]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - TRD/AliTRDgeometry.cxx
Modify services of top most layer (inside TOF acceptance)
[u/mrichter/AliRoot.git] / TRD / AliTRDgeometry.cxx
index 16ef0df121c633bc0562001c730c94cefbc889ce..77dfba2e5150e9677f8bf3b99353dccf6614cede 100644 (file)
  * provided "as is" without express or implied warranty.                  *
  **************************************************************************/
 
-/*
-$Log$
-Revision 1.14  2001/11/06 17:19:41  cblume
-Add detailed geometry and simple simulator
-
-Revision 1.13  2001/08/02 08:30:45  cblume
-Fix positions of cooling material
-
-Revision 1.12  2001/05/21 16:45:47  hristov
-Last minute changes (C.Blume)
-
-Revision 1.11  2001/05/11 07:56:12  hristov
-Consistent declarations needed on Alpha
-
-Revision 1.10  2001/05/07 08:08:05  cblume
-Update of TRD code
-
-Revision 1.9  2001/03/27 12:48:33  cblume
-Correct for volume overlaps
-
-Revision 1.8  2001/03/13 09:30:35  cblume
-Update of digitization. Moved digit branch definition to AliTRD
-
-Revision 1.7  2001/02/14 18:22:26  cblume
-Change in the geometry of the padplane
-
-Revision 1.6  2000/11/01 14:53:20  cblume
-Merge with TRD-develop
-
-Revision 1.1.4.7  2000/10/16 01:16:53  cblume
-Changed timebin 0 to be the one closest to the readout
-
-Revision 1.1.4.6  2000/10/15 23:35:57  cblume
-Include geometry constants as static member
-
-Revision 1.1.4.5  2000/10/06 16:49:46  cblume
-Made Getters const
-
-Revision 1.1.4.4  2000/10/04 16:34:58  cblume
-Replace include files by forward declarations
-
-Revision 1.1.4.3  2000/09/22 14:43:40  cblume
-Allow the pad/timebin-dimensions to be changed after initialization
-
-Revision 1.1.4.2  2000/09/18 13:37:01  cblume
-Minor coding corrections
-
-Revision 1.5  2000/10/02 21:28:19  fca
-Removal of useless dependecies via forward declarations
-
-Revision 1.4  2000/06/08 18:32:58  cblume
-Make code compliant to coding conventions
-
-Revision 1.3  2000/06/07 16:25:37  cblume
-Try to remove compiler warnings on Sun and HP
-
-Revision 1.2  2000/05/08 16:17:27  cblume
-Merge TRD-develop
-
-Revision 1.1.4.1  2000/05/08 14:45:55  cblume
-Bug fix in RotateBack(). Geometry update
-
-Revision 1.4  2000/06/08 18:32:58  cblume
-Make code compliant to coding conventions
-
-Revision 1.3  2000/06/07 16:25:37  cblume
-Try to remove compiler warnings on Sun and HP
-
-Revision 1.2  2000/05/08 16:17:27  cblume
-Merge TRD-develop
-
-Revision 1.1.4.1  2000/05/08 14:45:55  cblume
-Bug fix in RotateBack(). Geometry update
-
-Revision 1.1  2000/02/28 19:00:44  cblume
-Add new TRD classes
-
-*/
+/* $Id$ */
 
 ///////////////////////////////////////////////////////////////////////////////
 //                                                                           //
@@ -98,11 +21,22 @@ Add new TRD classes
 //                                                                           //
 ///////////////////////////////////////////////////////////////////////////////
 
-#include "AliMC.h"
 
+#include <TGeoManager.h>
+#include <TGeoPhysicalNode.h>
+#include <TGeoMatrix.h>
+
+#include "AliLog.h"
+#include "AliRunLoader.h"
+#include "AliAlignObj.h"
+#include "AliAlignObjAngles.h"
+#include "AliRun.h"
+
+#include "AliTRD.h"
+#include "AliTRDcalibDB.h"
+#include "AliTRDCommonParam.h"
 #include "AliTRDgeometry.h"
-#include "AliTRDrecPoint.h"
-#include "AliMC.h"
+#include "AliTRDpadPlane.h"
 
 ClassImp(AliTRDgeometry)
 
@@ -129,13 +63,17 @@ ClassImp(AliTRDgeometry)
   const Float_t AliTRDgeometry::fgkZmax2   = 302.0; 
 
   // Parameter of the BTR mother volumes 
-  const Float_t AliTRDgeometry::fgkSheight =  74.0
-  const Float_t AliTRDgeometry::fgkSwidth1 =  99.613;
-  const Float_t AliTRDgeometry::fgkSwidth2 = 125.707;
+  const Float_t AliTRDgeometry::fgkSheight =  77.9
+  const Float_t AliTRDgeometry::fgkSwidth1 =  94.881; 
+  const Float_t AliTRDgeometry::fgkSwidth2 = 122.353;
   const Float_t AliTRDgeometry::fgkSlenTR1 = 751.0;
   const Float_t AliTRDgeometry::fgkSlenTR2 = 313.5; 
   const Float_t AliTRDgeometry::fgkSlenTR3 = 159.5;  
 
+  // The super module side plates
+  const Float_t AliTRDgeometry::fgkSMpltT  =   0.2;
+  //const Float_t AliTRDgeometry::fgkSMgapT  =   0.5;  
+
   // Height of different chamber parts
   // Radiator
   const Float_t AliTRDgeometry::fgkCraH    =   4.8; 
@@ -144,7 +82,7 @@ ClassImp(AliTRDgeometry)
   // Amplification region
   const Float_t AliTRDgeometry::fgkCamH    =   0.7;
   // Readout
-  const Float_t AliTRDgeometry::fgkCroH    =   2.0;
+  const Float_t AliTRDgeometry::fgkCroH    =   2.316;
   // Total height
   const Float_t AliTRDgeometry::fgkCH      = AliTRDgeometry::fgkCraH
                                            + AliTRDgeometry::fgkCdrH
@@ -152,11 +90,14 @@ ClassImp(AliTRDgeometry)
                                            + AliTRDgeometry::fgkCroH;  
 
   // Vertical spacing of the chambers
-  const Float_t AliTRDgeometry::fgkVspace  =   2.1;
+  const Float_t AliTRDgeometry::fgkVspace  =   1.784;
 
   // Horizontal spacing of the chambers
   const Float_t AliTRDgeometry::fgkHspace  =   2.0;
 
+  // Radial distance of the first ROC to the outer plates of the SM
+  const Float_t AliTRDgeometry::fgkVrocsm  =   1.2;
+
   // Thicknesses of different parts of the chamber frame
   // Lower aluminum frame
   const Float_t AliTRDgeometry::fgkCalT    =   0.3;
@@ -173,8 +114,9 @@ ClassImp(AliTRDgeometry)
   const Float_t AliTRDgeometry::fgkCroW    =   0.9;
 
   // Difference of outer chamber width and pad plane width
-  const Float_t AliTRDgeometry::fgkCpadW   =   1.0;
-  const Float_t AliTRDgeometry::fgkRpadW   =   1.5;
+  //const Float_t AliTRDgeometry::fgkCpadW   =   1.0;
+  const Float_t AliTRDgeometry::fgkCpadW   =   0.0;
+  const Float_t AliTRDgeometry::fgkRpadW   =   1.0;
 
   //
   // Thickness of the the material layers
@@ -185,11 +127,13 @@ ClassImp(AliTRDgeometry)
   const Float_t AliTRDgeometry::fgkAmThick = AliTRDgeometry::fgkCamH;
   const Float_t AliTRDgeometry::fgkXeThick = AliTRDgeometry::fgkDrThick
                                            + AliTRDgeometry::fgkAmThick;
-  const Float_t AliTRDgeometry::fgkCuThick = 0.001
+  const Float_t AliTRDgeometry::fgkCuThick = 0.0072
   const Float_t AliTRDgeometry::fgkSuThick = 0.06; 
   const Float_t AliTRDgeometry::fgkFeThick = 0.0044; 
   const Float_t AliTRDgeometry::fgkCoThick = 0.02;
   const Float_t AliTRDgeometry::fgkWaThick = 0.02;
+  const Float_t AliTRDgeometry::fgkRcThick = 0.0058;
+  const Float_t AliTRDgeometry::fgkRpThick = 0.0632;
 
