]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - STEER/STEERBase/AliPIDResponse.cxx
New splines and first eta maps for the 2013 pPb runs (Benjamin)
[u/mrichter/AliRoot.git] / STEER / STEERBase / AliPIDResponse.cxx
index 127af27297d7969fac7d5b1ebbc18d05bfc3ef89..5da78520ca93e006ae26276f16aed9e110981f06 100644 (file)
 #include <TObjArray.h>
 #include <TPRegexp.h>
 #include <TF1.h>
+#include <TH2D.h>
 #include <TSpline.h>
 #include <TFile.h>
 #include <TArrayI.h>
 #include <TArrayF.h>
+#include <TLinearFitter.h>
 
 #include <AliVEvent.h>
 #include <AliVTrack.h>
@@ -57,6 +59,7 @@ fEMCALResponse(),
 fRange(5.),
 fITSPIDmethod(kITSTruncMean),
 fIsMC(isMC),
+fCachePID(kTRUE),
 fOADBPath(),
 fCustomTPCpidResponse(),
 fBeamType("PP"),
@@ -68,9 +71,13 @@ fRecoPass(0),
 fRecoPassUser(-1),
 fRun(0),
 fOldRun(0),
+fResT0A(75.),
+fResT0C(65.),
+fResT0AC(55.),
 fArrPidResponseMaster(NULL),
 fResolutionCorrection(NULL),
 fOADBvoltageMaps(NULL),
+fUseTPCEtaCorrection(kFALSE),//TODO: In future, default kTRUE
 fTRDPIDResponseObject(NULL),
 fTOFtail(1.1),
 fTOFPIDParams(NULL),
@@ -110,6 +117,7 @@ fEMCALResponse(other.fEMCALResponse),
 fRange(other.fRange),
 fITSPIDmethod(other.fITSPIDmethod),
 fIsMC(other.fIsMC),
+fCachePID(other.fCachePID),
 fOADBPath(other.fOADBPath),
 fCustomTPCpidResponse(other.fCustomTPCpidResponse),
 fBeamType("PP"),
@@ -121,9 +129,13 @@ fRecoPass(0),
 fRecoPassUser(other.fRecoPassUser),
 fRun(0),
 fOldRun(0),
+fResT0A(75.),
+fResT0C(65.),
+fResT0AC(55.),
 fArrPidResponseMaster(NULL),
 fResolutionCorrection(NULL),
 fOADBvoltageMaps(NULL),
+fUseTPCEtaCorrection(other.fUseTPCEtaCorrection),
 fTRDPIDResponseObject(NULL),
 fTOFtail(1.1),
 fTOFPIDParams(NULL),
@@ -156,6 +168,7 @@ AliPIDResponse& AliPIDResponse::operator=(const AliPIDResponse &other)
     fOADBPath=other.fOADBPath;
     fCustomTPCpidResponse=other.fCustomTPCpidResponse;
     fIsMC=other.fIsMC;
+    fCachePID=other.fCachePID;
     fBeamType="PP";
     fLHCperiod="";
     fMCperiodTPC="";
@@ -165,9 +178,13 @@ AliPIDResponse& AliPIDResponse::operator=(const AliPIDResponse &other)
     fRecoPassUser=other.fRecoPassUser;
     fRun=0;
     fOldRun=0;
+    fResT0A=75.;
+    fResT0C=65.;
+    fResT0AC=55.;
     fArrPidResponseMaster=NULL;
     fResolutionCorrection=NULL;
     fOADBvoltageMaps=NULL;
+       fUseTPCEtaCorrection=other.fUseTPCEtaCorrection;
     fTRDPIDResponseObject=NULL;
     fEMCALPIDParams=NULL;
     fTOFtail=1.1;
@@ -179,31 +196,43 @@ AliPIDResponse& AliPIDResponse::operator=(const AliPIDResponse &other)
 }
 
 //______________________________________________________________________________
-Float_t AliPIDResponse::NumberOfSigmas(EDetCode detCode, const AliVParticle *track, AliPID::EParticleType type) const
+Float_t AliPIDResponse::NumberOfSigmas(EDetector detector, const AliVParticle *vtrack, AliPID::EParticleType type) const
 {
   //
   // NumberOfSigmas for 'detCode'
   //
-
-  switch (detCode){
-    case kDetITS: return NumberOfSigmasITS(track, type); break;
-    case kDetTPC: return NumberOfSigmasTPC(track, type); break;
-    case kDetTOF: return NumberOfSigmasTOF(track, type); break;
-    case kDetEMCAL: return NumberOfSigmasEMCAL(track, type); break;
-    default: return -999.;
+  
+  const AliVTrack *track=static_cast<const AliVTrack*>(vtrack);
+  // look for cached value first
+  const AliDetectorPID *detPID=track->GetDetectorPID();
+  
+  if ( detPID && detPID->HasNumberOfSigmas(detector)){
+    return detPID->GetNumberOfSigmas(detector, type);
+  } else if (fCachePID) {
+    FillTrackDetectorPID(track, detector);
+    detPID=track->GetDetectorPID();
+    return detPID->GetNumberOfSigmas(detector, type);
   }
-
+  
+  return GetNumberOfSigmas(detector, track, type);
 }
 
 //______________________________________________________________________________
-Float_t AliPIDResponse::NumberOfSigmas(EDetector detCode, const AliVParticle *track, AliPID::EParticleType type) const
+AliPIDResponse::EDetPidStatus AliPIDResponse::NumberOfSigmas(EDetector detCode, const AliVParticle *track,
+                                                             AliPID::EParticleType type, Double_t &val) const
 {
   //
-  // NumberOfSigmas for 'detCode'
+  // NumberOfSigmas with detector status as return value
   //
-  return NumberOfSigmas((EDetCode)(1<<detCode), track, type);
+  
+  val=NumberOfSigmas(detCode, track, type);
+  return CheckPIDStatus(detCode, (AliVTrack*)track);
 }
 
+//______________________________________________________________________________
+// public buffered versions of the PID calculation
+//
+
 //______________________________________________________________________________
 Float_t AliPIDResponse::NumberOfSigmasITS(const AliVParticle *vtrack, AliPID::EParticleType type) const
 {
@@ -211,32 +240,7 @@ Float_t AliPIDResponse::NumberOfSigmasITS(const AliVParticle *vtrack, AliPID::EP
   // Calculate the number of sigmas in the ITS
   //
   
-  AliVTrack *track=(AliVTrack*)vtrack;
-  
-  // look for cached value first
-  // only the non SA tracks are cached
-  if ( track->GetDetectorPID() ){
-    return track->GetDetectorPID()->GetNumberOfSigmas(kITS, type);
-  }
-  
-  Float_t dEdx=track->GetITSsignal();
-  if (dEdx<=0) return -999.;
-  
-  UChar_t clumap=track->GetITSClusterMap();
-  Int_t nPointsForPid=0;
-  for(Int_t i=2; i<6; i++){
-    if(clumap&(1<<i)) ++nPointsForPid;
-  }
-  Float_t mom=track->P();
-
-  //check for ITS standalone tracks
-  Bool_t isSA=kTRUE;
-  if( track->GetStatus() & AliVTrack::kTPCin ) isSA=kFALSE;
-  
-  //TODO: in case of the electron, use the SA parametrisation,
-  //      this needs to be changed if ITS provides a parametrisation
-  //      for electrons also for ITS+TPC tracks
-  return fITSResponse.GetNumberOfSigmas(mom,dEdx,type,nPointsForPid,isSA || (type==AliPID::kElectron));
+  return NumberOfSigmas(kITS, vtrack, type);
 }
 
 //______________________________________________________________________________
@@ -246,92 +250,49 @@ Float_t AliPIDResponse::NumberOfSigmasTPC(const AliVParticle *vtrack, AliPID::EP
   // Calculate the number of sigmas in the TPC
   //
   
-  AliVTrack *track=(AliVTrack*)vtrack;
-  
-  // look for cached value first
-  if (track->GetDetectorPID()){
-    return track->GetDetectorPID()->GetNumberOfSigmas(kTPC, type);
-  }
-  
-  Double_t mom  = track->GetTPCmomentum();
-  Double_t sig  = track->GetTPCsignal();
-  UInt_t   sigN = track->GetTPCsignalN();
-  
-  Double_t nSigma = -999.;
-  if (sigN>0) nSigma=fTPCResponse.GetNumberOfSigmas(mom,sig,sigN,type);
-  
-  return nSigma;
+  return NumberOfSigmas(kTPC, vtrack, type);
 }
 
 //______________________________________________________________________________
 Float_t AliPIDResponse::NumberOfSigmasTPC( const AliVParticle *vtrack, 
                                            AliPID::EParticleType type,
-                                           AliTPCPIDResponse::ETPCdEdxSource dedxSource) 
+                                           AliTPCPIDResponse::ETPCdEdxSource dedxSource) const
 {
   //get number of sigmas according the selected TPC gain configuration scenario
   const AliVTrack *track=static_cast<const AliVTrack*>(vtrack);
 
-  Float_t nSigma=fTPCResponse.GetNumberOfSigmas(track, type, dedxSource);
+//   return 0.;
+  Float_t nSigma=fTPCResponse.GetNumberOfSigmas(track, type, dedxSource, fUseTPCEtaCorrection);
 
   return nSigma;
 }
 
 //______________________________________________________________________________
-Float_t AliPIDResponse::NumberOfSigmasEMCAL(const AliVParticle *vtrack, AliPID::EParticleType type) const
+Float_t AliPIDResponse::NumberOfSigmasTOF(const AliVParticle *vtrack, AliPID::EParticleType type) const
 {
   //
-  // Calculate the number of sigmas in the EMCAL
+  // Calculate the number of sigmas in the TOF
   //
   
-  AliVTrack *track=(AliVTrack*)vtrack;
-
-  // look for cached value first
-  if (track->GetDetectorPID()){
-    return track->GetDetectorPID()->GetNumberOfSigmas(kEMCAL, type);
-  }
-  
-  AliVCluster *matchedClus = NULL;
+  return NumberOfSigmas(kTOF, vtrack, type);
+}
 
-  Double_t mom     = -1.; 
-  Double_t pt      = -1.; 
-  Double_t EovP    = -1.;
-  Double_t fClsE   = -1.;
-  
-  Int_t nMatchClus = -1;
-  Int_t charge     = 0;
-  
-  // Track matching
-  nMatchClus = track->GetEMCALcluster();
-  if(nMatchClus > -1){
-    
-    mom    = track->P();
-    pt     = track->Pt();
-    charge = track->Charge();
-    
-    matchedClus = (AliVCluster*)fCurrentEvent->GetCaloCluster(nMatchClus);
-    
-    if(matchedClus){
-      
-      // matched cluster is EMCAL
-      if(matchedClus->IsEMCAL()){
-       
-       fClsE       = matchedClus->E();
-       EovP        = fClsE/mom;
-       
-       
-       // NSigma value really meaningful only for electrons!
-       return fEMCALResponse.GetNumberOfSigmas(pt,EovP,type,charge); 
-      }
-    }
-  }
-  
-  return -999;
+//______________________________________________________________________________
+Float_t AliPIDResponse::NumberOfSigmasEMCAL(const AliVParticle *vtrack, AliPID::EParticleType type) const
+{
+  //
+  // Calculate the number of sigmas in the EMCAL
+  //
   
+  return NumberOfSigmas(kEMCAL, vtrack, type);
 }
 
 //______________________________________________________________________________
-Float_t  AliPIDResponse::NumberOfSigmasEMCAL(const AliVParticle *vtrack, AliPID::EParticleType type, Double_t &eop, Double_t showershape[4]) const {
-
+Float_t  AliPIDResponse::NumberOfSigmasEMCAL(const AliVParticle *vtrack, AliPID::EParticleType type, Double_t &eop, Double_t showershape[4])  const
+{
+  //
+  // emcal nsigma with eop and showershape
+  //
   AliVTrack *track=(AliVTrack*)vtrack;
   
