]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - TRD/AliTRDclusterizerV1.cxx
Changes in the clusterizer requested by MinJung
[u/mrichter/AliRoot.git] / TRD / AliTRDclusterizerV1.cxx
index afb19bba02bee660ff7eb93f2ef1872970bccc0f..c7d1e2fb0a9fd56449cabfc391789909a07fa159 100644 (file)
@@ -1,3 +1,4 @@
+
 /**************************************************************************
  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
  *                                                                        *
  * provided "as is" without express or implied warranty.                  *
  **************************************************************************/
 
-/*
-$Log$
-*/
+/* $Id$ */
 
 ///////////////////////////////////////////////////////////////////////////////
 //                                                                           //
-// TRD cluster finder for the slow simulator. 
+// TRD cluster finder                                                        //
 //                                                                           //
 ///////////////////////////////////////////////////////////////////////////////
 
 #include <TF1.h>
+#include <TTree.h>
+#include <TH1.h>
+#include <TFile.h>
+
+#include "AliRunLoader.h"
+#include "AliLoader.h"
+#include "AliRawReader.h"
+#include "AliLog.h"
 
 #include "AliTRDclusterizerV1.h"
-#include "AliTRDmatrix.h"
 #include "AliTRDgeometry.h"
-#include "AliTRDdigitizer.h"
-#include "AliTRDrecPoint.h"
-#include "AliTRDdataArray.h"
+#include "AliTRDdataArrayF.h"
+#include "AliTRDdataArrayI.h"
+#include "AliTRDdigitsManager.h"
+#include "AliTRDpadPlane.h"
+#include "AliTRDrawData.h"
+#include "AliTRDcalibDB.h"
+#include "AliTRDSimParam.h"
+#include "AliTRDRecParam.h"
+#include "AliTRDCommonParam.h"
+#include "AliTRDcluster.h"
 
 ClassImp(AliTRDclusterizerV1)
 
 //_____________________________________________________________________________
-AliTRDclusterizerV1::AliTRDclusterizerV1():AliTRDclusterizer()
+AliTRDclusterizerV1::AliTRDclusterizerV1()
+  :AliTRDclusterizer()
+  ,fDigitsManager(NULL)
 {
   //
   // AliTRDclusterizerV1 default constructor
   //
 
-  fDigitsArray = NULL;
-
 }
 
 //_____________________________________________________________________________
-AliTRDclusterizerV1::AliTRDclusterizerV1(const Text_t* name, const Text_t* title)
-                    :AliTRDclusterizer(name,title)
+AliTRDclusterizerV1::AliTRDclusterizerV1(const Text_t *name, const Text_t *title)
+  :AliTRDclusterizer(name,title)
+  ,fDigitsManager(new AliTRDdigitsManager())
 {
   //
-  // AliTRDclusterizerV1 default constructor
+  // AliTRDclusterizerV1 constructor
   //
 
-  fDigitsArray = NULL;
+  fDigitsManager->CreateArrays();
 
-  Init();
+}
+
+//_____________________________________________________________________________
+AliTRDclusterizerV1::AliTRDclusterizerV1(const AliTRDclusterizerV1 &c)
+  :AliTRDclusterizer(c)
+  ,fDigitsManager(NULL)
+{
+  //
+  // AliTRDclusterizerV1 copy constructor
+  //
 
 }
 
 //_____________________________________________________________________________
 AliTRDclusterizerV1::~AliTRDclusterizerV1()
 {
+  //
+  // AliTRDclusterizerV1 destructor
+  //
 
-  if (fDigitsArray) {
-    fDigitsArray->Delete();
-    delete fDigitsArray;
+  if (fDigitsManager) {
+    delete fDigitsManager;
+    fDigitsManager = NULL;
   }
 
 }
 
 //_____________________________________________________________________________
-void AliTRDclusterizerV1::Init()
+AliTRDclusterizerV1 &AliTRDclusterizerV1::operator=(const AliTRDclusterizerV1 &c)
+{
+  //
+  // Assignment operator
+  //
+
+  if (this != &c) ((AliTRDclusterizerV1 &) c).Copy(*this);
+  return *this;
+
+}
+
+//_____________________________________________________________________________
+void AliTRDclusterizerV1::Copy(TObject &c) const
 {
   //
-  // Initializes the cluster finder
+  // Copy function
   //
 
-  // The default parameter for the clustering
-  fClusMaxThresh = 5.0;
-  fClusSigThresh = 2.0;
-  fClusMethod    = 1;
+  ((AliTRDclusterizerV1 &) c).fDigitsManager = 0;
+
+  AliTRDclusterizer::Copy(c);
 
 }
 
@@ -91,326 +128,665 @@ Bool_t AliTRDclusterizerV1::ReadDigits()
   // Reads the digits arrays from the input aliroot file
   //
 
-  if (!fInputFile) {
-    printf("AliTRDclusterizerV1::ReadDigits -- ");
-    printf("No input file open\n");
+  if (!fRunLoader) {
+    AliError("No run loader available");
     return kFALSE;
   }
 
-  // Create a new segment array for the digits 
-  fDigitsArray = new AliTRDsegmentArray(kNsect*kNplan*kNcham);
+  AliLoader* loader = fRunLoader->GetLoader("TRDLoader");
+  if (!loader->TreeD()) {
+    loader->LoadDigits();
+  }
 
