]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - TRD/AliTRDgeometry.cxx
Modify services of top most layer (inside TOF acceptance)
[u/mrichter/AliRoot.git] / TRD / AliTRDgeometry.cxx
index ceda788b876ccc31e6f7e0c8bbfc8abe4077e1d7..77dfba2e5150e9677f8bf3b99353dccf6614cede 100644 (file)
 ///////////////////////////////////////////////////////////////////////////////
 
 
-#include <TError.h>
 #include <TGeoManager.h>
 #include <TGeoPhysicalNode.h>
 #include <TGeoMatrix.h>
 
-
+#include "AliLog.h"
 #include "AliRunLoader.h"
-#include "AliTRDgeometry.h"
-#include "AliTRDpadPlane.h"
-
 #include "AliAlignObj.h"
 #include "AliAlignObjAngles.h"
-
 #include "AliRun.h"
+
 #include "AliTRD.h"
 #include "AliTRDcalibDB.h"
 #include "AliTRDCommonParam.h"
+#include "AliTRDgeometry.h"
+#include "AliTRDpadPlane.h"
 
 ClassImp(AliTRDgeometry)
 
@@ -65,16 +63,16 @@ ClassImp(AliTRDgeometry)
   const Float_t AliTRDgeometry::fgkZmax2   = 302.0; 
 
   // Parameter of the BTR mother volumes 
-  const Float_t AliTRDgeometry::fgkSheight =  74.0
-  const Float_t AliTRDgeometry::fgkSwidth1 =  99.613;
-  const Float_t AliTRDgeometry::fgkSwidth2 = 125.707;
+  const Float_t AliTRDgeometry::fgkSheight =  77.9
+  const Float_t AliTRDgeometry::fgkSwidth1 =  94.881; 
+  const Float_t AliTRDgeometry::fgkSwidth2 = 122.353;
   const Float_t AliTRDgeometry::fgkSlenTR1 = 751.0;
   const Float_t AliTRDgeometry::fgkSlenTR2 = 313.5; 
   const Float_t AliTRDgeometry::fgkSlenTR3 = 159.5;  
 
   // The super module side plates
   const Float_t AliTRDgeometry::fgkSMpltT  =   0.2;
-  const Float_t AliTRDgeometry::fgkSMgapT  =   0.5;  
+  //const Float_t AliTRDgeometry::fgkSMgapT  =   0.5;  
 
   // Height of different chamber parts
   // Radiator
@@ -97,6 +95,9 @@ ClassImp(AliTRDgeometry)
   // Horizontal spacing of the chambers
   const Float_t AliTRDgeometry::fgkHspace  =   2.0;
 
+  // Radial distance of the first ROC to the outer plates of the SM
+  const Float_t AliTRDgeometry::fgkVrocsm  =   1.2;
+
   // Thicknesses of different parts of the chamber frame
   // Lower aluminum frame
   const Float_t AliTRDgeometry::fgkCalT    =   0.3;
@@ -126,11 +127,13 @@ ClassImp(AliTRDgeometry)
   const Float_t AliTRDgeometry::fgkAmThick = AliTRDgeometry::fgkCamH;
   const Float_t AliTRDgeometry::fgkXeThick = AliTRDgeometry::fgkDrThick
                                            + AliTRDgeometry::fgkAmThick;
-  const Float_t AliTRDgeometry::fgkCuThick = 0.001
+  const Float_t AliTRDgeometry::fgkCuThick = 0.0072
   const Float_t AliTRDgeometry::fgkSuThick = 0.06; 
   const Float_t AliTRDgeometry::fgkFeThick = 0.0044; 
   const Float_t AliTRDgeometry::fgkCoThick = 0.02;
   const Float_t AliTRDgeometry::fgkWaThick = 0.02;
+  const Float_t AliTRDgeometry::fgkRcThick = 0.0058;
+  const Float_t AliTRDgeometry::fgkRpThick = 0.0632;
 
   //
   // Position of the material layers
@@ -144,6 +147,8 @@ ClassImp(AliTRDgeometry)
   const Float_t AliTRDgeometry::fgkFeZpos  =  0.0322;
   const Float_t AliTRDgeometry::fgkCoZpos  =  0.97;
   const Float_t AliTRDgeometry::fgkWaZpos  =  0.99;
+  const Float_t AliTRDgeometry::fgkRcZpos  =  1.04;
+  const Float_t AliTRDgeometry::fgkRpZpos  =  1.0;
   
   const Double_t AliTRDgeometry::fgkTime0Base = Rmin() + CraHght() + CdrHght() + CamHght()/2.;
   const Float_t  AliTRDgeometry::fgkTime0[6]  = { fgkTime0Base + 0 * (Cheight() + Cspace()), 
@@ -154,14 +159,34 @@ ClassImp(AliTRDgeometry)
                                                   fgkTime0Base + 5 * (Cheight() + Cspace()) };
 
 //_____________________________________________________________________________
-AliTRDgeometry::AliTRDgeometry():AliGeometry()
+AliTRDgeometry::AliTRDgeometry()
+  :AliGeometry()
+  ,fMatrixArray(0)
+  ,fMatrixCorrectionArray(0)
+  ,fMatrixGeo(0)
+
 {
   //
   // AliTRDgeometry default constructor
   //
-  fMatrixArray =0;
-  fMatrixCorrectionArray= 0;
+
+  Init();
+
+}
+
+//_____________________________________________________________________________
+AliTRDgeometry::AliTRDgeometry(const AliTRDgeometry &g)
+  :AliGeometry(g)
+  ,fMatrixArray(g.fMatrixArray)
+  ,fMatrixCorrectionArray(g.fMatrixCorrectionArray)
+  ,fMatrixGeo(g.fMatrixGeo)
+{
+  //
+  // AliTRDgeometry copy constructor
+  //
+
   Init();
+
 }
 
 //_____________________________________________________________________________
@@ -170,8 +195,30 @@ AliTRDgeometry::~AliTRDgeometry()
   //
   // AliTRDgeometry destructor
   //
-  delete fMatrixArray;
-  delete fMatrixCorrectionArray;
+
+  if (fMatrixArray) {
+    delete fMatrixArray;
+    fMatrixArray           = 0;
+  }
+
+  if (fMatrixCorrectionArray) {
+    delete fMatrixCorrectionArray;
+    fMatrixCorrectionArray = 0;
+  }
+
+}
+
+//_____________________________________________________________________________
+AliTRDgeometry &AliTRDgeometry::operator=(const AliTRDgeometry &g)
+{
+  //
+  // Assignment operator
+  //
+
+  if (this != &g) Init();
+
+  return *this;
+
 }
 
