]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - STEER/AliMagF.cxx
Correction of the Z position of Q2 quadrupole from Chiara Oppedisano
[u/mrichter/AliRoot.git] / STEER / AliMagF.cxx
index c6e385071b756c822a160267c71e9d5903f569ec..71852138f942e4ea152012d2fd9afe36de9cbbd7 100644 (file)
+/**************************************************************************
+ * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
+ *                                                                        *
+ * Author: The ALICE Off-line Project.                                    *
+ * Contributors are mentioned in the code where appropriate.              *
+ *                                                                        *
+ * Permission to use, copy, modify and distribute this software and its   *
+ * documentation strictly for non-commercial purposes is hereby granted   *
+ * without fee, provided that the above copyright notice appears in all   *
+ * copies and that both the copyright notice and this permission notice   *
+ * appear in the supporting documentation. The authors make no claims     *
+ * about the suitability of this software for any purpose. It is          *
+ * provided "as is" without express or implied warranty.                  *
+ **************************************************************************/
 
-#include "AliMagF.h"
-#include "TSystem.h"
-#include <stdlib.h>
-#include <stdio.h>
-
-//ZDC part -------------------------------------------------------------------
 
-  static const Float_t G1=20.03;
-  static const Float_t FDIP=-37.34;
-  static const Float_t FDIMU=6.;
-  static const Float_t FCORN=11.72;
-//
-// ZBEG       Beginning of the inner triplet
-// D1BEG      Beginning of separator dipole 1
-// D2BEG      Beginning of separator dipole 2
-// CORBEG     Corrector dipole beginning (because of dimuon arm)
-//
-  static const Float_t CORBEG=1920,COREND=CORBEG+190, CORRA2=4.5*4.5;
-//
-  static const Float_t ZBEG=2300;
-  static const Float_t Z1BEG=ZBEG+   0,Z1END=Z1BEG+630,Z1RA2=3.5*3.5;
-  static const Float_t Z2BEG=ZBEG+ 880,Z2END=Z2BEG+550,Z2RA2=3.5*3.5;
-  static const Float_t Z3BEG=ZBEG+1530,Z3END=Z3BEG+550,Z3RA2=3.5*3.5;
-  static const Float_t Z4BEG=ZBEG+2430,Z4END=Z4BEG+630,Z4RA2=3.5*3.5;
-  static const Float_t D1BEG=5843.5   ,D1END=D1BEG+945,D1RA2=4.5*4.5;
-  static const Float_t D2BEG=12113.2  ,D2END=D2BEG+945,D2RA2=4.5*.5;
+#include <TClass.h>
+#include <TFile.h>
+#include <TSystem.h>
 
-//ZDC part -------------------------------------------------------------------
+#include "AliMagF.h"
+#include "AliMagWrapCheb.h"
+#include "AliLog.h"
 
 ClassImp(AliMagF)
 
-//________________________________________
-AliMagF::AliMagF(const char *name, const char *title, const Int_t integ, const Int_t map, 
-                const Float_t factor, const Float_t fmax)
-  : TNamed(name,title)
+const Double_t AliMagF::fgkSol2DipZ    =  -700.;  
+
+//_______________________________________________________________________
+AliMagF::AliMagF():
+  TVirtualMagField(),
+  fMeasuredMap(0),
+  fMapType(k5kG),
+  fSolenoid(0),
+  fBeamType(kNoBeamField),
+  fBeamEnergy(0),
+  //
+  fInteg(0),
+  fPrecInteg(0),
+  fFactorSol(1.),
+  fFactorDip(1.),
+  fMax(15),
+  fDipoleOFF(kFALSE),
+  //
+  fQuadGradient(0),
+  fDipoleField(0),
+  fCCorrField(0), 
+  fACorr1Field(0),
+  fACorr2Field(0),
+  fParNames("","")
 {
-  fMap = map;
-  fType = Undef;
-  fInteg = integ;
-  fFactor = factor;
-  fMax = fmax;
+  // Default constructor
+  //
 }
 
