]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - PYTHIA6/AliPythia.cxx
bugfix: boundery check for static hit array
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia.cxx
index f4747604bccc57ffd817a7faaf04d786ce657346..9173c056a66f04a4b56d8566ac17ec5194b70794 100644 (file)
@@ -1,3 +1,4 @@
+
 /**************************************************************************
  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
  *                                                                        *
  * provided "as is" without express or implied warranty.                  *
  **************************************************************************/
 
-/*
-$Log$
-Revision 1.1  2003/03/15 15:00:48  morsch
-Classed imported from EVGEN.
-
-Revision 1.28  2002/12/09 08:22:56  morsch
-UA1 jet finder (Pycell) for software triggering added.
-
-Revision 1.27  2002/11/15 00:39:37  morsch
-- Correct initialisation of sRandom.
-- QCD Jets with initial and final state gluon radiation is default
-- pt kick for jets default
-- Interface to Pyclus added.
-
-Revision 1.26  2002/11/14 00:37:32  morsch
-Warning message for kPyJets added.
-
-Revision 1.25  2002/10/14 14:55:35  hristov
-Merging the VirtualMC branch to the main development branch (HEAD)
-
-Revision 1.20.6.1  2002/06/10 14:57:41  hristov
-Merged with v3-08-02
-
-Revision 1.24  2002/05/22 13:22:53  morsch
-Process kPyMbNonDiffr added.
-
-Revision 1.23  2002/05/06 07:17:29  morsch
-Pyr gives random number r in interval 0 < r < 1.
-
-Revision 1.22  2002/04/26 10:28:48  morsch
-Option kPyBeautyPbMNR added (N. Carrer).
-
-Revision 1.21  2002/03/25 14:46:16  morsch
-Case  kPyD0PbMNR added (N. Carrer).
-
-Revision 1.20  2002/03/03 13:48:50  morsch
-Option  kPyCharmPbMNR added. Produce charm pairs in agreement with MNR
-NLO calculations (Nicola Carrer).
-
-Revision 1.19  2002/02/20 08:52:20  morsch
-Correct documentation of SetNuclei method.
-
-Revision 1.18  2002/02/07 10:43:06  morsch
-Tuned pp-min.bias settings (M.Monteno, R.Ugoccioni and N.Carrer)
-
-Revision 1.17  2001/12/19 15:40:43  morsch
-For kPyJets enforce simple jet topology, i.e no initial or final state
-gluon radiation and no primordial pT.
-
-Revision 1.16  2001/10/12 11:13:59  morsch
-Missing break statements added (thanks to Nicola Carrer)
-
-Revision 1.15  2001/03/27 10:54:50  morsch
-Add ResetDecayTable() and SsetDecayTable() methods.
-
-Revision 1.14  2001/03/09 13:03:40  morsch
-Process_t and Struc_Func_t moved to AliPythia.h
-
-Revision 1.13  2000/12/18 08:55:35  morsch
-Make AliPythia dependent generartors work with new scheme of random number generation
-
-Revision 1.12  2000/11/30 07:12:50  alibrary
-Introducing new Rndm and QA classes
-
-Revision 1.11  2000/10/20 06:30:06  fca
-Use version 0 to avoid streamer generation
-
-Revision 1.10  2000/10/06 14:18:44  morsch
-Upper cut of prim. pT distribution set to 5. GeV
-
-Revision 1.9  2000/09/18 10:41:35  morsch
-Add possibility to use nuclear structure functions from PDF library V8.
-
-Revision 1.8  2000/09/06 14:26:24  morsch
-Decayer functionality of AliPythia has been moved to AliDecayerPythia.
-Class is now a singleton.
-
-Revision 1.7  2000/06/09 20:34:50  morsch
-All coding rule violations except RS3 corrected
-
-Revision 1.6  1999/11/09 07:38:48  fca
-Changes for compatibility with version 2.23 of ROOT
-
-Revision 1.5  1999/11/03 17:43:20  fca
-New version from G.Martinez & A.Morsch
-
-Revision 1.4  1999/09/29 09:24:14  fca
-Introduction of the Copyright and cvs Log
-
-*/
-
+/* $Id$ */
 
 #include "AliPythia.h"
+#include "AliPythiaRndm.h"
+#include "AliFastGlauber.h"
+#include "AliQuenchingWeights.h"
+#include "TVector3.h"
+#include "PyquenCommon.h"
 
 ClassImp(AliPythia)
 
 #ifndef WIN32
 # define pyclus pyclus_
 # define pycell pycell_
+# define pyshow pyshow_
+# define pyrobo pyrobo_
+# define pyquen pyquen_
+# define pyevnw pyevnw_
 # define type_of_call
 #else
 # define pyclus PYCLUS
 # define pycell PYCELL
+# define pyrobo PYROBO
+# define pyquen PYQUEN
+# define pyevnw PYEVNW
 # define type_of_call _stdcall
 #endif
 
 extern "C" void type_of_call pyclus(Int_t & );
 extern "C" void type_of_call pycell(Int_t & );
+extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
+extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
+extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
+extern "C" void type_of_call pyevnw(){;}
 
 //_____________________________________________________________________________
 
 AliPythia* AliPythia::fgAliPythia=NULL;
 
-AliPythia::AliPythia()
+AliPythia::AliPythia():
+    fProcess(kPyMb),
+    fEcms(0.),
+    fStrucFunc(kCTEQ5L),
+    fXJet(0.),
+    fYJet(0.),
+    fNGmax(30),
+    fZmax(0.97),
+    fGlauber(0),
+    fQuenchingWeights(0)
 {
 // Default Constructor
 //
 //  Set random number
-    if (!sRandom) sRandom=fRandom;
+    if (!AliPythiaRndm::GetPythiaRandom()) 
+      AliPythiaRndm::SetPythiaRandom(GetRandom());
+    fGlauber          = 0;
+    fQuenchingWeights = 0;
+}
 