   //
   // Position of the material layers
@@ -203,9 +147,24 @@ ClassImp(AliTRDgeometry)
   const Float_t AliTRDgeometry::fgkFeZpos  =  0.0322;
   const Float_t AliTRDgeometry::fgkCoZpos  =  0.97;
   const Float_t AliTRDgeometry::fgkWaZpos  =  0.99;
+  const Float_t AliTRDgeometry::fgkRcZpos  =  1.04;
+  const Float_t AliTRDgeometry::fgkRpZpos  =  1.0;
+  
+  const Double_t AliTRDgeometry::fgkTime0Base = Rmin() + CraHght() + CdrHght() + CamHght()/2.;
+  const Float_t  AliTRDgeometry::fgkTime0[6]  = { fgkTime0Base + 0 * (Cheight() + Cspace()), 
+                                                  fgkTime0Base + 1 * (Cheight() + Cspace()), 
+                                                  fgkTime0Base + 2 * (Cheight() + Cspace()), 
+                                                  fgkTime0Base + 3 * (Cheight() + Cspace()), 
+                                                  fgkTime0Base + 4 * (Cheight() + Cspace()), 
+                                                  fgkTime0Base + 5 * (Cheight() + Cspace()) };
 
 //_____________________________________________________________________________
-AliTRDgeometry::AliTRDgeometry():AliGeometry()
+AliTRDgeometry::AliTRDgeometry()
+  :AliGeometry()
+  ,fMatrixArray(0)
+  ,fMatrixCorrectionArray(0)
+  ,fMatrixGeo(0)
+
 {
   //
   // AliTRDgeometry default constructor
@@ -215,6 +174,21 @@ AliTRDgeometry::AliTRDgeometry():AliGeometry()
 
 }
 
+//_____________________________________________________________________________
+AliTRDgeometry::AliTRDgeometry(const AliTRDgeometry &g)
+  :AliGeometry(g)
+  ,fMatrixArray(g.fMatrixArray)
+  ,fMatrixCorrectionArray(g.fMatrixCorrectionArray)
+  ,fMatrixGeo(g.fMatrixGeo)
+{
+  //
+  // AliTRDgeometry copy constructor
+  //
+
+  Init();
+
+}
+
 //_____________________________________________________________________________
 AliTRDgeometry::~AliTRDgeometry()
 {
@@ -222,6 +196,29 @@ AliTRDgeometry::~AliTRDgeometry()
   // AliTRDgeometry destructor
   //
 
+  if (fMatrixArray) {
+    delete fMatrixArray;
+    fMatrixArray           = 0;
+  }
+
+  if (fMatrixCorrectionArray) {
+    delete fMatrixCorrectionArray;
+    fMatrixCorrectionArray = 0;
+  }
+
+}
+
+//_____________________________________________________________________________
+AliTRDgeometry &AliTRDgeometry::operator=(const AliTRDgeometry &g)
+{
+  //
+  // Assignment operator
+  //
+
+  if (this != &g) Init();
+
+  return *this;
+
 }
 
 //_____________________________________________________________________________
@@ -230,79 +227,38 @@ void AliTRDgeometry::Init()
   //
   // Initializes the geometry parameter
   //
-  // The maximum number of pads
-  // and the position of pad 0,0,0 
-  // 
-  // chambers seen from the top:
-  //     +----------------------------+
-  //     |                            |
-  //     |                            |      ^
-  //     |                            |  rphi|
-  //     |                            |      |
-  //     |0                           |      | 
-  //     +----------------------------+      +------>
-  //                                             z 
-  // chambers seen from the side:            ^
-  //     +----------------------------+ drift|
-  //     |0                           |      |
-  //     |                            |      |
-  //     +----------------------------+      +------>
-  //                                             z
-  //                                             
-  // IMPORTANT: time bin 0 is now the first one in the drift region 
-  // closest to the readout !!!
-  //
 
   Int_t icham;
   Int_t iplan;
   Int_t isect;
 
   // The outer width of the chambers
-  fCwidth[0] =  95.6;
-  fCwidth[1] = 100.1;
-  fCwidth[2] = 104.5;
-  fCwidth[3] = 108.9;
-  fCwidth[4] = 113.4;
-  fCwidth[5] = 117.8;
+  fCwidth[0] =  90.4;
+  fCwidth[1] =  94.8;
+  fCwidth[2] =  99.3;
+  fCwidth[3] = 103.7;
+  fCwidth[4] = 108.1;
+  fCwidth[5] = 112.6;
 
   // The outer lengths of the chambers
-  Float_t length[kNplan][kNcham]   = { { 123.5, 123.5, 110.0, 123.5, 123.5 }
-                                    , { 131.0, 131.0, 110.0, 131.0, 131.0 }
-                                    , { 134.5, 138.5, 110.0, 138.5, 134.5 }
-                                    , { 142.0, 146.0, 110.0, 146.0, 142.0 }
-                                    , { 142.0, 153.0, 110.0, 153.0, 142.0 }
-                                     , { 134.0, 160.5, 110.0, 160.5, 134.0 } };
+  // Includes the spacings between the chambers!
+  Float_t length[kNplan][kNcham]   = { { 124.0, 124.0, 110.0, 124.0, 124.0 }
+                                    , { 124.0, 124.0, 110.0, 124.0, 124.0 }
+                                     , { 131.0, 131.0, 110.0, 131.0, 131.0 }
+                                     , { 138.0, 138.0, 110.0, 138.0, 138.0 }
+                                     , { 145.0, 145.0, 110.0, 145.0, 145.0 }
+                                    , { 147.0, 147.0, 110.0, 147.0, 147.0 } };
 
   for (icham = 0; icham < kNcham; icham++) {
     for (iplan = 0; iplan < kNplan; iplan++) {
-      fClength[iplan][icham]   = length[iplan][icham];
-      fClengthPH[iplan][icham] = 0.0;
-      fClengthRH[iplan][icham] = 0.0;
+      fClength[iplan][icham] = length[iplan][icham];
     }
   }
 
-  // The pad size in column direction (rphi-direction)  
-  SetColPadSize(0,0.65);
-  SetColPadSize(1,0.68);
-  SetColPadSize(2,0.71);
-  SetColPadSize(3,0.74);
-  SetColPadSize(4,0.77);
-  SetColPadSize(5,0.80);
-
-  // The pad row (z-direction)
-  SetNRowPad();
-
-  // The number of time bins. Default is 100 ns timbin size
-  SetNTimeBin(15);
-
-  // Additional time bins before and after the drift region.
-  // Default is to only sample the drift region
-  SetExpandTimeBin(0,0);
-
   // The rotation matrix elements
-  Float_t phi = 0;
+  Float_t phi = 0.0;
   for (isect = 0; isect < fgkNsect; isect++) {
-    phi = -2.0 * kPI /  (Float_t) fgkNsect * ((Float_t) isect + 0.5);
+    phi = -2.0 * TMath::Pi() /  (Float_t) fgkNsect * ((Float_t) isect + 0.5);
     fRotA11[isect] = TMath::Cos(phi);
     fRotA12[isect] = TMath::Sin(phi);
     fRotA21[isect] = TMath::Sin(phi);
@@ -313,111 +269,824 @@ void AliTRDgeometry::Init()
     fRotB21[isect] = TMath::Sin(phi);
     fRotB22[isect] = TMath::Cos(phi);
   }
+
+  for (isect = 0; isect < fgkNsect; isect++) {
+    SetSMstatus(isect,1);
+  }
  