 //_____________________________________________________________________________
@@ -180,71 +227,36 @@ void AliTRDgeometry::Init()
   //
   // Initializes the geometry parameter
   //
-  // The maximum number of pads
-  // and the position of pad 0,0,0 
-  // 
-  // chambers seen from the top:
-  //     +----------------------------+
-  //     |                            |
-  //     |                            |      ^
-  //     |                            |  rphi|
-  //     |                            |      |
-  //     |0                           |      | 
-  //     +----------------------------+      +------>
-  //                                             z 
-  // chambers seen from the side:            ^
-  //     +----------------------------+ drift|
-  //     |0                           |      |
-  //     |                            |      |
-  //     +----------------------------+      +------>
-  //                                             z
-  //                                             
-  // IMPORTANT: time bin 0 is now the first one in the drift region 
-  // closest to the readout !!!
-  //
 
   Int_t icham;
   Int_t iplan;
   Int_t isect;
 
   // The outer width of the chambers
-  //
-  // Changed with the introduction of 
-  // the new layer 0. The old layer 6
-  // is removed.
   fCwidth[0] =  90.4;
   fCwidth[1] =  94.8;
   fCwidth[2] =  99.3;
   fCwidth[3] = 103.7;
   fCwidth[4] = 108.1;
   fCwidth[5] = 112.6;
-  // Old layer 6
-  // fCwidth[5] = 117.0;
 
   // The outer lengths of the chambers
   // Includes the spacings between the chambers!
-  // Changed with the introduction of 
-  // the new layer 0. The old layer 6
-  // is removed.
   Float_t length[kNplan][kNcham]   = { { 124.0, 124.0, 110.0, 124.0, 124.0 }
                                     , { 124.0, 124.0, 110.0, 124.0, 124.0 }
                                      , { 131.0, 131.0, 110.0, 131.0, 131.0 }
                                      , { 138.0, 138.0, 110.0, 138.0, 138.0 }
                                      , { 145.0, 145.0, 110.0, 145.0, 145.0 }
                                     , { 147.0, 147.0, 110.0, 147.0, 147.0 } };
-  // Old layer 6
-  //                                 , { 147.0, 147.0, 110.0, 147.0, 147.0 } };
 
   for (icham = 0; icham < kNcham; icham++) {
     for (iplan = 0; iplan < kNplan; iplan++) {
-      fClength[iplan][icham]   = length[iplan][icham];
-      fClengthPH[iplan][icham] = 0.0;
-      fClengthRH[iplan][icham] = 0.0;
+      fClength[iplan][icham] = length[iplan][icham];
     }
   }
 
   // The rotation matrix elements
-  Float_t phi = 0;
+  Float_t phi = 0.0;
   for (isect = 0; isect < fgkNsect; isect++) {
     phi = -2.0 * TMath::Pi() /  (Float_t) fgkNsect * ((Float_t) isect + 0.5);
     fRotA11[isect] = TMath::Cos(phi);
@@ -257,16 +269,819 @@ void AliTRDgeometry::Init()
     fRotB21[isect] = TMath::Sin(phi);
     fRotB22[isect] = TMath::Cos(phi);
   }
+
+  for (isect = 0; isect < fgkNsect; isect++) {
+    SetSMstatus(isect,1);
+  }
  