+AliPythia::AliPythia(const AliPythia& pythia):
+    TPythia6(pythia), 
+    AliRndm(pythia),
+    fProcess(kPyMb),
+    fEcms(0.),
+    fStrucFunc(kCTEQ5L),
+    fXJet(0.),
+    fYJet(0.),
+    fNGmax(30),
+    fZmax(0.97),
+    fGlauber(0),
+    fQuenchingWeights(0)
+{
+    // Copy Constructor
+    pythia.Copy(*this);
 }
 
 void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc)
 {
 // Initialise the process to generate 
-    if (!sRandom) sRandom = gRandom;
+    if (!AliPythiaRndm::GetPythiaRandom()) 
+      AliPythiaRndm::SetPythiaRandom(GetRandom());
     
     fProcess = process;
     fEcms = energy;
     fStrucFunc = strucfunc;
-//  don't decay p0
-    SetMDCY(Pycomp(111),1,0);
-//  select structure function 
+//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
+    SetMDCY(Pycomp(111) ,1,0);
+    SetMDCY(Pycomp(310) ,1,0);
+    SetMDCY(Pycomp(3122),1,0);
+    SetMDCY(Pycomp(3112),1,0);
+    SetMDCY(Pycomp(3212),1,0);
+    SetMDCY(Pycomp(3222),1,0);
+    SetMDCY(Pycomp(3312),1,0);
+    SetMDCY(Pycomp(3322),1,0);
+    SetMDCY(Pycomp(3334),1,0);
+    // Select structure function 
     SetMSTP(52,2);
     SetMSTP(51,strucfunc);
+    // Particles produced in string fragmentation point directly to either of the two endpoints
+    // of the string (depending in the side they were generated from).
+    SetMSTU(16,2);
+
 //
 // Pythia initialisation for selected processes//
 //
@@ -159,13 +127,64 @@ void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfun
 //  select charm production
     switch (process) 
     {
+    case kPyOldUEQ2ordered:  //Old underlying events with Q2 ordered QCD processes
+//        Multiple interactions on.
+       SetMSTP(81,1);
+// Double Gaussian matter distribution.
+       SetMSTP(82,4);
+       SetPARP(83,0.5);
+       SetPARP(84,0.4);
+//  pT0.
+       SetPARP(82,2.0);
+//  Reference energy for pT0 and energy rescaling pace.
+       SetPARP(89,1800);
+       SetPARP(90,0.25);
+//  String drawing almost completely minimizes string length.
+       SetPARP(85,0.9);
+       SetPARP(86,0.95);
+// ISR and FSR activity.
+       SetPARP(67,4);
+       SetPARP(71,4);
+// Lambda_FSR scale.
+       SetPARJ(81,0.29);
+       break;
+    case kPyOldUEQ2ordered2:   
+// Old underlying events with Q2 ordered QCD processes
+// Multiple interactions on.
+       SetMSTP(81,1);
+// Double Gaussian matter distribution.
+       SetMSTP(82,4);
+       SetPARP(83,0.5);
+       SetPARP(84,0.4);
+// pT0.
+       SetPARP(82,2.0);
+// Reference energy for pT0 and energy rescaling pace.
+       SetPARP(89,1800);
+       SetPARP(90,0.16);  // here is the difference with  kPyOldUEQ2ordered
+// String drawing almost completely minimizes string length.
+       SetPARP(85,0.9);
+       SetPARP(86,0.95);
+// ISR and FSR activity.
+       SetPARP(67,4);
+       SetPARP(71,4);
+// Lambda_FSR scale.
+       SetPARJ(81,0.29);       
+       break;
+    case kPyOldPopcorn:  
+// Old production mechanism: Old Popcorn
+       SetMSEL(1);
+       SetMSTJ(12,3); 
+// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
+       SetMSTP(88,2); 
+// (D=1)see can be used to form  baryons (BARYON JUNCTION)
+       SetMSTJ(1,1);  
+       AtlasTuning();
+       break;
     case kPyCharm:
        SetMSEL(4);
-//
 //  heavy quark masses
 