   // Read in the digit arrays
-  return (fDigitsArray->LoadArray("TRDdigits"));  
+  return (fDigitsManager->ReadDigits(loader->TreeD()));
 
 }
 
 //_____________________________________________________________________________
-Bool_t AliTRDclusterizerV1::MakeCluster()
+Bool_t AliTRDclusterizerV1::ReadDigits(AliRawReader *rawReader)
 {
   //
-  // Generates the cluster.
+  // Reads the digits arrays from the ddl file
   //
 
-  Int_t row, col, time;
+  AliTRDrawData raw;
+  fDigitsManager = raw.Raw2Digits(rawReader);
 
-  // Get the pointer to the detector class and check for version 1
-  AliTRD *TRD = (AliTRD*) gAlice->GetDetector("TRD");
-  if (TRD->IsVersion() != 1) {
-    printf("AliTRDclusterizerV1::MakeCluster -- ");
-    printf("TRD must be version 1 (slow simulator).\n");
-    return kFALSE; 
-  }
-
-  // Get the geometry
-  AliTRDgeometry *Geo = TRD->GetGeometry();
-
-  printf("AliTRDclusterizerV1::MakeCluster -- ");
-  printf("Start creating clusters.\n");
+  return kTRUE;
 
-  AliTRDdataArray *Digits;
+}
 
-  // Parameters
-  Float_t maxThresh        = fClusMaxThresh;   // threshold value for maximum
-  Float_t signalThresh     = fClusSigThresh;   // threshold value for digit signal
-  Int_t   clusteringMethod = fClusMethod;      // clustering method option (for testing)
+//_____________________________________________________________________________
+Bool_t AliTRDclusterizerV1::MakeClusters()
+{
+  //
+  // Generates the cluster.
+  //
 
-  // Iteration limit for unfolding procedure
-  const Float_t epsilon = 0.01;             
+  Int_t row   = 0;
+  Int_t col   = 0;
+  Int_t time  = 0;
+  Int_t icham = 0;
+  Int_t iplan = 0;
+  Int_t isect = 0;
+  Int_t iPad  = 0;
+    
+  AliTRDdataArrayI *digitsIn;
+  AliTRDdataArrayI *tracksIn;
 
-  const Int_t   nClus   = 3;  
-  const Int_t   nSig    = 5;
+  // Get the geometry
+  AliTRDgeometry *geo            = AliTRDgeometry::GetGeometry(fRunLoader);  
 
-  Int_t chamBeg = 0;
-  Int_t chamEnd = kNcham;
-  if (TRD->GetSensChamber() >= 0) {
-    chamBeg = TRD->GetSensChamber();
-    chamEnd = chamEnd + 1;
+  AliTRDcalibDB  *calibration    = AliTRDcalibDB::Instance();
+  if (!calibration) {
+    AliError("No AliTRDcalibDB instance available\n");
+    return kFALSE;  
   }
-  Int_t planBeg = 0;
-  Int_t planEnd = kNplan;
-  if (TRD->GetSensPlane()   >= 0) {
-    planBeg = TRD->GetSensPlane();
-    planEnd = planBeg + 1;
+  
+  AliTRDSimParam *simParam       = AliTRDSimParam::Instance();
+  if (!simParam) {
+    AliError("No AliTRDSimParam instance available\n");
+    return kFALSE;  
   }
-  Int_t sectBeg = 0;
-  Int_t sectEnd = kNsect;
-  if (TRD->GetSensSector()  >= 0) {
-    sectBeg = TRD->GetSensSector();
-    sectEnd = sectBeg + 1;
+  
+  AliTRDRecParam *recParam       = AliTRDRecParam::Instance();
+  if (!recParam) {
+    AliError("No AliTRDRecParam instance available\n");
+    return kFALSE;  
+  }
+  
+  AliTRDCommonParam *commonParam = AliTRDCommonParam::Instance();
+  if (!commonParam) {
+    AliError("Could not get common parameters\n");
+    return kFALSE;
   }
 
-  // *** Start clustering *** in every chamber
-  for (Int_t icham = chamBeg; icham < chamEnd; icham++) {
-    for (Int_t iplan = planBeg; iplan < planEnd; iplan++) {
-      for (Int_t isect = sectBeg; isect < sectEnd; isect++) {
-
-        Int_t idet = Geo->GetDetector(iplan,icham,isect);
+  // ADC threshols
+  Float_t ADCthreshold   = simParam->GetADCthreshold();
+  // Threshold value for the maximum
+  Float_t maxThresh      = recParam->GetClusMaxThresh();
+  // Threshold value for the digit signal
+  Float_t sigThresh      = recParam->GetClusSigThresh();
 