   AliVCluster *matchedClus = NULL;
@@ -374,380 +335,185 @@ Float_t  AliPIDResponse::NumberOfSigmasEMCAL(const AliVParticle *vtrack, AliPID:
        showershape[1] = matchedClus->GetM02(); // long axis
        showershape[2] = matchedClus->GetM20(); // short axis
        showershape[3] = matchedClus->GetDispersion(); // dispersion
-       
-       // NSigma value really meaningful only for electrons!
-       return fEMCALResponse.GetNumberOfSigmas(pt,EovP,type,charge); 
+
+        // look for cached value first
+        const AliDetectorPID *detPID=track->GetDetectorPID();
+        const EDetector detector=kEMCAL;
+        
+        if ( detPID && detPID->HasNumberOfSigmas(detector)){
+          return detPID->GetNumberOfSigmas(detector, type);
+        } else if (fCachePID) {
+          FillTrackDetectorPID(track, detector);
+          detPID=track->GetDetectorPID();
+          return detPID->GetNumberOfSigmas(detector, type);
+        }
+        
+        // NSigma value really meaningful only for electrons!
+        return fEMCALResponse.GetNumberOfSigmas(pt,EovP,type,charge);
       }
     }
   }
   return -999;
 }
 
-
 //______________________________________________________________________________
-AliPIDResponse::EDetPidStatus AliPIDResponse::ComputePIDProbability  (EDetCode detCode,  const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
+AliPIDResponse::EDetPidStatus AliPIDResponse::ComputePIDProbability  (EDetCode  detCode, const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
 {
-  //
   // Compute PID response of 'detCode'
-  //
+  
+  // find detector code from detector bit mask
+  Int_t detector=-1;
+  for (Int_t idet=0; idet<kNdetectors; ++idet) if ( (detCode&(1<<idet)) ) { detector=idet; break; }
+  if (detector==-1) return kDetNoSignal;
 
-  switch (detCode){
-    case kDetITS: return ComputeITSProbability(track, nSpecies, p); break;
-    case kDetTPC: return ComputeTPCProbability(track, nSpecies, p); break;
-    case kDetTRD: return ComputeTRDProbability(track, nSpecies, p); break;
-    case kDetTOF: return ComputeTOFProbability(track, nSpecies, p); break;
-    case kDetPHOS: return ComputePHOSProbability(track, nSpecies, p); break;
-    case kDetEMCAL: return ComputeEMCALProbability(track, nSpecies, p); break;
-    case kDetHMPID: return ComputeHMPIDProbability(track, nSpecies, p); break;
-    default: return kDetNoSignal;
-  }
+  return ComputePIDProbability((EDetector)detector, track, nSpecies, p);
 }
 
 //______________________________________________________________________________
-AliPIDResponse::EDetPidStatus AliPIDResponse::ComputePIDProbability  (EDetector detCode,  const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
+AliPIDResponse::EDetPidStatus AliPIDResponse::ComputePIDProbability  (EDetector detector,  const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
 {
   //
-  // Compute PID response of 'detCode'
+  // Compute PID response of 'detector'
   //
 
-  return ComputePIDProbability((EDetCode)(1<<detCode),track,nSpecies,p);
+  const AliDetectorPID *detPID=track->GetDetectorPID();
+
+  if ( detPID && detPID->HasRawProbability(detector)){
+    return detPID->GetRawProbability(detector, p, nSpecies);
+  } else if (fCachePID) {
+    FillTrackDetectorPID(track, detector);
+    detPID=track->GetDetectorPID();
+    return detPID->GetRawProbability(detector, p, nSpecies);
+  }
+  
+  //if no caching return values calculated from scratch
+  return GetComputePIDProbability(detector, track, nSpecies, p);
 }
 
 //______________________________________________________________________________
 AliPIDResponse::EDetPidStatus AliPIDResponse::ComputeITSProbability  (const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
 {
-  //
   // Compute PID response for the ITS
-  //
+  return ComputePIDProbability(kITS, track, nSpecies, p);
+}
 
-  // look for cached value first
-  // only the non SA tracks are cached
-  if (track->GetDetectorPID()){
-    return track->GetDetectorPID()->GetRawProbability(kITS, p, nSpecies);
-  }
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::ComputeTPCProbability  (const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
+{
+  // Compute PID response for the TPC
+  return ComputePIDProbability(kTPC, track, nSpecies, p);
+}
 
-  // set flat distribution (no decision)
-  for (Int_t j=0; j<nSpecies; j++) p[j]=1./nSpecies;
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::ComputeTOFProbability  (const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
+{
+  // Compute PID response for the
+  return ComputePIDProbability(kTOF, track, nSpecies, p);
+}
 
-  if ((track->GetStatus()&AliVTrack::kITSin)==0 &&
-    (track->GetStatus()&AliVTrack::kITSout)==0) return kDetNoSignal;
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::ComputeTRDProbability  (const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
+{
+  // Compute PID response for the
+  return ComputePIDProbability(kTRD, track, nSpecies, p);
+}
 
-  //check for ITS standalone tracks
-  Bool_t isSA=kTRUE;
-  if( track->GetStatus() & AliVTrack::kTPCin ) isSA=kFALSE;
-  
-  Double_t mom=track->P();
-  Double_t dedx=track->GetITSsignal();
-  Double_t momITS=mom;
-  UChar_t clumap=track->GetITSClusterMap();
-  Int_t nPointsForPid=0;
-  for(Int_t i=2; i<6; i++){
-    if(clumap&(1<<i)) ++nPointsForPid;
-  }
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::ComputeEMCALProbability  (const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
+{
+  // Compute PID response for the EMCAL
+  return ComputePIDProbability(kEMCAL, track, nSpecies, p);
+}
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::ComputePHOSProbability (const AliVTrack */*track*/, Int_t nSpecies, Double_t p[]) const
+{
+  // Compute PID response for the PHOS
   
-  if(nPointsForPid<3) { // track not to be used for combined PID purposes
-    //       track->ResetStatus(AliVTrack::kITSpid);
-    return kDetNoSignal;
-  }
-
-  Bool_t mismatch=kTRUE/*, heavy=kTRUE*/;
-  for (Int_t j=0; j<AliPID::kSPECIES; j++) {
-    Double_t mass=AliPID::ParticleMassZ(j);//GeV/c^2
-    const Double_t chargeFactor = TMath::Power(AliPID::ParticleCharge(j),2.);
-    Double_t bethe=fITSResponse.Bethe(momITS,mass)*chargeFactor;
-    //TODO: in case of the electron, use the SA parametrisation,
-    //      this needs to be changed if ITS provides a parametrisation
-    //      for electrons also for ITS+TPC tracks
-    Double_t sigma=fITSResponse.GetResolution(bethe,nPointsForPid,isSA || (j==(Int_t)AliPID::kElectron));
-    if (TMath::Abs(dedx-bethe) > fRange*sigma) {
-      p[j]=TMath::Exp(-0.5*fRange*fRange)/sigma;
-    } else {
-      p[j]=TMath::Exp(-0.5*(dedx-bethe)*(dedx-bethe)/(sigma*sigma))/sigma;
-      mismatch=kFALSE;
-    }
+  // set flat distribution (no decision)
+  for (Int_t j=0; j<nSpecies; j++) p[j]=1./nSpecies;
+  return kDetNoSignal;
+}
 
-    // Check for particles heavier than (AliPID::kSPECIES - 1)
-    //       if (dedx < (bethe + fRange*sigma)) heavy=kFALSE;
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::ComputeHMPIDProbability(const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
+{
+  // Compute PID response for the HMPID
+  return ComputePIDProbability(kHMPID, track, nSpecies, p);
+}
 
-  }
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::ComputeTRDProbability  (const AliVTrack *track, Int_t nSpecies, Double_t p[],AliTRDPIDResponse::ETRDPIDMethod PIDmethod) const
+{
+  // Compute PID response for the
+  return GetComputeTRDProbability(track, nSpecies, p, PIDmethod);
+}
 
-  if (mismatch){
-    for (Int_t j=0; j<AliPID::kSPECIES; j++) p[j]=1./AliPID::kSPECIES;
-    return kDetNoSignal;
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::CheckPIDStatus(EDetector detector, const AliVTrack *track) const
+{
+  // calculate detector pid status
+  
+  const Int_t iDetCode=(Int_t)detector;
+  if (iDetCode<0||iDetCode>=kNdetectors) return kDetNoSignal;
+  const AliDetectorPID *detPID=track->GetDetectorPID();
+  
+  if ( detPID ){
+    return detPID->GetPIDStatus(detector);
+  } else if (fCachePID) {
+    FillTrackDetectorPID(track, detector);
+    detPID=track->GetDetectorPID();
+    return detPID->GetPIDStatus(detector);
   }
-
-    
-  return kDetPidOk;
+  
+  // if not buffered and no buffering is requested
+  return GetPIDStatus(detector, track);
 }
+
 //______________________________________________________________________________
-AliPIDResponse::EDetPidStatus AliPIDResponse::ComputeTPCProbability  (const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
+void AliPIDResponse::InitialiseEvent(AliVEvent *event, Int_t pass, Int_t run)
 {
   //
-  // Compute PID response for the TPC
+  // Apply settings for the current event
   //
+  fRecoPass=pass;
   
-  // look for cached value first
-  if (track->GetDetectorPID()){
-    return track->GetDetectorPID()->GetRawProbability(kTPC, p, nSpecies);
+
+  fCurrentEvent=NULL;
+  if (!event) return;
+  fCurrentEvent=event;
+  if (run>0) fRun=run;
+  else fRun=event->GetRunNumber();
+  
+  if (fRun!=fOldRun){
+    ExecNewRun();
+    fOldRun=fRun;
   }
   
-  // set flat distribution (no decision)
-  for (Int_t j=0; j<nSpecies; j++) p[j]=1./nSpecies;
-
-  // check quality of the track
-  if ( (track->GetStatus()&AliVTrack::kTPCin )==0 && (track->GetStatus()&AliVTrack::kTPCout)==0 ) return kDetNoSignal;
-
-  Double_t mom = track->GetTPCmomentum();
-
-  Double_t dedx=track->GetTPCsignal();
-  Bool_t mismatch=kTRUE/*, heavy=kTRUE*/;
+  //TPC resolution parametrisation PbPb
+  if ( fResolutionCorrection ){
+    Double_t corrSigma=fResolutionCorrection->Eval(GetTPCMultiplicityBin(event));
+    fTPCResponse.SetSigma(3.79301e-03*corrSigma, 2.21280e+04);
+  }
+  
+  //TOF resolution
+  SetTOFResponse(event, (AliPIDResponse::EStartTimeType_t)fTOFPIDParams->GetStartTimeMethod());
 
-  if(fTuneMConData) dedx = this->GetTPCsignalTunedOnData(track);
 