 }
 
 //_____________________________________________________________________________
-void AliTRDgeometry::SetNRowPad(const Int_t p, const Int_t c, const Int_t npad)
+void AliTRDgeometry::CreateGeometry(Int_t *idtmed)
 {
   //
-  // Redefines the number of pads in raw direction for
-  // a given plane and chamber number
+  // Create the TRD geometry without hole
+  //
+  //
+  // Names of the TRD volumina (xx = detector number):
+  //
+  //      Volume (Air) wrapping the readout chamber components
+  //        UTxx    includes: UAxx, UDxx, UFxx, UUxx
+  //      Obs:
+  //        UUxx    the services volume has been reduced by 7.42 mm
+  //                in order to allow shifts in radial direction
   //
+  //      Lower part of the readout chambers (gas volume + radiator)
+  //
+  //        UAxx    Aluminum frames             (Al)
+  //        UBxx    G10 frames                  (C)
+  //        UCxx    Inner volumes               (Air)
+  //
+  //      Upper part of the readout chambers (readout plane + fee)
+  //
+  //        UDxx    G10 frames                  (C)
+  //        UExx    Inner volumes of the G10    (Air)
+  //        UFxx    Aluminum frames             (Al)
+  //        UGxx    Inner volumes of the Al     (Air)
+  //
+  //      Inner material layers
+  //
+  //        UHxx    Radiator                    (Rohacell)
+  //        UIxx    Entrance window             (Mylar)
+  //        UJxx    Drift volume                (Xe/CO2)
+  //        UKxx    Amplification volume        (Xe/CO2)
+  //        ULxx    Pad plane                   (Cu)
+  //        UMxx    Support structure           (Rohacell)
+  //        UNxx    ROB base material           (C)
+  //        UOxx    ROB copper                  (Cu)
+  //
+
+  const Int_t kNparTrd = 4;
+  const Int_t kNparCha = 3;
+
+  Float_t xpos;
+  Float_t ypos;
+  Float_t zpos;
+
+  Float_t parTrd[kNparTrd];
+  Float_t parCha[kNparCha];
+
+  Char_t  cTagV[6];
+  Char_t  cTagM[5];
+
+  // The TRD mother volume for one sector (Air), full length in z-direction
+  // Provides material for side plates of super module
+  parTrd[0] = fgkSwidth1/2.0;
+  parTrd[1] = fgkSwidth2/2.0;
+  parTrd[2] = fgkSlenTR1/2.0;
+  parTrd[3] = fgkSheight/2.0;
+  gMC->Gsvolu("UTR1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
+
+  // The outer aluminum plates of the super module (Al)
+  parTrd[0] = fgkSwidth1/2.0;
+  parTrd[1] = fgkSwidth2/2.0;
+  parTrd[2] = fgkSlenTR1/2.0;
+  parTrd[3] = fgkSheight/2.0;
+  gMC->Gsvolu("UTS1","TRD1",idtmed[1301-1],parTrd,kNparTrd);
+
+  // The inner part of the TRD mother volume for one sector (Air), 
+  // full length in z-direction
+  parTrd[0] = fgkSwidth1/2.0 - fgkSMpltT;
+  parTrd[1] = fgkSwidth2/2.0 - fgkSMpltT;
+  parTrd[2] = fgkSlenTR1/2.0;
+  parTrd[3] = fgkSheight/2.0 - fgkSMpltT;
+  gMC->Gsvolu("UTI1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
+
+  for (Int_t icham = 0; icham < kNcham; icham++) {
+    for (Int_t iplan = 0; iplan < kNplan; iplan++) {  
+
+      Int_t iDet = GetDetectorSec(iplan,icham);
+
+      // The lower part of the readout chambers (gas volume + radiator) 
+      // The aluminum frames 
+      sprintf(cTagV,"UA%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0;
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
+      parCha[2] = fgkCraH/2.0 + fgkCdrH/2.0;
+      fChamberUAboxd[iDet][0] = parCha[0];
+      fChamberUAboxd[iDet][1] = parCha[1];
+      fChamberUAboxd[iDet][2] = parCha[2];
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
+      // The G10 frames 
+      sprintf(cTagV,"UB%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 - fgkCalT; 
+      parCha[1] = -1.0;
+      parCha[2] = -1.0;
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha);
+      // The inner part (air)
+      sprintf(cTagV,"UC%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 - fgkCalT - fgkCclsT; 
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0- fgkCclfT;
+      parCha[2] = -1.0;
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
+
+      // The upper part of the readout chambers (readout plane)
+      // The G10 frames
+      sprintf(cTagV,"UD%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 + fgkCroW;
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
+      parCha[2] = fgkCamH/2.0;
+      fChamberUDboxd[iDet][0] = parCha[0];
+      fChamberUDboxd[iDet][1] = parCha[1];
+      fChamberUDboxd[iDet][2] = parCha[2];
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha);
+      // The inner part of the G10 frame (air)
+      sprintf(cTagV,"UE%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 + fgkCroW - fgkCcuT; 
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0- fgkCcuT;
+      parCha[2] = -1.;
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
+      // The aluminum frames
+      sprintf(cTagV,"UF%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 + fgkCroW;
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
+      parCha[2] = fgkCroH/2.0;
+      fChamberUFboxd[iDet][0] = parCha[0];
+      fChamberUFboxd[iDet][1] = parCha[1];
+      fChamberUFboxd[iDet][2] = parCha[2];
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
+      // The inner part of the aluminum frames
+      sprintf(cTagV,"UG%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 + fgkCroW - fgkCauT; 
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0- fgkCauT;
+      parCha[2] = -1.0;
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
+
+      // The material layers inside the chambers
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      // Rohacell layer (radiator)
+      parCha[2] = fgkRaThick/2.0;
+      sprintf(cTagV,"UH%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1315-1],parCha,kNparCha);
+      // Mylar layer (entrance window + HV cathode) 
+      parCha[2] = fgkMyThick/2.0;
+      sprintf(cTagV,"UI%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1308-1],parCha,kNparCha);
+      // Xe/Isobutane layer (drift volume) 
+      parCha[2] = fgkDrThick/2.0;
+      sprintf(cTagV,"UJ%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha);
+      // Xe/Isobutane layer (amplification volume)
+      parCha[2] = fgkAmThick/2.0;
+      sprintf(cTagV,"UK%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha);  
+      // Cu layer (pad plane)
+      parCha[2] = fgkCuThick/2.0;
+      sprintf(cTagV,"UL%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1305-1],parCha,kNparCha);
+      // G10 layer (support structure / honeycomb)
+      parCha[2] = fgkSuThick/2.0;
+      sprintf(cTagV,"UM%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha);
+      // G10 layer (readout board)
+      parCha[2] = fgkRpThick/2;
+      sprintf(cTagV,"UN%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha);
+      // Cu layer (readout board)
+      parCha[2] = fgkRcThick/2.0;
+      sprintf(cTagV,"UO%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1306-1],parCha,kNparCha);
+
+      // Position the layers in the chambers
+      xpos = 0.0;
+      ypos = 0.0;
+      // Lower part
+      // Rohacell layer (radiator)
+      zpos = fgkRaZpos;
+      sprintf(cTagV,"UH%02d",iDet);
+      sprintf(cTagM,"UC%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Mylar layer (entrance window + HV cathode)   
+      zpos = fgkMyZpos;
+      sprintf(cTagV,"UI%02d",iDet);
+      sprintf(cTagM,"UC%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Xe/Isobutane layer (drift volume) 
+      zpos = fgkDrZpos;
+      sprintf(cTagV,"UJ%02d",iDet);
+      sprintf(cTagM,"UC%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Upper part
+      // Xe/Isobutane layer (amplification volume)
+      zpos = fgkAmZpos;
+      sprintf(cTagV,"UK%02d",iDet);
+      sprintf(cTagM,"UE%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Readout part
+      // Cu layer (pad plane)
+      zpos = fgkCuZpos; 
+      sprintf(cTagV,"UL%02d",iDet);
+      sprintf(cTagM,"UG%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // G10 layer (support structure)
+      zpos = fgkSuZpos;
+      sprintf(cTagV,"UM%02d",iDet);
+      sprintf(cTagM,"UG%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // G10 layer (readout board)
+      zpos = fgkRpZpos;
+      sprintf(cTagV,"UN%02d",iDet);
+      sprintf(cTagM,"UG%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Cu layer (readout board)
+      zpos = fgkRcZpos;
+      sprintf(cTagV,"UO%02d",iDet);
+      sprintf(cTagM,"UG%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+
+      // Position the inner volumes of the chambers in the frames
+      xpos = 0.0;
+      ypos = 0.0;
+      zpos = 0.0;
+      // The inside of the lower G10 frame
+      sprintf(cTagV,"UC%02d",iDet);
+      sprintf(cTagM,"UB%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // The lower G10 frame inside the aluminum frame
+      sprintf(cTagV,"UB%02d",iDet);
+      sprintf(cTagM,"UA%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // The inside of the upper G10 frame
+      sprintf(cTagV,"UE%02d",iDet);
+      sprintf(cTagM,"UD%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // The inside of the upper aluminum frame
+      sprintf(cTagV,"UG%02d",iDet);
+      sprintf(cTagM,"UF%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");      
+
+      // Position the frames of the chambers in the TRD mother volume
+      xpos  = 0.0;
+      ypos  = - fClength[iplan][0] - fClength[iplan][1] - fClength[iplan][2]/2.0;
+      for (Int_t ic = 0; ic < icham; ic++) {
+        ypos += fClength[iplan][ic];        
+      }
+      ypos += fClength[iplan][icham]/2.0;
+      zpos  = fgkVrocsm + fgkCraH/2.0 + fgkCdrH/2.0 - fgkSheight/2.0 
+            + iplan * (fgkCH + fgkVspace);
+      // The lower aluminum frame, radiator + drift region
+      sprintf(cTagV,"UA%02d",iDet);      
+      fChamberUAorig[iDet][0] = xpos;
+      fChamberUAorig[iDet][1] = ypos;
+      fChamberUAorig[iDet][2] = zpos;
+      // The upper G10 frame, amplification region
+      sprintf(cTagV,"UD%02d",iDet);
+      zpos += fgkCamH/2.0 + fgkCraH/2.0 + fgkCdrH/2.0;      
+      fChamberUDorig[iDet][0] = xpos;
+      fChamberUDorig[iDet][1] = ypos;
+      fChamberUDorig[iDet][2] = zpos;
+      // The upper aluminum frame
+      sprintf(cTagV,"UF%02d",iDet);
+      zpos += fgkCroH/2.0 + fgkCamH/2.0;      
+      fChamberUForig[iDet][0] = xpos;
+      fChamberUForig[iDet][1] = ypos;
+      fChamberUForig[iDet][2] = zpos;
 