 }
 
 //_____________________________________________________________________________
-void AliTRDgeometry::CreateGeometry(Int_t* )
+void AliTRDgeometry::CreateGeometry(Int_t *idtmed)
+{
+  //
+  // Create the TRD geometry without hole
+  //
+  //
+  // Names of the TRD volumina (xx = detector number):
+  //
+  //      Volume (Air) wrapping the readout chamber components
+  //        UTxx    includes: UAxx, UDxx, UFxx, UUxx
+  //      Obs:
+  //        UUxx    the services volume has been reduced by 7.42 mm
+  //                in order to allow shifts in radial direction
+  //
+  //      Lower part of the readout chambers (gas volume + radiator)
+  //
+  //        UAxx    Aluminum frames             (Al)
+  //        UBxx    G10 frames                  (C)
+  //        UCxx    Inner volumes               (Air)
+  //
+  //      Upper part of the readout chambers (readout plane + fee)
+  //
+  //        UDxx    G10 frames                  (C)
+  //        UExx    Inner volumes of the G10    (Air)
+  //        UFxx    Aluminum frames             (Al)
+  //        UGxx    Inner volumes of the Al     (Air)
+  //
+  //      Inner material layers
+  //
+  //        UHxx    Radiator                    (Rohacell)
+  //        UIxx    Entrance window             (Mylar)
+  //        UJxx    Drift volume                (Xe/CO2)
+  //        UKxx    Amplification volume        (Xe/CO2)
+  //        ULxx    Pad plane                   (Cu)
+  //        UMxx    Support structure           (Rohacell)
+  //        UNxx    ROB base material           (C)
+  //        UOxx    ROB copper                  (Cu)
+  //
+
+  const Int_t kNparTrd = 4;
+  const Int_t kNparCha = 3;
+
+  Float_t xpos;
+  Float_t ypos;
+  Float_t zpos;
+
+  Float_t parTrd[kNparTrd];
+  Float_t parCha[kNparCha];
+
+  Char_t  cTagV[6];
+  Char_t  cTagM[5];
+
+  // The TRD mother volume for one sector (Air), full length in z-direction
+  // Provides material for side plates of super module
+  parTrd[0] = fgkSwidth1/2.0;
+  parTrd[1] = fgkSwidth2/2.0;
+  parTrd[2] = fgkSlenTR1/2.0;
+  parTrd[3] = fgkSheight/2.0;
+  gMC->Gsvolu("UTR1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
+
+  // The outer aluminum plates of the super module (Al)
+  parTrd[0] = fgkSwidth1/2.0;
+  parTrd[1] = fgkSwidth2/2.0;
+  parTrd[2] = fgkSlenTR1/2.0;
+  parTrd[3] = fgkSheight/2.0;
+  gMC->Gsvolu("UTS1","TRD1",idtmed[1301-1],parTrd,kNparTrd);
+
+  // The inner part of the TRD mother volume for one sector (Air), 
+  // full length in z-direction
+  parTrd[0] = fgkSwidth1/2.0 - fgkSMpltT;
+  parTrd[1] = fgkSwidth2/2.0 - fgkSMpltT;
+  parTrd[2] = fgkSlenTR1/2.0;
+  parTrd[3] = fgkSheight/2.0 - fgkSMpltT;
+  gMC->Gsvolu("UTI1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
+
+  for (Int_t icham = 0; icham < kNcham; icham++) {
+    for (Int_t iplan = 0; iplan < kNplan; iplan++) {  
+
+      Int_t iDet = GetDetectorSec(iplan,icham);
+
+      // The lower part of the readout chambers (gas volume + radiator) 
+      // The aluminum frames 
+      sprintf(cTagV,"UA%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0;
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
+      parCha[2] = fgkCraH/2.0 + fgkCdrH/2.0;
+      fChamberUAboxd[iDet][0] = parCha[0];
+      fChamberUAboxd[iDet][1] = parCha[1];
+      fChamberUAboxd[iDet][2] = parCha[2];
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
+      // The G10 frames 
+      sprintf(cTagV,"UB%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 - fgkCalT; 
+      parCha[1] = -1.0;
+      parCha[2] = -1.0;
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha);
+      // The inner part (air)
+      sprintf(cTagV,"UC%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 - fgkCalT - fgkCclsT; 
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0- fgkCclfT;
+      parCha[2] = -1.0;
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
+
+      // The upper part of the readout chambers (readout plane)
+      // The G10 frames
+      sprintf(cTagV,"UD%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 + fgkCroW;
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
+      parCha[2] = fgkCamH/2.0;
+      fChamberUDboxd[iDet][0] = parCha[0];
+      fChamberUDboxd[iDet][1] = parCha[1];
+      fChamberUDboxd[iDet][2] = parCha[2];
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha);
+      // The inner part of the G10 frame (air)
+      sprintf(cTagV,"UE%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 + fgkCroW - fgkCcuT; 
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0- fgkCcuT;
+      parCha[2] = -1.;
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
+      // The aluminum frames
+      sprintf(cTagV,"UF%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 + fgkCroW;
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
+      parCha[2] = fgkCroH/2.0;
+      fChamberUFboxd[iDet][0] = parCha[0];
+      fChamberUFboxd[iDet][1] = parCha[1];
+      fChamberUFboxd[iDet][2] = parCha[2];
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
+      // The inner part of the aluminum frames
+      sprintf(cTagV,"UG%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 + fgkCroW - fgkCauT; 
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0- fgkCauT;
+      parCha[2] = -1.0;
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
+
+      // The material layers inside the chambers
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      // Rohacell layer (radiator)
+      parCha[2] = fgkRaThick/2.0;
+      sprintf(cTagV,"UH%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1315-1],parCha,kNparCha);
+      // Mylar layer (entrance window + HV cathode) 
+      parCha[2] = fgkMyThick/2.0;
+      sprintf(cTagV,"UI%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1308-1],parCha,kNparCha);
+      // Xe/Isobutane layer (drift volume) 
+      parCha[2] = fgkDrThick/2.0;