-//________________________________________
-void AliMagF::Field(Float_t*, Float_t *b)
+//_______________________________________________________________________
+AliMagF::AliMagF(const char *name, const char* title, Int_t integ, 
+                Double_t factorSol, Double_t factorDip, 
+                Double_t fmax, BMap_t maptype, const char* path,
+                BeamType_t bt, Double_t be):
+  TVirtualMagField(name),
+  fMeasuredMap(0),
+  fMapType(maptype),
+  fSolenoid(0),
+  fBeamType(bt),
+  fBeamEnergy(be),
+  //
+  fInteg(integ),
+  fPrecInteg(1),
+  fFactorSol(1.),
+  fFactorDip(1.),
+  fMax(fmax),
+  fDipoleOFF(factorDip==0.),
+  //
+  fQuadGradient(0),
+  fDipoleField(0),
+  fCCorrField(0), 
+  fACorr1Field(0),
+  fACorr2Field(0),
+  fParNames("","")
 {
-  printf("Undefined MagF Field called, returning 0\n");
-  b[0]=b[1]=b[2]=0;
+  // Initialize the field with Geant integration option "integ" and max field "fmax,
+  // Impose scaling of parameterized L3 field by factorSol and of dipole by factorDip.
+  // The "be" is the energy of the beam in GeV/nucleon
+  //
+  SetTitle(title);
+  if(integ<0 || integ > 2) {
+    AliWarning(Form("Invalid magnetic field flag: %5d; Helix tracking chosen instead",integ));
+    fInteg = 2;
+  }
+  if (fInteg == 0) fPrecInteg = 0;
+  //
+  const char* parname = 0;
+  //  
+  if (fMapType == k2kG) {
+    fSolenoid = 2.;
+    parname = fDipoleOFF ? "Sol12_Dip0_Hole":"Sol12_Dip6_Hole";
+  } else if (fMapType == k5kG) {
+    fSolenoid = 5.;
+    parname = fDipoleOFF ? "Sol30_Dip0_Hole":"Sol30_Dip6_Hole";
+  } else if (fMapType == k5kGUniform) {
+    fSolenoid = 5.;
+    parname = "Sol30_Dip6_Uniform";
+  } else {
+    AliFatal(Form("Unknown field identifier %d is requested\n",fMapType)); 
+  }
+  //
+  SetDataFileName(path);
+  SetParamName(parname);
+  //
+  SetFactorSol(factorSol);
+  SetFactorDip(factorDip);
+  LoadParameterization();
+  InitMachineField(fBeamType,fBeamEnergy);
 }
-      
-ClassImp(AliMagFC)
 
-//________________________________________
-AliMagFC::AliMagFC(const char *name, const char *title, const Int_t integ, const Int_t map, 
-                const Float_t factor, const Float_t fmax)
-  : AliMagF(name,title,integ,map,factor,fmax)
+//_______________________________________________________________________
+AliMagF::AliMagF(const AliMagF &src):
+  TVirtualMagField(src),
+  fMeasuredMap(0),
+  fMapType(src.fMapType),
+  fSolenoid(src.fSolenoid),
+  fBeamType(src.fBeamType),
+  fBeamEnergy(src.fBeamEnergy),
+  fInteg(src.fInteg),
+  fPrecInteg(src.fPrecInteg),
+  fFactorSol(src.fFactorSol),
+  fFactorDip(src.fFactorDip),
+  fMax(src.fMax),
+  fDipoleOFF(src.fDipoleOFF),
+  fQuadGradient(src.fQuadGradient),
+  fDipoleField(src.fDipoleField),
+  fCCorrField(src.fCCorrField), 
+  fACorr1Field(src.fACorr1Field),
+  fACorr2Field(src.fACorr2Field),
+  fParNames(src.fParNames)
 {
-  printf("Constant Field %s created: map= %d, factor= %f\n",fName.Data(),map,factor);
-  fType = Const;
+  if (src.fMeasuredMap) fMeasuredMap = new AliMagWrapCheb(*src.fMeasuredMap);
 }
 