-  for (Int_t isect = 0; isect < fgkNsect; isect++) {
+    }
+  }
 
-    fRowMax[p][c][isect] = npad;  
-    fRowPadSize[p][c][isect] = (fClength[p][c] - 2.*fgkRpadW)
-                            / ((Float_t) npad);
+  // Create the volumes of the super module frame
+  CreateFrame(idtmed);
 
+  // Create the volumes of the services
+  CreateServices(idtmed);
+  
+  for (Int_t icham = 0; icham < kNcham; icham++) {
+    for (Int_t iplan = 0; iplan < kNplan; iplan++) {  
+      GroupChamber(iplan,icham,idtmed);
+    }
+  }
+  
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = 0.0;
+  gMC->Gspos("UTI1",1,"UTS1",xpos,ypos,zpos,0,"ONLY");
+
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = 0.0;
+  gMC->Gspos("UTS1",1,"UTR1",xpos,ypos,zpos,0,"ONLY");
+
+  // Put the TRD volumes into the space frame mother volumes
+  // if enabled via status flag
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = 0.0;
+  for (Int_t isect = 0; isect < kNsect; isect++) {
+    if (fSMstatus[isect]) {
+      sprintf(cTagV,"BTRD%d",isect);
+      gMC->Gspos("UTR1",1,cTagV,xpos,ypos,zpos,0,"ONLY");
+    }
   }
 
 }
 
 //_____________________________________________________________________________
-void AliTRDgeometry::SetNRowPad()
+void AliTRDgeometry::CreateFrame(Int_t *idtmed)
 {
   //
-  // Defines the number of pads in row direction
+  // Create the geometry of the frame of the supermodule
+  //
+  // Names of the TRD services volumina
+  //
+  //        USRL    Support rails for the chambers (Al)
+  //        USxx    Support cross bars between the chambers (Al)
   //
 
-  Int_t isect;
-  Int_t icham;
-  Int_t iplan;
+  Int_t   iplan = 0;
 
-  Int_t rowMax[kNplan][kNcham] = { { 16, 16, 12, 16, 16 }
-                                 , { 16, 16, 12, 16, 16 }
-                                 , { 16, 16, 12, 16, 16 }
-                                 , { 16, 16, 12, 16, 16 }
-                                 , { 14, 16, 12, 16, 14 }
-                                 , { 13, 16, 12, 16, 13 } };
+  Float_t xpos  = 0.0;
+  Float_t ypos  = 0.0;
+  Float_t zpos  = 0.0;
 
-  for (isect = 0; isect < kNsect; isect++) {
-    for (icham = 0; icham < kNcham; icham++) {
-      for (iplan = 0; iplan < kNplan; iplan++) {
+  Char_t  cTagV[5];
 
-        fRowMax[iplan][icham][isect]     = rowMax[iplan][icham];
-        fRowPadSize[iplan][icham][isect] = (fClength[iplan][icham] - 2.*fgkRpadW)
-                                        / ((Float_t) rowMax[iplan][icham]);
-
-        Float_t row0 = fgkRpadW - fClength[iplan][0] 
-                                - fClength[iplan][1] 
-                                - fClength[iplan][2]/2.;
-        for (Int_t ic = 0; ic < icham; ic++) {
-          row0 += fClength[iplan][ic];
-       }
-        fRow0[iplan][icham][isect]       = row0;
+  //
+  // The chamber support rails
+  //
+
+  const Float_t kSRLwid  = 2.00;
+  const Float_t kSRLhgt  = 2.3;
+  const Float_t kSRLdst  = 0.6;
+  const Int_t   kNparSRL = 3;
+  Float_t parSRL[kNparSRL];
+  parSRL[0] = kSRLwid/2.0;
+  parSRL[1] = fgkSlenTR1/2.;
+  parSRL[2] = kSRLhgt/2.0;
+  gMC->Gsvolu("USRL","BOX ",idtmed[1301-1],parSRL,kNparSRL);
+
+  xpos  = 0.0;
+  ypos  = 0.0;
+  zpos  = 0.0;
+  for (iplan = 0; iplan < kNplan; iplan++) {
+        xpos  = fCwidth[iplan]/2.0 + kSRLwid/2.0 + kSRLdst;
+    ypos  = 0.0;
+    zpos  = fgkVrocsm + fgkCraH + fgkCdrH - fgkSheight/2.0 - kSRLhgt/2.0 
+          + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos("USRL",iplan+1         ,"UTI1", xpos,ypos,zpos,0,"ONLY");
+    gMC->Gspos("USRL",iplan+1+  kNplan,"UTI1",-xpos,ypos,zpos,0,"ONLY");
+  }
+
+  //
+  // The cross bars between the chambers
+  //
+
+  const Float_t kSCBwid  = 1.0;
+  const Int_t   kNparSCB = 3;
+  Float_t parSCB[kNparSCB];
+  parSCB[1] = kSCBwid/2.0;
+  parSCB[2] = fgkCH/2.0;
+
+  xpos  = 0.0;
+  ypos  = 0.0;
+  zpos  = 0.0;
+  for (iplan = 0; iplan < kNplan; iplan++) {
+
+    parSCB[0] = fCwidth[iplan]/2.0 + kSRLdst/2.0;
+
+    sprintf(cTagV,"US0%01d",iplan);
+    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
+    xpos  = 0.0;
+    ypos  = fgkSlenTR1/2.0 - kSCBwid/2.0;
+    zpos  = fgkVrocsm + fgkCH/2.0 - fgkSheight/2.0 + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+
+    sprintf(cTagV,"US1%01d",iplan);
+    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
+    xpos  = 0.0;
+    ypos  = fClength[iplan][2]/2.0 + fClength[iplan][1];
+    zpos  = fgkVrocsm + fgkCH/2.0 - fgkSheight/2.0 + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+
+    sprintf(cTagV,"US2%01d",iplan);
+    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
+    xpos  = 0.0;
+    ypos  = fClength[iplan][2]/2.0;
+    zpos  = fgkVrocsm + fgkCH/2.0 - fgkSheight/2.0 + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+
+    sprintf(cTagV,"US3%01d",iplan);
+    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
+    xpos  = 0.0;
+    ypos  = - fClength[iplan][2]/2.0;
+    zpos  = fgkVrocsm + fgkCH/2.0 - fgkSheight/2.0 + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+
+    sprintf(cTagV,"US4%01d",iplan);
+    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
+    xpos  = 0.0;
+    ypos  = - fClength[iplan][2]/2.0 - fClength[iplan][1];
+    zpos  = fgkVrocsm + fgkCH/2.0 - fgkSheight/2.0 + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+
+    sprintf(cTagV,"US5%01d",iplan);
+    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
+    xpos  = 0.0;
+    ypos  = - fgkSlenTR1/2.0 + kSCBwid/2.0;
+    zpos  = fgkVrocsm + fgkCH/2.0 - fgkSheight/2.0 + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
 