+      sprintf(cTagV,"UJ%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha);
+      // Xe/Isobutane layer (amplification volume)
+      parCha[2] = fgkAmThick/2.0;
+      sprintf(cTagV,"UK%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha);  
+      // Cu layer (pad plane)
+      parCha[2] = fgkCuThick/2.0;
+      sprintf(cTagV,"UL%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1305-1],parCha,kNparCha);
+      // G10 layer (support structure / honeycomb)
+      parCha[2] = fgkSuThick/2.0;
+      sprintf(cTagV,"UM%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha);
+      // G10 layer (readout board)
+      parCha[2] = fgkRpThick/2;
+      sprintf(cTagV,"UN%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha);
+      // Cu layer (readout board)
+      parCha[2] = fgkRcThick/2.0;
+      sprintf(cTagV,"UO%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1306-1],parCha,kNparCha);
+
+      // Position the layers in the chambers
+      xpos = 0.0;
+      ypos = 0.0;
+      // Lower part
+      // Rohacell layer (radiator)
+      zpos = fgkRaZpos;
+      sprintf(cTagV,"UH%02d",iDet);
+      sprintf(cTagM,"UC%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Mylar layer (entrance window + HV cathode)   
+      zpos = fgkMyZpos;
+      sprintf(cTagV,"UI%02d",iDet);
+      sprintf(cTagM,"UC%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Xe/Isobutane layer (drift volume) 
+      zpos = fgkDrZpos;
+      sprintf(cTagV,"UJ%02d",iDet);
+      sprintf(cTagM,"UC%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Upper part
+      // Xe/Isobutane layer (amplification volume)
+      zpos = fgkAmZpos;
+      sprintf(cTagV,"UK%02d",iDet);
+      sprintf(cTagM,"UE%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Readout part
+      // Cu layer (pad plane)
+      zpos = fgkCuZpos; 
+      sprintf(cTagV,"UL%02d",iDet);
+      sprintf(cTagM,"UG%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // G10 layer (support structure)
+      zpos = fgkSuZpos;
+      sprintf(cTagV,"UM%02d",iDet);
+      sprintf(cTagM,"UG%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // G10 layer (readout board)
+      zpos = fgkRpZpos;
+      sprintf(cTagV,"UN%02d",iDet);
+      sprintf(cTagM,"UG%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Cu layer (readout board)
+      zpos = fgkRcZpos;
+      sprintf(cTagV,"UO%02d",iDet);
+      sprintf(cTagM,"UG%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+
+      // Position the inner volumes of the chambers in the frames
+      xpos = 0.0;
+      ypos = 0.0;
+      zpos = 0.0;
+      // The inside of the lower G10 frame
+      sprintf(cTagV,"UC%02d",iDet);
+      sprintf(cTagM,"UB%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // The lower G10 frame inside the aluminum frame
+      sprintf(cTagV,"UB%02d",iDet);
+      sprintf(cTagM,"UA%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // The inside of the upper G10 frame
+      sprintf(cTagV,"UE%02d",iDet);
+      sprintf(cTagM,"UD%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // The inside of the upper aluminum frame
+      sprintf(cTagV,"UG%02d",iDet);
+      sprintf(cTagM,"UF%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");      
+
+      // Position the frames of the chambers in the TRD mother volume
+      xpos  = 0.0;
+      ypos  = - fClength[iplan][0] - fClength[iplan][1] - fClength[iplan][2]/2.0;
+      for (Int_t ic = 0; ic < icham; ic++) {
+        ypos += fClength[iplan][ic];        
+      }
+      ypos += fClength[iplan][icham]/2.0;
+      zpos  = fgkVrocsm + fgkCraH/2.0 + fgkCdrH/2.0 - fgkSheight/2.0 
+            + iplan * (fgkCH + fgkVspace);
+      // The lower aluminum frame, radiator + drift region
+      sprintf(cTagV,"UA%02d",iDet);      
+      fChamberUAorig[iDet][0] = xpos;
+      fChamberUAorig[iDet][1] = ypos;
+      fChamberUAorig[iDet][2] = zpos;
+      // The upper G10 frame, amplification region
+      sprintf(cTagV,"UD%02d",iDet);
+      zpos += fgkCamH/2.0 + fgkCraH/2.0 + fgkCdrH/2.0;      
+      fChamberUDorig[iDet][0] = xpos;
+      fChamberUDorig[iDet][1] = ypos;
+      fChamberUDorig[iDet][2] = zpos;
+      // The upper aluminum frame
+      sprintf(cTagV,"UF%02d",iDet);
+      zpos += fgkCroH/2.0 + fgkCamH/2.0;      
+      fChamberUForig[iDet][0] = xpos;
+      fChamberUForig[iDet][1] = ypos;
+      fChamberUForig[iDet][2] = zpos;
+
+    }
+  }
+
+  // Create the volumes of the super module frame
+  CreateFrame(idtmed);
+
+  // Create the volumes of the services
+  CreateServices(idtmed);
+  
+  for (Int_t icham = 0; icham < kNcham; icham++) {
+    for (Int_t iplan = 0; iplan < kNplan; iplan++) {  
+      GroupChamber(iplan,icham,idtmed);
+    }
+  }
+  
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = 0.0;
+  gMC->Gspos("UTI1",1,"UTS1",xpos,ypos,zpos,0,"ONLY");
+
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = 0.0;
+  gMC->Gspos("UTS1",1,"UTR1",xpos,ypos,zpos,0,"ONLY");
+
+  // Put the TRD volumes into the space frame mother volumes
+  // if enabled via status flag
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = 0.0;
+  for (Int_t isect = 0; isect < kNsect; isect++) {
+    if (fSMstatus[isect]) {
+      sprintf(cTagV,"BTRD%d",isect);
+      gMC->Gspos("UTR1",1,cTagV,xpos,ypos,zpos,0,"ONLY");
+    }
+  }
+
+}
+
+//_____________________________________________________________________________
+void AliTRDgeometry::CreateFrame(Int_t *idtmed)
 {
   //
-  // Create TRD geometry
+  // Create the geometry of the frame of the supermodule
+  //
+  // Names of the TRD services volumina
+  //
+  //        USRL    Support rails for the chambers (Al)
+  //        USxx    Support cross bars between the chambers (Al)
+  //
+
+  Int_t   iplan = 0;
+
+  Float_t xpos  = 0.0;
+  Float_t ypos  = 0.0;
+  Float_t zpos  = 0.0;
+
+  Char_t  cTagV[5];
+
+  //
+  // The chamber support rails
   //
 