        SetPMAS(4,1,1.2);
-       SetMSTU(16,2);
 //
 //    primordial pT
        SetMSTP(91,1);
@@ -176,7 +195,6 @@ void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfun
     case kPyBeauty:
        SetMSEL(5);
        SetPMAS(5,1,4.75);
-       SetMSTU(16,2);
        break;
     case kPyJpsi:
        SetMSEL(0);
@@ -218,42 +236,96 @@ void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfun
 //   
 //      select Pythia min. bias model
        SetMSEL(0);
-       SetMSUB(92,1);      // single diffraction AB-->XB
-       SetMSUB(93,1);      // single diffraction AB-->AX
-       SetMSUB(94,1);      // double diffraction
-       SetMSUB(95,1);      // low pt production
-       SetMSTP(81,1);      // multiple interactions switched on
-       SetMSTP(82,3);      // model with varying impact param. & a single Gaussian
-       SetPARP(82,3.47);   // set value pT_0  for turn-off of the cross section of                  
-                            // multiple interaction at a reference energy = 14000 GeV
-       SetPARP(89,14000.); // reference energy for the above parameter
-       SetPARP(90,0.174);  // set exponent for energy dependence of pT_0
+       SetMSUB(92,1);             // single diffraction AB-->XB
+       SetMSUB(93,1);             // single diffraction AB-->AX
+       SetMSUB(94,1);             // double diffraction
+       SetMSUB(95,1);             // low pt production
+
+       AtlasTuning();
+       break;
+    case kPyMbDefault:
+// Minimum Bias pp-Collisions
+//
+//   
+//      select Pythia min. bias model
+       SetMSEL(0);
+       SetMSUB(92,1);             // single diffraction AB-->XB
+       SetMSUB(93,1);             // single diffraction AB-->AX
+       SetMSUB(94,1);             // double diffraction
+       SetMSUB(95,1);             // low pt production
+
+       break;
+    case kPyLhwgMb:
+// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
+//  -> Pythia 6.3 or above is needed
+//   
+       SetMSEL(0);
+       SetMSUB(92,1);             // single diffraction AB-->XB
+       SetMSUB(93,1);             // single diffraction AB-->AX
+       SetMSUB(94,1);             // double diffraction
+       SetMSUB(95,1);             // low pt production
+
+        SetMSTP(51,kCTEQ6ll);      // CTEQ6ll pdf
+       SetMSTP(52,2);
+       SetMSTP(68,1);
+       SetMSTP(70,2);
+       SetMSTP(81,1);             // Multiple Interactions ON
+       SetMSTP(82,4);             // Double Gaussian Model
+       SetMSTP(88,1);
+
+       SetPARP(82,2.3);           // [GeV]    PT_min at Ref. energy
+       SetPARP(83,0.5);           // Core density in proton matter distribution (def.value)
+       SetPARP(84,0.5);           // Core radius
+       SetPARP(85,0.9);           // Regulates gluon prod. mechanism
+       SetPARP(90,0.2);           // 2*epsilon (exponent in power law)
+
+       break;
     case kPyMbNonDiffr:
 // Minimum Bias pp-Collisions
 //
 //   
 //      select Pythia min. bias model
        SetMSEL(0);
-       SetMSUB(95,1);      // low pt production
-       SetMSTP(81,1);      // multiple interactions switched on
-       SetMSTP(82,3);      // model with varying impact param. & a single Gaussian
-       SetPARP(82,3.47);   // set value pT_0  for turn-off of the cross section of                  
-                            // multiple interaction at a reference energy = 14000 GeV
-       SetPARP(89,14000.); // reference energy for the above parameter
-       SetPARP(90,0.174);  // set exponent for energy dependence of pT_0
+       SetMSUB(95,1);             // low pt production
+
+       AtlasTuning();
+       break;
+    case kPyMbMSEL1:
+       ConfigHeavyFlavor();
+// Intrinsic <kT^2>
+        SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons
+        SetPARP(91,1.);     // <kT^2> = PARP(91,1.)^2
+        SetPARP(93,5.);     // Upper cut-off
+// Set Q-quark mass
+        SetPMAS(4,1,1.2);   // Charm quark mass
+        SetPMAS(5,1,4.78);  // Beauty quark mass
+       SetPARP(71,4.);     // Defaut value
+// Atlas Tuning
+       AtlasTuning();
        break;
     case kPyJets:
 //
 //  QCD Jets
 //
        SetMSEL(1);
-       break;
+ // Pythia Tune A (CDF)
+ //
+       SetPARP(67,2.5);           // Regulates Initial State Radiation (value from best fit to D0 dijet analysis)
+       SetMSTP(82,4);             // Double Gaussian Model
+       SetPARP(82,2.0);           // [GeV]    PT_min at Ref. energy
+       SetPARP(84,0.4);           // Core radius
+       SetPARP(85,0.90) ;         // Regulates gluon prod. mechanism
+       SetPARP(86,0.95);          // Regulates gluon prod. mechanism
+       SetPARP(89,1800.);         // [GeV]   Ref. energy
+       SetPARP(90,0.25);          // 2*epsilon (exponent in power law)
+       break;
     case kPyDirectGamma:
        SetMSEL(10);
        break;
     case kPyCharmPbPbMNR:
     case kPyD0PbPbMNR:
+    case kPyDPlusPbPbMNR:
+    case kPyDPlusStrangePbPbMNR:
       // Tuning of Pythia parameters aimed to get a resonable agreement
       // between with the NLO calculation by Mangano, Nason, Ridolfi for the
       // c-cbar single inclusive and double differential distributions.
@@ -261,37 +333,18 @@ void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfun
       // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
       // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
       // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
-
-      // All QCD processes
-      SetMSEL(1);
-
-      // No multiple interactions
-      SetMSTP(81,0);
-      SetPARP(81,0.0);
-      SetPARP(82,0.0);
-
-      // Initial/final parton shower on (Pythia default)
-      SetMSTP(61,1);
-      SetMSTP(71,1);
-
-      // 2nd order alpha_s
-      SetMSTP(2,2);
-
-      // QCD scales
-      SetMSTP(32,2);
-      SetPARP(34,1.0);
-
+       ConfigHeavyFlavor();
       // Intrinsic <kT>
       SetMSTP(91,1);
       SetPARP(91,1.304);
       SetPARP(93,6.52);
-
       // Set c-quark mass
       SetPMAS(4,1,1.2);
-
       break;
     case kPyCharmpPbMNR:
     case kPyD0pPbMNR:
+    case kPyDPluspPbMNR:
+    case kPyDPlusStrangepPbMNR:
       // Tuning of Pythia parameters aimed to get a resonable agreement
       // between with the NLO calculation by Mangano, Nason, Ridolfi for the
       // c-cbar single inclusive and double differential distributions.
@@ -299,37 +352,19 @@ void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfun
       // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
       // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
       // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
-
-      // All QCD processes
-      SetMSEL(1);
-
-      // No multiple interactions
-      SetMSTP(81,0);
-      SetPARP(81,0.0);
-      SetPARP(82,0.0);
-
-      // Initial/final parton shower on (Pythia default)
-      SetMSTP(61,1);
-      SetMSTP(71,1);
-
-      // 2nd order alpha_s
-      SetMSTP(2,2);
-
-      // QCD scales
-      SetMSTP(32,2);
-      SetPARP(34,1.0);
-
+       ConfigHeavyFlavor();
       // Intrinsic <kT>
-      SetMSTP(91,1);
-      SetPARP(91,1.16);
-      SetPARP(93,5.8);
-
+       SetMSTP(91,1);
+       SetPARP(91,1.16);
+       SetPARP(93,5.8);
+       
       // Set c-quark mass
-      SetPMAS(4,1,1.2);
-
+       SetPMAS(4,1,1.2);
       break;
     case kPyCharmppMNR:
     case kPyD0ppMNR:
+    case kPyDPlusppMNR:
+    case kPyDPlusStrangeppMNR:
       // Tuning of Pythia parameters aimed to get a resonable agreement
       // between with the NLO calculation by Mangano, Nason, Ridolfi for the
       // c-cbar single inclusive and double differential distributions.
@@ -337,35 +372,42 @@ void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfun
       // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
       // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
       // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
-
-      // All QCD processes
-      SetMSEL(1);
-
-      // No multiple interactions
-      SetMSTP(81,0);
-      SetPARP(81,0.0);
-      SetPARP(82,0.0);
-
-      // Initial/final parton shower on (Pythia default)
-      SetMSTP(61,1);
-      SetMSTP(71,1);
-
-      // 2nd order alpha_s
-      SetMSTP(2,2);
-
-      // QCD scales
-      SetMSTP(32,2);
-      SetPARP(34,1.0);
-
+       ConfigHeavyFlavor();
       // Intrinsic <kT^2>
-      SetMSTP(91,1);
-      SetPARP(91,1.);
-      SetPARP(93,5.);
-
+       SetMSTP(91,1);
+       SetPARP(91,1.);
+       SetPARP(93,5.);
+       
       // Set c-quark mass
-      SetPMAS(4,1,1.2);
-
+       SetPMAS(4,1,1.2);
       break;
+    case kPyCharmppMNRwmi:
+      // Tuning of Pythia parameters aimed to get a resonable agreement
+      // between with the NLO calculation by Mangano, Nason, Ridolfi for the
+      // c-cbar single inclusive and double differential distributions.
+      // This parameter settings are meant to work with pp collisions
+      // and with kCTEQ5L PDFs.
+      // Added multiple interactions according to ATLAS tune settings.
+      // To get a "reasonable" agreement with MNR results, events have to be 
+      // generated with the minimum ptHard (AliGenPythia::SetPtHard)
+      // set to 2.76 GeV.
+      // To get a "perfect" agreement with MNR results, events have to be 
+      // generated in four ptHard bins with the following relative 
+      // normalizations:
+      // 2.76-3 GeV: 25%
+      //    3-4 GeV: 40%
+      //    4-8 GeV: 29%
+      //     >8 GeV:  6%
+       ConfigHeavyFlavor();
+      // Intrinsic <kT^2>
+       SetMSTP(91,1);
+       SetPARP(91,1.);
+       SetPARP(93,5.);
+
+      // Set c-quark mass
+       SetPMAS(4,1,1.2);
+       AtlasTuning();
+       break;
     case kPyBeautyPbPbMNR:
       // Tuning of Pythia parameters aimed to get a resonable agreement
       // between with the NLO calculation by Mangano, Nason, Ridolfi for the
@@ -374,36 +416,16 @@ void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfun
       // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
       // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
       // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
-
-      // All QCD processes
-      SetMSEL(1);
-
-      // No multiple interactions
-      SetMSTP(81,0);
-      SetPARP(81,0.0);
-      SetPARP(82,0.0);
-
-      // Initial/final parton shower on (Pythia default)
-      SetMSTP(61,1);
-      SetMSTP(71,1);
-
-      // 2nd order alpha_s
-      SetMSTP(2,2);
-
+       ConfigHeavyFlavor();
       // QCD scales
-      SetMSTP(32,2);
-      SetPARP(34,1.0);
-      SetPARP(67,1.0);
-      SetPARP(71,1.0);
-
+       SetPARP(67,1.0);
+       SetPARP(71,1.0);
       // Intrinsic <kT>
-      SetMSTP(91,1);
-      SetPARP(91,2.035);
-      SetPARP(93,10.17);
-
+       SetMSTP(91,1);
+       SetPARP(91,2.035);
+       SetPARP(93,10.17);
       // Set b-quark mass
-      SetPMAS(5,1,4.75);
-
+       SetPMAS(5,1,4.75);
       break;
     case kPyBeautypPbMNR:
       // Tuning of Pythia parameters aimed to get a resonable agreement
@@ -413,36 +435,16 @@ void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfun
       // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
       // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
       // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
-
-      // All QCD processes
-      SetMSEL(1);
-
-      // No multiple interactions
-      SetMSTP(81,0);
-      SetPARP(81,0.0);
-      SetPARP(82,0.0);
-
-      // Initial/final parton shower on (Pythia default)
-      SetMSTP(61,1);
-      SetMSTP(71,1);
-
-      // 2nd order alpha_s
-      SetMSTP(2,2);
-
+       ConfigHeavyFlavor();
       // QCD scales
-      SetMSTP(32,2);
-      SetPARP(34,1.0);
-      SetPARP(67,1.0);
-      SetPARP(71,1.0);
-
+       SetPARP(67,1.0);
+       SetPARP(71,1.0);
       // Intrinsic <kT>
-      SetMSTP(91,1);
-      SetPARP(91,1.60);
-      SetPARP(93,8.00);
-
+       SetMSTP(91,1);
+       SetPARP(91,1.60);
+       SetPARP(93,8.00);
       // Set b-quark mass
-      SetPMAS(5,1,4.75);
-
+       SetPMAS(5,1,4.75);
       break;
     case kPyBeautyppMNR:
       // Tuning of Pythia parameters aimed to get a resonable agreement
@@ -452,44 +454,105 @@ void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfun
       // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
       // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
       // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
-
-      // All QCD processes
-      SetMSEL(1);
-
-      // No multiple interactions
-      SetMSTP(81,0);
-      SetPARP(81,0.0);
-      SetPARP(82,0.0);
-
-      // Initial/final parton shower on (Pythia default)
-      SetMSTP(61,1);
-      SetMSTP(71,1);
-
-      // 2nd order alpha_s
-      SetMSTP(2,2);
-
+       ConfigHeavyFlavor();
       // QCD scales
-      SetMSTP(32,2);
-      SetPARP(34,1.0);
-      SetPARP(67,1.0);
-      SetPARP(71,1.0);
-
-      // Intrinsic <kT>
-      SetMSTP(91,1);
-      SetPARP(91,1.);
-      SetPARP(93,5.);
+       SetPARP(67,1.0);
+       SetPARP(71,1.0);
+       
+       // Intrinsic <kT>
+       SetMSTP(91,1);
+       SetPARP(91,1.);
+       SetPARP(93,5.);
+       
+       // Set b-quark mass
+       SetPMAS(5,1,4.75);
+      break;
+     case kPyBeautyppMNRwmi:
+      // Tuning of Pythia parameters aimed to get a resonable agreement
+      // between with the NLO calculation by Mangano, Nason, Ridolfi for the
+      // b-bbar single inclusive and double differential distributions.
+      // This parameter settings are meant to work with pp collisions
+      // and with kCTEQ5L PDFs.
+      // Added multiple interactions according to ATLAS tune settings.
+      // To get a "reasonable" agreement with MNR results, events have to be 
+      // generated with the minimum ptHard (AliGenPythia::SetPtHard)
+      // set to 2.76 GeV.
+      // To get a "perfect" agreement with MNR results, events have to be 
+      // generated in four ptHard bins with the following relative 
+      // normalizations:
+      // 2.76-4 GeV:  5% 
+      //    4-6 GeV: 31%
+      //    6-8 GeV: 28%
+      //     >8 GeV: 36%
+        ConfigHeavyFlavor();
+      // QCD scales
+        SetPARP(67,1.0);
+        SetPARP(71,1.0);
+        
+        // Intrinsic <kT>
+        SetMSTP(91,1);
+        SetPARP(91,1.);
+        SetPARP(93,5.);
 