-      }
-    }
   }
 
 }
 
 //_____________________________________________________________________________
-void AliTRDgeometry::SetColPadSize(const Int_t p, const Float_t s)
+void AliTRDgeometry::CreateServices(Int_t *idtmed)
 {
   //
-  // Redefines the pad size in column direction
+  // Create the geometry of the services
+  //
+  // Names of the TRD services volumina
+  //
+  //        UTCL    Cooling arterias (Al)
+  //        UTCW    Cooling arterias (Water)
+  //        UUxx    Volumes for the services at the chambers (Air)
+  //        UTPW    Power bars       (Cu)
+  //        UTCP    Cooling pipes    (Al)
+  //        UTCH    Cooling pipes    (Water)
+  //        UTPL    Power lines      (Cu)
+  //        UMCM    Readout MCMs     (G10/Cu/Si)
   //
 
-  fColPadSize[p] = s;
-  fCol0[p]       = - fCwidth[p]/2. + fgkCpadW;
-  fColMax[p]     = ((Int_t) ((fCwidth[p] - 2. * fgkCpadW) / s)); 
+  Int_t   iplan = 0;
+  Int_t   icham = 0;
 
-}
+  Float_t xpos  = 0.0;
+  Float_t ypos  = 0.0;
+  Float_t zpos  = 0.0;
+
+  Char_t  cTagV[5];
+
+  // The rotation matrices
+  const Int_t kNmatrix = 4;
+  Int_t   matrix[kNmatrix];
+  gMC->Matrix(matrix[0], 100.0,   0.0,  90.0,  90.0,  10.0,   0.0);
+  gMC->Matrix(matrix[1],  80.0,   0.0,  90.0,  90.0,  10.0, 180.0);
+  gMC->Matrix(matrix[2],   0.0,   0.0,  90.0,  90.0,  90.0,   0.0);
+  gMC->Matrix(matrix[3], 180.0,   0.0,  90.0,  90.0,  90.0, 180.0);
+
+  AliTRDCommonParam *commonParam = AliTRDCommonParam::Instance();
+  if (!commonParam) {
+    AliError("Could not get common parameters\n");
+    return;
+  }
+    
+  //
+  // The cooling arterias
+  //
+
+  // Width of the cooling arterias
+  const Float_t kCOLwid  =  0.5; 
+  // Height of the cooling arterias
+  const Float_t kCOLhgt  =  5.5;
+  // Positioning of the cooling 
+  const Float_t kCOLposx =  1.6;
+  const Float_t kCOLposz = -0.2;
+  // Thickness of the walls of the cooling arterias
+  const Float_t kCOLthk  =  0.1;
+  const Int_t   kNparCOL =  3;
+  Float_t parCOL[kNparCOL];
+  parCOL[0]  = kCOLwid/2.0;
+  parCOL[1]  = fgkSlenTR1/2.0;
+  parCOL[2]  = kCOLhgt/2.0;
+  gMC->Gsvolu("UTCL","BOX ",idtmed[1324-1],parCOL,kNparCOL);
+  parCOL[0] -= kCOLthk;
+  parCOL[1]  = fgkSlenTR1/2.0;
+  parCOL[2] -= kCOLthk;
+  gMC->Gsvolu("UTCW","BOX ",idtmed[1314-1],parCOL,kNparCOL);
+
+  xpos  = 0.0;
+  ypos  = 0.0;
+  zpos  = 0.0;
+  gMC->Gspos("UTCW",1,"UTCL", xpos,ypos,zpos,0,"ONLY");
+
+  for (iplan = 1; iplan < kNplan; iplan++) { 
+
+    xpos  = fCwidth[iplan]/2.0 + kCOLwid/2.0 + kCOLposx;
+    ypos  = 0.0;
+    zpos  = fgkVrocsm + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz 
+          + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos("UTCL",iplan       ,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY");
+    gMC->Gspos("UTCL",iplan+kNplan,"UTI1",-xpos,ypos,zpos,matrix[1],"ONLY");
+
+  }
+
+  // The upper most layer (reaching into TOF acceptance)
+  xpos  = fCwidth[5]/2.0 - kCOLhgt/2.0 - 2.3;
+  ypos  = 0.0;
+  zpos  = fgkVrocsm + kCOLwid/2.0 - fgkSheight/2.0
+        + 6.0*fgkCH + 6.0*fgkVspace;
+                    
+  gMC->Gspos("UTCL",6       ,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY");
+  gMC->Gspos("UTCL",6+kNplan,"UTI1",-xpos,ypos,zpos,matrix[3],"ONLY");
+
+  //
+  // The power bars
+  //
+
+  const Float_t kPWRwid  =  0.6;
+  const Float_t kPWRhgt  =  4.5;
+  const Float_t kPWRposx =  1.05;
+  const Float_t kPWRposz =  0.9;
+  const Int_t   kNparPWR =  3;
+  Float_t parPWR[kNparPWR];
+  parPWR[0] = kPWRwid/2.0;
+  parPWR[1] = fgkSlenTR1/2.0;
+  parPWR[2] = kPWRhgt/2.0;
+  gMC->Gsvolu("UTPW","BOX ",idtmed[1325-1],parPWR,kNparPWR);
+  
+  for (iplan = 1; iplan < kNplan; iplan++) { 
+    
+    xpos  = fCwidth[iplan]/2.0 + kPWRwid/2.0 + kPWRposx;
+    ypos  = 0.0;
+    zpos  = fgkVrocsm + kPWRhgt/2.0 - fgkSheight/2.0 + kPWRposz 
+          + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos("UTPW",iplan       ,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY");
+    gMC->Gspos("UTPW",iplan+kNplan,"UTI1",-xpos,ypos,zpos,matrix[1],"ONLY");
+
+  }
+
+  // The upper most layer (reaching into TOF acceptance)
+  xpos  = fCwidth[5]/2.0 + kPWRhgt/2.0 - 2.3;
+  ypos  = 0.0;
+  zpos  = fgkVrocsm + kPWRwid/2.0 - fgkSheight/2.0
+        + 6.0*fgkCH + 6.0*fgkVspace;
+  gMC->Gspos("UTPW",6       ,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY");
+  gMC->Gspos("UTPW",6+kNplan,"UTI1",-xpos,ypos,zpos,matrix[3],"ONLY");
 
-//_____________________________________________________________________________
-void AliTRDgeometry::SetNTimeBin(const Int_t nbin)
-{
   //
-  // Redefines the number of time bins in the drift region.
-  // The time bin width is defined by the length of the
-  // drift region divided by <nbin>.
+  // The volumes for the services at the chambers
   //
 