-//________________________________________
-void AliMagFC::Field(Float_t *x, Float_t *b)
+//_______________________________________________________________________
+AliMagF::~AliMagF()
 {
-  b[0]=b[1]=b[2]=0;
-  if(fMap==1) {
-    if(TMath::Abs(x[2])<700 && x[0]*x[0]+(x[1]+30)*(x[1]+30) < 560*560) {
-      b[2]=2;
-    } else {
-      if ( 725 <= x[2] && x[2] <= 1225 ) {
-       Float_t dz = TMath::Abs(975-x[2])*0.01;
-       b[0]=(1-0.1*dz*dz)*7;
-      }
-      else {
-//This is the ZDC part
-       Float_t rad2=x[0]*x[0]+x[1]*x[1];
-       if(rad2<D2RA2) {
-         if(x[2]>D2BEG) {
-           
-//    Separator Dipole D2
-           if(x[2]<D2END) b[1]=FDIP;
-         } else if(x[2]>D1BEG) {
-           
-//    Separator Dipole D1
-           if(x[2]<D1END) b[1]=-FDIP;
-         }
-         if(rad2<CORRA2) {
+  delete fMeasuredMap;
+}
 
-//    First quadrupole of inner triplet de-focussing in x-direction
-//    Inner triplet
-           if(x[2]>Z4BEG) {
-             if(x[2]<Z4END) {
-             
-//    2430 <-> 3060
-               b[0]=-G1*x[1];
-               b[1]=-G1*x[0];
-             }
-           } else if(x[2]>Z3BEG) {
-             if(x[2]<Z3END) {
+//_______________________________________________________________________
+Bool_t AliMagF::LoadParameterization()
+{
+  if (fMeasuredMap) {
+    AliError(Form("Field data %s are already loaded from %s\n",GetParamName(),GetDataFileName()));
+    return kTRUE;
+  }
+  //
+  char* fname = gSystem->ExpandPathName(GetDataFileName());
+  TFile* file = TFile::Open(fname);
+  if (!file) {
+    AliError(Form("Failed to open magnetic field data file %s\n",fname)); 
+    return kFALSE;
+  }
+  //
+  fMeasuredMap = dynamic_cast<AliMagWrapCheb*>(file->Get(GetParamName()));
+  if (!fMeasuredMap) {
+    AliError(Form("Did not find field %s in %s\n",GetParamName(),fname)); 
+    return kFALSE;
+  }
+  file->Close();
+  delete file;
+  return kTRUE;
+}
 
-//    1530 <-> 2080
-               b[0]=G1*x[1];
-               b[1]=G1*x[0];
-             }
-           } else if(x[2]>Z2BEG) {
-             if(x[2]<Z2END) {
-             
-//    890 <-> 1430
-               b[0]=G1*x[1];
-               b[1]=G1*x[0];
-             }
-           } else if(x[2]>Z1BEG) {
-             if(x[2]<Z1END) {
 
-//    0 <->  630
-               b[0]=-G1*x[1];
-               b[1]=-G1*x[0];
-             }
-           } else if(x[2]>CORBEG) {
-             if(x[2]<COREND) {
-//    Corrector dipole (because of dimuon arm)
-               b[0]=FCORN;
-             }
-           }
-         }
-       }
-      }
-    }
-  } else {
-    printf("Invalid field map for constant field %d\n",fMap);
-    exit(1);
+//_______________________________________________________________________
+void AliMagF::Field(const Double_t *xyz, Double_t *b)
+{
+  // Method to calculate the field at point  xyz
+  //
+  //  b[0]=b[1]=b[2]=0.0;
+  if (fMeasuredMap && xyz[2]>fMeasuredMap->GetMinZ() && xyz[2]<fMeasuredMap->GetMaxZ()) {
+    fMeasuredMap->Field(xyz,b);
+    if (xyz[2]>fgkSol2DipZ || fDipoleOFF) for (int i=3;i--;) b[i] *= fFactorSol;
+    else                                  for (int i=3;i--;) b[i] *= fFactorDip;    
   }
+  else MachineField(xyz, b);
+  //
 }
-    
-ClassImp(AliMagFCM)
 
-//________________________________________
-AliMagFCM::AliMagFCM(const char *name, const char *title, const Int_t integ, const Int_t map, 
-                const Float_t factor, const Float_t fmax)
-  : AliMagF(name,title,integ,map,factor,fmax)
+//_______________________________________________________________________
+Double_t AliMagF::GetBz(const Double_t *xyz) const
 {
-  fType = ConMesh;
-  printf("Constant Mesh Field %s created: map= %d, factor= %f, file= %s\n",fName.Data(),map,factor,fTitle.Data());
+  // Method to calculate the field at point  xyz
+  //
+  if (fMeasuredMap && xyz[2]>fMeasuredMap->GetMinZ() && xyz[2]<fMeasuredMap->GetMaxZ()) {
+    double bz = fMeasuredMap->GetBz(xyz);
+    return (xyz[2]>fgkSol2DipZ || fDipoleOFF) ? bz*fFactorSol : bz*fFactorDip;    
+  }
+  else return 0.;
 }
 