-  for (Int_t j=0; j<AliPID::kSPECIESC; j++) {
-    AliPID::EParticleType type=AliPID::EParticleType(j);
-    Double_t bethe=fTPCResponse.GetExpectedSignal(mom,type);
-    Double_t sigma=fTPCResponse.GetExpectedSigma(mom,track->GetTPCsignalN(),type);
-    if (TMath::Abs(dedx-bethe) > fRange*sigma) {
-      p[j]=TMath::Exp(-0.5*fRange*fRange)/sigma;
-    } else {
-      p[j]=TMath::Exp(-0.5*(dedx-bethe)*(dedx-bethe)/(sigma*sigma))/sigma;
-      mismatch=kFALSE;
-    }
+  // Get and set centrality
+  AliCentrality *centrality = event->GetCentrality();
+  if(centrality){
+    fCurrCentrality = centrality->GetCentralityPercentile("V0M");
   }
-
-  if (mismatch){
-    for (Int_t j=0; j<nSpecies; j++) p[j]=1./nSpecies;
-    return kDetNoSignal;
+  else{
+    fCurrCentrality = -1;
   }
-
-  return kDetPidOk;
 }
+
 //______________________________________________________________________________
-AliPIDResponse::EDetPidStatus AliPIDResponse::ComputeTOFProbability  (const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
+void AliPIDResponse::ExecNewRun()
 {
   //
-  // Compute PID response for the
-  //
-  
-  // look for cached value first
-  if (track->GetDetectorPID()){
-    return track->GetDetectorPID()->GetRawProbability(kTOF, p, nSpecies);
-  }
-  
-  Double_t meanCorrFactor = 0.11/fTOFtail; // Correction factor on the mean because of the tail (should be ~ 0.1 with tail = 1.1)
-
-  // set flat distribution (no decision)
-  for (Int_t j=0; j<nSpecies; j++) p[j]=1./nSpecies;
-  
-  if ((track->GetStatus()&AliVTrack::kTOFout)==0) return kDetNoSignal;
-  if ((track->GetStatus()&AliVTrack::kTIME)==0) return kDetNoSignal;
-  
-  Bool_t mismatch = kTRUE/*, heavy = kTRUE*/;
-  for (Int_t j=0; j<AliPID::kSPECIESC; j++) {
-    AliPID::EParticleType type=AliPID::EParticleType(j);
-    Double_t nsigmas=NumberOfSigmasTOF(track,type) + meanCorrFactor;
-
-    Double_t expTime = fTOFResponse.GetExpectedSignal(track,type);
-    Double_t sig = fTOFResponse.GetExpectedSigma(track->P(),expTime,AliPID::ParticleMassZ(type));
-    if (TMath::Abs(nsigmas) > (fRange+2)) {
-      if(nsigmas < fTOFtail)
-       p[j] = TMath::Exp(-0.5*(fRange+2)*(fRange+2))/sig;
-      else
-       p[j] = TMath::Exp(-(fRange+2 - fTOFtail*0.5)*fTOFtail)/sig;
-    } else{
-      if(nsigmas < fTOFtail)
-       p[j] = TMath::Exp(-0.5*nsigmas*nsigmas)/sig;
-      else
-       p[j] = TMath::Exp(-(nsigmas - fTOFtail*0.5)*fTOFtail)/sig;
-    }
-
-    if (TMath::Abs(nsigmas)<5.){
-      Double_t nsigmasTPC=NumberOfSigmasTPC(track,type);
-      if (TMath::Abs(nsigmasTPC)<5.) mismatch=kFALSE;
-    }
-  }
-
-  if (mismatch){
-    return kDetMismatch;    
-  }
-
-    // TODO: Light nuclei
-    
-  return kDetPidOk;
-}
-//______________________________________________________________________________
-AliPIDResponse::EDetPidStatus AliPIDResponse::ComputeTRDProbability  (const AliVTrack *track, Int_t nSpecies, Double_t p[],AliTRDPIDResponse::ETRDPIDMethod PIDmethod) const
-{
-  //
-  // Compute PID response for the
-    //
-  // look for cached value first
-    if (track->GetDetectorPID()&&PIDmethod==AliTRDPIDResponse::kLQ1D){
-      AliDebug(3,"Return Cached Value");
-      return track->GetDetectorPID()->GetRawProbability(kTRD, p, nSpecies);
-  }
-  
-    UInt_t TRDslicesForPID[2];
-    SetTRDSlices(TRDslicesForPID,PIDmethod);
-  // set flat distribution (no decision)
-  for (Int_t j=0; j<nSpecies; j++) p[j]=1./nSpecies;
-  if((track->GetStatus()&AliVTrack::kTRDout)==0) return kDetNoSignal;
-
-  Float_t mom[6]={0.};
-  Double_t dedx[48]={0.};  // Allocate space for the maximum number of TRD slices
-  Int_t nslices = TRDslicesForPID[1] - TRDslicesForPID[0] + 1;
-  AliDebug(1, Form("First Slice: %d, Last Slice: %d, Number of slices: %d",  TRDslicesForPID[0], TRDslicesForPID[1], nslices));
-  for(UInt_t ilayer = 0; ilayer < 6; ilayer++){
-    mom[ilayer] = track->GetTRDmomentum(ilayer);
-    for(UInt_t islice = TRDslicesForPID[0]; islice <= TRDslicesForPID[1]; islice++){
-      dedx[ilayer*nslices+islice-TRDslicesForPID[0]] = track->GetTRDslice(ilayer, islice);
-    }
-  }
-  fTRDResponse.GetResponse(nslices, dedx, mom, p,PIDmethod);
-  return kDetPidOk;
-}
-//______________________________________________________________________________
-AliPIDResponse::EDetPidStatus AliPIDResponse::ComputeEMCALProbability  (const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
-{
-  //
-  // Compute PID response for the EMCAL
-  //
-  
-  // look for cached value first
-  if (track->GetDetectorPID()){
-    return track->GetDetectorPID()->GetRawProbability(kEMCAL, p, nSpecies);
-  }
-
-  for (Int_t j=0; j<nSpecies; j++) p[j]=1./nSpecies;
-
-  AliVCluster *matchedClus = NULL;
-
-  Double_t mom     = -1.; 
-  Double_t pt      = -1.; 
-  Double_t EovP    = -1.;
-  Double_t fClsE   = -1.;
-  
-  Int_t nMatchClus = -1;
-  Int_t charge     = 0;
-  
-  // Track matching
-  nMatchClus = track->GetEMCALcluster();
-
-  if(nMatchClus > -1){
-    
-    mom    = track->P();
-    pt     = track->Pt();
-    charge = track->Charge();
-    
-    matchedClus = (AliVCluster*)fCurrentEvent->GetCaloCluster(nMatchClus);
-    
-    if(matchedClus){    
-      
-      // matched cluster is EMCAL
-      if(matchedClus->IsEMCAL()){
-      
-      fClsE       = matchedClus->E();
-      EovP        = fClsE/mom;
-      
-      
-      // compute the probabilities 
-        if(fEMCALResponse.ComputeEMCALProbability(nSpecies,pt,EovP,charge,p)){ 
-          
-          // in case everything is OK
-             return kDetPidOk;
-        }
-      }
-    }
-  }
-  
-  // in all other cases set flat distribution (no decision)
-  for (Int_t j=0; j<nSpecies; j++) p[j] = 1./nSpecies;
-  return kDetNoSignal;
-  
-}
-//______________________________________________________________________________
-AliPIDResponse::EDetPidStatus AliPIDResponse::ComputePHOSProbability (const AliVTrack */*track*/, Int_t nSpecies, Double_t p[]) const
-{
-  //
-  // Compute PID response for the PHOS
-  //
-  
-  // look for cached value first
-//   if (track->GetDetectorPID()){
-//     return track->GetDetectorPID()->GetRawProbability(kPHOS, p, nSpecies);
-//   }
-  
-  // set flat distribution (no decision)
-  for (Int_t j=0; j<nSpecies; j++) p[j]=1./nSpecies;
-  return kDetNoSignal;
-}
-//______________________________________________________________________________
-AliPIDResponse::EDetPidStatus AliPIDResponse::ComputeHMPIDProbability(const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
-{
-  //
-  // Compute PID response for the HMPID
-  //
-
-
-  // look for cached value first
-  if (track->GetDetectorPID()){
-    return track->GetDetectorPID()->GetRawProbability(kHMPID, p, nSpecies);
-  }
-  
-  // set flat distribution (no decision)
-  for (Int_t j=0; j<nSpecies; j++) p[j]=1./nSpecies;
-  if((track->GetStatus()&AliVTrack::kHMPIDpid)==0) return kDetNoSignal;
-
-  track->GetHMPIDpid(p);
-  
-  return kDetPidOk;
-}
-
-//______________________________________________________________________________
-void AliPIDResponse::InitialiseEvent(AliVEvent *event, Int_t pass, Int_t run)
-{
-  //
-  // Apply settings for the current event
-  //
-  fRecoPass=pass;
-  
-  fCurrentEvent=NULL;
-  if (!event) return;
-  fCurrentEvent=event;
-  if (run>0) fRun=run;
-  else fRun=event->GetRunNumber();
-  
-  if (fRun!=fOldRun){
-    ExecNewRun();
-    fOldRun=fRun;
-  }
-  
-  //TPC resolution parametrisation PbPb
-  if ( fResolutionCorrection ){
-    Double_t corrSigma=fResolutionCorrection->Eval(GetTPCMultiplicityBin(event));
-    fTPCResponse.SetSigma(3.79301e-03*corrSigma, 2.21280e+04);
-  }
-  
-  //TOF resolution
-  SetTOFResponse(event, (AliPIDResponse::EStartTimeType_t)fTOFPIDParams->GetStartTimeMethod());
-
-
-  // Get and set centrality
-  AliCentrality *centrality = event->GetCentrality();
-  if(centrality){
-    fCurrCentrality = centrality->GetCentralityPercentile("V0M");
-  }
-  else{
-    fCurrCentrality = -1;
-  }
-}
-
-//______________________________________________________________________________
-void AliPIDResponse::ExecNewRun()
-{
-  //
-  // Things to Execute upon a new run
+  // Things to Execute upon a new run
   //
   SetRecoInfo();
   
@@ -755,6 +521,7 @@ void AliPIDResponse::ExecNewRun()
   
   SetTPCPidResponseMaster();
   SetTPCParametrisation();
+  SetTPCEtaMaps();
 
   SetTRDPidResponseMaster(); 
   InitializeTRDResponse();
@@ -768,7 +535,7 @@ void AliPIDResponse::ExecNewRun()
   if (fCurrentEvent) fTPCResponse.SetMagField(fCurrentEvent->GetMagneticField());
 }
 
-//_____________________________________________________
+//______________________________________________________________________________
 Double_t AliPIDResponse::GetTPCMultiplicityBin(const AliVEvent * const event)
 {
   //
@@ -802,7 +569,7 @@ void AliPIDResponse::SetRecoInfo()
   fBeamType="PP";
   
   TPRegexp reg(".*(LHC1[1-2][a-z]+[0-9]+[a-z_]*)/.*");
-  TPRegexp reg12a17(".*(LHC12a17[a-z]+)/.*");
+  TPRegexp reg12a17("LHC1[2-3][a-z]");
 
   //find the period by run number (UGLY, but not stored in ESD and AOD... )
   if (fRun>=114737&&fRun<=117223)      { fLHCperiod="LHC10B"; fMCperiodTPC="LHC10D1";  }
@@ -811,33 +578,49 @@ void AliPIDResponse::SetRecoInfo()
   else if (fRun>=127710&&fRun<=130850) { fLHCperiod="LHC10E"; fMCperiodTPC="LHC10F6A"; }
   else if (fRun>=133004&&fRun<=135029) { fLHCperiod="LHC10F"; fMCperiodTPC="LHC10F6A"; }
   else if (fRun>=135654&&fRun<=136377) { fLHCperiod="LHC10G"; fMCperiodTPC="LHC10F6A"; }
-  else if (fRun>=136851&&fRun<=139517) {
+  else if (fRun>=136851&&fRun<=139846) {
     fLHCperiod="LHC10H";
     fMCperiodTPC="LHC10H8";
     if (reg.MatchB(fCurrentFile)) fMCperiodTPC="LHC11A10";
     fBeamType="PBPB";
   }
-  else if (fRun>=139699&&fRun<=146860) { fLHCperiod="LHC11A"; fMCperiodTPC="LHC10F6A"; }
-  //TODO: periods 11B, 11C are not yet treated assume 11d for the moment
-  else if (fRun>=148531&&fRun<=155384) { fLHCperiod="LHC11D"; fMCperiodTPC="LHC10F6A"; }
-  else if (fRun>=156477&&fRun<=159635) { fLHCperiod="LHC11D"; fMCperiodTPC="LHC10F6A"; }
-  // also for 11e,f use 11d
-  else if (fRun>=160676&&fRun<=162740) { fLHCperiod="LHC11D"; fMCperiodTPC="LHC10F6A"; }
-  else if (fRun>=162933&&fRun<=165746) { fLHCperiod="LHC11D"; fMCperiodTPC="LHC10F6A"; }
-  
-  else if (fRun>=166529) {
+  else if (fRun>=139847&&fRun<=146974) { fLHCperiod="LHC11A"; fMCperiodTPC="LHC10F6A"; }
+  //TODO: periods 11B (146975-150721), 11C (150722-155837) are not yet treated assume 11d for the moment
+  else if (fRun>=146975&&fRun<=155837) { fLHCperiod="LHC11D"; fMCperiodTPC="LHC10F6A"; }
+  else if (fRun>=155838&&fRun<=159649) { fLHCperiod="LHC11D"; fMCperiodTPC="LHC10F6A"; }
+  // also for 11e (159650-162750),f(162751-165771) use 11d
+  else if (fRun>=159650&&fRun<=162750) { fLHCperiod="LHC11D"; fMCperiodTPC="LHC10F6A"; }
+  else if (fRun>=162751&&fRun<=165771) { fLHCperiod="LHC11D"; fMCperiodTPC="LHC10F6A"; }
+  
+  else if (fRun>=165772 && fRun<=170718) {
     fLHCperiod="LHC11H";
     fMCperiodTPC="LHC11A10";
     fBeamType="PBPB";
     if (reg12a17.MatchB(fCurrentFile)) fMCperiodTPC="LHC12A17";
   }
-
-  if (fRun >= 188356 /*&& fRun <= 188503*/ ) { fLHCperiod="LHC12G"; fBeamType="PPB"; /*fMCperiodTPC="";*/ }
+  if (fRun>=170719 && fRun<=177311) { fLHCperiod="LHC12A"; fBeamType="PP"; /*fMCperiodTPC="";*/ }
+  // for the moment use LHC12b parameters up to LHC12e
+  if (fRun>=177312 /*&& fRun<=179356*/) { fLHCperiod="LHC12B"; fBeamType="PP"; /*fMCperiodTPC="";*/ }
+//   if (fRun>=179357 && fRun<=183173) { fLHCperiod="LHC12C"; fBeamType="PP"; /*fMCperiodTPC="";*/ }
+//   if (fRun>=183174 && fRun<=186345) { fLHCperiod="LHC12D"; fBeamType="PP"; /*fMCperiodTPC="";*/ }
+//   if (fRun>=186346 && fRun<=186635) { fLHCperiod="LHC12E"; fBeamType="PP"; /*fMCperiodTPC="";*/ }
+
+//   if (fRun>=186636 && fRun<=188166) { fLHCperiod="LHC12F"; fBeamType="PP"; /*fMCperiodTPC="";*/ }
+//   if (fRun >= 188167 && fRun <= 188355 ) { fLHCperiod="LHC12G"; fBeamType="PP"; /*fMCperiodTPC="";*/ }
+//   if (fRun >= 188356 && fRun <= 188503 ) { fLHCperiod="LHC12G"; fBeamType="PPB"; /*fMCperiodTPC="";*/ }
+// for the moment use 12g parametrisation for all full gain runs (LHC12f+)
+  if (fRun >= 186636  && fRun < 194480) { fLHCperiod="LHC12G"; fBeamType="PPB"; fMCperiodTPC="LHC12G"; }
+  if (fRun >= 194480) { fLHCperiod="LHC13B"; fBeamType="PPB"; fMCperiodTPC="LHC12G"; }
 