-        Int_t nClusters = 0;
-        printf("AliTRDclusterizerV1::MakeCluster -- ");
-        printf("Analyzing chamber %d, plane %d, sector %d.\n"
-               ,icham,iplan,isect);
+  // Iteration limit for unfolding procedure
+  const Float_t kEpsilon = 0.01;             
+  const Int_t   kNclus   = 3;  
+  const Int_t   kNsig    = 5;
+  const Int_t   kNdict   = AliTRDdigitsManager::kNDict;
+  const Int_t   kNtrack  = kNdict * kNclus;
+
+  Int_t    iType         = 0;
+  Int_t    iUnfold       = 0;  
+  Double_t ratioLeft     = 1.0;
+  Double_t ratioRight    = 1.0;
+
+  Int_t    iClusterROC   = 0;
+
+  Double_t padSignal[kNsig];   
+  Double_t clusterSignal[kNclus];
+  Double_t clusterPads[kNclus];   
+
+  Int_t    chamBeg    = 0;
+  Int_t    chamEnd    = AliTRDgeometry::Ncham();
+  Int_t    planBeg    = 0;
+  Int_t    planEnd    = AliTRDgeometry::Nplan();
+  Int_t    sectBeg    = 0;
+  Int_t    sectEnd    = AliTRDgeometry::Nsect();
+  Int_t    nTimeTotal = calibration->GetNumberOfTimeBins();
+
+  Int_t    dummy[9]   = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+
+  AliDebug(1,Form("Number of Time Bins = %d.\n",nTimeTotal));
+
+  // Start clustering in every chamber
+  for (icham = chamBeg; icham < chamEnd; icham++) {
+    for (iplan = planBeg; iplan < planEnd; iplan++) {
+      for (isect = sectBeg; isect < sectEnd; isect++) {
+
+        Int_t idet = geo->GetDetector(iplan,icham,isect);
+
+        // Get the digits
+        digitsIn = fDigitsManager->GetDigits(idet);
+       // This is to take care of switched off super modules
+        if (digitsIn->GetNtime() == 0) {
+          continue;
+       }
+        digitsIn->Expand();
+        AliTRDdataArrayI *tracksTmp = fDigitsManager->GetDictionary(idet,0);
+        tracksTmp->Expand();
+
+       Int_t nRowMax = commonParam->GetRowMax(iplan,icham,isect);
+       Int_t nColMax = commonParam->GetColMax(iplan);
+
+        AliTRDpadPlane *padPlane = commonParam->GetPadPlane(iplan,icham);
+
+        Int_t nClusters      = 0;
+        Int_t nClusters2pad  = 0;
+        Int_t nClusters3pad  = 0;
+        Int_t nClusters4pad  = 0;
+        Int_t nClusters5pad  = 0;
+        Int_t nClustersLarge = 0;
+
+       // Apply the gain and the tail cancelation via digital filter
+        AliTRDdataArrayF *digitsOut = new AliTRDdataArrayF(digitsIn->GetNrow()
+                                                          ,digitsIn->GetNcol()
+                                                          ,digitsIn->GetNtime());
+        Transform(digitsIn,digitsOut,idet,nRowMax,nColMax,nTimeTotal,ADCthreshold);
+
+       // Input digits are not needed any more
+        digitsIn->Compress(1,0);
+
+        // Loop through the chamber and find the maxima 
+        for ( row = 0;  row <  nRowMax;    row++) {
+         for ( col = 2;  col <  nColMax;    col++) {
+            for (time = 0; time < nTimeTotal; time++) {
+
+              Float_t signalL = TMath::Abs(digitsOut->GetDataUnchecked(row,col  ,time));
+              Float_t signalM = TMath::Abs(digitsOut->GetDataUnchecked(row,col-1,time));
+              Float_t signalR = TMath::Abs(digitsOut->GetDataUnchecked(row,col-2,time));
+             // Look for the maximum
+              if (signalM >= maxThresh) {
+                if ((TMath::Abs(signalL) <= signalM) && 
+                    (TMath::Abs(signalR) <= signalM)) {
+                 if ((TMath::Abs(signalL) >= sigThresh) ||
+                     (TMath::Abs(signalR) >= sigThresh)) {
+                    // Maximum found, mark the position by a negative signal
+                    digitsOut->SetDataUnchecked(row,col-1,time,-signalM);
+                 }
+               }
+             }
+
+            }
+          }
+        }
+        tracksTmp->Compress(1,0);
+
+       // The index to the first cluster of a given ROC
+        Int_t firstClusterROC = -1;
+       // The number of cluster in a given ROC
+        Int_t nClusterROC     =  0;
+
+        // Now check the maxima and calculate the cluster position
+        for ( row = 0;  row <  nRowMax  ;  row++) {
+          for (time = 0; time < nTimeTotal; time++) {
+            for ( col = 1;  col <  nColMax-1;  col++) {
+
+              // Maximum found ?             
+              if (digitsOut->GetDataUnchecked(row,col,time) < 0.0) {
+
+                for (iPad = 0; iPad < kNclus; iPad++) {
+                  Int_t iPadCol = col - 1 + iPad;
+                  clusterSignal[iPad] = 
+                    TMath::Abs(digitsOut->GetDataUnchecked(row,iPadCol,time));
+                }
 