+  const Float_t kSRLwid  = 2.00;
+  const Float_t kSRLhgt  = 2.3;
+  const Float_t kSRLdst  = 0.6;
+  const Int_t   kNparSRL = 3;
+  Float_t parSRL[kNparSRL];
+  parSRL[0] = kSRLwid/2.0;
+  parSRL[1] = fgkSlenTR1/2.;
+  parSRL[2] = kSRLhgt/2.0;
+  gMC->Gsvolu("USRL","BOX ",idtmed[1301-1],parSRL,kNparSRL);
+
+  xpos  = 0.0;
+  ypos  = 0.0;
+  zpos  = 0.0;
+  for (iplan = 0; iplan < kNplan; iplan++) {
+        xpos  = fCwidth[iplan]/2.0 + kSRLwid/2.0 + kSRLdst;
+    ypos  = 0.0;
+    zpos  = fgkVrocsm + fgkCraH + fgkCdrH - fgkSheight/2.0 - kSRLhgt/2.0 
+          + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos("USRL",iplan+1         ,"UTI1", xpos,ypos,zpos,0,"ONLY");
+    gMC->Gspos("USRL",iplan+1+  kNplan,"UTI1",-xpos,ypos,zpos,0,"ONLY");
+  }
+
+  //
+  // The cross bars between the chambers
+  //
+
+  const Float_t kSCBwid  = 1.0;
+  const Int_t   kNparSCB = 3;
+  Float_t parSCB[kNparSCB];
+  parSCB[1] = kSCBwid/2.0;
+  parSCB[2] = fgkCH/2.0;
+
+  xpos  = 0.0;
+  ypos  = 0.0;
+  zpos  = 0.0;
+  for (iplan = 0; iplan < kNplan; iplan++) {
+
+    parSCB[0] = fCwidth[iplan]/2.0 + kSRLdst/2.0;
+
+    sprintf(cTagV,"US0%01d",iplan);
+    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
+    xpos  = 0.0;
+    ypos  = fgkSlenTR1/2.0 - kSCBwid/2.0;
+    zpos  = fgkVrocsm + fgkCH/2.0 - fgkSheight/2.0 + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+
+    sprintf(cTagV,"US1%01d",iplan);
+    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
+    xpos  = 0.0;
+    ypos  = fClength[iplan][2]/2.0 + fClength[iplan][1];
+    zpos  = fgkVrocsm + fgkCH/2.0 - fgkSheight/2.0 + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+
+    sprintf(cTagV,"US2%01d",iplan);
+    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
+    xpos  = 0.0;
+    ypos  = fClength[iplan][2]/2.0;
+    zpos  = fgkVrocsm + fgkCH/2.0 - fgkSheight/2.0 + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+
+    sprintf(cTagV,"US3%01d",iplan);
+    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
+    xpos  = 0.0;
+    ypos  = - fClength[iplan][2]/2.0;
+    zpos  = fgkVrocsm + fgkCH/2.0 - fgkSheight/2.0 + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+
+    sprintf(cTagV,"US4%01d",iplan);
+    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
+    xpos  = 0.0;
+    ypos  = - fClength[iplan][2]/2.0 - fClength[iplan][1];
+    zpos  = fgkVrocsm + fgkCH/2.0 - fgkSheight/2.0 + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+
+    sprintf(cTagV,"US5%01d",iplan);
+    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
+    xpos  = 0.0;
+    ypos  = - fgkSlenTR1/2.0 + kSCBwid/2.0;
+    zpos  = fgkVrocsm + fgkCH/2.0 - fgkSheight/2.0 + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+
+  }
+
+}
+
+//_____________________________________________________________________________
+void AliTRDgeometry::CreateServices(Int_t *idtmed)
+{
+  //
+  // Create the geometry of the services
+  //
+  // Names of the TRD services volumina
+  //
+  //        UTCL    Cooling arterias (Al)
+  //        UTCW    Cooling arterias (Water)
+  //        UUxx    Volumes for the services at the chambers (Air)
+  //        UTPW    Power bars       (Cu)
+  //        UTCP    Cooling pipes    (Al)
+  //        UTCH    Cooling pipes    (Water)
+  //        UTPL    Power lines      (Cu)
+  //        UMCM    Readout MCMs     (G10/Cu/Si)
+  //
+
+  Int_t   iplan = 0;
+  Int_t   icham = 0;
+
+  Float_t xpos  = 0.0;
+  Float_t ypos  = 0.0;
+  Float_t zpos  = 0.0;
+
+  Char_t  cTagV[5];
+
+  // The rotation matrices
+  const Int_t kNmatrix = 4;
+  Int_t   matrix[kNmatrix];
+  gMC->Matrix(matrix[0], 100.0,   0.0,  90.0,  90.0,  10.0,   0.0);
+  gMC->Matrix(matrix[1],  80.0,   0.0,  90.0,  90.0,  10.0, 180.0);
+  gMC->Matrix(matrix[2],   0.0,   0.0,  90.0,  90.0,  90.0,   0.0);
+  gMC->Matrix(matrix[3], 180.0,   0.0,  90.0,  90.0,  90.0, 180.0);
+
+  AliTRDCommonParam *commonParam = AliTRDCommonParam::Instance();
+  if (!commonParam) {
+    AliError("Could not get common parameters\n");
+    return;
+  }
+    
+  //
+  // The cooling arterias
+  //
+
+  // Width of the cooling arterias
+  const Float_t kCOLwid  =  0.5; 
+  // Height of the cooling arterias
+  const Float_t kCOLhgt  =  5.5;
+  // Positioning of the cooling 
+  const Float_t kCOLposx =  1.6;
+  const Float_t kCOLposz = -0.2;
+  // Thickness of the walls of the cooling arterias
+  const Float_t kCOLthk  =  0.1;
+  const Int_t   kNparCOL =  3;
+  Float_t parCOL[kNparCOL];
+  parCOL[0]  = kCOLwid/2.0;
+  parCOL[1]  = fgkSlenTR1/2.0;
+  parCOL[2]  = kCOLhgt/2.0;
+  gMC->Gsvolu("UTCL","BOX ",idtmed[1324-1],parCOL,kNparCOL);
+  parCOL[0] -= kCOLthk;
+  parCOL[1]  = fgkSlenTR1/2.0;
+  parCOL[2] -= kCOLthk;
+  gMC->Gsvolu("UTCW","BOX ",idtmed[1314-1],parCOL,kNparCOL);
+
+  xpos  = 0.0;
+  ypos  = 0.0;
+  zpos  = 0.0;
+  gMC->Gspos("UTCW",1,"UTCL", xpos,ypos,zpos,0,"ONLY");
+
+  for (iplan = 1; iplan < kNplan; iplan++) { 
+
+    xpos  = fCwidth[iplan]/2.0 + kCOLwid/2.0 + kCOLposx;
+    ypos  = 0.0;
+    zpos  = fgkVrocsm + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz 
+          + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos("UTCL",iplan       ,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY");
+    gMC->Gspos("UTCL",iplan+kNplan,"UTI1",-xpos,ypos,zpos,matrix[1],"ONLY");
+
+  }
+