   //exception new pp MC productions from 2011
-  if (fBeamType=="PP" && reg.MatchB(fCurrentFile)) fMCperiodTPC="LHC11B2";
+  if (fBeamType=="PP" && reg.MatchB(fCurrentFile)) { fMCperiodTPC="LHC11B2"; fBeamType="PP"; }
   // exception for 11f1
   if (fCurrentFile.Contains("LHC11f1/")) fMCperiodTPC="LHC11F1";
+  // exception for 12f1a, 12f1b and 12i3
+  if (fCurrentFile.Contains("LHC12f1a/") || fCurrentFile.Contains("LHC12f1b/")
+      || fCurrentFile.Contains("LHC12i3/")) fMCperiodTPC="LHC12F1";
+  // exception for 12c4
+  if (fCurrentFile.Contains("LHC12c4/")) fMCperiodTPC="LHC12C4";
 }
 
 //______________________________________________________________________________
@@ -848,100 +631,438 @@ void AliPIDResponse::SetITSParametrisation()
   //
 }
 
 //______________________________________________________________________________
-void AliPIDResponse::SetTPCPidResponseMaster()
+void AliPIDResponse::AddPointToHyperplane(TH2D* h, TLinearFitter* linExtrapolation, Int_t binX, Int_t binY)
 {
-  //
-  // Load the TPC pid response functions from the OADB
-  // Load the TPC voltage maps from OADB
-  //
-  //don't load twice for the moment
-   if (fArrPidResponseMaster) return;
-
-  //reset the PID response functions
-  delete fArrPidResponseMaster;
-  fArrPidResponseMaster=NULL;
-  
-  TString fileName(Form("%s/COMMON/PID/data/TPCPIDResponse.root", fOADBPath.Data()));
-  TFile *f=NULL;
-  if (!fCustomTPCpidResponse.IsNull()) fileName=fCustomTPCpidResponse;
-  
-  TString fileNamePIDresponse(Form("%s/COMMON/PID/data/TPCPIDResponse.root", fOADBPath.Data()));
-  f=TFile::Open(fileNamePIDresponse.Data());
-  if (f && f->IsOpen() && !f->IsZombie()){
-    fArrPidResponseMaster=dynamic_cast<TObjArray*>(f->Get("TPCPIDResponse"));
-  }
-  delete f;
-
-  TString fileNameVoltageMaps(Form("%s/COMMON/PID/data/TPCvoltageSettings.root", fOADBPath.Data()));
-  f=TFile::Open(fileNameVoltageMaps.Data());
-  if (f && f->IsOpen() && !f->IsZombie()){
-    fOADBvoltageMaps=dynamic_cast<AliOADBContainer*>(f->Get("TPCvoltageSettings"));
-  }
-  delete f;
-  
-  if (!fArrPidResponseMaster){
-    AliFatal(Form("Could not retrieve the TPC pid response from: %s",fileNamePIDresponse.Data()));
-    return;
-  }
-  fArrPidResponseMaster->SetOwner();
-
-  if (!fOADBvoltageMaps)
-  {
-    AliFatal(Form("Could not retrieve the TPC voltage maps from: %s",fileNameVoltageMaps.Data()));
+  if (h->GetBinContent(binX, binY) <= 1e-4)
+    return; // Reject bins without content (within some numerical precision) or with strange content
+    
+  Double_t coord[2] = {0, 0};
+  coord[0] = h->GetXaxis()->GetBinCenter(binX);
+  coord[1] = h->GetYaxis()->GetBinCenter(binY);
+  Double_t binError = h->GetBinError(binX, binY);
+  if (binError <= 0) {
+    binError = 1000; // Should not happen because bins without content are rejected for the map (TH2D* h)
+    printf("ERROR: This should never happen: Trying to add bin in addPointToHyperplane with error not set....\n");
   }
-  fArrPidResponseMaster->SetOwner();
+  linExtrapolation->AddPoint(coord, h->GetBinContent(binX, binY, binError));
 }
 