-        Int_t   nRowMax  = Geo->GetRowMax(iplan,icham,isect);
-        Int_t   nColMax  = Geo->GetColMax(iplan);
-        Int_t   nTimeMax = Geo->GetTimeMax();
+               // Count the number of pads in the cluster
+                Int_t nPadCount = 0;
+                Int_t ii;
+               // Look to the left
+                ii = 0;
+                while (TMath::Abs(digitsOut->GetDataUnchecked(row,col-ii  ,time)) >= sigThresh) {
+                  nPadCount++;
+                  ii++;
+                  if (col-ii   <        0) break;
+               }
+               // Look to the right
+                ii = 0;
+                while (TMath::Abs(digitsOut->GetDataUnchecked(row,col+ii+1,time)) >= sigThresh) {
+                  nPadCount++;
+                  ii++;
+                  if (col+ii+1 >= nColMax) break;
+               }
+                nClusters++;
+                switch (nPadCount) {
+                case 2:
+                  iType = 0;
+                  nClusters2pad++;
+                  break;
+                case 3:
+                  iType = 1;
+                  nClusters3pad++;
+                  break;
+                case 4:
+                  iType = 2;
+                  nClusters4pad++;
+                  break;
+                case 5:
+                  iType = 3;
+                  nClusters5pad++;
+                  break;
+                default:
+                  iType = 4;
+                  nClustersLarge++;
+                  break;
+               };
+
+               // Look for 5 pad cluster with minimum in the middle
+                Bool_t fivePadCluster = kFALSE;
+                if (col < (nColMax - 3)) {
+                  if (digitsOut->GetDataUnchecked(row,col+2,time) < 0) {
+                    fivePadCluster = kTRUE;
+                 }
+                  if ((fivePadCluster) && (col < (nColMax - 5))) {
+                    if (digitsOut->GetDataUnchecked(row,col+4,time) >= sigThresh) {
+                      fivePadCluster = kFALSE;
+                   }
+                 }
+                  if ((fivePadCluster) && (col >             1)) {
+                    if (digitsOut->GetDataUnchecked(row,col-2,time) >= sigThresh) {
+                      fivePadCluster = kFALSE;
+                   }
+                 }
+               }
+
+               // 5 pad cluster
+                // Modify the signal of the overlapping pad for the left part 
+               // of the cluster which remains from a previous unfolding
+                if (iUnfold) {
+                  clusterSignal[0] *= ratioLeft;
+                  iType   = 5;
+                  iUnfold = 0;
+               }
+
+               // Unfold the 5 pad cluster
+                if (fivePadCluster) {
+                  for (iPad = 0; iPad < kNsig; iPad++) {
+                    padSignal[iPad] = TMath::Abs(digitsOut->GetDataUnchecked(row
+                                                                           ,col-1+iPad
+                                                                           ,time));
+                  }
+                  // Unfold the two maxima and set the signal on 
+                  // the overlapping pad to the ratio
+                  ratioRight        = Unfold(kEpsilon,iplan,padSignal);
+                  ratioLeft         = 1.0 - ratioRight; 
+                  clusterSignal[2] *= ratioRight;
+                  iType   = 5;
+                  iUnfold = 1;
+                }
 