       // Set b-quark mass
-      SetPMAS(5,1,4.75);
+        SetPMAS(5,1,4.75);
+
+        AtlasTuning();
+        break; 
+    case kPyW:
+
+      //Inclusive production of W+/-
+      SetMSEL(0);
+      //f fbar -> W+ 
+      SetMSUB(2,1);
+      //       //f fbar -> g W+
+      //       SetMSUB(16,1);
+      //       //f fbar -> gamma W+
+      //       SetMSUB(20,1);
+      //       //f g -> f W+  
+      //       SetMSUB(31,1);
+      //       //f gamma -> f W+
+      //       SetMSUB(36,1);
+      
+      // Initial/final parton shower on (Pythia default)
+      // With parton showers on we are generating "W inclusive process"
+      SetMSTP(61,1); //Initial QCD & QED showers on
+      SetMSTP(71,1); //Final QCD & QED showers on
+      
+      break;  
+
+    case kPyZ:
+
+      //Inclusive production of Z
+      SetMSEL(0);
+      //f fbar -> Z/gamma
+      SetMSUB(1,1);
+      
+      //       // f fbar -> g Z/gamma
+      //       SetMSUB(15,1);
+      //       // f fbar -> gamma Z/gamma
+      //       SetMSUB(19,1);
+      //       // f g -> f Z/gamma
+      //       SetMSUB(30,1);
+      //       // f gamma -> f Z/gamma
+      //       SetMSUB(35,1);
+      
+      //only Z included, not gamma
+      SetMSTP(43,2);
+      
+      // Initial/final parton shower on (Pythia default)
+      // With parton showers on we are generating "Z inclusive process"
+      SetMSTP(61,1); //Initial QCD & QED showers on
+      SetMSTP(71,1); //Final QCD & QED showers on
+      
+      break;  
 
