; index < fNModules; index++ )
-    fPHOSAngle[index] = 0.0 ; // Module position angles are set in CreateGeometry()
+  // Initializes the PHOS parameters :
+  //  IHEP is the Protvino CPV (cathode pad chambers)
   
-  fXtlSize[0] =  2.2 ;
-  fXtlSize[1] = 18.0 ;
-  fXtlSize[2] =  2.2 ;
+  fgInit     = kTRUE ; 
 
-  // all these numbers coming next are subject to changes
+  fAngle        = 20;
 
-  fOuterBoxThickness[0] = 2.8 ;
-  fOuterBoxThickness[1] = 5.0 ;      
-  fOuterBoxThickness[2] = 5.0 ;
-  
-  fUpperPlateThickness  = 4.0 ;
-  
-  fSecondUpperPlateThickness = 5.0 ; 
-  
-  fCrystalSupportHeight   = 6.95 ; 
-  fCrystalWrapThickness   = 0.01 ;
-  fCrystalHolderThickness = 0.005 ;
-  fModuleBoxThickness     = 2.0 ; 
-  fIPtoOuterCoverDistance = 447.0 ;      
-  fIPtoCrystalSurface     = 460.0 ;  
-  
-  fPinDiodeSize[0] = 1.71 ;   //Values given by Odd Harald feb 2000  
-  fPinDiodeSize[1] = 0.0280 ; // 0.0280 is the depth of active layer in the silicon     
-  fPinDiodeSize[2] = 1.61 ;    
   
-  fUpperCoolingPlateThickness   = 0.06 ; 
-  fSupportPlateThickness        = 10.0 ;
-  fLowerThermoPlateThickness    =  3.0 ; 
-  fLowerTextolitPlateThickness  =  1.0 ;
-  fGapBetweenCrystals           = 0.03 ;
-  
-  fTextolitBoxThickness[0] = 1.5 ;  
-  fTextolitBoxThickness[1] = 0.0 ;   
-  fTextolitBoxThickness[2] = 3.0 ; 
-  
-  fAirThickness[0] =  1.56   ;
-  fAirThickness[1] = 20.5175 ;  
-  fAirThickness[2] =  2.48   ;  
-  
-  Float_t xtalModulePhiSize =  fNPhi * ( fXtlSize[0] + 2 * fGapBetweenCrystals ) ; 
-  Float_t xtalModuleZSize   =  fNZ * ( fXtlSize[2] + 2 * fGapBetweenCrystals ) ;
-  
-  // The next dimensions are calculated from the above parameters
+  fPHOSAngle = new Float_t[fNModules] ;
   
-  fOuterBoxSize[0] =  xtalModulePhiSize + 2 * ( fAirThickness[0] + fModuleBoxThickness
-                                               + fTextolitBoxThickness[0] + fOuterBoxThickness[0] ) ; 
-  fOuterBoxSize[1] = ( fXtlSize[1] + fCrystalSupportHeight + fCrystalWrapThickness + fCrystalHolderThickness )
-    + 2 * (fAirThickness[1] +  fModuleBoxThickness + fTextolitBoxThickness[1] + fOuterBoxThickness[1] ) ;
-  fOuterBoxSize[2] =  xtalModuleZSize +  2 * ( fAirThickness[2] + fModuleBoxThickness 
-                                              + fTextolitBoxThickness[2] + fOuterBoxThickness[2] ) ; 
+  const Float_t * emcParams = fGeometryEMCA->GetEMCParams() ;
   
-  fTextolitBoxSize[0]  = fOuterBoxSize[0] - 2 * fOuterBoxThickness[0] ;
-  fTextolitBoxSize[1]  = fOuterBoxSize[1] -  fOuterBoxThickness[1] - fUpperPlateThickness ;
-  fTextolitBoxSize[2]  = fOuterBoxSize[2] - 2 * fOuterBoxThickness[2] ;
+  fPHOSParams[0] =  TMath::Max((Double_t)fGeometryCPV->GetCPVBoxSize(0)/2., 
+                              (Double_t)(emcParams[0] - (emcParams[1]-emcParams[0])*
+                                         fGeometryCPV->GetCPVBoxSize(1)/2/emcParams[3]));
+  fPHOSParams[1] = emcParams[1] ;
+  fPHOSParams[2] = TMath::Max((Double_t)emcParams[2], (Double_t)fGeometryCPV->GetCPVBoxSize(2)/2.);
+  fPHOSParams[3] = emcParams[3] + fGeometryCPV->GetCPVBoxSize(1)/2. ;
   