-        // Create a detector matrix to keep maxima
-        AliTRDmatrix *digitMatrix  = new AliTRDmatrix(nRowMax,nColMax,nTimeMax
-                                                     ,isect,icham,iplan);
-        // Create a matrix to contain maximum flags
-        AliTRDmatrix *maximaMatrix = new AliTRDmatrix(nRowMax,nColMax,nTimeMax
-                                                     ,isect,icham,iplan);
+                Double_t clusterCharge = clusterSignal[0]
+                                       + clusterSignal[1]
+                                       + clusterSignal[2];
+                
+               // The position of the cluster
+                clusterPads[0] =  row + 0.5;
+               // Take the shift of the additional time bins into account
+                clusterPads[2] = time + 0.5;
+
+                if (recParam->LUTOn()) {
+                 // Calculate the position of the cluster by using the
+                 // lookup table method
+                  clusterPads[1] = recParam->LUTposition(iplan,clusterSignal[0]
+                                                              ,clusterSignal[1]
+                                                              ,clusterSignal[2]);
+               }
+               else {
+                 // Calculate the position of the cluster by using the
+                 // center of gravity method
+                 for (Int_t i = 0; i < kNsig; i++) {
+                    padSignal[i] = 0.0;
+                 }
+                 padSignal[2] = TMath::Abs(digitsOut->GetDataUnchecked(row,col  ,time)); // Central pad
+                 padSignal[1] = TMath::Abs(digitsOut->GetDataUnchecked(row,col-1,time)); // Left    pad
+                 padSignal[3] = TMath::Abs(digitsOut->GetDataUnchecked(row,col+1,time)); // Right   pad
+                 if ((col >           2) && 
+                      (TMath::Abs(digitsOut->GetDataUnchecked(row,col-2,time)) < padSignal[1])) {
+                   padSignal[0] = TMath::Abs(digitsOut->GetDataUnchecked(row,col-2,time));
+                 }
+                 if ((col < nColMax - 3) &&
+                      (TMath::Abs(digitsOut->GetDataUnchecked(row,col+2,time)) < padSignal[3])) {
+                   padSignal[4] = TMath::Abs(digitsOut->GetDataUnchecked(row,col+2,time));
+                 }               
+                 clusterPads[1] = GetCOG(padSignal);
+               }
+
+                Double_t q0 = clusterSignal[0];
+               Double_t q1 = clusterSignal[1];
+                Double_t q2 = clusterSignal[2];
+                Double_t clusterSigmaY2 = (q1 * (q0 + q2) + 4.0 * q0 * q2)
+                                        / (clusterCharge*clusterCharge);
+
+               //
+                // Calculate the position and the error
+               //              
+
+                // Correct for t0
+               Int_t    clusterTimeBin = TMath::Nint(time - calibration->GetT0(idet,col,row));
+                Double_t colSize        = padPlane->GetColSize(col);
+                Double_t rowSize        = padPlane->GetRowSize(row);
+
+                Double_t clusterPos[3];
+               clusterPos[0] = padPlane->GetColPos(col) - (clusterPads[1] + 0.5) * colSize;
+               clusterPos[1] = padPlane->GetRowPos(row) - 0.5                    * rowSize;
+                clusterPos[2] = CalcXposFromTimebin(clusterPads[2],idet,col,row);
+                Double_t clusterSig[2];
+                clusterSig[0] = (clusterSigmaY2 + 1.0/12.0) * colSize*colSize;
+                clusterSig[1] = rowSize * rowSize / 12.0;                                       
+                
+                // Add the cluster to the output array
+               // The track indices will be stored later 
+                AliTRDcluster *cluster = AddCluster(clusterPos
+                                                   ,clusterTimeBin
+                                                   ,idet
+                                                  ,clusterCharge
+                                                  ,dummy
+                                                  ,clusterSig
+                                                  ,iType
+                                                   ,clusterPads[1]);
+
+               // Store the amplitudes of the pads in the cluster for later analysis
+               Short_t signals[7] = { 0, 0, 0, 0, 0, 0, 0 };
+               for (Int_t jPad = col-3; jPad <= col+3; jPad++) {
+                 if ((jPad <          0) || 
+                      (jPad >= nColMax-1)) {
+                    continue;
+                 }
+                 signals[jPad-col+3] = TMath::Nint(TMath::Abs(digitsOut->GetDataUnchecked(row,jPad,time)));
+               }
+               cluster->SetSignals(signals);
+
+               // Temporarily store the row, column and time bin of the center pad
+               // Used to later on assign the track indices
+                cluster->SetLabel( row,0);
+                cluster->SetLabel( col,1);
+                cluster->SetLabel(time,2);
+
+               // Store the index of the first cluster in the current ROC
+                if (firstClusterROC < 0) {
+                  firstClusterROC = RecPoints()->GetEntriesFast() - 1;
+               }
+               // Count the number of cluster in the current ROC
+                nClusterROC++;
+
+              } // if: Maximum found ?
+
+            } // loop: pad columns
+          } // loop: time bins
+        } // loop: pad rows
+
+        delete digitsOut;
+
+       //
+       // Add the track indices to the found clusters
+       //
+
+       // Temporary array to collect the track indices
+        Int_t *idxTracks = new Int_t[kNtrack*nClusterROC];
+
+       // Loop through the dictionary arrays one-by-one
+       // to keep memory consumption low
+        for (Int_t iDict = 0; iDict < kNdict; iDict++) {
+
+          tracksIn = fDigitsManager->GetDictionary(idet,iDict);
+          tracksIn->Expand();
+
+         // Loop though the clusters found in this ROC
+          for (iClusterROC = 0; iClusterROC < nClusterROC; iClusterROC++) {
+            AliTRDcluster *cluster = (AliTRDcluster *)
+                                    RecPoints()->UncheckedAt(firstClusterROC+iClusterROC);
+           row  = cluster->GetLabel(0);
+           col  = cluster->GetLabel(1);
+           time = cluster->GetLabel(2);
+
+            for (iPad = 0; iPad < kNclus; iPad++) {
+              Int_t iPadCol = col - 1 + iPad;
+              Int_t index   = tracksIn->GetDataUnchecked(row,iPadCol,time) - 1;
+              idxTracks[3*iPad+iDict + iClusterROC*kNtrack] = index;     
+           }
 
-        // Read in the digits
-        Digits = (AliTRDdataArray *) fDigitsArray->At(idet);
+         }
 
-        // Loop through the detector pixel
-        for (time = 0; time < nTimeMax; time++) {
-          for ( col = 0;  col <  nColMax;  col++) {
-            for ( row = 0;  row <  nRowMax;  row++) {
+          // Compress the arrays
+          tracksIn->Compress(1,0);
 
-              Int_t signal = Digits->GetData(row,col,time);
-              Int_t index  = Digits->GetIndex(row,col,time);
+       }
 
-              // Fill the detector matrix
-              if (signal > signalThresh) {
-               // Store the signal amplitude
-                digitMatrix->SetSignal(row,col,time,signal);
-               // Store the digits number
-                digitMatrix->AddTrack(row,col,time,index);
-              }
+       // Copy the track indices into the cluster
+       // Loop though the clusters found in this ROC
+        for (iClusterROC = 0; iClusterROC < nClusterROC; iClusterROC++) {
+          AliTRDcluster *cluster = (AliTRDcluster *)
+                                  RecPoints()->UncheckedAt(firstClusterROC+iClusterROC);
+         cluster->SetLabel(-9999,0);
+         cluster->SetLabel(-9999,1);
+         cluster->SetLabel(-9999,2);
+  
+          cluster->AddTrackIndex(&idxTracks[iClusterROC*kNtrack]);
 