-      break;
     }
 //
 //  Initialize PYTHIA
     SetMSTP(41,1);   // all resonance decays switched on
-
     Initialize("CMS","p","p",fEcms);
-
+    
 }
 
 Int_t AliPythia::CheckedLuComp(Int_t kf)
@@ -532,17 +595,15 @@ void AliPythia::PrintParticles()
 { 
 // Print list of particl properties
     Int_t np = 0;
-    
+    char*   name = new char[16];    
     for (Int_t kf=0; kf<1000000; kf++) {
        for (Int_t c = 1;  c > -2; c-=2) {
-           
            Int_t kc = Pycomp(c*kf);
            if (kc) {
                Float_t mass  = GetPMAS(kc,1);
                Float_t width = GetPMAS(kc,2);  
                Float_t tau   = GetPMAS(kc,4);
-               
-               char*   name = new char[8];
+
                Pyname(kf,name);
        
                np++;
@@ -586,34 +647,657 @@ void  AliPythia::Pycell(Int_t& njet)
     pycell(njet);
 }
 
+void  AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
+{
+//  Call Pythia jet reconstruction algorithm
+//
+    pyshow(ip1, ip2, qmax);
+}
+
+void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
+{
+    pyrobo(imi, ima, the, phi, bex, bey, bez);
+}
 
 
-#ifndef WIN32
-#define pyr    pyr_
-#define pyrset pyrset_
-#define pyrget pyrget_
-#define pyclus pyclus_
-#define pycell pycell_
-#else
-#define pyr    PYR
-#define pyrset PYRSET
-#define pyrget PYRGET
-#define pyclus PYCLUS
-#define pycell PYCELL
-#endif
 