+
 //______________________________________________________________________________
-void AliPIDResponse::SetTPCParametrisation()
+TH2D* AliPIDResponse::RefineHistoViaLinearInterpolation(TH2D* h, Double_t refineFactorX, Double_t refineFactorY)
 {
-  //
-  // Change BB parametrisation for current run
-  //
-  
-  if (fLHCperiod.IsNull()) {
-    AliFatal("No period set, not changing parametrisation");
-    return;
-  }
-  
-  //
-  // Set default parametrisations for data and MC
-  //
-  
-  //data type
-  TString datatype="DATA";
-  //in case of mc fRecoPass is per default 1
-  if (fIsMC) {
-      if(!fTuneMConData) datatype="MC";
-      fRecoPass=1;
-  }
-  
-  //
+  if (!h)
+    return 0x0;
+  
+  // Interpolate to finer map
+  TLinearFitter* linExtrapolation = new TLinearFitter(2, "hyp2", "");
+  
+  Double_t upperMapBoundY = h->GetYaxis()->GetBinUpEdge(h->GetYaxis()->GetNbins());
+  Double_t lowerMapBoundY = h->GetYaxis()->GetBinLowEdge(1);
+  Int_t nBinsX = 30;
+  // Binning was find to yield good results, if 40 bins are chosen for the range 0.0016 to 0.02. For the new variable range,
+  // scale the number of bins correspondingly
+  Int_t nBinsY = TMath::Nint((upperMapBoundY - lowerMapBoundY) / (0.02 - 0.0016) * 40);
+  Int_t nBinsXrefined = nBinsX * refineFactorX;
+  Int_t nBinsYrefined = nBinsY * refineFactorY; 
+  
+  TH2D* hRefined = new TH2D(Form("%s_refined", h->GetName()),  Form("%s (refined)", h->GetTitle()),
+                            nBinsXrefined, h->GetXaxis()->GetBinLowEdge(1), h->GetXaxis()->GetBinUpEdge(h->GetXaxis()->GetNbins()),
+                            nBinsYrefined, lowerMapBoundY, upperMapBoundY);
+  
+  for (Int_t binX = 1; binX <= nBinsXrefined; binX++)  {
+    for (Int_t binY = 1; binY <= nBinsYrefined; binY++)  {
+      
+      hRefined->SetBinContent(binX, binY, 1); // Default value is 1
+      
+      Double_t centerX = hRefined->GetXaxis()->GetBinCenter(binX);
+      Double_t centerY = hRefined->GetYaxis()->GetBinCenter(binY);
+      
+      /*OLD
+      linExtrapolation->ClearPoints();
+      
+      // For interpolation: Just take the corresponding bin from the old histo.
+      // For extrapolation: take the last available bin from the old histo.
+      // If the boundaries are to be skipped, also skip the corresponding bins
+      Int_t oldBinX = h->GetXaxis()->FindBin(centerX);
+      if (oldBinX < 1)  
+        oldBinX = 1;
+      if (oldBinX > nBinsX)
+        oldBinX = nBinsX;
+      
+      Int_t oldBinY = h->GetYaxis()->FindBin(centerY);
+      if (oldBinY < 1)  
+        oldBinY = 1;
+      if (oldBinY > nBinsY)
+        oldBinY = nBinsY;
+      
+      // Neighbours left column
+      if (oldBinX >= 2) {
+        if (oldBinY >= 2) {
+          AddPointToHyperplane(h, linExtrapolation, oldBinX - 1, oldBinY - 1);
+        }
+        
+        AddPointToHyperplane(h, linExtrapolation, oldBinX - 1, oldBinY);
+        
+        if (oldBinY < nBinsY) {
+          AddPointToHyperplane(h, linExtrapolation, oldBinX - 1, oldBinY + 1);
+        }
+      }
+      
+      // Neighbours (and point itself) same column
+      if (oldBinY >= 2) {
+        AddPointToHyperplane(h, linExtrapolation, oldBinX, oldBinY - 1);
+      }
+        
+      AddPointToHyperplane(h, linExtrapolation, oldBinX, oldBinY);
+        
+      if (oldBinY < nBinsY) {
+        AddPointToHyperplane(h, linExtrapolation, oldBinX, oldBinY + 1);
+      }
+      
+      // Neighbours right column
+      if (oldBinX < nBinsX) {
+        if (oldBinY >= 2) {
+          AddPointToHyperplane(h, linExtrapolation, oldBinX + 1, oldBinY - 1);
+        }
+        
+        AddPointToHyperplane(h, linExtrapolation, oldBinX + 1, oldBinY);
+        
+        if (oldBinY < nBinsY) {
+          AddPointToHyperplane(h, linExtrapolation, oldBinX + 1, oldBinY + 1);
+        }
+      }
+      
+      
+      // Fit 2D-hyperplane
+      if (linExtrapolation->GetNpoints() <= 0)
+        continue;
+        
+      if (linExtrapolation->Eval() != 0)// EvalRobust -> Takes much, much, [...], much more time (~hours instead of seconds)
+        continue;
+      
+      // Fill the bin of the refined histogram with the extrapolated value
+      Double_t interpolatedValue = linExtrapolation->GetParameter(0) + linExtrapolation->GetParameter(1) * centerX
+                                 + linExtrapolation->GetParameter(2) * centerY;
+      */
+      Double_t interpolatedValue = h->Interpolate(centerX, centerY) ;
+      hRefined->SetBinContent(binX, binY, interpolatedValue);      
+    }
+  } 
+  
+  
+  // Problem: Interpolation does not work before/beyond center of first/last bin (as the name suggests).
+  // Therefore, for each row in dEdx: Take last bin from old map and interpolate values from center and edge.
+  // Assume line through these points and extropolate to last bin of refined map
+  const Double_t firstOldXbinUpEdge = h->GetXaxis()->GetBinUpEdge(1);
+  const Double_t firstOldXbinCenter = h->GetXaxis()->GetBinCenter(1);
+  
+  const Double_t oldXbinHalfWidth = firstOldXbinUpEdge - firstOldXbinCenter;
+  
+  const Double_t lastOldXbinLowEdge = h->GetXaxis()->GetBinLowEdge(h->GetNbinsX());
+  const Double_t lastOldXbinCenter = h->GetXaxis()->GetBinCenter(h->GetNbinsX());
+  
+  for (Int_t binY = 1; binY <= nBinsYrefined; binY++)  {
+    Double_t centerY = hRefined->GetYaxis()->GetBinCenter(binY);
+    
+    const Double_t interpolatedCenterFirstXbin = h->Interpolate(firstOldXbinCenter, centerY);
+    const Double_t interpolatedUpEdgeFirstXbin = h->Interpolate(firstOldXbinUpEdge, centerY);
+    
+    const Double_t extrapolationSlopeFirstXbin = (interpolatedUpEdgeFirstXbin - interpolatedCenterFirstXbin) / oldXbinHalfWidth;
+    const Double_t extrapolationOffsetFirstXbin = interpolatedCenterFirstXbin;
+    
+    
+    const Double_t interpolatedCenterLastXbin = h->Interpolate(lastOldXbinCenter, centerY);
+    const Double_t interpolatedLowEdgeLastXbin = h->Interpolate(lastOldXbinLowEdge, centerY);
+    
+    const Double_t extrapolationSlopeLastXbin = (interpolatedCenterLastXbin - interpolatedLowEdgeLastXbin) / oldXbinHalfWidth;
+    const Double_t extrapolationOffsetLastXbin = interpolatedCenterLastXbin;
+
+    for (Int_t binX = 1; binX <= nBinsXrefined; binX++)  {
+      Double_t centerX = hRefined->GetXaxis()->GetBinCenter(binX);
+     
+      if (centerX < firstOldXbinCenter) {
+        Double_t extrapolatedValue = extrapolationOffsetFirstXbin + (centerX - firstOldXbinCenter) * extrapolationSlopeFirstXbin;
+        hRefined->SetBinContent(binX, binY, extrapolatedValue);      
+      }
+      else if (centerX <= lastOldXbinCenter) {
+        continue;
+      }
+      else {
+        Double_t extrapolatedValue = extrapolationOffsetLastXbin + (centerX - lastOldXbinCenter) * extrapolationSlopeLastXbin;
+        hRefined->SetBinContent(binX, binY, extrapolatedValue);     
+      }
+    }
+  } 
+  
+  delete linExtrapolation;
+  
+  return hRefined;
+}
+
+//______________________________________________________________________________
+void AliPIDResponse::SetTPCEtaMaps(Double_t refineFactorMapX, Double_t refineFactorMapY,
+                                   Double_t refineFactorSigmaMapX, Double_t refineFactorSigmaMapY)
+{
+  //
+  // Load the TPC eta correction maps from the OADB
+  //
+  
+  if (fUseTPCEtaCorrection == kFALSE) {
+    // Disable eta correction via setting no maps
+    if (!fTPCResponse.SetEtaCorrMap(0x0))
+      AliInfo("Request to disable TPC eta correction -> Eta correction has been disabled"); 
+    else
+      AliError("Request to disable TPC eta correction -> Some error occured when unloading the correction maps");
+    
+    if (!fTPCResponse.SetSigmaParams(0x0, 0))
+      AliInfo("Request to disable TPC eta correction -> Using old parametrisation for sigma"); 
+    else
+      AliError("Request to disable TPC eta correction -> Some error occured when unloading the sigma maps");
+    
+    return;
+  }
+  
+  TString dataType = "DATA";
+  TString period = fLHCperiod.IsNull() ? "No period information" : fLHCperiod;
+  
+  if (fIsMC)  {
+    if (!fTuneMConData) {
+      period=fMCperiodTPC;
+      dataType="MC";
+    }
+    fRecoPass = 1;
+    
+    if (!fTuneMConData && fMCperiodTPC.IsNull()) {
+      AliFatal("MC detected, but no MC period set -> Not changing eta maps!");
+      return;
+    }
+  }
+
+  Int_t recopass = fRecoPass;
+  if (fTuneMConData)
+    recopass = fRecoPassUser;
+  
+  TString defaultObj = Form("Default_%s_pass%d", dataType.Data(), recopass);
+  
+  AliInfo(Form("Current period and reco pass: %s.pass%d", period.Data(), recopass));
+  
+  // Invalidate old maps
+  fTPCResponse.SetEtaCorrMap(0x0);
+  fTPCResponse.SetSigmaParams(0x0, 0);
+  
+  // Load the eta correction maps
+  AliOADBContainer etaMapsCont(Form("TPCetaMaps_%s_pass%d", dataType.Data(), recopass)); 
+  
+  Int_t statusCont = etaMapsCont.InitFromFile(Form("%s/COMMON/PID/data/TPCetaMaps.root", fOADBPath.Data()),
+                                              Form("TPCetaMaps_%s_pass%d", dataType.Data(), recopass));
+  if (statusCont) {
+    AliError("Failed initializing TPC eta correction maps from OADB -> Disabled eta correction");
+  }
+  else {
+    AliInfo(Form("Loading TPC eta correction map from %s/COMMON/PID/data/TPCetaMaps.root", fOADBPath.Data()));
+    
+    TH2D* etaMap = 0x0;
+    
+    if (fIsMC && !fTuneMConData) {
+      TString searchMap = Form("TPCetaMaps_%s_%s_pass%d", dataType.Data(), period.Data(), recopass);
+      etaMap = dynamic_cast<TH2D *>(etaMapsCont.GetDefaultObject(searchMap.Data()));
+      if (!etaMap) {
+        // Try default object
+        etaMap = dynamic_cast<TH2D *>(etaMapsCont.GetDefaultObject(defaultObj.Data()));
+      }
+    }
+    else {
+      etaMap = dynamic_cast<TH2D *>(etaMapsCont.GetObject(fRun, defaultObj.Data()));
+    }
+    
+        
+    if (!etaMap) {
+      AliError(Form("TPC eta correction map not found for run %d and also no default map found -> Disabled eta correction!!!", fRun));
+    }
+    else {
+      TH2D* etaMapRefined = RefineHistoViaLinearInterpolation(etaMap, refineFactorMapX, refineFactorMapY);
+      
+      if (etaMapRefined) {
+        if (!fTPCResponse.SetEtaCorrMap(etaMapRefined)) {
+          AliError(Form("Failed to set TPC eta correction map for run %d -> Disabled eta correction!!!", fRun));
+          fTPCResponse.SetEtaCorrMap(0x0);
+        }
+        else {
+          AliInfo(Form("Loaded TPC eta correction map (refine factors %.2f/%.2f) from %s/COMMON/PID/data/TPCetaMaps.root: %s", 
+                       refineFactorMapX, refineFactorMapY, fOADBPath.Data(), fTPCResponse.GetEtaCorrMap()->GetTitle()));
+        }
+        
+        delete etaMapRefined;
+      }
+      else {
+        AliError(Form("Failed to set TPC eta correction map for run %d (map was loaded, but couldn't be refined) -> Disabled eta correction!!!", fRun));
+      }
+    }
+  }
+  
+  // Load the sigma parametrisation (1/dEdx vs tanTheta_local (~eta))
+  AliOADBContainer etaSigmaMapsCont(Form("TPCetaSigmaMaps_%s_pass%d", dataType.Data(), recopass)); 
+  
+  statusCont = etaSigmaMapsCont.InitFromFile(Form("%s/COMMON/PID/data/TPCetaMaps.root", fOADBPath.Data()),
+                                             Form("TPCetaSigmaMaps_%s_pass%d", dataType.Data(), recopass));
+  if (statusCont) {
+    AliError("Failed initializing TPC eta sigma maps from OADB -> Using old sigma parametrisation");
+  }
+  else {
+    AliInfo(Form("Loading TPC eta sigma map from %s/COMMON/PID/data/TPCetaMaps.root", fOADBPath.Data()));
+    
+    TObjArray* etaSigmaPars = 0x0;
+    
+    if (fIsMC && !fTuneMConData) {
+      TString searchMap = Form("TPCetaSigmaMaps_%s_%s_pass%d", dataType.Data(), period.Data(), recopass);
+      etaSigmaPars = dynamic_cast<TObjArray *>(etaSigmaMapsCont.GetDefaultObject(searchMap.Data()));
+      if (!etaSigmaPars) {
+        // Try default object
+        etaSigmaPars = dynamic_cast<TObjArray *>(etaSigmaMapsCont.GetDefaultObject(defaultObj.Data()));
+      }
+    }
+    else {
+      etaSigmaPars = dynamic_cast<TObjArray *>(etaSigmaMapsCont.GetObject(fRun, defaultObj.Data()));
+    }
+    
+    if (!etaSigmaPars) {
+      AliError(Form("TPC eta sigma parametrisation not found for run %d -> Using old sigma parametrisation!!!", fRun));
+    }
+    else {
+      TH2D* etaSigmaPar1Map = dynamic_cast<TH2D *>(etaSigmaPars->FindObject("sigmaPar1Map"));
+      TNamed* sigmaPar0Info = dynamic_cast<TNamed *>(etaSigmaPars->FindObject("sigmaPar0"));
+      Double_t sigmaPar0 = 0.0;
+      
+      if (sigmaPar0Info) {
+        TString sigmaPar0String = sigmaPar0Info->GetTitle();
+        sigmaPar0 = sigmaPar0String.Atof();
+      }
+      else {
+        // Something is weired because the object for parameter 0 could not be loaded -> New sigma parametrisation can not be used!
+        etaSigmaPar1Map = 0x0;
+      }
+      
+      TH2D* etaSigmaPar1MapRefined = RefineHistoViaLinearInterpolation(etaSigmaPar1Map, refineFactorSigmaMapX, refineFactorSigmaMapY);
+      
+      
+      if (etaSigmaPar1MapRefined) {
+        if (!fTPCResponse.SetSigmaParams(etaSigmaPar1MapRefined, sigmaPar0)) {
+          AliError(Form("Failed to set TPC eta sigma map for run %d -> Using old sigma parametrisation!!!", fRun));
+          fTPCResponse.SetSigmaParams(0x0, 0);
+        }
+        else {
+          AliInfo(Form("Loaded TPC sigma correction map (refine factors %.2f/%.2f) from %s/COMMON/PID/data/TPCetaMaps.root: %s", 
+                       refineFactorSigmaMapX, refineFactorSigmaMapY, fOADBPath.Data(), fTPCResponse.GetSigmaPar1Map()->GetTitle()));
+        }
+        
+        delete etaSigmaPar1MapRefined;
+      }
+      else {
+        AliError(Form("Failed to set TPC eta sigma map for run %d (map was loaded, but couldn't be refined) -> Using old sigma parametrisation!!!",
+                      fRun));
+      }
+    }
+  }
+}
+
+//______________________________________________________________________________
+void AliPIDResponse::SetTPCPidResponseMaster()
+{
+  //
+  // Load the TPC pid response functions from the OADB
+  // Load the TPC voltage maps from OADB
+  //
+  //don't load twice for the moment
+   if (fArrPidResponseMaster) return;
+
+  //reset the PID response functions
+  delete fArrPidResponseMaster;
+  fArrPidResponseMaster=NULL;
+  
+  TString fileName(Form("%s/COMMON/PID/data/TPCPIDResponse.root", fOADBPath.Data()));
+  TFile *f=NULL;
+  if (!fCustomTPCpidResponse.IsNull()) fileName=fCustomTPCpidResponse;
+  
+  TString fileNamePIDresponse(Form("%s/COMMON/PID/data/TPCPIDResponse.root", fOADBPath.Data()));
+  f=TFile::Open(fileNamePIDresponse.Data());
+  if (f && f->IsOpen() && !f->IsZombie()){
+    fArrPidResponseMaster=dynamic_cast<TObjArray*>(f->Get("TPCPIDResponse"));
+  }
+  delete f;
+
+  TString fileNameVoltageMaps(Form("%s/COMMON/PID/data/TPCvoltageSettings.root", fOADBPath.Data()));
+  f=TFile::Open(fileNameVoltageMaps.Data());
+  if (f && f->IsOpen() && !f->IsZombie()){
+    fOADBvoltageMaps=dynamic_cast<AliOADBContainer*>(f->Get("TPCvoltageSettings"));
+  }
+  delete f;
+  
+  if (!fArrPidResponseMaster){
+    AliFatal(Form("Could not retrieve the TPC pid response from: %s",fileNamePIDresponse.Data()));
+    return;
+  }
+  fArrPidResponseMaster->SetOwner();
+
+  if (!fOADBvoltageMaps)
+  {
+    AliFatal(Form("Could not retrieve the TPC voltage maps from: %s",fileNameVoltageMaps.Data()));
+  }
+  fArrPidResponseMaster->SetOwner();
+}
+
+//______________________________________________________________________________
+void AliPIDResponse::SetTPCParametrisation()
+{
+  //
+  // Change BB parametrisation for current run
+  //
+  
+  //
   //reset old splines
   //
   fTPCResponse.ResetSplines();
+  
+  if (fLHCperiod.IsNull()) {
+    AliError("No period set, not changing parametrisation");
+    return;
+  }
+  
+  //
+  // Set default parametrisations for data and MC
+  //
+  
+  //data type
+  TString datatype="DATA";
+  //in case of mc fRecoPass is per default 1
+  if (fIsMC) {
+      if(!fTuneMConData) datatype="MC";
+      fRecoPass=1;
+  }
 