-//________________________________________
-void AliMagFCM::Field(Float_t *x, Float_t *b)
+//_______________________________________________________________________
+AliMagF& AliMagF::operator=(const AliMagF& src)
 {
-  Double_t ratx, raty, ratz, hix, hiy, hiz, ratx1, raty1, ratz1, 
-    bhyhz, bhylz, blyhz, blylz, bhz, blz, xl[3];
-  const Double_t one=1;
-  Int_t ix, iy, iz;
-    
-  // --- find the position in the grid ---
-
-  b[0]=b[1]=b[2]=0;
-  if(-700<x[2] && x[2]<fZbeg && x[0]*x[0]+(x[1]+30)*(x[1]+30) < 560*560) {
-    b[2]=2;
-  } else  {
-    Bool_t infield=(fZbeg<=x[2] && x[2]<fZbeg+fZdel*(fZn-1)
-       &&  ( fXbeg <= TMath::Abs(x[0]) && TMath::Abs(x[0]) < fXbeg+fXdel*(fXn-1) )
-       &&  ( fYbeg <= TMath::Abs(x[1]) && TMath::Abs(x[1]) < fYbeg+fYdel*(fYn-1) ));
-      if(infield) {
-      xl[0]=TMath::Abs(x[0])-fXbeg;
-      xl[1]=TMath::Abs(x[1])-fYbeg;
-      xl[2]=x[2]-fZbeg;
-      
-    // --- start with x
-    
-      hix=xl[0]*fXdeli;
-      ratx=hix-int(hix);
-      ix=int(hix);
-      
-      hiy=xl[1]*fYdeli;
-      raty=hiy-int(hiy);
-      iy=int(hiy);
-      
-      hiz=xl[2]*fZdeli;
-      ratz=hiz-int(hiz);
-      iz=int(hiz);
-    
-      if(fMap==2) {
-      // ... simple interpolation
-       ratx1=one-ratx;
-       raty1=one-raty;
-       ratz1=one-ratz;
-       bhyhz = Bx(ix  ,iy+1,iz+1)*ratx1+Bx(ix+1,iy+1,iz+1)*ratx;
-       bhylz = Bx(ix  ,iy+1,iz  )*ratx1+Bx(ix+1,iy+1,iz  )*ratx;
-       blyhz = Bx(ix  ,iy  ,iz+1)*ratx1+Bx(ix+1,iy  ,iz+1)*ratx;
-       blylz = Bx(ix  ,iy  ,iz  )*ratx1+Bx(ix+1,iy  ,iz  )*ratx;
-       bhz   = blyhz             *raty1+bhyhz             *raty;
-       blz   = blylz             *raty1+bhylz             *raty;
-       b[0]  = blz               *ratz1+bhz               *ratz;
-       //
-       bhyhz = By(ix  ,iy+1,iz+1)*ratx1+By(ix+1,iy+1,iz+1)*ratx;
-       bhylz = By(ix  ,iy+1,iz  )*ratx1+By(ix+1,iy+1,iz  )*ratx;
-       blyhz = By(ix  ,iy  ,iz+1)*ratx1+By(ix+1,iy  ,iz+1)*ratx;
-       blylz = By(ix  ,iy  ,iz  )*ratx1+By(ix+1,iy  ,iz  )*ratx;
-       bhz   = blyhz             *raty1+bhyhz             *raty;
-       blz   = blylz             *raty1+bhylz             *raty;
-       b[1]  = blz               *ratz1+bhz               *ratz;
-       //