+  // The upper most layer (reaching into TOF acceptance)
+  xpos  = fCwidth[5]/2.0 - kCOLhgt/2.0 - 2.3;
+  ypos  = 0.0;
+  zpos  = fgkVrocsm + kCOLwid/2.0 - fgkSheight/2.0
+        + 6.0*fgkCH + 6.0*fgkVspace;
+                    
+  gMC->Gspos("UTCL",6       ,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY");
+  gMC->Gspos("UTCL",6+kNplan,"UTI1",-xpos,ypos,zpos,matrix[3],"ONLY");
+
+  //
+  // The power bars
+  //
+
+  const Float_t kPWRwid  =  0.6;
+  const Float_t kPWRhgt  =  4.5;
+  const Float_t kPWRposx =  1.05;
+  const Float_t kPWRposz =  0.9;
+  const Int_t   kNparPWR =  3;
+  Float_t parPWR[kNparPWR];
+  parPWR[0] = kPWRwid/2.0;
+  parPWR[1] = fgkSlenTR1/2.0;
+  parPWR[2] = kPWRhgt/2.0;
+  gMC->Gsvolu("UTPW","BOX ",idtmed[1325-1],parPWR,kNparPWR);
+  
+  for (iplan = 1; iplan < kNplan; iplan++) { 
+    
+    xpos  = fCwidth[iplan]/2.0 + kPWRwid/2.0 + kPWRposx;
+    ypos  = 0.0;
+    zpos  = fgkVrocsm + kPWRhgt/2.0 - fgkSheight/2.0 + kPWRposz 
+          + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos("UTPW",iplan       ,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY");
+    gMC->Gspos("UTPW",iplan+kNplan,"UTI1",-xpos,ypos,zpos,matrix[1],"ONLY");
+
+  }
+
+  // The upper most layer (reaching into TOF acceptance)
+  xpos  = fCwidth[5]/2.0 + kPWRhgt/2.0 - 2.3;
+  ypos  = 0.0;
+  zpos  = fgkVrocsm + kPWRwid/2.0 - fgkSheight/2.0
+        + 6.0*fgkCH + 6.0*fgkVspace;
+  gMC->Gspos("UTPW",6       ,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY");
+  gMC->Gspos("UTPW",6+kNplan,"UTI1",-xpos,ypos,zpos,matrix[3],"ONLY");
+
+  //
+  // The volumes for the services at the chambers
+  //
+
+  const Int_t kNparServ = 3;
+  Float_t parServ[kNparServ];
+
+  for (icham = 0; icham < kNcham; icham++) {
+    for (iplan = 0; iplan < kNplan; iplan++) {
+
+      Int_t iDet = GetDetectorSec(iplan,icham);
+
+      sprintf(cTagV,"UU%02d",iDet);
+      parServ[0] = fCwidth[iplan]/2.0;
+      parServ[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
+      // ???? !!!!!!!!!!!!!!      
+      parServ[2] = fgkVspace/2.0 - 0.742/2.0; 
+      fChamberUUboxd[iDet][0] = parServ[0];
+      fChamberUUboxd[iDet][1] = parServ[1];
+      fChamberUUboxd[iDet][2] = parServ[2];
+      gMC->Gsvolu(cTagV,"BOX",idtmed[1302-1],parServ,kNparServ);
+
+      xpos  = 0.;
+      ypos  = - fClength[iplan][0] - fClength[iplan][1] - fClength[iplan][2]/2.0;
+      for (Int_t ic = 0; ic < icham; ic++) {
+        ypos += fClength[iplan][ic];        
+      }
+      ypos += fClength[iplan][icham]/2.0;
+      zpos  = fgkVrocsm + fgkCH + fgkVspace/2.0 - fgkSheight/2.0 
+            + iplan * (fgkCH + fgkVspace);
+      zpos -= 0.742/2.0;
+      fChamberUUorig[iDet][0] = xpos;
+      fChamberUUorig[iDet][1] = ypos;
+      fChamberUUorig[iDet][2] = zpos;
+
+    }
+  }
+
+  //
+  // The cooling pipes inside the service volumes
+  //
+
+  const Int_t kNparTube = 3;
+  Float_t parTube[kNparTube];
+  // The aluminum pipe for the cooling
+  parTube[0] = 0.0;
+  parTube[1] = 0.0;
+  parTube[2] = 0.0;
+  gMC->Gsvolu("UTCP","TUBE",idtmed[1324-1],parTube,0);
+  // The cooling water
+  parTube[0] =  0.0;
+  parTube[1] =  0.2/2.0;
+  parTube[2] = -1.;
+  gMC->Gsvolu("UTCH","TUBE",idtmed[1314-1],parTube,kNparTube);
+  // Water inside the cooling pipe
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = 0.0;
+  gMC->Gspos("UTCH",1,"UTCP",xpos,ypos,zpos,0,"ONLY");
+
+  // Position the cooling pipes in the mother volume
+  const Int_t kNpar = 3;
+  Float_t par[kNpar];
+  for (icham = 0; icham < kNcham;   icham++) {
+    for (iplan = 0; iplan < kNplan; iplan++) {
+      Int_t   iDet    = GetDetectorSec(iplan,icham);
+      Int_t   iCopy   = GetDetector(iplan,icham,0) * 100;
+      Int_t   nMCMrow = commonParam->GetRowMax(iplan,icham,0);
+      Float_t ySize   = (GetChamberLength(iplan,icham) - 2.0*fgkRpadW) 
+                      / ((Float_t) nMCMrow);
+      sprintf(cTagV,"UU%02d",iDet);
+      for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
+        xpos   = 0.0;
+        ypos   = (0.5 + iMCMrow) * ySize - 1.9 
+               - fClength[iplan][icham]/2.0 + fgkHspace/2.0;
+        zpos   = 0.0 + 0.742/2.0;                 
+        par[0] = 0.0;
+        par[1] = 0.3/2.0; // Thickness of the cooling pipes
+        par[2] = fCwidth[iplan]/2.0;
+        gMC->Gsposp("UTCP",iCopy+iMCMrow,cTagV,xpos,ypos,zpos
+                          ,matrix[2],"ONLY",par,kNpar);
+      }
+    }
+  }
+
+  //
+  // The power lines
+  //
+
+  // The copper power lines
+  parTube[0] = 0.0;
+  parTube[1] = 0.0;
+  parTube[2] = 0.0;
+  gMC->Gsvolu("UTPL","TUBE",idtmed[1305-1],parTube,0);
+
+  // Position the power lines in the mother volume
+  for (icham = 0; icham < kNcham;   icham++) {
+    for (iplan = 0; iplan < kNplan; iplan++) {
+      Int_t   iDet    = GetDetectorSec(iplan,icham);
+      Int_t   iCopy   = GetDetector(iplan,icham,0) * 100;
+      Int_t   nMCMrow = commonParam->GetRowMax(iplan,icham,0);
+      Float_t ySize   = (GetChamberLength(iplan,icham) - 2.0*fgkRpadW) 
+                      / ((Float_t) nMCMrow);
+      sprintf(cTagV,"UU%02d",iDet);
+      for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
+        xpos   = 0.0;
+        ypos   = (0.5 + iMCMrow) * ySize - 1.0 
+               - fClength[iplan][icham]/2.0 + fgkHspace/2.0;
+        zpos   = -0.4 + 0.742/2.0;