   // period
   TString period=fLHCperiod;
   if (fIsMC && !fTuneMConData) period=fMCperiodTPC;
 
-  AliInfo(Form("Searching splines for: %s %s PASS%d %s",datatype.Data(),period.Data(),fRecoPass,fBeamType.Data()));
+  Int_t recopass = fRecoPass;
+  if(fTuneMConData) recopass = fRecoPassUser;
+    
+  AliInfo(Form("Searching splines for: %s %s PASS%d %s",datatype.Data(),period.Data(),recopass,fBeamType.Data()));
   Bool_t found=kFALSE;
   //
   //set the new PID splines
   //
   if (fArrPidResponseMaster){
-    Int_t recopass = fRecoPass;
-    if(fTuneMConData) recopass = fRecoPassUser;
     //for MC don't use period information
     //if (fIsMC) period="[A-Z0-9]*";
     //for MC use MC period information
     //pattern for the default entry (valid for all particles)
     TPRegexp reg(Form("TSPLINE3_%s_([A-Z]*)_%s_PASS%d_%s_MEAN(_*)([A-Z1-9]*)",datatype.Data(),period.Data(),recopass,fBeamType.Data()));
 
-    //find particle id ang gain scenario
+    //find particle id and gain scenario
     for (Int_t igainScenario=0; igainScenario<AliTPCPIDResponse::fgkNumberOfGainScenarios; igainScenario++)
     {
       TObject *grAll=NULL;
@@ -980,26 +1101,65 @@ void AliPIDResponse::SetTPCParametrisation()
               fTPCResponse.SetUseDatabase(kTRUE);
               AliInfo(Form("Adding graph: %d %d - %s",ispec,igainScenario,responseFunction->GetName()));
               found=kTRUE;
-              // overwrite default with proton spline (for light nuclei)
-              if (ispec==AliPID::kProton) grAll=responseFunction;
               break;
             }
           }
         }
       }
-      if (grAll)
+      
+      // Retrieve responsefunction for pions - will (if available) be used for muons if there are no dedicated muon splines.
+      // For light nuclei, try to set the proton spline, if no dedicated splines are available.
+      // In both cases: Use default splines, if no dedicated splines and no pion/proton splines are available.
+      TObject* responseFunctionPion = fTPCResponse.GetResponseFunction( (AliPID::EParticleType)AliPID::kPion,                             
+                                                                        (AliTPCPIDResponse::ETPCgainScenario)igainScenario);
+      TObject* responseFunctionProton = fTPCResponse.GetResponseFunction( (AliPID::EParticleType)AliPID::kProton,                             
+                                                                          (AliTPCPIDResponse::ETPCgainScenario)igainScenario);
+      
+      for (Int_t ispec=0; ispec<(AliTPCPIDResponse::fgkNumberOfParticleSpecies); ++ispec)
       {
-        for (Int_t ispec=0; ispec<(AliTPCPIDResponse::fgkNumberOfParticleSpecies); ++ispec)
+        if (!fTPCResponse.GetResponseFunction( (AliPID::EParticleType)ispec,
+          (AliTPCPIDResponse::ETPCgainScenario)igainScenario))
         {
-          if (!fTPCResponse.GetResponseFunction( (AliPID::EParticleType)ispec,
-                                                 (AliTPCPIDResponse::ETPCgainScenario)igainScenario))
-          {
+          if (ispec == AliPID::kMuon) { // Muons
+            if (responseFunctionPion) {
+              fTPCResponse.SetResponseFunction( responseFunctionPion,
+                                                (AliPID::EParticleType)ispec,
+                                                (AliTPCPIDResponse::ETPCgainScenario)igainScenario );
+              fTPCResponse.SetUseDatabase(kTRUE);
+              AliInfo(Form("Adding graph: %d %d - %s",ispec,igainScenario,responseFunctionPion->GetName()));
+              found=kTRUE;  
+            }
+            else if (grAll) {
+              fTPCResponse.SetResponseFunction( grAll,
+                                                (AliPID::EParticleType)ispec,
+                                                (AliTPCPIDResponse::ETPCgainScenario)igainScenario );
+              fTPCResponse.SetUseDatabase(kTRUE);
+              AliInfo(Form("Adding graph: %d %d - %s",ispec,igainScenario,grAll->GetName()));
+              found=kTRUE;
+            }
+            //else
+            //  AliError(Form("No splines found for muons (also no pion splines and no default splines) for gain scenario %d!", igainScenario));
+          }
+          else if (ispec >= AliPID::kSPECIES) { // Light nuclei
+            if (responseFunctionProton) {
+              fTPCResponse.SetResponseFunction( responseFunctionProton,
+                                                (AliPID::EParticleType)ispec,
+                                                (AliTPCPIDResponse::ETPCgainScenario)igainScenario );
+              fTPCResponse.SetUseDatabase(kTRUE);
+              AliInfo(Form("Adding graph: %d %d - %s",ispec,igainScenario,responseFunctionProton->GetName()));
+              found=kTRUE;  
+            }
+            else if (grAll) {
               fTPCResponse.SetResponseFunction( grAll,
                                                 (AliPID::EParticleType)ispec,
                                                 (AliTPCPIDResponse::ETPCgainScenario)igainScenario );
               fTPCResponse.SetUseDatabase(kTRUE);
               AliInfo(Form("Adding graph: %d %d - %s",ispec,igainScenario,grAll->GetName()));
               found=kTRUE;
+            }
+            //else
+            //  AliError(Form("No splines found for species %d (also no proton splines and no default splines) for gain scenario %d!",
+            //                ispec, igainScenario));
           }
         }
       }
@@ -1008,7 +1168,7 @@ void AliPIDResponse::SetTPCParametrisation()
   else AliInfo("no fArrPidResponseMaster");
 
   if (!found){
-    AliError(Form("No splines found for: %s %s PASS%d %s",datatype.Data(),period.Data(),fRecoPass,fBeamType.Data()));
+    AliError(Form("No splines found for: %s %s PASS%d %s",datatype.Data(),period.Data(),recopass,fBeamType.Data()));
   }
 
   //
@@ -1021,13 +1181,20 @@ void AliPIDResponse::SetTPCParametrisation()
   if (fRun>=122195){
     fTPCResponse.SetSigma(2.30176e-02, 5.60422e+02);
   }
+
+  if (fRun>=186636){
+//   if (fRun>=188356){
+    fTPCResponse.SetSigma(8.62022e-04, 9.08156e+05);
+  }
+  
   if (fArrPidResponseMaster)
-  fResolutionCorrection=(TF1*)fArrPidResponseMaster->FindObject(Form("TF1_%s_ALL_%s_PASS%d_%s_SIGMA",datatype.Data(),period.Data(),fRecoPass,fBeamType.Data()));
+  fResolutionCorrection=(TF1*)fArrPidResponseMaster->FindObject(Form("TF1_%s_ALL_%s_PASS%d_%s_SIGMA",datatype.Data(),period.Data(),recopass,fBeamType.Data()));
   
   if (fResolutionCorrection) AliInfo(Form("Setting multiplicity correction function: %s",fResolutionCorrection->GetName()));
 
   //read in the voltage map
-  TVectorF* gsm = dynamic_cast<TVectorF*>(fOADBvoltageMaps->GetObject(fRun));
+  TVectorF* gsm = 0x0;
+  if (fOADBvoltageMaps) gsm=dynamic_cast<TVectorF*>(fOADBvoltageMaps->GetObject(fRun));
   if (gsm) 
   {
     fTPCResponse.SetVoltageMap(*gsm);
@@ -1064,19 +1231,6 @@ void AliPIDResponse::SetTRDPidResponseMaster()
       AliError(Form("TRD Response not found in run %d", fRun));
     }
   }
-  /*
-  AliOADBContainer contRefs("contRefs");
-  Int_t statusRefs = contRefs.InitFromFile(Form("%s/COMMON/PID/data/TRDPIDReferenceLQ1D.root", fOADBPath.Data()), "AliTRDPIDReference");
-  if(statusRefs){
-    AliInfo("Failed Loading References for TRD");
-  } else {
-    AliInfo(Form("Loading TRD References from %s/COMMON/PID/data/TRDPIDReferenceLQ1D.root", fOADBPath.Data()));
-    fTRDPIDReference = dynamic_cast<AliTRDPIDReference *>(contRefs.GetObject(fRun));
-    if(!fTRDPIDReference){
-      AliError(Form("TRD References not found in OADB Container for run %d", fRun));
-    }
-    }
-    */
 }
 
 //______________________________________________________________________________
@@ -1148,10 +1302,28 @@ void AliPIDResponse::InitializeTOFResponse(){
   }
   fTOFResponse.SetTimeResolution(fTOFPIDParams->GetTOFresolution());
 
+  AliInfo("TZERO resolution loaded from ESDrun/AODheader");
+  Float_t t0Spread[4];
+  for (Int_t i=0;i<4;i++) t0Spread[i]=fCurrentEvent->GetT0spread(i);
+  AliInfo(Form("  TZERO spreads from data: (A+C)/2 %f A %f C %f (A'-C')/2: %f",t0Spread[0],t0Spread[1],t0Spread[2],t0Spread[3]));
+  Float_t a = t0Spread[1]*t0Spread[1]-t0Spread[0]*t0Spread[0]+t0Spread[3]*t0Spread[3];
+  Float_t c = t0Spread[2]*t0Spread[2]-t0Spread[0]*t0Spread[0]+t0Spread[3]*t0Spread[3];
+  if ( (t0Spread[0] > 50. && t0Spread[0] < 400.) && (a > 0.) && (c>0.)) {
+    fResT0AC=t0Spread[3];
+    fResT0A=TMath::Sqrt(a);
+    fResT0C=TMath::Sqrt(c);
+  } else {
+    AliInfo("  TZERO spreads not present or inconsistent, loading default");
+    fResT0A=75.;
+    fResT0C=65.;
+    fResT0AC=55.;
+  }
+  AliInfo(Form("  TZERO resolution set to: T0A: %f [ps] T0C: %f [ps] T0AC %f [ps]",fResT0A,fResT0C,fResT0AC));
+
 }
 
 
-//_________________________________________________________________________
+//______________________________________________________________________________
 Bool_t AliPIDResponse::IdentifiedAsElectronTRD(const AliVTrack *vtrack, Double_t efficiencyLevel,Double_t centrality,AliTRDPIDResponse::ETRDPIDMethod PIDmethod) const {
   //
   // Check whether track is identified as electron under a given electron efficiency hypothesis
@@ -1221,40 +1393,62 @@ void AliPIDResponse::InitializeEMCALResponse(){
 
 }
 
-//_____________________________________________________
-void AliPIDResponse::FillTrackDetectorPID()
+//______________________________________________________________________________
+void AliPIDResponse::FillTrackDetectorPID(const AliVTrack *track, EDetector detector) const
 {
   //
   // create detector PID information and setup the transient pointer in the track
   //
-
-  if (!fCurrentEvent) return;
+  
+  // check if detector number is inside accepted range
+  if (detector == kNdetectors) return;
+  
+  // get detector pid
+  AliDetectorPID *detPID=const_cast<AliDetectorPID*>(track->GetDetectorPID());
+  if (!detPID) {
+    detPID=new AliDetectorPID;
+    (const_cast<AliVTrack*>(track))->SetDetectorPID(detPID);
+  }
+  
+  //check if values exist
+  if (detPID->HasRawProbability(detector) && detPID->HasNumberOfSigmas(detector)) return;
   