-       bhyhz = Bz(ix  ,iy+1,iz+1)*ratx1+Bz(ix+1,iy+1,iz+1)*ratx;
-       bhylz = Bz(ix  ,iy+1,iz  )*ratx1+Bz(ix+1,iy+1,iz  )*ratx;
-       blyhz = Bz(ix  ,iy  ,iz+1)*ratx1+Bz(ix+1,iy  ,iz+1)*ratx;
-       blylz = Bz(ix  ,iy  ,iz  )*ratx1+Bz(ix+1,iy  ,iz  )*ratx;
-       bhz   = blyhz             *raty1+bhyhz             *raty;
-       blz   = blylz             *raty1+bhylz             *raty;
-       b[2]  = blz               *ratz1+bhz               *ratz;
-      //printf("ratx,raty,ratz,b[0],b[1],b[2] %f %f %f %f %f %f\n",
-      //ratx,raty,ratz,b[0],b[1],b[2]);
-      //
-    // ... use the dipole symmetry
-       if (x[0]*x[1] < 0) b[1]=-b[1];
-       if (x[0]<0) b[2]=-b[2];
-      } else {
-       printf("Invalid field map for constant mesh %d\n",fMap);
-      }
-    } else {
-//This is the ZDC part
-      Float_t rad2=x[0]*x[0]+x[1]*x[1];
-      if(rad2<D2RA2) {
-       if(x[2]>D2BEG) {
-         
-//    Separator Dipole D2
-         if(x[2]<D2END) b[1]=FDIP;
-       } else if(x[2]>D1BEG) {
-
-//    Separator Dipole D1
-         if(x[2]<D1END) b[1]=-FDIP;
-       }
-       if(rad2<CORRA2) {
-
-//    First quadrupole of inner triplet de-focussing in x-direction
-//    Inner triplet
-         if(x[2]>Z4BEG) {
-           if(x[2]<Z4END) {
-             
-//    2430 <-> 3060
-             b[0]=-G1*x[1];
-             b[1]=-G1*x[0];
-           }
-         } else if(x[2]>Z3BEG) {
-           if(x[2]<Z3END) {
-
-//    1530 <-> 2080
-             b[0]=G1*x[1];
-             b[1]=G1*x[0];
-           }
-         } else if(x[2]>Z2BEG) {
-           if(x[2]<Z2END) {
-
-//    890 <-> 1430
-             b[0]=G1*x[1];
-             b[1]=G1*x[0];
-           }
-         } else if(x[2]>Z1BEG) {
-           if(x[2]<Z1END) {
+  if (this != &src && src.fMeasuredMap) { 
+    if (fMeasuredMap) delete fMeasuredMap;
+    fMeasuredMap = new AliMagWrapCheb(*src.fMeasuredMap);
+    SetName(src.GetName());
+    fSolenoid    = src.fSolenoid;
+    fBeamType    = src.fBeamType;
+    fBeamEnergy  = src.fBeamEnergy;
+    fInteg       = src.fInteg;
+    fPrecInteg   = src.fPrecInteg;
+    fFactorSol   = src.fFactorSol;
+    fFactorDip   = src.fFactorDip;
+    fMax         = src.fMax;
+    fDipoleOFF   = src.fDipoleOFF;
+    fParNames    = src.fParNames;
+  }
+  return *this;
+}
 