-  fTimeMax     = nbin;
-  fTimeBinSize = fgkDrThick / ((Float_t) fTimeMax);
-  for (Int_t iplan = 0; iplan < fgkNplan; iplan++) {
-    fTime0[iplan]  = fgkRmin + fgkCraH + fgkCdrH
-                             + iplan * (fgkCH + fgkVspace);
+  const Int_t kNparServ = 3;
+  Float_t parServ[kNparServ];
+
+  for (icham = 0; icham < kNcham; icham++) {
+    for (iplan = 0; iplan < kNplan; iplan++) {
+
+      Int_t iDet = GetDetectorSec(iplan,icham);
+
+      sprintf(cTagV,"UU%02d",iDet);
+      parServ[0] = fCwidth[iplan]/2.0;
+      parServ[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
+      // ???? !!!!!!!!!!!!!!      
+      parServ[2] = fgkVspace/2.0 - 0.742/2.0; 
+      fChamberUUboxd[iDet][0] = parServ[0];
+      fChamberUUboxd[iDet][1] = parServ[1];
+      fChamberUUboxd[iDet][2] = parServ[2];
+      gMC->Gsvolu(cTagV,"BOX",idtmed[1302-1],parServ,kNparServ);
+
+      xpos  = 0.;
+      ypos  = - fClength[iplan][0] - fClength[iplan][1] - fClength[iplan][2]/2.0;
+      for (Int_t ic = 0; ic < icham; ic++) {
+        ypos += fClength[iplan][ic];        
+      }
+      ypos += fClength[iplan][icham]/2.0;
+      zpos  = fgkVrocsm + fgkCH + fgkVspace/2.0 - fgkSheight/2.0 
+            + iplan * (fgkCH + fgkVspace);
+      zpos -= 0.742/2.0;
+      fChamberUUorig[iDet][0] = xpos;
+      fChamberUUorig[iDet][1] = ypos;
+      fChamberUUorig[iDet][2] = zpos;
+
+    }
+  }
+
+  //
+  // The cooling pipes inside the service volumes
+  //
+
+  const Int_t kNparTube = 3;
+  Float_t parTube[kNparTube];
+  // The aluminum pipe for the cooling
+  parTube[0] = 0.0;
+  parTube[1] = 0.0;
+  parTube[2] = 0.0;
+  gMC->Gsvolu("UTCP","TUBE",idtmed[1324-1],parTube,0);
+  // The cooling water
+  parTube[0] =  0.0;
+  parTube[1] =  0.2/2.0;
+  parTube[2] = -1.;
+  gMC->Gsvolu("UTCH","TUBE",idtmed[1314-1],parTube,kNparTube);
+  // Water inside the cooling pipe
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = 0.0;
+  gMC->Gspos("UTCH",1,"UTCP",xpos,ypos,zpos,0,"ONLY");
+
+  // Position the cooling pipes in the mother volume
+  const Int_t kNpar = 3;
+  Float_t par[kNpar];
+  for (icham = 0; icham < kNcham;   icham++) {
+    for (iplan = 0; iplan < kNplan; iplan++) {
+      Int_t   iDet    = GetDetectorSec(iplan,icham);
+      Int_t   iCopy   = GetDetector(iplan,icham,0) * 100;
+      Int_t   nMCMrow = commonParam->GetRowMax(iplan,icham,0);
+      Float_t ySize   = (GetChamberLength(iplan,icham) - 2.0*fgkRpadW) 
+                      / ((Float_t) nMCMrow);
+      sprintf(cTagV,"UU%02d",iDet);
+      for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
+        xpos   = 0.0;
+        ypos   = (0.5 + iMCMrow) * ySize - 1.9 
+               - fClength[iplan][icham]/2.0 + fgkHspace/2.0;
+        zpos   = 0.0 + 0.742/2.0;                 
+        par[0] = 0.0;
+        par[1] = 0.3/2.0; // Thickness of the cooling pipes
+        par[2] = fCwidth[iplan]/2.0;
+        gMC->Gsposp("UTCP",iCopy+iMCMrow,cTagV,xpos,ypos,zpos
+                          ,matrix[2],"ONLY",par,kNpar);
+      }
+    }
+  }
+
+  //
+  // The power lines
+  //
+
+  // The copper power lines
+  parTube[0] = 0.0;
+  parTube[1] = 0.0;
+  parTube[2] = 0.0;
+  gMC->Gsvolu("UTPL","TUBE",idtmed[1305-1],parTube,0);
+
+  // Position the power lines in the mother volume
+  for (icham = 0; icham < kNcham;   icham++) {
+    for (iplan = 0; iplan < kNplan; iplan++) {
+      Int_t   iDet    = GetDetectorSec(iplan,icham);
+      Int_t   iCopy   = GetDetector(iplan,icham,0) * 100;
+      Int_t   nMCMrow = commonParam->GetRowMax(iplan,icham,0);
+      Float_t ySize   = (GetChamberLength(iplan,icham) - 2.0*fgkRpadW) 
+                      / ((Float_t) nMCMrow);
+      sprintf(cTagV,"UU%02d",iDet);
+      for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
+        xpos   = 0.0;
+        ypos   = (0.5 + iMCMrow) * ySize - 1.0 
+               - fClength[iplan][icham]/2.0 + fgkHspace/2.0;
+        zpos   = -0.4 + 0.742/2.0;
+        par[0] = 0.0;
+        par[1] = 0.2/2.0; // Thickness of the power lines
+        par[2] = fCwidth[iplan]/2.0;
+        gMC->Gsposp("UTPL",iCopy+iMCMrow,cTagV,xpos,ypos,zpos
+                          ,matrix[2],"ONLY",par,kNpar);
+      }
+    }
+  }
+
+  //
+  // The MCMs
+  //
+
+  // The mother volume for the MCMs (air)
+  const Int_t kNparMCM = 3;
+  Float_t parMCM[kNparMCM];
+  parMCM[0] = 3.0/2.0;
+  parMCM[1] = 3.0/2.0;
+  parMCM[2] = 0.14/2.0;
+  gMC->Gsvolu("UMCM","BOX",idtmed[1302-1],parMCM,kNparMCM);
+
+  // The MCM carrier G10 layer
+  parMCM[0] = 3.0/2.0;
+  parMCM[1] = 3.0/2.0;
+  parMCM[2] = 0.1/2.0;
+  gMC->Gsvolu("UMC1","BOX",idtmed[1319-1],parMCM,kNparMCM);
+  // The MCM carrier Cu layer
+  parMCM[0] = 3.0/2.0;
+  parMCM[1] = 3.0/2.0;
+  parMCM[2] = 0.0162/2.0;
+  gMC->Gsvolu("UMC2","BOX",idtmed[1318-1],parMCM,kNparMCM);
+  // The silicon of the chips
+  parMCM[0] = 3.0/2.0;
+  parMCM[1] = 3.0/2.0;
+  parMCM[2] = 0.003/2.0;
+  gMC->Gsvolu("UMC3","BOX",idtmed[1320-1],parMCM,kNparMCM);
+
+  // Put the MCM material inside the MCM mother volume
+  xpos  =  0.0;
+  ypos  =  0.0;
+  zpos  = -0.07 + 0.1/2.0;
+  gMC->Gspos("UMC1",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
+  zpos +=  0.1/2.0   + 0.0162/2.0;
+  gMC->Gspos("UMC2",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
+  zpos +=  0.00162/2 + 0.003/2.0;
+  gMC->Gspos("UMC3",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
+
+  // Position the MCMs in the mother volume
+  for (icham = 0; icham < kNcham;   icham++) {
+    for (iplan = 0; iplan < kNplan; iplan++) {
+      Int_t   iDet    = GetDetectorSec(iplan,icham);
+      Int_t   iCopy   = GetDetector(iplan,icham,0) * 1000;
+      Int_t   nMCMrow = commonParam->GetRowMax(iplan,icham,0);
+      Float_t ySize   = (GetChamberLength(iplan,icham) - 2.0*fgkRpadW) 
+                      / ((Float_t) nMCMrow);
+      Int_t   nMCMcol = 8;
+      Float_t xSize   = (GetChamberWidth(iplan) - 2.0* fgkCpadW)
+                     / ((Float_t) nMCMcol);
+      sprintf(cTagV,"UU%02d",iDet);
+      for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
+        for (Int_t iMCMcol = 0; iMCMcol < nMCMcol; iMCMcol++) {
+          xpos   = (0.5 + iMCMcol) * xSize + 1.0 
+                 - fCwidth[iplan]/2.0;
+          ypos   = (0.5 + iMCMrow) * ySize + 1.0 
+                 - fClength[iplan][icham]/2.0 + fgkHspace/2.0;
+          zpos   = -0.4 + 0.742/2.0;
+          par[0] = 0.0;
+          par[1] = 0.2/2.0; // Thickness of the power lines
+          par[2] = fCwidth[iplan]/2.0;
+          gMC->Gspos("UMCM",iCopy+iMCMrow*10+iMCMcol,cTagV
+                           ,xpos,ypos,zpos,0,"ONLY");
+       }
+      }
+
+    }
   }
 
 }
 
 //_____________________________________________________________________________
-void AliTRDgeometry::CreateGeometry(Int_t *idtmed)
+void AliTRDgeometry::GroupChamber(Int_t iplan, Int_t icham, Int_t *idtmed)
 {
   //
-  // Create TRD geometry
+  // Group volumes UA, UD, UF, UU in a single chamber (Air)
+  // UA, UD, UF, UU are boxes
+  // UT will be a box
   //
 