   //TODO: which particles to include? See also the loops below...
   Double_t values[AliPID::kSPECIESC]={0};
+
+  //probabilities
+  EDetPidStatus status=GetComputePIDProbability(detector,track,AliPID::kSPECIESC,values);
+  detPID->SetRawProbability(detector, values, (Int_t)AliPID::kSPECIESC, status);
+  
+  //nsigmas
+  for (Int_t ipart=0; ipart<AliPID::kSPECIESC; ++ipart)
+    values[ipart]=GetNumberOfSigmas(detector,track,(AliPID::EParticleType)ipart);
+  // the pid status is the same for probabilities and nSigmas, so it is
+  // fine to use the one from the probabilities also here
+  detPID->SetNumberOfSigmas(detector, values, (Int_t)AliPID::kSPECIESC, status);
+  
+}
+
+//______________________________________________________________________________
+void AliPIDResponse::FillTrackDetectorPID()
+{
+  //
+  // create detector PID information and setup the transient pointer in the track
+  //
+
+  if (!fCurrentEvent) return;
   
   for (Int_t itrack=0; itrack<fCurrentEvent->GetNumberOfTracks(); ++itrack){
     AliVTrack *track=dynamic_cast<AliVTrack*>(fCurrentEvent->GetTrack(itrack));
     if (!track) continue;
 
-    AliDetectorPID *detPID=new AliDetectorPID;
     for (Int_t idet=0; idet<kNdetectors; ++idet){
-
-      //nsigmas
-      for (Int_t ipart=0; ipart<AliPID::kSPECIESC; ++ipart)
-        values[ipart]=NumberOfSigmas((EDetector)idet,track,(AliPID::EParticleType)ipart);
-      detPID->SetNumberOfSigmas((EDetector)idet, values, (Int_t)AliPID::kSPECIESC);
-
-      //probabilities
-      EDetPidStatus status=ComputePIDProbability((EDetector)idet,track,AliPID::kSPECIESC,values);
-      detPID->SetRawProbability((EDetector)idet, values, (Int_t)AliPID::kSPECIESC, status);
+      FillTrackDetectorPID(track, (EDetector)idet);
     }
-
-    track->SetDetectorPID(detPID);
   }
 }
 
-//_________________________________________________________________________
+//______________________________________________________________________________
 void AliPIDResponse::SetTOFResponse(AliVEvent *vevent,EStartTimeType_t option){
   //
   // Set TOF response function
@@ -1281,7 +1475,9 @@ void AliPIDResponse::SetTOFResponse(AliVEvent *vevent,EStartTimeType_t option){
       startTimeMask[i] = 0;
     }
 
-    Float_t resT0A=75,resT0C=65,resT0AC=55;
+    Float_t resT0A=fResT0A;
+    Float_t resT0C=fResT0C;
+    Float_t resT0AC=fResT0AC;
     if(vevent->GetT0TOF()){ // check if T0 detector information is available
        flagT0T0=kTRUE;
     }
@@ -1349,9 +1545,12 @@ void AliPIDResponse::SetTOFResponse(AliVEvent *vevent,EStartTimeType_t option){
        Float_t t0A=-10000;
        Float_t t0C=-10000;
        if(flagT0T0){
-           t0AC= vevent->GetT0TOF()[0];
            t0A= vevent->GetT0TOF()[1];
            t0C= vevent->GetT0TOF()[2];
+        //      t0AC= vevent->GetT0TOF()[0];
+        t0AC= t0A/resT0A/resT0A + t0C/resT0C/resT0C;
+        resT0AC= TMath::Sqrt(1./resT0A/resT0A + 1./resT0C/resT0C);
+        t0AC /= resT0AC*resT0AC;
        }
 
        Float_t t0t0Best = 0;
@@ -1421,9 +1620,12 @@ void AliPIDResponse::SetTOFResponse(AliVEvent *vevent,EStartTimeType_t option){
        Float_t t0A=-10000;
        Float_t t0C=-10000;
        if(flagT0T0){
-           t0AC= vevent->GetT0TOF()[0];
            t0A= vevent->GetT0TOF()[1];
            t0C= vevent->GetT0TOF()[2];
+        //      t0AC= vevent->GetT0TOF()[0];
+        t0AC= t0A/resT0A/resT0A + t0C/resT0C/resT0C;
+        resT0AC= TMath::Sqrt(1./resT0A/resT0A + 1./resT0C/resT0C);
+        t0AC /= resT0AC*resT0AC;
        }
 