-//    0 <->  630
-             b[0]=-G1*x[1];
-             b[1]=-G1*x[0];
-           }
-         } else if(x[2]>CORBEG) {
-           if(x[2]<COREND) {
-//    Corrector dipole (because of dimuon arm)
-             b[0]=FCORN;
-           }
-         }
-       }
-      }
-    }
+//_______________________________________________________________________
+void AliMagF::InitMachineField(BeamType_t btype, Double_t benergy)
+{
+  if (btype==kNoBeamField || benergy<1.) {
+    fQuadGradient = fDipoleField = fCCorrField = fACorr1Field = fACorr2Field = 0.;
+    return;
   }
+  //
+  double rigScale = benergy/7000.;   // scale according to ratio of E/Enominal
+  // for ions assume PbPb (with energy provided per nucleon) and account for A/Z
+  if (btype == kBeamTypeAA) rigScale *= 208./82.;
+  //
+  fQuadGradient = 22.0002*rigScale;
+  fDipoleField  = 37.8781*rigScale;
+  //
+  // SIDE C
+  fCCorrField   = -9.6980;
+  // SIDE A
+  fACorr1Field  = -13.2247;
+  fACorr2Field  =  11.7905;
+  //
 }
 
-//________________________________________
-void AliMagFCM::ReadField()
+//_______________________________________________________________________
+void AliMagF::MachineField(const Double_t *x, Double_t *b) const
 {
-  FILE *magfile;
-  Int_t ix, iy, iz, ipx, ipy, ipz;
-  Float_t bx, by, bz;
-  char *fname;
-  printf("Reading Magnetic Field %s from file %s\n",fName.Data(),fTitle.Data());
-  fname = gSystem->ExpandPathName(fTitle.Data());
-  magfile=fopen(fname,"r");
-  delete [] fname;
-  if (magfile) {
-    fscanf(magfile,"%d %d %d %f %f %f %f %f %f",
-          &fXn, &fYn, &fZn, &fXdel, &fYdel, &fZdel, &fXbeg, &fYbeg, &fZbeg);
-    printf("fXn %d, fYn %d, fZn %d, fXdel %f, fYdel %f, fZdel %f, fXbeg %f, fYbeg %f, fZbeg %f\n",
-          fXn, fYn, fZn, fXdel, fYdel, fZdel, fXbeg, fYbeg, fZbeg);
-    fXdeli=1./fXdel;
-    fYdeli=1./fYdel;
-    fZdeli=1./fZdel;
-    fB = new TVector(3*fXn*fYn*fZn);
-    for (iz=0; iz<fZn; iz++) {
-      ipz=iz*3*(fXn*fYn);
-      for (iy=0; iy<fYn; iy++) {
-       ipy=ipz+iy*3*fXn;
-       for (ix=0; ix<fXn; ix++) {
-         ipx=ipy+ix*3;
-         fscanf(magfile,"%f %f %f",&bz,&by,&bx);
-         (*fB)(ipx+2)=bz;
-         (*fB)(ipx+1)=by;
-         (*fB)(ipx  )=bx;
-       }
+  // ---- This is the ZDC part
+  // Compansators for Alice Muon Arm Dipole
+  const Double_t kBComp1CZ = 1075., kBComp1hDZ = 260./2., kBComp1SqR = 4.0*4.0; 
+  const Double_t kBComp2CZ = 2049., kBComp2hDZ = 153./2., kBComp2SqR = 4.5*4.5; 
+  //  
+  const Double_t kTripQ1CZ = 2615., kTripQ1hDZ = 637./2., kTripQ1SqR = 3.5*3.5;
+  const Double_t kTripQ2CZ = 3480., kTripQ2hDZ = 550./2., kTripQ2SqR = 3.5*3.5;
+  const Double_t kTripQ3CZ = 4130., kTripQ3hDZ = 550./2., kTripQ3SqR = 3.5*3.5;
+  const Double_t kTripQ4CZ = 5015., kTripQ4hDZ = 637./2., kTripQ4SqR = 3.5*3.5;
+  //
+  const Double_t kDip1CZ = 6310.8,  kDip1hDZ = 945./2., kDip1SqRC = 4.5*4.5, kDip1SqRA = 3.375*3.375;
+  const Double_t kDip2CZ = 12640.3, kDip2hDZ = 945./2., kDip2SqRC = 4.5*4.5, kDip2SqRA = 3.75*3.75;
+  const Double_t kDip2DXC = 9.7, kDip2DXA = 9.4;
+  //
+  double rad2 = x[0] * x[0] + x[1] * x[1];
+  //
+  b[0] = b[1] = b[2] = 0;
+  //
+  // SIDE C **************************************************
+  if(x[2]<0.){  