-           }
-         }
        }
 
-        // Loop chamber and find maxima in digitMatrix
-        for ( row = 0;  row <  nRowMax;  row++) {
-          for ( col = 1;  col <  nColMax;  col++) {
-            for (time = 0; time < nTimeMax; time++) {
-
-              if (digitMatrix->GetSignal(row,col,time) 
-                  < digitMatrix->GetSignal(row,col - 1,time)) {
-                // really maximum?
-                if (col > 1) {
-                  if (digitMatrix->GetSignal(row,col - 2,time)
-                      < digitMatrix->GetSignal(row,col - 1,time)) {
-                    // yes, so set maximum flag
-                    maximaMatrix->SetSignal(row,col - 1,time,1);
-                  }
-                  else maximaMatrix->SetSignal(row,col - 1,time,0);
-                }
-              }
-
-            }   // time
-          }     // col
-        }       // row
-
-        // now check maxima and calculate cluster position
-        for ( row = 0;  row <  nRowMax;  row++) {
-          for ( col = 1;  col <  nColMax;  col++) {
-            for (time = 0; time < nTimeMax; time++) {
-
-              if ((maximaMatrix->GetSignal(row,col,time) > 0)
-                  && (digitMatrix->GetSignal(row,col,time) > maxThresh)) {
-
-                // Ratio resulting from unfolding
-                Float_t ratio                =  0;    
-                // Signals on max and neighbouring pads
-                Float_t padSignal[nSig]      = {0};   
-                // Signals from cluster
-                Float_t clusterSignal[nClus] = {0};
-                // Cluster pad info
-                Float_t clusterPads[nClus]   = {0};   
-                // Cluster digit info
-                Int_t   clusterDigit[nClus]  = {0};
-
-                for (Int_t iPad = 0; iPad < nClus; iPad++) {
-                  clusterSignal[iPad] = digitMatrix->GetSignal(row,col-1+iPad,time);
-                  clusterDigit[iPad]  = digitMatrix->GetTrack(row,col-1+iPad,time,0);
-                }
+        delete [] idxTracks;
 
-                // neighbouring maximum on right side?
-                if (col < nColMax - 2) {
-                  if (maximaMatrix->GetSignal(row,col + 2,time) > 0) {
+        // Write the cluster and reset the array
+       WriteClusters(idet);
+       ResetRecPoints();
 
-                    for (Int_t iPad = 0; iPad < 5; iPad++) {
-                      padSignal[iPad] = digitMatrix->GetSignal(row,col-1+iPad,time);
-                    }
+      } // loop: Sectors
+    } // loop: Planes
+  } // loop: Chambers
 
-                    // unfold:
-                    ratio = Unfold(epsilon, padSignal);
+  return kTRUE;
 
-                    // set signal on overlapping pad to ratio
-                    clusterSignal[2] *= ratio;
+}
 
-                  }
-                }
-                
-               // Calculate the position of the cluster
-                switch (clusteringMethod) {
-                case 1:
-                  // method 1: simply center of mass
-                  clusterPads[0] = row + 0.5;
-                  clusterPads[1] = col - 0.5 + (clusterSignal[2] - clusterSignal[0]) /
-                                   (clusterSignal[1] + clusterSignal[2] + clusterSignal[3]);
-                  clusterPads[2] = time + 0.5;
-
-                  nClusters++;
-                  break;
-                case 2:
-                  // method 2: integral gauss fit on 3 pads
-                  TH1F *hPadCharges = new TH1F("hPadCharges", "Charges on center 3 pads"
-                                                           , 5, -1.5, 3.5);
-                  for (Int_t iCol = -1; iCol <= 3; iCol++) {
-                    if (clusterSignal[iCol] < 1) clusterSignal[iCol] = 1;
-                    hPadCharges->Fill(iCol, clusterSignal[iCol]);
-                  }
-                  hPadCharges->Fit("gaus", "IQ", "SAME", -0.5, 2.5);
-                  TF1     *fPadChargeFit = hPadCharges->GetFunction("gaus");
-                  Double_t  colMean = fPadChargeFit->GetParameter(1);
+//_____________________________________________________________________________
+Double_t AliTRDclusterizerV1::GetCOG(Double_t signal[5])
+{
+  //
+  // Get COG position
+  // Used for clusters with more than 3 pads - where LUT not applicable
+  //
 
-                  clusterPads[0] = row + 0.5;
-                  clusterPads[1] = col - 1.5 + colMean;
-                  clusterPads[2] = time + 0.5;
+  Double_t sum = signal[0]
+               + signal[1]
+               + signal[2] 
+               + signal[3]
+               + signal[4];
 
-                  delete hPadCharges;
+  Double_t res = (0.0 * (-signal[0] + signal[4])
+                      + (-signal[1] + signal[3])) / sum;
 
-                  nClusters++;
-                  break;
-                }
+  return res;            
 
-                Float_t clusterCharge =   clusterSignal[0]
-                                        + clusterSignal[1]
-                                        + clusterSignal[2];
+}
 