        if(TMath::Abs(t0A) < t0cut && TMath::Abs(t0C) < t0cut && TMath::Abs(t0C-t0A) < 500){
@@ -1463,3 +1665,516 @@ void AliPIDResponse::SetTOFResponse(AliVEvent *vevent,EStartTimeType_t option){
     delete [] estimatedT0event;
     delete [] estimatedT0resolution;
 }
+
+//______________________________________________________________________________
+// private non cached versions of the PID calculation
+//
+
+
+//______________________________________________________________________________
+Float_t AliPIDResponse::GetNumberOfSigmas(EDetector detector, const AliVParticle *vtrack, AliPID::EParticleType type) const
+{
+  //
+  // NumberOfSigmas for 'detCode'
+  //
+
+  const AliVTrack *track=static_cast<const AliVTrack*>(vtrack);
+  
+  switch (detector){
+    case kITS:   return GetNumberOfSigmasITS(track, type); break;
+    case kTPC:   return GetNumberOfSigmasTPC(track, type); break;
+    case kTOF:   return GetNumberOfSigmasTOF(track, type); break;
+    case kEMCAL: return GetNumberOfSigmasEMCAL(track, type); break;
+    default: return -999.;
+  }
+
+  return -999.;
+}
+
+//______________________________________________________________________________
+Float_t AliPIDResponse::GetNumberOfSigmasITS(const AliVParticle *vtrack, AliPID::EParticleType type) const
+{
+  //
+  // Calculate the number of sigmas in the ITS
+  //
+  
+  AliVTrack *track=(AliVTrack*)vtrack;
+
+  const EDetPidStatus pidStatus=GetITSPIDStatus(track);
+  if (pidStatus!=kDetPidOk) return -999.;
+    
+  UChar_t clumap=track->GetITSClusterMap();
+  Int_t nPointsForPid=0;
+  for(Int_t i=2; i<6; i++){
+    if(clumap&(1<<i)) ++nPointsForPid;
+  }
+  Float_t mom=track->P();
+  
+  //check for ITS standalone tracks
+  Bool_t isSA=kTRUE;
+  if( track->GetStatus() & AliVTrack::kTPCin ) isSA=kFALSE;
+  
+  const Float_t dEdx=track->GetITSsignal();
+
+  //TODO: in case of the electron, use the SA parametrisation,
+  //      this needs to be changed if ITS provides a parametrisation
+  //      for electrons also for ITS+TPC tracks
+  return fITSResponse.GetNumberOfSigmas(mom,dEdx,type,nPointsForPid,isSA || (type==AliPID::kElectron));
+}
+
+//______________________________________________________________________________
+Float_t AliPIDResponse::GetNumberOfSigmasTPC(const AliVParticle *vtrack, AliPID::EParticleType type) const
+{
+  //
+  // Calculate the number of sigmas in the TPC
+  //
+  
+  AliVTrack *track=(AliVTrack*)vtrack;
+
+  const EDetPidStatus pidStatus=GetTPCPIDStatus(track);
+  if (pidStatus!=kDetPidOk) return -999.;
+  
+  Double_t nSigma = -999.;
+  
+  if (fTuneMConData)
+    this->GetTPCsignalTunedOnData(track);
+  
+  nSigma = fTPCResponse.GetNumberOfSigmas(track, type, AliTPCPIDResponse::kdEdxDefault, fUseTPCEtaCorrection);
+  
+  return nSigma;
+}
+
+//______________________________________________________________________________
+Float_t AliPIDResponse::GetNumberOfSigmasTOF(const AliVParticle *vtrack, AliPID::EParticleType type) const
+{
+  //
+  // Calculate the number of sigmas in the TOF
+  //
+  
+  AliVTrack *track=(AliVTrack*)vtrack;
+
+  const EDetPidStatus pidStatus=GetTOFPIDStatus(track);
+  if (pidStatus!=kDetPidOk) return -999.;
+
+  
+  return GetNumberOfSigmasTOFold(vtrack, type);
+}
+
+//______________________________________________________________________________
+Float_t AliPIDResponse::GetNumberOfSigmasEMCAL(const AliVParticle *vtrack, AliPID::EParticleType type) const
+{
+  //
+  // Calculate the number of sigmas in the EMCAL
+  //
+  
+  AliVTrack *track=(AliVTrack*)vtrack;
+
+  const EDetPidStatus pidStatus=GetEMCALPIDStatus(track);
+  if (pidStatus!=kDetPidOk) return -999.;
+
+  const Int_t nMatchClus = track->GetEMCALcluster();
+  AliVCluster *matchedClus = (AliVCluster*)fCurrentEvent->GetCaloCluster(nMatchClus);
+  
+  const Double_t mom    = track->P();
+  const Double_t pt     = track->Pt();
+  const Int_t    charge = track->Charge();
+  const Double_t fClsE  = matchedClus->E();
+  const Double_t EovP   = fClsE/mom;
+  
+  return fEMCALResponse.GetNumberOfSigmas(pt,EovP,type,charge);
+}
+
+
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::GetComputePIDProbability  (EDetector detCode,  const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
+{
+  //
+  // Compute PID response of 'detCode'
+  //
+
+  switch (detCode){
+    case kITS: return GetComputeITSProbability(track, nSpecies, p); break;
+    case kTPC: return GetComputeTPCProbability(track, nSpecies, p); break;
+    case kTRD: return GetComputeTRDProbability(track, nSpecies, p); break;
+    case kTOF: return GetComputeTOFProbability(track, nSpecies, p); break;
+    case kPHOS: return GetComputePHOSProbability(track, nSpecies, p); break;
+    case kEMCAL: return GetComputeEMCALProbability(track, nSpecies, p); break;
+    case kHMPID: return GetComputeHMPIDProbability(track, nSpecies, p); break;
+    default: return kDetNoSignal;
+  }
+}
+
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::GetComputeITSProbability  (const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
+{
+  //
+  // Compute PID response for the ITS
+  //
+  
+  // set flat distribution (no decision)
+  for (Int_t j=0; j<nSpecies; j++) p[j]=1./nSpecies;
+  
+  const EDetPidStatus pidStatus=GetITSPIDStatus(track);
+  if (pidStatus!=kDetPidOk) return pidStatus;
+  
+  if (track->GetDetectorPID()){
+    return track->GetDetectorPID()->GetRawProbability(kITS, p, nSpecies);
+  }
+  
+  //check for ITS standalone tracks
+  Bool_t isSA=kTRUE;
+  if( track->GetStatus() & AliVTrack::kTPCin ) isSA=kFALSE;
+
+  Double_t mom=track->P();
+  Double_t dedx=track->GetITSsignal();
+  Double_t momITS=mom;
+  UChar_t clumap=track->GetITSClusterMap();
+  Int_t nPointsForPid=0;
+  for(Int_t i=2; i<6; i++){
+    if(clumap&(1<<i)) ++nPointsForPid;
+  }
+
+  Bool_t mismatch=kTRUE/*, heavy=kTRUE*/;
+  for (Int_t j=0; j<nSpecies; j++) {
+    Double_t mass=AliPID::ParticleMassZ(j);//GeV/c^2
+    const Double_t chargeFactor = TMath::Power(AliPID::ParticleCharge(j),2.);
+    Double_t bethe=fITSResponse.Bethe(momITS,mass)*chargeFactor;
+    //TODO: in case of the electron, use the SA parametrisation,
+    //      this needs to be changed if ITS provides a parametrisation
+    //      for electrons also for ITS+TPC tracks
+    Double_t sigma=fITSResponse.GetResolution(bethe,nPointsForPid,isSA || (j==(Int_t)AliPID::kElectron));
+    if (TMath::Abs(dedx-bethe) > fRange*sigma) {
+      p[j]=TMath::Exp(-0.5*fRange*fRange)/sigma;
+    } else {
+      p[j]=TMath::Exp(-0.5*(dedx-bethe)*(dedx-bethe)/(sigma*sigma))/sigma;
+      mismatch=kFALSE;
+    }
+  }
+
+  if (mismatch){
+    for (Int_t j=0; j<nSpecies; j++) p[j]=1./nSpecies;
+  }
+
+  return kDetPidOk;
+}
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::GetComputeTPCProbability  (const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
+{
+  //
+  // Compute PID response for the TPC
+  //
+  
+  // set flat distribution (no decision)
+  for (Int_t j=0; j<nSpecies; j++) p[j]=1./nSpecies;
+  
+  const EDetPidStatus pidStatus=GetTPCPIDStatus(track);
+  if (pidStatus!=kDetPidOk) return pidStatus;
+  
+  Double_t dedx=track->GetTPCsignal();
+  Bool_t mismatch=kTRUE/*, heavy=kTRUE*/;
+  
+  if(fTuneMConData) dedx = this->GetTPCsignalTunedOnData(track);
+  
+  Double_t bethe = 0.;
+  Double_t sigma = 0.;
+  
+  for (Int_t j=0; j<nSpecies; j++) {
+    AliPID::EParticleType type=AliPID::EParticleType(j);
+    
+    bethe=fTPCResponse.GetExpectedSignal(track, type, AliTPCPIDResponse::kdEdxDefault, fUseTPCEtaCorrection);
+    sigma=fTPCResponse.GetExpectedSigma(track, type, AliTPCPIDResponse::kdEdxDefault, fUseTPCEtaCorrection);
+    
+    if (TMath::Abs(dedx-bethe) > fRange*sigma) {
+      p[j]=TMath::Exp(-0.5*fRange*fRange)/sigma;
+    } else {
+      p[j]=TMath::Exp(-0.5*(dedx-bethe)*(dedx-bethe)/(sigma*sigma))/sigma;
+      mismatch=kFALSE;
+    }
+  }
+  
+  if (mismatch){
+    for (Int_t j=0; j<nSpecies; j++) p[j]=1./nSpecies;
+  }
+  
+  return kDetPidOk;
+}
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::GetComputeTOFProbability  (const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
+{
+  //
+  // Compute PID probabilities for TOF
+  //
+  
+  // set flat distribution (no decision)
+  for (Int_t j=0; j<nSpecies; j++) p[j]=1./nSpecies;
+  
+  const EDetPidStatus pidStatus=GetTOFPIDStatus(track);
+  if (pidStatus!=kDetPidOk) return pidStatus;
+
+  const Double_t meanCorrFactor = 0.11/fTOFtail; // Correction factor on the mean because of the tail (should be ~ 0.1 with tail = 1.1)
+  
+  for (Int_t j=0; j<nSpecies; j++) {
+    AliPID::EParticleType type=AliPID::EParticleType(j);
+    const Double_t nsigmas=GetNumberOfSigmasTOFold(track,type) + meanCorrFactor;
+    
+    const Double_t expTime = fTOFResponse.GetExpectedSignal(track,type);
+    const Double_t sig     = fTOFResponse.GetExpectedSigma(track->P(),expTime,AliPID::ParticleMassZ(type));
+    if (TMath::Abs(nsigmas) > (fRange+2)) {
+      if(nsigmas < fTOFtail)
+        p[j] = TMath::Exp(-0.5*(fRange+2)*(fRange+2))/sig;
+      else
+        p[j] = TMath::Exp(-(fRange+2 - fTOFtail*0.5)*fTOFtail)/sig;
+    } else{
+      if(nsigmas < fTOFtail)
+        p[j] = TMath::Exp(-0.5*nsigmas*nsigmas)/sig;
+      else
+        p[j] = TMath::Exp(-(nsigmas - fTOFtail*0.5)*fTOFtail)/sig;
+    }    
+  }
+  
+  return kDetPidOk;
+}
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::GetComputeTRDProbability  (const AliVTrack *track, Int_t nSpecies, Double_t p[],AliTRDPIDResponse::ETRDPIDMethod PIDmethod/*=AliTRDPIDResponse::kLQ1D*/) const
+{
+  //
+  // Compute PID probabilities for the TRD
+  //
+  
+  // set flat distribution (no decision)
+  for (Int_t j=0; j<nSpecies; j++) p[j]=1./nSpecies;
+  
+  const EDetPidStatus pidStatus=GetTRDPIDStatus(track);
+  if (pidStatus!=kDetPidOk) return pidStatus;
+
+  UInt_t TRDslicesForPID[2];
+  SetTRDSlices(TRDslicesForPID,PIDmethod);
+  
+  Float_t mom[6]={0.};
+  Double_t dedx[48]={0.};  // Allocate space for the maximum number of TRD slices
+  Int_t nslices = TRDslicesForPID[1] - TRDslicesForPID[0] + 1;
+  AliDebug(1, Form("First Slice: %d, Last Slice: %d, Number of slices: %d",  TRDslicesForPID[0], TRDslicesForPID[1], nslices));
+  for(UInt_t ilayer = 0; ilayer < 6; ilayer++){
+    mom[ilayer] = track->GetTRDmomentum(ilayer);
+    for(UInt_t islice = TRDslicesForPID[0]; islice <= TRDslicesForPID[1]; islice++){
+      dedx[ilayer*nslices+islice-TRDslicesForPID[0]] = track->GetTRDslice(ilayer, islice);
+    }
+  }
+  
+  fTRDResponse.GetResponse(nslices, dedx, mom, p,PIDmethod);
+  return kDetPidOk;
+}
+
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::GetComputeEMCALProbability  (const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
+{
+  //
+  // Compute PID response for the EMCAL
+  //
+  
+  for (Int_t j=0; j<nSpecies; j++) p[j]=1./nSpecies;
+
+  const EDetPidStatus pidStatus=GetEMCALPIDStatus(track);
+  if (pidStatus!=kDetPidOk) return pidStatus;
+
+  const Int_t nMatchClus = track->GetEMCALcluster();
+  AliVCluster *matchedClus = (AliVCluster*)fCurrentEvent->GetCaloCluster(nMatchClus);
+  
+  const Double_t mom    = track->P();
+  const Double_t pt     = track->Pt();
+  const Int_t    charge = track->Charge();
+  const Double_t fClsE  = matchedClus->E();
+  const Double_t EovP   = fClsE/mom;
+  
+  // compute the probabilities
+  fEMCALResponse.ComputeEMCALProbability(nSpecies,pt,EovP,charge,p);
+  return kDetPidOk;
+}
+
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::GetComputePHOSProbability (const AliVTrack */*track*/, Int_t nSpecies, Double_t p[]) const
+{
+  //
+  // Compute PID response for the PHOS
+  //
+  
+  // set flat distribution (no decision)
+  for (Int_t j=0; j<nSpecies; j++) p[j]=1./nSpecies;
+  return kDetNoSignal;
+}
+
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::GetComputeHMPIDProbability(const AliVTrack *track, Int_t nSpecies, Double_t p[]) const
+{
+  //
+  // Compute PID response for the HMPID
+  //
+  
+  // set flat distribution (no decision)
+  for (Int_t j=0; j<nSpecies; j++) p[j]=1./nSpecies;
+  
+  const EDetPidStatus pidStatus=GetHMPIDPIDStatus(track);
+  if (pidStatus!=kDetPidOk) return pidStatus;
+  
+  track->GetHMPIDpid(p);
+  
+  return kDetPidOk;
+}
+
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::GetITSPIDStatus(const AliVTrack *track) const
+{
+  // compute ITS pid status
+
+  // check status bits
+  if ((track->GetStatus()&AliVTrack::kITSin)==0 &&
+    (track->GetStatus()&AliVTrack::kITSout)==0) return kDetNoSignal;
+
+  const Float_t dEdx=track->GetITSsignal();
+  if (dEdx<=0) return kDetNoSignal;
+  
+  // requite at least 3 pid clusters
+  const UChar_t clumap=track->GetITSClusterMap();
+  Int_t nPointsForPid=0;
+  for(Int_t i=2; i<6; i++){
+    if(clumap&(1<<i)) ++nPointsForPid;
+  }
+  
+  if(nPointsForPid<3) { 
+    return kDetNoSignal;
+  }
+  
+  return kDetPidOk;
+}
+
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse:: GetTPCPIDStatus(const AliVTrack *track) const
+{
+  // compute TPC pid status
+  
+  // check quality of the track
+  if ( (track->GetStatus()&AliVTrack::kTPCin )==0 && (track->GetStatus()&AliVTrack::kTPCout)==0 ) return kDetNoSignal;
+
+  // check pid values
+  const Double_t dedx=track->GetTPCsignal();
+  const UShort_t signalN=track->GetTPCsignalN();
+  if (signalN<10 || dedx<10) return kDetNoSignal;
+
+  if (!(fArrPidResponseMaster && fArrPidResponseMaster->At(AliPID::kPion))) return kDetNoParams;
+  
+  return kDetPidOk;
+}
+
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::GetTRDPIDStatus(const AliVTrack *track) const
+{
+  // compute TRD pid status
+
+  if((track->GetStatus()&AliVTrack::kTRDout)==0) return kDetNoSignal;
+  return kDetPidOk;
+}
+
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::GetTOFPIDStatus(const AliVTrack *track) const
+{
+  // compute TOF pid status
+
+  if ((track->GetStatus()&AliVTrack::kTOFout)==0) return kDetNoSignal;
+  if ((track->GetStatus()&AliVTrack::kTIME)==0) return kDetNoSignal;
+
+  return kDetPidOk;
+}
+
+//______________________________________________________________________________
+Float_t AliPIDResponse::GetTOFMismatchProbability(const AliVTrack *track) const
+{
+  // compute mismatch probability cross-checking at 5 sigmas with TPC
+  // currently just implemented as a 5 sigma compatibility cut
+
+  // check pid status
+  const EDetPidStatus tofStatus=GetTOFPIDStatus(track);
+  if (tofStatus!=kDetPidOk) return 0.;
+
+  //mismatch
+  const EDetPidStatus tpcStatus=GetTPCPIDStatus(track);
+  if (tpcStatus!=kDetPidOk) return 0.;
+  
+  const Double_t meanCorrFactor = 0.11/fTOFtail; // Correction factor on the mean because of the tail (should be ~ 0.1 with tail = 1.1)
+  Bool_t mismatch = kTRUE/*, heavy = kTRUE*/;
+  for (Int_t j=0; j<AliPID::kSPECIESC; j++) {
+    AliPID::EParticleType type=AliPID::EParticleType(j);
+    const Double_t nsigmas=GetNumberOfSigmasTOFold(track,type) + meanCorrFactor;
+    
+    if (TMath::Abs(nsigmas)<5.){
+      const Double_t nsigmasTPC=GetNumberOfSigmasTPC(track,type);
+      if (TMath::Abs(nsigmasTPC)<5.) mismatch=kFALSE;
+    }
+  }
+  
+  if (mismatch){
+    return 1.;
+  }
+  
+  return 0.;
+}
+
+
+
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse:: GetHMPIDPIDStatus(const AliVTrack *track) const
+{
+  // compute HMPID pid status
+  if((track->GetStatus()&AliVTrack::kHMPIDpid)==0) return kDetNoSignal;
+  return kDetPidOk;
+}
+
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse:: GetPHOSPIDStatus(const AliVTrack */*track*/) const
+{
+  // compute PHOS pid status
+  return kDetNoSignal;  
+}
+
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse:: GetEMCALPIDStatus(const AliVTrack *track) const
+{
+  // compute EMCAL pid status
+
+
+  // Track matching
+  const Int_t nMatchClus = track->GetEMCALcluster();
+  if (nMatchClus<0) return kDetNoSignal;
+
+  AliVCluster *matchedClus = (AliVCluster*)fCurrentEvent->GetCaloCluster(nMatchClus);
+
+  if (!(matchedClus && matchedClus->IsEMCAL())) return kDetNoSignal;
+
+  const Int_t charge = track->Charge();
+  if (TMath::Abs(charge)!=1) return kDetNoSignal;
+
+  if (!(fEMCALPIDParams && fEMCALPIDParams->At(AliPID::kElectron))) return kDetNoParams;
+  
+  return kDetPidOk;
+
+}
+
+//______________________________________________________________________________
+AliPIDResponse::EDetPidStatus AliPIDResponse::GetPIDStatus(EDetector detector, const AliVTrack *track) const
+{
+  //
+  // check pid status for a track
+  //
+
+  switch (detector){
+    case kITS:   return GetITSPIDStatus(track);   break;
+    case kTPC:   return GetTPCPIDStatus(track);   break;
+    case kTRD:   return GetTRDPIDStatus(track);   break;
+    case kTOF:   return GetTOFPIDStatus(track);   break;
+    case kPHOS:  return GetPHOSPIDStatus(track);  break;
+    case kEMCAL: return GetEMCALPIDStatus(track); break;
+    case kHMPID: return GetHMPIDPIDStatus(track); break;
+    default: return kDetNoSignal;
+  }
+  return kDetNoSignal;
+  
+}