+    if(TMath::Abs(x[2]+kBComp2CZ)<kBComp2hDZ && rad2 < kBComp2SqR){
+      b[0] = fCCorrField*fFactorDip;
+    } 
+    else if(TMath::Abs(x[2]+kTripQ1CZ)<kTripQ1hDZ && rad2 < kTripQ1SqR){
+      b[0] = fQuadGradient*x[1];
+      b[1] = fQuadGradient*x[0];
+    }
+    else if(TMath::Abs(x[2]+kTripQ2CZ)<kTripQ2hDZ && rad2 < kTripQ2SqR){
+      b[0] = -fQuadGradient*x[1];
+      b[1] = -fQuadGradient*x[0];
+    }
+    else if(TMath::Abs(x[2]+kTripQ3CZ)<kTripQ3hDZ && rad2 < kTripQ3SqR){
+      b[0] = -fQuadGradient*x[1];
+      b[1] = -fQuadGradient*x[0];
+    }
+    else if(TMath::Abs(x[2]+kTripQ4CZ)<kTripQ4hDZ && rad2 < kTripQ4SqR){
+      b[0] = fQuadGradient*x[1];
+      b[1] = fQuadGradient*x[0];
+    }
+    else if(TMath::Abs(x[2]+kDip1CZ)<kDip1hDZ && rad2 < kDip1SqRC){
+      b[1] = fDipoleField;
+    }
+    else if(TMath::Abs(x[2]+kDip2CZ)<kDip2hDZ && rad2 < kDip2SqRC) {
+      double dxabs = TMath::Abs(x[0])-kDip2DXC;
+      if ( (dxabs*dxabs + x[1]*x[1])<kDip2SqRC) {
+       b[1] = -fDipoleField;
       }
     }
-  } else { 
-    printf("File %s not found !\n",fTitle.Data());
-    exit(1);
   }
+  //
+  // SIDE A **************************************************
+  else{        
+    if(TMath::Abs(x[2]-kBComp1CZ)<kBComp1hDZ && rad2 < kBComp1SqR) {
+      // Compensator magnet at z = 1075 m 
+      b[0] = fACorr1Field*fFactorDip;
+    }
+    //
+    if(TMath::Abs(x[2]-kBComp2CZ)<kBComp2hDZ && rad2 < kBComp2SqR){
+      b[0] = fACorr2Field*fFactorDip;
+    }
+    else if(TMath::Abs(x[2]-kTripQ1CZ)<kTripQ1hDZ && rad2 < kTripQ1SqR){
+      b[0] = -fQuadGradient*x[1];
+      b[1] = -fQuadGradient*x[0];
+    }
+    else if(TMath::Abs(x[2]-kTripQ2CZ)<kTripQ2hDZ && rad2 < kTripQ2SqR){
+      b[0] =  fQuadGradient*x[1];
+      b[1] =  fQuadGradient*x[0];
+    }
+    else if(TMath::Abs(x[2]-kTripQ3CZ)<kTripQ3hDZ && rad2 < kTripQ3SqR){
+      b[0] =  fQuadGradient*x[1];
+      b[1] =  fQuadGradient*x[0];
+    }
+    else if(TMath::Abs(x[2]-kTripQ4CZ)<kTripQ4hDZ && rad2 < kTripQ4SqR){
+      b[0] = -fQuadGradient*x[1];
+      b[1] = -fQuadGradient*x[0];
+    }
+    else if(TMath::Abs(x[2]-kDip1CZ)<kDip1hDZ && rad2 < kDip1SqRA){
+      b[1] = -fDipoleField;
+    }
+    else if(TMath::Abs(x[2]-kDip2CZ)<kDip2hDZ && rad2 < kDip2SqRA) {
+      double dxabs = TMath::Abs(x[0])-kDip2DXA;
+      if ( (dxabs*dxabs + x[1]*x[1])<kDip2SqRA) {
+       b[1] = fDipoleField;
+      }
+    }
+  }
+  //
 }
 
-  
+//_______________________________________________________________________
+void AliMagF::GetTPCInt(const Double_t *xyz, Double_t *b) const
+{
+  // Method to calculate the integral of magnetic integral from xyz to nearest cathode plane
+  b[0]=b[1]=b[2]=0.0;
+  if (fMeasuredMap) {
+    fMeasuredMap->GetTPCInt(xyz,b);
+    for (int i=3;i--;) b[i] *= fFactorSol;
+  }
+}
 
+//_______________________________________________________________________
+void AliMagF::GetTPCIntCyl(const Double_t *rphiz, Double_t *b) const
+{
+  // Method to calculate the integral of magnetic integral from point to nearest cathode plane
+  // in cylindrical coordiates ( -pi<phi<pi convention )
+  b[0]=b[1]=b[2]=0.0;
+  if (fMeasuredMap) {
+    fMeasuredMap->GetTPCIntCyl(rphiz,b);
+    for (int i=3;i--;) b[i] *= fFactorSol;
+  }
+}