-                // Add the cluster to the output array 
-                TRD->AddRecPoint(clusterPads,clusterDigit,idet,clusterCharge);
+//_____________________________________________________________________________
+Double_t AliTRDclusterizerV1::Unfold(Double_t eps, Int_t plane, Double_t *padSignal)
+{
+  //
+  // Method to unfold neighbouring maxima.
+  // The charge ratio on the overlapping pad is calculated
+  // until there is no more change within the range given by eps.
+  // The resulting ratio is then returned to the calling method.
+  //
 
-              }
-            }  // time
-          }    // col
-        }      // row
+  AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
+  if (!calibration) {
+    AliError("No AliTRDcalibDB instance available\n");
+    return kFALSE;  
+  }
+  
+  Int_t   irc                = 0;
+  Int_t   itStep             = 0;                 // Count iteration steps
 
-        printf("AliTRDclusterizerV1::MakeCluster -- ");
-        printf("Number of clusters found: %d\n",nClusters);
+  Double_t ratio             = 0.5;               // Start value for ratio
+  Double_t prevRatio         = 0.0;               // Store previous ratio
 
-        delete digitMatrix;
-        delete maximaMatrix;
+  Double_t newLeftSignal[3]  = { 0.0, 0.0, 0.0 }; // Array to store left cluster signal
+  Double_t newRightSignal[3] = { 0.0, 0.0, 0.0 }; // Array to store right cluster signal
+  Double_t newSignal[3]      = { 0.0, 0.0, 0.0 };
 
-      }          // isect
-    }            // iplan
-  }              // icham
+  // Start the iteration
+  while ((TMath::Abs(prevRatio - ratio) > eps) && (itStep < 10)) {
 
-  printf("AliTRDclusterizerV1::MakeCluster -- ");
-  printf("Total number of points found: %d\n"
-        ,TRD->RecPoints()->GetEntries());
+    itStep++;
+    prevRatio = ratio;
 
-  // Get the pointer to the cluster branch
-  TTree *ClusterTree = gAlice->TreeR(); 
+    // Cluster position according to charge ratio
+    Double_t maxLeft  = (ratio*padSignal[2] - padSignal[0]) 
+                      / (padSignal[0] + padSignal[1] + ratio*padSignal[2]);
+    Double_t maxRight = (padSignal[4] - (1-ratio)*padSignal[2]) 
+                      / ((1.0 - ratio)*padSignal[2] + padSignal[3] + padSignal[4]);
 
-  // Fill the cluster-branch
-  printf("AliTRDclusterizerV1::MakeCluster -- ");
-  printf("Fill the cluster tree.\n");
-  ClusterTree->Fill();
-  printf("AliTRDclusterizerV1::MakeCluster -- ");
-  printf("Done.\n");
+    // Set cluster charge ratio
+    irc = calibration->PadResponse(1.0,maxLeft ,plane,newSignal);
+    Double_t ampLeft  = padSignal[1] / newSignal[1];
+    irc = calibration->PadResponse(1.0,maxRight,plane,newSignal);
+    Double_t ampRight = padSignal[3] / newSignal[1];
 
-  return kTRUE;
+    // Apply pad response to parameters
+    irc = calibration->PadResponse(ampLeft ,maxLeft ,plane,newLeftSignal );
+    irc = calibration->PadResponse(ampRight,maxRight,plane,newRightSignal);
+
+    // Calculate new overlapping ratio
+    ratio = TMath::Min((Double_t)1.0,newLeftSignal[2] / 
+                                    (newLeftSignal[2] + newRightSignal[0]));
+
+  }
+
+  return ratio;
 
 }
 
 //_____________________________________________________________________________
-Float_t AliTRDclusterizerV1::Unfold(Float_t eps, Float_t* padSignal)
+void AliTRDclusterizerV1::Transform(AliTRDdataArrayI *digitsIn
+                                 , AliTRDdataArrayF *digitsOut
+                                 , Int_t idet, Int_t nRowMax
+                                 , Int_t nColMax, Int_t nTimeTotal
+                                 , Float_t ADCthreshold)
 {
   //
-  // Method to unfold neighbouring maxima.
-  // The charge ratio on the overlapping pad is calculated
-  // until there is no more change within the range given by eps.
-  // The resulting ratio is then returned to the calling method.
+  // Apply gain factor
+  // Apply tail cancelation: Transform digitsIn to digitsOut
   //
 
-  Int_t   itStep            = 0;      // count iteration steps
+  Int_t iRow  = 0;
+  Int_t iCol  = 0;
+  Int_t iTime = 0;
 
-  Float_t ratio             = 0.5;    // start value for ratio
-  Float_t prevRatio         = 0;      // store previous ratio
+  AliTRDRecParam *recParam = AliTRDRecParam::Instance();
+  if (!recParam) {
+    AliError("No AliTRDRecParam instance available\n");
+    return;
+  }
+  AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
+  if (!calibration) {
+    AliError("No AliTRDcalibDB instance available\n");
+    return;  
+  }
 
-  Float_t newLeftSignal[3]  = {0};    // array to store left cluster signal
-  Float_t newRightSignal[3] = {0};    // array to store right cluster signal
+  Double_t *inADC  = new Double_t[nTimeTotal];  // ADC data before tail cancellation
+  Double_t *outADC = new Double_t[nTimeTotal];  // ADC data after tail cancellation
 