-  fAirFilledBoxSize[0] =  fTextolitBoxSize[0] - 2 * fTextolitBoxThickness[0] ; 
-  fAirFilledBoxSize[1] =  fTextolitBoxSize[1] - fSecondUpperPlateThickness ; 
-  fAirFilledBoxSize[2] =  fTextolitBoxSize[2] - 2 * fTextolitBoxThickness[2] ; 
+  fIPtoUpperCPVsurface = fGeometryEMCA->GetIPtoOuterCoverDistance() - fGeometryCPV->GetCPVBoxSize(1) ;
+
+  //calculate offset to crystal surface
+  const Float_t * inthermo = fGeometryEMCA->GetInnerThermoHalfSize() ;
+  const Float_t * strip = fGeometryEMCA->GetStripHalfSize() ;
+  const Float_t * splate = fGeometryEMCA->GetSupportPlateHalfSize();
+  const Float_t * crystal = fGeometryEMCA->GetCrystalHalfSize() ;
+  const Float_t * pin = fGeometryEMCA->GetAPDHalfSize() ;
+  const Float_t * preamp = fGeometryEMCA->GetPreampHalfSize() ;
+  fCrystalShift=-inthermo[1]+strip[1]+splate[1]+crystal[1]-fGeometryEMCA->GetAirGapLed()/2.+pin[1]+preamp[1] ;
+  fCryCellShift=crystal[1]-(fGeometryEMCA->GetAirGapLed()-2*pin[1]-2*preamp[1])/2;
+  Int_t index ;
+  for ( index = 0; index < fNModules; index++ )
+    fPHOSAngle[index] = 0.0 ; // Module position angles are set in CreateGeometry()
   
-}
+  fRotMatrixArray = new TObjArray(fNModules) ; 
 
-//____________________________________________________________________________
-void AliPHOSGeometry::InitPPSD(void)
-{
-  // Initializes the PPSD parameters
+  // Geometry parameters are calculated
+
+  SetPHOSAngles();
+  Double_t const kRADDEG = 180.0 / TMath::Pi() ;
+  Float_t r = GetIPtoOuterCoverDistance() + fPHOSParams[3] - GetCPVBoxSize(1) ;
+  for (Int_t iModule=0; iModule<fNModules; iModule++) {
+    fModuleCenter[iModule][0] = r * TMath::Sin(fPHOSAngle[iModule] / kRADDEG );
+    fModuleCenter[iModule][1] =-r * TMath::Cos(fPHOSAngle[iModule] / kRADDEG );
+    fModuleCenter[iModule][2] = 0.;
     
-  fAnodeThickness           = 0.0009 ; 
-  fAvalancheGap             = 0.01 ; 
-  fCathodeThickness         = 0.0009 ;
-  fCompositeThickness       = 0.3 ; 
-  fConversionGap            = 0.6 ; 
-  fLeadConverterThickness   = 0.56 ; 
-  fLeadToMicro2Gap          = 0.1 ; 
-  fLidThickness             = 0.2 ; 
-  fMicro1ToLeadGap          = 0.1 ; 
-  fMicromegasWallThickness  = 0.6 ; 
-  fNumberOfModulesPhi       = 4 ; 
-  fNumberOfModulesZ         = 4 ; 
-  fNumberOfPadsPhi          = 24 ; 
-  fNumberOfPadsZ            = 24 ;   
-  fPCThickness              = 0.1 ; 
-  fPhiDisplacement          = 0.8 ;  
-  fZDisplacement            = 0.8 ;  
-
-  fMicromegas1Thickness   = fLidThickness + 2 * fCompositeThickness + fCathodeThickness + fPCThickness 
-                              + fAnodeThickness + fConversionGap + fAvalancheGap ; 
-  fMicromegas2Thickness   = fMicromegas1Thickness ; 
-
-
-  fPPSDModuleSize[0] = 38.0 ; 
-  fPPSDModuleSize[1] = fMicromegas1Thickness ; 
-  fPPSDModuleSize[2] = 38.0 ; 
-  fPPSDBoxSize[0] = fNumberOfModulesPhi * fPPSDModuleSize[0] + 2 * fPhiDisplacement ;  
-  fPPSDBoxSize[1] = fMicromegas2Thickness + fMicromegas2Thickness + fLeadConverterThickness + fMicro1ToLeadGap + fLeadToMicro2Gap ;    
-  fPPSDBoxSize[2] = fNumberOfModulesZ *  fPPSDModuleSize[2] + 2 * fZDisplacement ;
+    fModuleAngle[iModule][0][0] =  90;
+    fModuleAngle[iModule][0][1] =   fPHOSAngle[iModule];
+    fModuleAngle[iModule][1][0] =   0;
+    fModuleAngle[iModule][1][1] =   0;
+    fModuleAngle[iModule][2][0] =  90;
+    fModuleAngle[iModule][2][1] = 270 + fPHOSAngle[iModule];
+  }
 