-extern "C" {
-  Double_t pyr(Int_t*) 
+void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod, Float_t zmax, Int_t ngmax)
 {
-      Float_t r;
-      do r=sRandom->Rndm(); while(0 >= r || r >= 1);
-      return r;
+// Initializes 
+// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
+// (2) The nuclear geometry using the Glauber Model
+//     
+    
+    fGlauber = new AliFastGlauber();
+    fGlauber->Init(2);
+    fGlauber->SetCentralityClass(cMin, cMax); 
+
+    fQuenchingWeights = new AliQuenchingWeights();
+    fQuenchingWeights->InitMult();
+    fQuenchingWeights->SetK(k);
+    fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
+    fNGmax = ngmax;
+    fZmax  = zmax;
+    
 }
-  void pyrset(Int_t*,Int_t*) {}
-  void pyrget(Int_t*,Int_t*) {}
+
+
+void  AliPythia::Quench()
+{
+//
+//
+//  Simple Jet Quenching routine:
+//  =============================
+//  The jet formed by all final state partons radiated by the parton created 
+//  in the hard collisions is quenched by a factor (1-z) using light cone variables in 
+//  the initial parton reference frame:
+//  (E + p_z)new = (1-z) (E + p_z)old
+//
+//
+//
+//
+//   The lost momentum is first balanced by one gluon with virtuality > 0.   
+//   Subsequently the gluon splits to yield two gluons with E = p.
+//
+//
+// 
+    static Float_t eMean = 0.;
+    static Int_t   icall = 0;
+    
+    Double_t p0[4][5];
+    Double_t p1[4][5];
+    Double_t p2[4][5];
+    Int_t   klast[4] = {-1, -1, -1, -1};
+
+    Int_t numpart   = fPyjets->N;
+    Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
+    Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
+    Bool_t  quenched[4];
+    Double_t wjtKick[4];
+    Int_t nGluon[4];
+    Int_t qPdg[4];
+    Int_t   imo, kst, pdg;
+    
+//
+//  Sore information about Primary partons
+//
+//  j =
+//  0, 1 partons from hard scattering
+//  2, 3 partons from initial state radiation
+// 
+    for (Int_t i = 2; i <= 7; i++) {
+       Int_t j = 0;
+       // Skip gluons that participate in hard scattering
+       if (i == 4 || i == 5) continue;
+       // Gluons from hard Scattering
+       if (i == 6 || i == 7) {
+           j = i - 6;
+           pxq[j]    = fPyjets->P[0][i];
+           pyq[j]    = fPyjets->P[1][i];
+           pzq[j]    = fPyjets->P[2][i];
+           eq[j]     = fPyjets->P[3][i];
+           mq[j]     = fPyjets->P[4][i];
+       } else {
+           // Gluons from initial state radiation
+           //
+           // Obtain 4-momentum vector from difference between original parton and parton after gluon 
+           // radiation. Energy is calculated independently because initial state radition does not 
+           // conserve strictly momentum and energy for each partonic system independently.
+           //
+           // Not very clean. Should be improved !
+           //
+           //
+           j = i;
+           pxq[j]    = fPyjets->P[0][i] - fPyjets->P[0][i+2];
+           pyq[j]    = fPyjets->P[1][i] - fPyjets->P[1][i+2];
+           pzq[j]    = fPyjets->P[2][i] - fPyjets->P[2][i+2];
+           mq[j]     = fPyjets->P[4][i];
+           eq[j]     = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
+       }
+//
+//  Calculate some kinematic variables
+//
+       yq[j]     = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
+       pq[j]     = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
+       phiq[j]   = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
+       ptq[j]    = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
+       thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
+       qPdg[j]   =  fPyjets->K[1][i];
+    }
+  
+    Double_t int0[4];
+    Double_t int1[4];
+    
+    fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
+
+    for (Int_t j = 0; j < 4; j++) {
+       //
+       // Quench only central jets and with E > 10.
+       //
+
+
+       Int_t itype = (qPdg[j] == 21) ? 2 : 1;
+       Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
+
+       if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
+           fZQuench[j] = 0.;
+       } else {
+           if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
+               icall ++;
+               eMean += eloss;
+           }
+           //
+           // Extra pt
+           Double_t l =   fQuenchingWeights->CalcLk(int0[j], int1[j]);     
+           wjtKick[j] = TMath::Sqrt(l *  fQuenchingWeights->CalcQk(int0[j], int1[j]));
+           //
+           // Fractional energy loss
+           fZQuench[j] = eloss / eq[j];
+           //
+           // Avoid complete loss
+           //
+           if (fZQuench[j] == 1.) fZQuench[j] = fZmax;
+           //
+           // Some debug printing
+
+           
+//         printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n", 
+//                j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
+           
+//         fZQuench[j] = 0.8;
+//         while (fZQuench[j] >= 0.95)  fZQuench[j] = gRandom->Exp(0.2);
+       }
+       
+       quenched[j] = (fZQuench[j] > 0.01);
+    } // primary partons
+    
+    
+
+    Double_t pNew[1000][4];
+    Int_t    kNew[1000];
+    Int_t icount = 0;
+    Double_t zquench[4];
+    
+//
+//  System Loop    
+    for (Int_t isys = 0; isys < 4; isys++) {
+//      Skip to next system if not quenched.
+       if (!quenched[isys]) continue;
+       
+       nGluon[isys]   = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
+       if (nGluon[isys] > fNGmax) nGluon[isys] = fNGmax;
+       zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
+       wjtKick[isys]  = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
+
+
+       
+       Int_t igMin = -1;
+       Int_t igMax = -1;
+       Double_t pg[4] = {0., 0., 0., 0.};
+       
+//
+// Loop on radiation events
+
+       for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
+           while (1) {
+               icount = 0;
+               for (Int_t k = 0; k < 4; k++)
+               {
+                   p0[isys][k] = 0.;
+                   p1[isys][k] = 0.;
+                   p2[isys][k] = 0.;
+               }
+//      Loop over partons
+               for (Int_t i = 0; i < numpart; i++)
+               {
+                   imo =  fPyjets->K[2][i];
+                   kst =  fPyjets->K[0][i];
+                   pdg =  fPyjets->K[1][i];
+                   
+               
+               
+//      Quarks and gluons only
+                   if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
+//      Particles from hard scattering only
+                   
+                   if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
+                   Int_t imom = imo % 1000;
+                   if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
+                   if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;               
+                   
+                   
+//      Skip comment lines
+                   if (kst != 1 && kst != 2) continue;
+//
+//      Parton kinematic
+                   px    = fPyjets->P[0][i];
+                   py    = fPyjets->P[1][i];
+                   pz    = fPyjets->P[2][i];
+                   e     = fPyjets->P[3][i];
+                   m     = fPyjets->P[4][i];
+                   pt    = TMath::Sqrt(px * px + py * py);
+                   p     = TMath::Sqrt(px * px + py * py + pz * pz); 
+                   phi   = TMath::Pi() + TMath::ATan2(-py, -px);
+                   theta = TMath::ATan2(pt, pz);
+               
+//
+//      Save 4-momentum sum for balancing
+                   Int_t index = isys;
+                   
+                   p0[index][0] += px;
+                   p0[index][1] += py;
+                   p0[index][2] += pz;
+                   p0[index][3] += e;
+               
+                   klast[index] = i;
+                   
+//
+//      Fractional energy loss
+                   Double_t z = zquench[index];
+                   
+                   
+//      Don't fully quench radiated gluons
+//
+                   if (imo > 1000) {
+//      This small factor makes sure that the gluons are not too close in phase space to avoid recombination
+//
+
+                       z = 0.02;
+                   }
+//                 printf("z: %d %f\n", imo, z);
+                   
+
+//
+                   
+                   //
+                   //
+                   //      Transform into frame in which initial parton is along z-axis
+                   //
+                   TVector3 v(px, py, pz);
+                   v.RotateZ(-phiq[index]);  v.RotateY(-thetaq[index]);
+                   Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl  = v.Z();
+
+                   Double_t jt  = TMath::Sqrt(pxs * pxs + pys * pys);
+                   Double_t mt2 = jt * jt + m * m;
+                   Double_t zmax = 1.;     
+                   //
+                   // Kinematic limit on z
+                   //
+                   if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
+                   //
+                   // Change light-cone kinematics rel. to initial parton
+                   //  
+                   Double_t eppzOld = e + pl;
+                   Double_t empzOld = e - pl;
+                   
+                   Double_t eppzNew = (1. - z) * eppzOld;
+                   Double_t empzNew = empzOld - mt2 * z / eppzOld;
+                   Double_t eNew    = 0.5 * (eppzNew + empzNew);
+                   Double_t plNew   = 0.5 * (eppzNew - empzNew);
+                   
+                   Double_t jtNew;
+                   //
+                   // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
+                   Double_t mt2New = eppzNew * empzNew;
+                   if (mt2New < 1.e-8) mt2New = 0.;
+                   if (z < zmax) {
+                       if (m * m > mt2New) {
+                           //
+                           // This should not happen 
+                           //
+                           Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
+                           jtNew = 0;
+                       } else {
+                           jtNew    = TMath::Sqrt(mt2New - m * m);
+                       }
+                   } else {
+                       // If pT is to small (probably a leading massive particle) we scale only the energy