-  // start iteration:
-  while ((TMath::Abs(prevRatio - ratio) > eps) && (itStep < 10)) {
+  AliDebug(1,Form("Tail cancellation (nExp = %d) for detector %d.\n"
+                ,recParam->GetTCnexp(),idet));
 
-    itStep++;
-    prevRatio = ratio;
+  for (iRow  = 0; iRow  <  nRowMax;   iRow++ ) {
+    for (iCol  = 0; iCol  <  nColMax;   iCol++ ) {
 
-    // cluster position according to charge ratio
-    Float_t maxLeft  = (ratio*padSignal[2] - padSignal[0]) /
-                       (padSignal[0] + padSignal[1] + ratio*padSignal[2]);
-    Float_t maxRight = (padSignal[4] - (1-ratio)*padSignal[2]) /
-                       ((1-ratio)*padSignal[2] + padSignal[3] + padSignal[4]);
+      for (iTime = 0; iTime < nTimeTotal; iTime++) {
 
-    // set cluster charge ratio
-    Float_t ampLeft  = padSignal[1];
-    Float_t ampRight = padSignal[3];
+       //
+       // Add gain
+       //
+       Double_t gain = calibration->GetGainFactor(idet,iCol,iRow);
+       if (gain == 0.0) {
+         AliError("Not a valid gain\n");
+       }
+       inADC[iTime]   = digitsIn->GetDataUnchecked(iRow,iCol,iTime);
+        inADC[iTime]  /= gain;
+        outADC[iTime]  = inADC[iTime];
 
-    // apply pad response to parameters
-    newLeftSignal[0] = ampLeft*PadResponse(-1 - maxLeft);
-    newLeftSignal[1] = ampLeft*PadResponse( 0 - maxLeft);
-    newLeftSignal[2] = ampLeft*PadResponse( 1 - maxLeft);
+      }
 
-    newRightSignal[0] = ampRight*PadResponse(-1 - maxRight);
-    newRightSignal[1] = ampRight*PadResponse( 0 - maxRight);
-    newRightSignal[2] = ampRight*PadResponse( 1 - maxRight);
+      // Apply the tail cancelation via the digital filter
+      if (recParam->TCOn()) {
+       DeConvExp(inADC,outADC,nTimeTotal,recParam->GetTCnexp());
+      }
 
-    // calculate new overlapping ratio
-    ratio = newLeftSignal[2]/(newLeftSignal[2] + newRightSignal[0]);
+      for (iTime = 0; iTime < nTimeTotal; iTime++) {
 
+       // Store the amplitude of the digit if above threshold
+       if (outADC[iTime] > ADCthreshold) {
+         digitsOut->SetDataUnchecked(iRow,iCol,iTime,outADC[iTime]);
+       }
+
+      }
+
+    }
   }
 
-  return ratio;
+  delete [] inADC;
+  delete [] outADC;
+
+  return;
 
 }
 
 //_____________________________________________________________________________
-Float_t AliTRDclusterizerV1::PadResponse(Float_t x)
+void AliTRDclusterizerV1::DeConvExp(Double_t *source, Double_t *target
+                                 , Int_t n, Int_t nexp) 
 {
   //
-  // The pad response for the chevron pads. 
-  // We use a simple Gaussian approximation which should be good
-  // enough for our purpose.
+  // Tail cancellation by deconvolution for PASA v4 TRF
   //
 
-  // The parameters for the response function
-  const Float_t aa  =  0.8872;
-  const Float_t bb  = -0.00573;
-  const Float_t cc  =  0.454;
-  const Float_t cc2 =  cc*cc;
+  Double_t rates[2];
+  Double_t coefficients[2];
+
+  // Initialization (coefficient = alpha, rates = lambda)
+  Double_t R1 = 1.0;
+  Double_t R2 = 1.0;
+  Double_t C1 = 0.5;
+  Double_t C2 = 0.5;
+
+  if (nexp == 1) {   // 1 Exponentials
+    R1 = 1.156;
+    R2 = 0.130;
+    C1 = 0.066;
+    C2 = 0.000;
+  }
+  if (nexp == 2) {   // 2 Exponentials
+    R1 = 1.156;
+    R2 = 0.130;
+    C1 = 0.114;
+    C2 = 0.624;
+  }
+
+  coefficients[0] = C1;
+  coefficients[1] = C2;
+
+  Double_t Dt = 0.1;
 
-  Float_t pr = aa * (bb + TMath::Exp(-x*x / (2. * cc2)));
+  rates[0] = TMath::Exp(-Dt/(R1));
+  rates[1] = TMath::Exp(-Dt/(R2));
+  
+  Int_t i = 0;
+  Int_t k = 0;
 
-  return (pr);
+  Double_t reminder[2];
+  Double_t correction;
+  Double_t result;
+
+  // Attention: computation order is important
+  correction = 0.0;
+  for (k = 0; k < nexp; k++) {
+    reminder[k] = 0.0;
+  }
+  for (i = 0; i < n; i++) {
+    result    = (source[i] - correction);    // No rescaling
+    target[i] = result;
+
+    for (k = 0; k < nexp; k++) {
+      reminder[k] = rates[k] * (reminder[k] + coefficients[k] * result);
+    }
+    correction = 0.0;
+    for (k = 0; k < nexp; k++) {
+      correction += reminder[k];
+    }
+  }
 
 }