+        par[0] = 0.0;
+        par[1] = 0.2/2.0; // Thickness of the power lines
+        par[2] = fCwidth[iplan]/2.0;
+        gMC->Gsposp("UTPL",iCopy+iMCMrow,cTagV,xpos,ypos,zpos
+                          ,matrix[2],"ONLY",par,kNpar);
+      }
+    }
+  }
+
+  //
+  // The MCMs
+  //
+
+  // The mother volume for the MCMs (air)
+  const Int_t kNparMCM = 3;
+  Float_t parMCM[kNparMCM];
+  parMCM[0] = 3.0/2.0;
+  parMCM[1] = 3.0/2.0;
+  parMCM[2] = 0.14/2.0;
+  gMC->Gsvolu("UMCM","BOX",idtmed[1302-1],parMCM,kNparMCM);
+
+  // The MCM carrier G10 layer
+  parMCM[0] = 3.0/2.0;
+  parMCM[1] = 3.0/2.0;
+  parMCM[2] = 0.1/2.0;
+  gMC->Gsvolu("UMC1","BOX",idtmed[1319-1],parMCM,kNparMCM);
+  // The MCM carrier Cu layer
+  parMCM[0] = 3.0/2.0;
+  parMCM[1] = 3.0/2.0;
+  parMCM[2] = 0.0162/2.0;
+  gMC->Gsvolu("UMC2","BOX",idtmed[1318-1],parMCM,kNparMCM);
+  // The silicon of the chips
+  parMCM[0] = 3.0/2.0;
+  parMCM[1] = 3.0/2.0;
+  parMCM[2] = 0.003/2.0;
+  gMC->Gsvolu("UMC3","BOX",idtmed[1320-1],parMCM,kNparMCM);
+
+  // Put the MCM material inside the MCM mother volume
+  xpos  =  0.0;
+  ypos  =  0.0;
+  zpos  = -0.07 + 0.1/2.0;
+  gMC->Gspos("UMC1",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
+  zpos +=  0.1/2.0   + 0.0162/2.0;
+  gMC->Gspos("UMC2",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
+  zpos +=  0.00162/2 + 0.003/2.0;
+  gMC->Gspos("UMC3",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
+
+  // Position the MCMs in the mother volume
+  for (icham = 0; icham < kNcham;   icham++) {
+    for (iplan = 0; iplan < kNplan; iplan++) {
+      Int_t   iDet    = GetDetectorSec(iplan,icham);
+      Int_t   iCopy   = GetDetector(iplan,icham,0) * 1000;
+      Int_t   nMCMrow = commonParam->GetRowMax(iplan,icham,0);
+      Float_t ySize   = (GetChamberLength(iplan,icham) - 2.0*fgkRpadW) 
+                      / ((Float_t) nMCMrow);
+      Int_t   nMCMcol = 8;
+      Float_t xSize   = (GetChamberWidth(iplan) - 2.0* fgkCpadW)
+                     / ((Float_t) nMCMcol);
+      sprintf(cTagV,"UU%02d",iDet);
+      for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
+        for (Int_t iMCMcol = 0; iMCMcol < nMCMcol; iMCMcol++) {
+          xpos   = (0.5 + iMCMcol) * xSize + 1.0 
+                 - fCwidth[iplan]/2.0;
+          ypos   = (0.5 + iMCMrow) * ySize + 1.0 
+                 - fClength[iplan][icham]/2.0 + fgkHspace/2.0;
+          zpos   = -0.4 + 0.742/2.0;
+          par[0] = 0.0;
+          par[1] = 0.2/2.0; // Thickness of the power lines
+          par[2] = fCwidth[iplan]/2.0;
+          gMC->Gspos("UMCM",iCopy+iMCMrow*10+iMCMcol,cTagV
+                           ,xpos,ypos,zpos,0,"ONLY");
+       }
+      }
+
+    }
+  }
+
+}
+
+//_____________________________________________________________________________
+void AliTRDgeometry::GroupChamber(Int_t iplan, Int_t icham, Int_t *idtmed)
+{
+  //
+  // Group volumes UA, UD, UF, UU in a single chamber (Air)
+  // UA, UD, UF, UU are boxes
+  // UT will be a box
+  //
+
+  const Int_t kNparCha = 3;
+
+  Int_t iDet = GetDetectorSec(iplan,icham);
+
+  Float_t xyzMin[3];
+  Float_t xyzMax[3];
+  Float_t xyzOrig[3];
+  Float_t xyzBoxd[3];
+
+  Char_t  cTagV[5];
+  Char_t  cTagM[5];
+
+  for (Int_t i = 0; i < 3; i++) {
+    xyzMin[i] = +9999.0; 
+    xyzMax[i] = -9999.0;
+  }
+
+  for (Int_t i = 0; i < 3; i++) {
+
+    xyzMin[i] = TMath::Min(xyzMin[i],fChamberUAorig[iDet][i]-fChamberUAboxd[iDet][i]);
+    xyzMax[i] = TMath::Max(xyzMax[i],fChamberUAorig[iDet][i]+fChamberUAboxd[iDet][i]);
+
+    xyzMin[i] = TMath::Min(xyzMin[i],fChamberUDorig[iDet][i]-fChamberUDboxd[iDet][i]);
+    xyzMax[i] = TMath::Max(xyzMax[i],fChamberUDorig[iDet][i]+fChamberUDboxd[iDet][i]);
+
+    xyzMin[i] = TMath::Min(xyzMin[i],fChamberUForig[iDet][i]-fChamberUFboxd[iDet][i]);
+    xyzMax[i] = TMath::Max(xyzMax[i],fChamberUForig[iDet][i]+fChamberUFboxd[iDet][i]);
+
+    xyzMin[i] = TMath::Min(xyzMin[i],fChamberUUorig[iDet][i]-fChamberUUboxd[iDet][i]);
+    xyzMax[i] = TMath::Max(xyzMax[i],fChamberUUorig[iDet][i]+fChamberUUboxd[iDet][i]);
+
+    xyzOrig[i] = 0.5*(xyzMax[i]+xyzMin[i]);
+    xyzBoxd[i] = 0.5*(xyzMax[i]-xyzMin[i]);
+
+  }
+  
+  sprintf(cTagM,"UT%02d",iDet);
+  gMC->Gsvolu(cTagM,"BOX ",idtmed[1302-1],xyzBoxd,kNparCha);
+
+  sprintf(cTagV,"UA%02d",iDet);
+  gMC->Gspos(cTagV,1,cTagM,
+            fChamberUAorig[iDet][0]-xyzOrig[0],
+            fChamberUAorig[iDet][1]-xyzOrig[1],
+            fChamberUAorig[iDet][2]-xyzOrig[2],
+            0,"ONLY");
+
+  sprintf(cTagV,"UD%02d",iDet);
+  gMC->Gspos(cTagV,1,cTagM,
+            fChamberUDorig[iDet][0]-xyzOrig[0],
+            fChamberUDorig[iDet][1]-xyzOrig[1],
+            fChamberUDorig[iDet][2]-xyzOrig[2],
+            0,"ONLY");
+
+  sprintf(cTagV,"UF%02d",iDet);
+  gMC->Gspos(cTagV,1,cTagM,
+            fChamberUForig[iDet][0]-xyzOrig[0],
+            fChamberUForig[iDet][1]-xyzOrig[1],
+            fChamberUForig[iDet][2]-xyzOrig[2],
+            0,"ONLY");
+  
+  sprintf(cTagV,"UU%02d",iDet);
+  gMC->Gspos(cTagV,1,cTagM,
+             fChamberUUorig[iDet][0]-xyzOrig[0],
+             fChamberUUorig[iDet][1]-xyzOrig[1],
+             fChamberUUorig[iDet][2]-xyzOrig[2],
+             0,"ONLY");
+
+  sprintf(cTagV,"UT%02d",iDet);
+  gMC->Gspos(cTagV,1,"UTI1",xyzOrig[0],xyzOrig[1],xyzOrig[2],0,"ONLY");
+
 }
 