+                       // This can cause negative masses of the radiated gluon
+                       // Let's hope for the best ...
+                       jtNew = jt;
+                       eNew  = TMath::Sqrt(plNew * plNew + mt2);
+                       
+                   }
+                   //
+                   //     Calculate new px, py
+                   //
+                   Double_t pxNew   = jtNew / jt * pxs;
+                   Double_t pyNew   = jtNew / jt * pys;        
+                   
+//                 Double_t dpx = pxs - pxNew;
+//                 Double_t dpy = pys - pyNew;
+//                 Double_t dpz = pl  - plNew;
+//                 Double_t de  = e   - eNew;
+//                 Double_t dmass2 = de * de  - dpx * dpx - dpy * dpy - dpz * dpz;
+//                 printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
+//                 printf("New mass (2) %e %e \n", pxNew, pyNew);
+                   //
+                   //      Rotate back
+                   //  
+                   TVector3 w(pxNew, pyNew, plNew);
+                   w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
+                   pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
+               
+                   p1[index][0] += pxNew;
+                   p1[index][1] += pyNew;
+                   p1[index][2] += plNew;
+                   p1[index][3] += eNew;       
+                   //
+                   // Updated 4-momentum vectors
+                   //
+                   pNew[icount][0]  = pxNew;
+                   pNew[icount][1]  = pyNew;
+                   pNew[icount][2]  = plNew;
+                   pNew[icount][3]  = eNew;
+                   kNew[icount]     = i;
+                   icount++;
+               } // parton loop
+               //
+               // Check if there was phase-space for quenching
+               //
+
+               if (icount == 0) quenched[isys] = kFALSE;
+               if (!quenched[isys]) break;
+               
+               for (Int_t j = 0; j < 4; j++) 
+               {
+                   p2[isys][j] = p0[isys][j] - p1[isys][j];
+               }
+               p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
+               if (p2[isys][4] > 0.) {
+                   p2[isys][4] = TMath::Sqrt(p2[isys][4]);
+                   break;
+               } else {
+                   printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
+                   printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
+                   if (p2[isys][4] < -0.01) {
+                       printf("Negative mass squared !\n");
+                       // Here we have to put the gluon back to mass shell
+                       // This will lead to a small energy imbalance
+                       p2[isys][4]  = 0.;
+                       p2[isys][3]  = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
+                       break;
+                   } else {
+                       p2[isys][4] = 0.;
+                       break;
+                   }
+               }
+               /*
+               zHeavy *= 0.98;
+               printf("zHeavy lowered to %f\n", zHeavy);
+               if (zHeavy < 0.01) {
+                   printf("No success ! \n");
+                   icount = 0;
+                   quenched[isys] = kFALSE;
+                   break;
+               }
+               */
+           } // iteration on z (while)
+           
+//         Update  event record
+           for (Int_t k = 0; k < icount; k++) {
+//             printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
+               fPyjets->P[0][kNew[k]] = pNew[k][0];
+               fPyjets->P[1][kNew[k]] = pNew[k][1];
+               fPyjets->P[2][kNew[k]] = pNew[k][2];
+               fPyjets->P[3][kNew[k]] = pNew[k][3];
+           }
+           //
+           // Add the gluons
+           //
+           Int_t ish = 0;    
+           Int_t iGlu;
+           if (!quenched[isys]) continue;
+//
+//      Last parton from shower i
+           Int_t in = klast[isys];
+//
+//      Continue if no parton in shower i selected
+           if (in == -1) continue;
+//  
+//      If this is the second initial parton and it is behind the first move pointer by previous ish
+           if (isys == 1 && klast[1] > klast[0]) in += ish;
+//
+//      Starting index
+           
+//         jmin = in - 1;
+// How many additional gluons will be generated
+           ish  = 1;
+           if (p2[isys][4] > 0.05) ish = 2;
+//
+//      Position of gluons
+           iGlu = numpart;
+           if (iglu == 0) igMin = iGlu;
+           igMax = iGlu;
+           numpart += ish;
+           (fPyjets->N) += ish;
+           
+           if (ish == 1) {
+               fPyjets->P[0][iGlu] = p2[isys][0];
+               fPyjets->P[1][iGlu] = p2[isys][1];
+               fPyjets->P[2][iGlu] = p2[isys][2];
+               fPyjets->P[3][iGlu] = p2[isys][3];
+               fPyjets->P[4][iGlu] = p2[isys][4];
+               
+               fPyjets->K[0][iGlu] = 1;
+               if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
+               fPyjets->K[1][iGlu] = 21;       
+               fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
+               fPyjets->K[3][iGlu] = -1;       
+               fPyjets->K[4][iGlu] = -1;
+               
+               pg[0] += p2[isys][0];
+               pg[1] += p2[isys][1];
+               pg[2] += p2[isys][2];
+               pg[3] += p2[isys][3];
+           } else {
+               //
+               // Split gluon in rest frame.
+               //
+               Double_t bx   =  p2[isys][0] / p2[isys][3];
+               Double_t by   =  p2[isys][1] / p2[isys][3];
+               Double_t bz   =  p2[isys][2] / p2[isys][3];
+               Double_t pst  =  p2[isys][4] / 2.;
+               //
+               // Isotropic decay ????
+               Double_t cost = 2. * gRandom->Rndm() - 1.;
+               Double_t sint = TMath::Sqrt(1. - cost * cost);
+               Double_t phi =  2. * TMath::Pi() * gRandom->Rndm();
+               
+               Double_t pz1 =   pst * cost;
+               Double_t pz2 =  -pst * cost;
+               Double_t pt1 =   pst * sint;
+               Double_t pt2 =  -pst * sint;
+               Double_t px1 =   pt1 * TMath::Cos(phi);
+               Double_t py1 =   pt1 * TMath::Sin(phi);     
+               Double_t px2 =   pt2 * TMath::Cos(phi);
+               Double_t py2 =   pt2 * TMath::Sin(phi);     
+               
+               fPyjets->P[0][iGlu] = px1;
+               fPyjets->P[1][iGlu] = py1;
+               fPyjets->P[2][iGlu] = pz1;
+               fPyjets->P[3][iGlu] = pst;
+               fPyjets->P[4][iGlu] = 0.;
+               
+               fPyjets->K[0][iGlu] = 1 ;
+               fPyjets->K[1][iGlu] = 21;       
+               fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
+               fPyjets->K[3][iGlu] = -1;       
+               fPyjets->K[4][iGlu] = -1;
+               
+               fPyjets->P[0][iGlu+1] = px2;
+               fPyjets->P[1][iGlu+1] = py2;
+               fPyjets->P[2][iGlu+1] = pz2;
+               fPyjets->P[3][iGlu+1] = pst;
+               fPyjets->P[4][iGlu+1] = 0.;
+               
+               fPyjets->K[0][iGlu+1] = 1;
+               if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
+               fPyjets->K[1][iGlu+1] = 21;     
+               fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
+               fPyjets->K[3][iGlu+1] = -1;     
+               fPyjets->K[4][iGlu+1] = -1;
+               SetMSTU(1,0);
+               SetMSTU(2,0);
+               //
+               // Boost back
+               //
+               Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
+           }
+/*    
+           for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
+               Double_t px, py, pz;
+               px = fPyjets->P[0][ig]; 
+               py = fPyjets->P[1][ig]; 
+               pz = fPyjets->P[2][ig]; 
+               TVector3 v(px, py, pz);
+               v.RotateZ(-phiq[isys]);
+               v.RotateY(-thetaq[isys]);
+               Double_t pxs     = v.X(); Double_t pys = v.Y(); Double_t pzs  = v.Z();     
+               Double_t r       = AliPythiaRndm::GetPythiaRandom()->Rndm();
+               Double_t jtKick  = 0.3 * TMath::Sqrt(-TMath::Log(r));
+               if (ish == 2)   jtKick  = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
+               Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
+               pxs += jtKick * TMath::Cos(phiKick);
+               pys += jtKick * TMath::Sin(phiKick);
+               TVector3 w(pxs, pys, pzs);
+               w.RotateY(thetaq[isys]);
+               w.RotateZ(phiq[isys]);
+               fPyjets->P[0][ig] = w.X(); 
+               fPyjets->P[1][ig] = w.Y(); 
+               fPyjets->P[2][ig] = w.Z(); 
+               fPyjets->P[2][ig] = w.Mag();
+           }
+*/
+       } // kGluon         
+       
+       
+    // Check energy conservation
+       Double_t pxs = 0.;
+       Double_t pys = 0.;
+       Double_t pzs = 0.;      
+       Double_t es  = 14000.;
+       
+       for (Int_t i = 0; i < numpart; i++)
+       {
+           kst =  fPyjets->K[0][i];
+           if (kst != 1 && kst != 2) continue;
+           pxs += fPyjets->P[0][i];
+           pys += fPyjets->P[1][i];
+           pzs += fPyjets->P[2][i];        
+           es  -= fPyjets->P[3][i];        
+       }
+       if (TMath::Abs(pxs) > 1.e-2 ||
+           TMath::Abs(pys) > 1.e-2 ||
+           TMath::Abs(pzs) > 1.e-1) {
+           printf("%e %e %e %e\n", pxs, pys, pzs, es);
+//             Fatal("Quench()", "4-Momentum non-conservation");
+       }
+       
+    } // end quenching loop (systems)
+// Clean-up
+    for (Int_t i = 0; i < numpart; i++)
+    {
+       imo =  fPyjets->K[2][i];
+       if (imo > 1000) {
+           fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
+       }
+    }
+//     this->Pylist(1);
+} // end quench
+
+
+void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b)
+{
+    // Igor Lokthine's quenching routine
+    // http://lokhtin.web.cern.ch/lokhtin/pyquen/pyquen.txt
+
+    pyquen(a, ibf, b);
 }
 