+  const Int_t kNparCha = 3;
+
+  Int_t iDet = GetDetectorSec(iplan,icham);
+
+  Float_t xyzMin[3];
+  Float_t xyzMax[3];
+  Float_t xyzOrig[3];
+  Float_t xyzBoxd[3];
+
+  Char_t  cTagV[5];
+  Char_t  cTagM[5];
+
+  for (Int_t i = 0; i < 3; i++) {
+    xyzMin[i] = +9999.0; 
+    xyzMax[i] = -9999.0;
+  }
+
+  for (Int_t i = 0; i < 3; i++) {
+
+    xyzMin[i] = TMath::Min(xyzMin[i],fChamberUAorig[iDet][i]-fChamberUAboxd[iDet][i]);
+    xyzMax[i] = TMath::Max(xyzMax[i],fChamberUAorig[iDet][i]+fChamberUAboxd[iDet][i]);
+
+    xyzMin[i] = TMath::Min(xyzMin[i],fChamberUDorig[iDet][i]-fChamberUDboxd[iDet][i]);
+    xyzMax[i] = TMath::Max(xyzMax[i],fChamberUDorig[iDet][i]+fChamberUDboxd[iDet][i]);
+
+    xyzMin[i] = TMath::Min(xyzMin[i],fChamberUForig[iDet][i]-fChamberUFboxd[iDet][i]);
+    xyzMax[i] = TMath::Max(xyzMax[i],fChamberUForig[iDet][i]+fChamberUFboxd[iDet][i]);
+
+    xyzMin[i] = TMath::Min(xyzMin[i],fChamberUUorig[iDet][i]-fChamberUUboxd[iDet][i]);
+    xyzMax[i] = TMath::Max(xyzMax[i],fChamberUUorig[iDet][i]+fChamberUUboxd[iDet][i]);
+
+    xyzOrig[i] = 0.5*(xyzMax[i]+xyzMin[i]);
+    xyzBoxd[i] = 0.5*(xyzMax[i]-xyzMin[i]);
+
+  }
+  
+  sprintf(cTagM,"UT%02d",iDet);
+  gMC->Gsvolu(cTagM,"BOX ",idtmed[1302-1],xyzBoxd,kNparCha);
+
+  sprintf(cTagV,"UA%02d",iDet);
+  gMC->Gspos(cTagV,1,cTagM,
+            fChamberUAorig[iDet][0]-xyzOrig[0],
+            fChamberUAorig[iDet][1]-xyzOrig[1],
+            fChamberUAorig[iDet][2]-xyzOrig[2],
+            0,"ONLY");
+
+  sprintf(cTagV,"UD%02d",iDet);
+  gMC->Gspos(cTagV,1,cTagM,
+            fChamberUDorig[iDet][0]-xyzOrig[0],
+            fChamberUDorig[iDet][1]-xyzOrig[1],
+            fChamberUDorig[iDet][2]-xyzOrig[2],
+            0,"ONLY");
+
+  sprintf(cTagV,"UF%02d",iDet);
+  gMC->Gspos(cTagV,1,cTagM,
+            fChamberUForig[iDet][0]-xyzOrig[0],
+            fChamberUForig[iDet][1]-xyzOrig[1],
+            fChamberUForig[iDet][2]-xyzOrig[2],
+            0,"ONLY");
+  
+  sprintf(cTagV,"UU%02d",iDet);
+  gMC->Gspos(cTagV,1,cTagM,
+             fChamberUUorig[iDet][0]-xyzOrig[0],
+             fChamberUUorig[iDet][1]-xyzOrig[1],
+             fChamberUUorig[iDet][2]-xyzOrig[2],
+             0,"ONLY");
+
+  sprintf(cTagV,"UT%02d",iDet);
+  gMC->Gspos(cTagV,1,"UTI1",xyzOrig[0],xyzOrig[1],xyzOrig[2],0,"ONLY");
+
 }
 
 //_____________________________________________________________________________
-Bool_t AliTRDgeometry::Local2Global(Int_t idet, Float_t *local, Float_t *global) const
+Bool_t AliTRDgeometry::Local2Global(Int_t idet, Double_t *local
+                                   , Double_t *global) const
 {
   //
   // Converts local pad-coordinates (row,col,time) into 
@@ -434,29 +1103,41 @@ Bool_t AliTRDgeometry::Local2Global(Int_t idet, Float_t *local, Float_t *global)
  
 //_____________________________________________________________________________
 Bool_t AliTRDgeometry::Local2Global(Int_t iplan, Int_t icham, Int_t isect
-                                  , Float_t *local, Float_t *global) const
+                                  , Double_t *local, Double_t *global) const
 {
   //
   // Converts local pad-coordinates (row,col,time) into 
   // global ALICE reference frame coordinates (x,y,z)
   //
 
-  Int_t    idet      = GetDetector(iplan,icham,isect); // Detector number
+  AliTRDCommonParam* commonParam = AliTRDCommonParam::Instance();
+  if (!commonParam) {
+    AliError("Could not get common parameters\n");
+    return kFALSE;
+  }
 
-  Float_t  padRow    = local[0]+0.5;                   // Pad Row position
-  Float_t  padCol    = local[1]+0.5;                   // Pad Column position
-  Float_t  timeSlice = local[2]+0.5;                   // Time "position"
+  AliTRDcalibDB* calibration = AliTRDcalibDB::Instance();
+  if (!calibration) {
+    AliError("Could not get calibration data\n");
+    return kFALSE;  
+  }
+  
+  AliTRDpadPlane *padPlane = commonParam->GetPadPlane(iplan,icham);
 
-  Float_t  row0      = GetRow0(iplan,icham,isect);
-  Float_t  col0      = GetCol0(iplan);
+  // calculate (x,y,z) position in rotated chamber
+  Int_t    row       = ((Int_t) local[0]);
+  Int_t    col       = ((Int_t) local[1]);
+  Float_t  timeSlice = local[2] + 0.5;
   Float_t  time0     = GetTime0(iplan);
 
-  Float_t  rot[3];
+  Int_t idet = GetDetector(iplan, icham, isect);
 
-  // calculate (x,y,z) position in rotated chamber
-  rot[0] = time0 - (timeSlice - fTimeBefore) * fTimeBinSize;
-  rot[1] = col0  + padCol                    * fColPadSize[iplan];
-  rot[2] = row0  + padRow                    * fRowPadSize[iplan][icham][isect];
+  Double_t  rot[3];
+  rot[0] = time0 - (timeSlice - calibration->GetT0(idet, col, row))
+         * calibration->GetVdrift(idet, col, row)
+         / calibration->GetSamplingFrequency();
+  rot[1] = padPlane->GetColPos(col) - 0.5 * padPlane->GetColSize(col);
+  rot[2] = padPlane->GetRowPos(row) - 0.5 * padPlane->GetRowSize(row);
 
   // Rotate back to original position
   return RotateBack(idet,rot,global);
@@ -464,7 +1145,92 @@ Bool_t AliTRDgeometry::Local2Global(Int_t iplan, Int_t icham, Int_t isect
 }
 
 //_____________________________________________________________________________
-Bool_t AliTRDgeometry::Rotate(Int_t d, Float_t *pos, Float_t *rot) const
+Bool_t AliTRDgeometry::Global2Local(Int_t mode, Double_t *local, Double_t *global
+                                  , Int_t* index) const
+{
+  //
+  // Converts local pad-coordinates (row,col,time) into 
+  // global ALICE reference frame coordinates (x,y,z)
+  //
+  // index[0] = plane number
+  // index[1] = chamber number
+  // index[2] = sector number
+  //
+  // mode = 0  - local coordinate in y, z,             x - rotated global   
+  //
+
+  Int_t idet = GetDetector(index[0],index[1],index[2]); // Detector number
+  RotateBack(idet,global,local);
+
+  if (mode == 0) {
+    return kTRUE;
+  }
+
+  return kFALSE;
+
+}
+
+//_____________________________________________________________________________
+Bool_t AliTRDgeometry::Global2Detector(Double_t global[3], Int_t index[3])
+{
+  //  
+  //  Find detector for given global point - Ideal geometry 
+  //  
+  //
+  // input    = global position
+  // output   = index
+  // index[0] = plane number
+  // index[1] = chamber number
+  // index[2] = sector number
+  //
+
+  //
+  // Find sector
+  //
+  Float_t fi = TMath::ATan2(global[1],global[0]);
+  if (fi < 0) {
+    fi += 2.0 * TMath::Pi();
+  }
+  index[2] = fgkNsect - 1 - TMath::Nint((fi - GetAlpha()/2.0) / GetAlpha());
+
+  //
+  // Find plane
+  //
+  Float_t locx = global[0] * fRotA11[index[2]] + global[1] * fRotA12[index[2]];  
+  index[0] = 0;
+  Float_t max = locx - GetTime0(0);
+  for (Int_t iplane = 1; iplane < fgkNplan; iplane++) {
+    Float_t dist = TMath::Abs(locx - GetTime0(iplane));
+    if (dist < max) {
+      index[0] = iplane;
+      max      = dist;
+    }
+  }
+
+  //
+  // Find chamber
+  //
+  if (TMath::Abs(global[2]) < 0.5*GetChamberLength(index[0],2)) {
+    index[1] = 2;
+  }
+  else {
+    Double_t localZ = global[2];
+    if (global[2] > 0.0) {
+      localZ   -= 0.5*(GetChamberLength(index[0],2)+GetChamberLength(index[0],1));
+      index[1]  = (TMath::Abs(localZ) < 0.5*GetChamberLength(index[0],3)) ? 1 : 0;
+    }
+    else {
+      localZ   += 0.5*(GetChamberLength(index[0],2)+GetChamberLength(index[0],3));
+      index[1]  = (TMath::Abs(localZ) < 0.5*GetChamberLength(index[0],1)) ? 3 : 4;
+    }
+  }  
+
+  return kTRUE;
+
+}
+
+//_____________________________________________________________________________
+Bool_t AliTRDgeometry::Rotate(Int_t d, Double_t *pos, Double_t *rot) const
 {
   //
   // Rotates all chambers in the position of sector 0 and transforms
@@ -483,7 +1249,7 @@ Bool_t AliTRDgeometry::Rotate(Int_t d, Float_t *pos, Float_t *rot) const
 }
 