-  fIPtoTopLidDistance     = fIPtoOuterCoverDistance -  fPPSDBoxSize[1] - 1. ;  
-  
 }
 
 //____________________________________________________________________________
 AliPHOSGeometry *  AliPHOSGeometry::GetInstance() 
 { 
-  // Returns the pointer of the unique instance
-  return (AliPHOSGeometry *) fgGeom ; 
+  // Returns the pointer of the unique instance; singleton specific
+  
+  return static_cast<AliPHOSGeometry *>( fgGeom ) ; 
 }
 
 //____________________________________________________________________________
 AliPHOSGeometry *  AliPHOSGeometry::GetInstance(const Text_t* name, const Text_t* title) 
 {
   // Returns the pointer of the unique instance
+  // Creates it with the specified options (name, title) if it does not exist yet
+
   AliPHOSGeometry * rv = 0  ; 
   if ( fgGeom == 0 ) {
     if ( strcmp(name,"") == 0 ) 
@@ -412,10 +196,9 @@ AliPHOSGeometry *  AliPHOSGeometry::GetInstance(const Text_t* name, const Text_t
     }
   }
   else {
-    if ( strcmp(fgGeom->GetName(), name) != 0 ) {
-      cout << "AliPHOSGeometry <E> : current geometry is " << fgGeom->GetName() << endl
-          << "                      you cannot call     " << name << endl ; 
-    }
+    if ( strcmp(fgGeom->GetName(), name) != 0 ) 
+      ::Error("GetInstance", "Current geometry is %s. You cannot call %s", 
+                     fgGeom->GetName(), name) ; 
     else
       rv = (AliPHOSGeometry *) fgGeom ; 
   } 
@@ -423,142 +206,94 @@ AliPHOSGeometry *  AliPHOSGeometry::GetInstance(const Text_t* name, const Text_t
 }
 
 //____________________________________________________________________________
-Bool_t AliPHOSGeometry::RelToAbsNumbering(const Int_t * relid, Int_t &  AbsId)
-{
-  // Converts the relative numbering into the absolute numbering
-  //  AbsId = 1:fNModules * fNPhi * fNZ  -> PbWO4
-  //  AbsId = 1:fNModules * 2 * (fNumberOfModulesPhi * fNumberOfModulesZ) * fNumberOfPadsPhi * fNumberOfPadsZ -> PPSD
+void AliPHOSGeometry::SetPHOSAngles() 
+{ 
+  // Calculates the position of the PHOS modules in ALICE global coordinate system
+  // in ideal geometry
+  
+  Double_t const kRADDEG = 180.0 / TMath::Pi() ;
+  Float_t pphi =  2 * TMath::ATan( GetOuterBoxSize(0)  / ( 2.0 * GetIPtoUpperCPVsurface() ) ) ;
+  pphi *= kRADDEG ;
+  if (pphi > fAngle){ 
+    AliError(Form("PHOS modules overlap!\n pphi = %f fAngle = %f", 
+                 pphi, fAngle));
 
-  Bool_t rv = kTRUE ; 
-  if ( relid[1] > 0 ) { // its a PPSD pad
-
-    AbsId =    GetNPhi() * GetNZ() *  GetNModules()                          // the offset to separate emcal crystals from PPSD pads
-      + ( relid[0] - 1 ) * GetNumberOfModulesPhi() * GetNumberOfModulesZ()   // the pads offset of PHOS modules 
-                         * GetNumberOfPadsPhi() * GetNumberOfPadsZ() * 2
-      + ( relid[1] - 1 ) * GetNumberOfPadsPhi() * GetNumberOfPadsZ()         // the pads offset of PPSD modules 
-      + ( relid[2] - 1 ) * GetNumberOfPadsPhi()                              // the pads offset of a PPSD row
-      + relid[3] ;                                                           // the column number
-  } 
-  else {
-    if ( relid[1] == 0 ) { // its a Phos crystal
-      AbsId =  ( relid[0] - 1 ) *  GetNPhi() * GetNZ() // the offset of PHOS modules
-        + ( relid[2] - 1 ) * GetNPhi()                 // the offset of a xtal row
-        + relid[3] ;                                   // the column number
-    }
   }
-
-  return rv ; 
+  pphi = fAngle;
+  
+  for( Int_t i = 1; i <= fNModules ; i++ ) {
+    Float_t angle = pphi * ( i - fNModules / 2.0 - 0.5 ) ;
+    fPHOSAngle[i-1] = -  angle ;
+  } 
 }
-
 //____________________________________________________________________________
-
-void AliPHOSGeometry::RelPosInAlice(const Int_t id, TVector3 & pos ) 
+void AliPHOSGeometry::GetGlobal(const AliRecPoint* , TVector3 & ) const
 {
-  // Converts the absolute numbering into the global ALICE coordinates
-  
-   if (id > 0) { 
+  AliFatal(Form("Please use GetGlobalPHOS(recPoint,gpos) instead of GetGlobal!"));
+}
 