+void AliPythia::SetPyquenParameters(Double_t t0, Double_t tau0, Int_t nf, Int_t iengl, Int_t iangl)
+{
+    // Set the parameters for the PYQUEN package.
+    // See comments in PyquenCommon.h
+    
+    
+    PYQPAR.t0    = t0;
+    PYQPAR.tau0  = tau0;
+    PYQPAR.nf    = nf;
+    PYQPAR.iengl = iengl;
+    PYQPAR.iangl = iangl;
+}
 
 
+void AliPythia::Pyevnw()
+{
+    // New multiple interaction scenario
+    pyevnw();
+}
 
+void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
+{
+    // Return event specific quenching parameters
+    xp = fXJet;
+    yp = fYJet;
+    for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
+
+}
+
+void AliPythia::ConfigHeavyFlavor()
+{
+    //
+    // Default configuration for Heavy Flavor production
+    //
+    // All QCD processes
+    //
+    SetMSEL(1);
+    
+    // No multiple interactions
+    SetMSTP(81,0);
+    SetPARP(81, 0.);
+    SetPARP(82, 0.);    
+    // Initial/final parton shower on (Pythia default)
+    SetMSTP(61,1);
+    SetMSTP(71,1);
+    
+    // 2nd order alpha_s
+    SetMSTP(2,2);
+    
+    // QCD scales
+    SetMSTP(32,2);
+    SetPARP(34,1.0);
+}
 
+void AliPythia::AtlasTuning()
+{
+    //
+    // Configuration for the ATLAS tuning
+        SetMSTP(51, kCTEQ5L);      // CTEQ5L pdf
+       SetMSTP(81,1);             // Multiple Interactions ON
+       SetMSTP(82,4);             // Double Gaussian Model
+       SetPARP(81,1.9);           // Min. pt for multiple interactions (default in 6.2-14) 
+       SetPARP(82,1.8);           // [GeV]    PT_min at Ref. energy
+       SetPARP(89,1000.);         // [GeV]   Ref. energy
+       SetPARP(90,0.16);          // 2*epsilon (exponent in power law)
+       SetPARP(83,0.5);           // Core density in proton matter distribution (def.value)
+       SetPARP(84,0.5);           // Core radius
+       SetPARP(85,0.33);          // Regulates gluon prod. mechanism
+       SetPARP(86,0.66);          // Regulates gluon prod. mechanism
+       SetPARP(67,1);             // Regulates Initial State Radiation
+}
+
+AliPythia& AliPythia::operator=(const  AliPythia& rhs)
+{
+// Assignment operator
+    rhs.Copy(*this);
+    return *this;
+}
+
+ void AliPythia::Copy(TObject&) const
+{
+    //
+    // Copy 
+    //
+    Fatal("Copy","Not implemented!\n");
+}