 //_____________________________________________________________________________
-Bool_t AliTRDgeometry::RotateBack(Int_t d, Float_t *rot, Float_t *pos) const
+Bool_t AliTRDgeometry::RotateBack(Int_t d, Double_t *rot, Double_t *pos) const
 {
   //
   // Rotates a chambers from the position of sector 0 into its
@@ -502,7 +1268,7 @@ Bool_t AliTRDgeometry::RotateBack(Int_t d, Float_t *rot, Float_t *pos) const
 }
 
 //_____________________________________________________________________________
-Int_t AliTRDgeometry::GetDetectorSec(const Int_t p, const Int_t c) const
+Int_t AliTRDgeometry::GetDetectorSec(Int_t p, Int_t c)
 {
   //
   // Convert plane / chamber into detector number for one single sector
@@ -513,7 +1279,7 @@ Int_t AliTRDgeometry::GetDetectorSec(const Int_t p, const Int_t c) const
 }
 
 //_____________________________________________________________________________
-Int_t AliTRDgeometry::GetDetector(const Int_t p, const Int_t c, const Int_t s) const
+Int_t AliTRDgeometry::GetDetector(Int_t p, Int_t c, Int_t s)
 {
   //
   // Convert plane / chamber / sector into detector number
@@ -524,7 +1290,7 @@ Int_t AliTRDgeometry::GetDetector(const Int_t p, const Int_t c, const Int_t s) c
 }
 
 //_____________________________________________________________________________
-Int_t AliTRDgeometry::GetPlane(const Int_t d) const
+Int_t AliTRDgeometry::GetPlane(Int_t d) const
 {
   //
   // Reconstruct the plane number from the detector number
@@ -535,7 +1301,7 @@ Int_t AliTRDgeometry::GetPlane(const Int_t d) const
 }
 
 //_____________________________________________________________________________
-Int_t AliTRDgeometry::GetChamber(const Int_t d) const
+Int_t AliTRDgeometry::GetChamber(Int_t d) const
 {
   //
   // Reconstruct the chamber number from the detector number
@@ -546,7 +1312,7 @@ Int_t AliTRDgeometry::GetChamber(const Int_t d) const
 }
 
 //_____________________________________________________________________________
-Int_t AliTRDgeometry::GetSector(const Int_t d) const
+Int_t AliTRDgeometry::GetSector(Int_t d) const
 {
   //
   // Reconstruct the sector number from the detector number
@@ -557,42 +1323,100 @@ Int_t AliTRDgeometry::GetSector(const Int_t d) const
 }
 
 //_____________________________________________________________________________
-void AliTRDgeometry::GetGlobal(const AliRecPoint *p, TVector3 &pos
-                             , TMatrix &mat) const
+AliTRDgeometry* AliTRDgeometry::GetGeometry(AliRunLoader *runLoader)
 {
-  // 
-  // Returns the global coordinate and error matrix of a AliTRDrecPoint
   //
+  // Load the geometry from the galice file
+  //
+
+  if (!runLoader) {
+    runLoader = AliRunLoader::GetRunLoader();
+  }
+  if (!runLoader) {
+    AliErrorGeneral("AliTRDgeometry::GetGeometry","No run loader");
+    return NULL;
+  }
+
+  TDirectory *saveDir = gDirectory;
+  runLoader->CdGAFile();
+
+  // Try from the galice.root file
+  AliTRDgeometry *geom = (AliTRDgeometry *) gDirectory->Get("TRDgeometry");
+
+  if (!geom) {
+    // If it is not in the file, try to get it from the run loader 
+    AliTRD *trd = (AliTRD *) runLoader->GetAliRun()->GetDetector("TRD");
+    geom = trd->GetGeometry();
+  }
+  if (!geom) {
+    AliErrorGeneral("AliTRDgeometry::GetGeometry","Geometry not found");
+    return NULL;
+  }
 
-  GetGlobal(p,pos);
-  mat.Zero();
+  saveDir->cd();
+  return geom;
 
 }
 
 //_____________________________________________________________________________
-void AliTRDgeometry::GetGlobal(const AliRecPoint *p, TVector3 &pos) const
+Bool_t AliTRDgeometry::ReadGeoMatrices()
 {
-  // 
-  // Returns the global coordinate and error matrix of a AliTRDrecPoint
+  //
+  // Read geo matrices from current gGeoManager for each TRD sector
   //
 
-  Int_t detector = ((AliTRDrecPoint *) p)->GetDetector();
-
-  Float_t global[3];
-  Float_t local[3];
-  local[0] = ((AliTRDrecPoint *) p)->GetLocalRow();
-  local[1] = ((AliTRDrecPoint *) p)->GetLocalCol();
-  local[2] = ((AliTRDrecPoint *) p)->GetLocalTime();
-
-  if (Local2Global(detector,local,global)) {
-    pos.SetX(global[0]);
-    pos.SetY(global[1]);
-    pos.SetZ(global[2]);
+  if (!gGeoManager) {
+    return kFALSE;
   }
-  else {
-    pos.SetX(0.0);
-    pos.SetY(0.0);
-    pos.SetZ(0.0);
+  fMatrixArray           = new TObjArray(kNdet); 
+  fMatrixCorrectionArray = new TObjArray(kNdet);
+  fMatrixGeo             = new TObjArray(kNdet);
+  AliAlignObjAngles o;
+
+  for (Int_t iLayer = AliAlignObj::kTRD1; iLayer <= AliAlignObj::kTRD6; iLayer++) {
+    for (Int_t iModule = 0; iModule < AliAlignObj::LayerSize(iLayer); iModule++) {
+
+      UShort_t    volid   = AliAlignObj::LayerToVolUID(iLayer,iModule);
+      const char *symname = AliAlignObj::SymName(volid);
+      TGeoPNEntry* pne = gGeoManager->GetAlignableEntry(symname);
+      const char *path = symname;
+      if(pne) path=pne->GetTitle();
+      if (!gGeoManager->cd(path)) return kFALSE;      
+      TGeoHMatrix *m = gGeoManager->GetCurrentMatrix();
+      Int_t     iLayerTRD = iLayer - AliAlignObj::kTRD1;
+      Int_t     isector   = Nsect() - 1 - (iModule/Ncham());
+      Int_t     ichamber  = Ncham() - 1 - (iModule%Ncham());
+      Int_t     lid       = GetDetector(iLayerTRD,ichamber,isector);    
+
+      //
+      // Local geo system z-x-y  to x-y--z 
+      //
+      fMatrixGeo->AddAt(new TGeoHMatrix(*m),lid);
+      
+      TGeoRotation mchange; 
+      mchange.RotateY(90); 
+      mchange.RotateX(90);
+
+      TGeoHMatrix gMatrix(mchange.Inverse());
+      gMatrix.MultiplyLeft(m);
+      fMatrixArray->AddAt(new TGeoHMatrix(gMatrix),lid); 
+
+      //
+      //  Cluster transformation matrix
+      //
+      TGeoHMatrix  rotMatrix(mchange.Inverse());
+      rotMatrix.MultiplyLeft(m);
+      Double_t sectorAngle = 20.0 * (isector % 18) + 10.0;
+      TGeoHMatrix  rotSector;
+      rotSector.RotateZ(sectorAngle);
+      rotMatrix.MultiplyLeft(&rotSector);      
+
+      fMatrixCorrectionArray->AddAt(new TGeoHMatrix(rotMatrix),lid);       
+
+    }    
   }
 
+  return kTRUE;
+
 }
+