-  Int_t relid[4] ;
+//____________________________________________________________________________
+void AliPHOSGeometry::GetGlobalPHOS(const AliPHOSRecPoint* recPoint, TVector3 & gpos) const
+{
+  // Calculates the coordinates of a RecPoint and the error matrix in the ALICE global coordinate system
  
-  AbsToRelNumbering(id , relid) ;
-
-  Int_t phosmodule = relid[0] ; 
+  const AliPHOSRecPoint * tmpPHOS = recPoint ;  
+  TVector3 localposition ;
 
-  Float_t y0 = 0 ; 
+  tmpPHOS->GetLocalPosition(gpos) ;
 
-  if ( relid[1] == 0 ) // it is a PbW04 crystal 
-  {  y0 =  -(GetIPtoOuterCoverDistance() + GetUpperPlateThickness()
-      + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness())  ;  
+  if (!gGeoManager){
+    AliFatal("Geo manager not initialized\n");
   }
-  if ( relid[1] > 0 ) { // its a PPSD pad
-    if ( relid[1] >  GetNumberOfModulesPhi() *  GetNumberOfModulesZ() ) // its an bottom module
-     {
-       y0 = -( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() / 2.0)  ;
-     } 
-    else // its an upper module
-      y0 = -( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() - GetLeadToMicro2Gap()
-       -  GetLeadConverterThickness() -  GetMicro1ToLeadGap() - GetMicromegas1Thickness() / 2.0) ; 
+  //construct module name
+  char path[100] ; 
+  Double_t dy ;
+  if(tmpPHOS->IsEmc()){
+    TString spath="/ALIC_1/PHOS_%d/PEMC_1/PCOL_1/PTIO_1/PCOR_1/PAGA_1/PTII_1";
+    snprintf(path,spath.Length(),spath.Data(),tmpPHOS->GetPHOSMod()) ;
+//    sprintf(path,"/ALIC_1/PHOS_%d",tmpPHOS->GetPHOSMod()) ;
+    dy=fCrystalShift ;
   }
-
-  Float_t x, z ; 
-  RelPosInModule(relid, x, z) ; 
-
-  pos.SetX(x) ;
-  pos.SetZ(z) ;
-  pos.SetY( TMath::Sqrt(x*x + z*z + y0*y0) ) ; 
-
-
-
-   Float_t phi           = GetPHOSAngle( phosmodule) ; 
-   Double_t const kRADDEG = 180.0 / kPI ;
-   Float_t rphi          = phi / kRADDEG ; 
-
-   TRotation rot ;
-   rot.RotateZ(-rphi) ; // a rotation around Z by angle  
-  
-   TRotation dummy = rot.Invert() ;  // to transform from original frame to rotate frame
-  
-   pos.Transform(rot) ; // rotate the baby 
+  else{
+    TString spath="/ALIC_1/PHOS_%d/PCPV_1";
+    snprintf(path,spath.Length(),spath.Data(),tmpPHOS->GetPHOSMod()) ;
+    dy= GetCPVBoxSize(1)/2. ; //center of CPV module 
   }
-  else {
- pos.SetX(0.);
- pos.SetY(0.);
- pos.SetZ(0.);
-       }
-} 
+  Double_t pos[3]={gpos.X(),gpos.Y()-dy,gpos.Z()} ;
+  if(tmpPHOS->IsEmc())
+    pos[2]=-pos[2] ; //Opposite z directions in EMC matrix and local frame!!!
+  Double_t posC[3] = {};
+  //now apply possible shifts and rotations
+  if (!gGeoManager->cd(path)){
+    AliFatal("Geo manager can not find path \n");
+  }
+  TGeoHMatrix *m = gGeoManager->GetCurrentMatrix();
+  if (m){
+     m->LocalToMaster(pos,posC);
+  }
+  else{
+    AliFatal("Geo matrixes are not loaded \n") ;
+  }
+  gpos.SetXYZ(posC[0],posC[1],posC[2]) ;
 
-//____________________________________________________________________________
-void AliPHOSGeometry::RelPosInModule(const Int_t * relid, Float_t & x, Float_t & z) 
-{
-  // Converts the relative numbering into the local PHOS-module (x, z) coordinates
-  
-  Int_t ppsdmodule  ; 
-  Int_t row        = relid[2] ; //offset along z axiz
-  Int_t column     = relid[3] ; //offset along x axiz
-
-  Float_t padsizeZ = GetPPSDModuleSize(2)/ GetNumberOfPadsZ();
-  Float_t padsizeX = GetPPSDModuleSize(0)/ GetNumberOfPadsPhi();
-
-  if ( relid[1] == 0 ) { // its a PbW04 crystal 
-    x = -( GetNPhi()/2. - row   + 0.5 ) *  GetCrystalSize(0) ; // position ox Xtal with respect
-    z = ( GetNZ() /2. - column + 0.5 ) *  GetCrystalSize(2) ; // of center of PHOS module  
-   }  
-   else  {    
-    if ( relid[1] >  GetNumberOfModulesPhi() *  GetNumberOfModulesZ() )
-       ppsdmodule =  relid[1]-GetNumberOfModulesPhi() *  GetNumberOfModulesZ(); 
-    else ppsdmodule =  relid[1] ;
-    Int_t modrow = 1+(Int_t)TMath::Ceil( (Float_t)ppsdmodule / GetNumberOfModulesPhi()-1. ) ; 
-    Int_t modcol = ppsdmodule -  ( modrow - 1 ) * GetNumberOfModulesPhi() ;     
-    Float_t x0 = (  GetNumberOfModulesPhi() / 2.  - modrow  + 0.5 ) * GetPPSDModuleSize(0) ;
-    Float_t z0 = (  GetNumberOfModulesZ() / 2.  - modcol  + 0.5 ) * GetPPSDModuleSize(2)  ;     
-    x = - ( GetNumberOfPadsPhi()/2. - row - 0.5 ) * padsizeX + x0 ; // position of pad  with respect
-    z = ( GetNumberOfPadsZ()/2.   - column - 0.5 ) * padsizeZ - z0 ; // of center of PHOS module  
-         }
 }
-
 //____________________________________________________________________________
-void AliPHOSGeometry::SetPHOSAngles() 
-{ 
-  // Calculates the position in ALICE of the PHOS modules
-  
-  Double_t const kRADDEG = 180.0 / kPI ;
-  Float_t pphi =  TMath::ATan( fOuterBoxSize[0]  / ( 2.0 * fIPtoOuterCoverDistance ) ) ;
-  pphi *= kRADDEG ;
-  
-  for( Int_t i = 1; i <= fNModules ; i++ ) {
-    Float_t angle = pphi * 2 * ( i - fNModules / 2.0 - 0.5 ) ;
-    fPHOSAngle[i-1] = -  angle ;
-  } 
-}
 
-//____________________________________________________________________________
-void AliPHOSGeometry::SetLeadConverterThickness(Float_t e) 
+void AliPHOSGeometry::GetModuleCenter(TVector3& center, 
+                                     const char *det,
+                                     Int_t module) const
 {
-  // should ultimately disappear 
-  
-  cout << " AliPHOSGeometry WARNING : You have changed LeadConverterThickness from " 
-       << fLeadConverterThickness << " to " << e << endl ;
-
-  fLeadConverterThickness = e ; 
+  // Returns a position of the center of the CPV or EMC module
+  // in ideal (not misaligned) geometry
+  Float_t rDet = 0.;
+  if      (strcmp(det,"CPV") == 0) rDet  = GetIPtoCPVDistance   ();
+  else if (strcmp(det,"EMC") == 0) rDet  = GetIPtoCrystalSurface();
+  else 
+    AliFatal(Form("Wrong detector name %s",det));
+
+  Float_t angle = GetPHOSAngle(module); // (40,20,0,-20,-40) degrees
+  angle *= TMath::Pi()/180;
+  angle += 3*TMath::Pi()/2.;
+  center.SetXYZ(rDet*TMath::Cos(angle), rDet*TMath::Sin(angle), 0.);
 }
+