 //_____________________________________________________________________________
@@ -296,12 +1111,16 @@ Bool_t AliTRDgeometry::Local2Global(Int_t iplan, Int_t icham, Int_t isect
   //
 
   AliTRDCommonParam* commonParam = AliTRDCommonParam::Instance();
-  if (!commonParam)
+  if (!commonParam) {
+    AliError("Could not get common parameters\n");
     return kFALSE;
+  }
 
   AliTRDcalibDB* calibration = AliTRDcalibDB::Instance();
-  if (!calibration)
+  if (!calibration) {
+    AliError("Could not get calibration data\n");
     return kFALSE;  
+  }
   
   AliTRDpadPlane *padPlane = commonParam->GetPadPlane(iplan,icham);
 
@@ -315,7 +1134,8 @@ Bool_t AliTRDgeometry::Local2Global(Int_t iplan, Int_t icham, Int_t isect
 
   Double_t  rot[3];
   rot[0] = time0 - (timeSlice - calibration->GetT0(idet, col, row))
-      * calibration->GetVdrift(idet, col, row)/calibration->GetSamplingFrequency();
+         * calibration->GetVdrift(idet, col, row)
+         / calibration->GetSamplingFrequency();
   rot[1] = padPlane->GetColPos(col) - 0.5 * padPlane->GetColSize(col);
   rot[2] = padPlane->GetRowPos(row) - 0.5 * padPlane->GetRowSize(row);
 
@@ -326,7 +1146,7 @@ Bool_t AliTRDgeometry::Local2Global(Int_t iplan, Int_t icham, Int_t isect
 
 //_____________________________________________________________________________
 Bool_t AliTRDgeometry::Global2Local(Int_t mode, Double_t *local, Double_t *global
-                                   , Int_t* index) const
+                                  , Int_t* index) const
 {
   //
   // Converts local pad-coordinates (row,col,time) into 
@@ -336,30 +1156,17 @@ Bool_t AliTRDgeometry::Global2Local(Int_t mode, Double_t *local, Double_t *globa
   // index[1] = chamber number
   // index[2] = sector number
   //
-  // mode=0  - local coordinate in y, z,             x - rotated global   
-  // mode=2  - local coordinate in pad, and pad row, x - rotated global
+  // mode = 0  - local coordinate in y, z,             x - rotated global   
   //
 
-  //Int_t    idet    = GetDetector(iplan,icham,isect); // Detector number
-  Int_t    idet      = GetDetector(index[0],index[1],index[2]); // Detector number
+  Int_t idet = GetDetector(index[0],index[1],index[2]); // Detector number
   RotateBack(idet,global,local);
-  if (mode==0) return kTRUE;
-  //
-  //  Float_t  row0      = par->GetRow0(iplan,icham,isect);
-  //Float_t  col0      = par->GetCol0(iplan);
-  //Float_t  time0     = GetTime0(iplan);
-  //
-  // mode 1 to be implemented later
-  // calculate (x,y,z) position in time bin pad row pad
-  //
-  //rot[0] = time0 - (timeSlice - par->GetTimeBefore()) 
-  //       * par->GetDriftVelocity()/par->GetSamplingFrequency();
-  //rot[1] = col0  + padCol                    
-  //       * par->GetColPadSize(iplan);
-  //rot[2] = row0  + padRow                    
-  //       * par->GetRowPadSize(iplan,icham,isect);
 
-  return kTRUE;
+  if (mode == 0) {
+    return kTRUE;
+  }
+
+  return kFALSE;
 
 }
 
@@ -376,44 +1183,51 @@ Bool_t AliTRDgeometry::Global2Detector(Double_t global[3], Int_t index[3])
   // index[1] = chamber number
   // index[2] = sector number
   //
+
   //
   // Find sector
   //
   Float_t fi = TMath::ATan2(global[1],global[0]);
-  if (fi<0) fi += 2*TMath::Pi();
-  index[2] = fgkNsect-1-TMath::Nint((fi - GetAlpha()/2.)/GetAlpha());
+  if (fi < 0) {
+    fi += 2.0 * TMath::Pi();
+  }
+  index[2] = fgkNsect - 1 - TMath::Nint((fi - GetAlpha()/2.0) / GetAlpha());
+
   //
   // Find plane
   //
   Float_t locx = global[0] * fRotA11[index[2]] + global[1] * fRotA12[index[2]];  
   index[0] = 0;
   Float_t max = locx - GetTime0(0);
-  for (Int_t iplane=1; iplane<fgkNplan;iplane++){
+  for (Int_t iplane = 1; iplane < fgkNplan; iplane++) {
     Float_t dist = TMath::Abs(locx - GetTime0(iplane));
-    if (dist < max){
+    if (dist < max) {
       index[0] = iplane;
-      max = dist;
+      max      = dist;
     }
   }
+
   //
   // Find chamber
   //
-  if (TMath::Abs(global[2]) < 0.5*GetChamberLength(index[0],2)){
-    index[1]=2;
-  }else{
+  if (TMath::Abs(global[2]) < 0.5*GetChamberLength(index[0],2)) {
+    index[1] = 2;
+  }
+  else {
     Double_t localZ = global[2];
-    if (global[2]>0){
-      localZ -= 0.5*(GetChamberLength(index[0],2)+GetChamberLength(index[0],1));
-      index[1] = (TMath::Abs(localZ) < 0.5*GetChamberLength(index[0],3)) ? 1:0;
+    if (global[2] > 0.0) {
+      localZ   -= 0.5*(GetChamberLength(index[0],2)+GetChamberLength(index[0],1));
+      index[1]  = (TMath::Abs(localZ) < 0.5*GetChamberLength(index[0],3)) ? 1 : 0;
     }
-    else{
-      localZ += 0.5*(GetChamberLength(index[0],2)+GetChamberLength(index[0],3));
-      index[1] = (TMath::Abs(localZ) < 0.5*GetChamberLength(index[0],1)) ? 3:4;
+    else {
+      localZ   += 0.5*(GetChamberLength(index[0],2)+GetChamberLength(index[0],3));
+      index[1]  = (TMath::Abs(localZ) < 0.5*GetChamberLength(index[0],1)) ? 3 : 4;
     }
   }  
+
   return kTRUE;
-}
 
+}
 
 //_____________________________________________________________________________
 Bool_t AliTRDgeometry::Rotate(Int_t d, Double_t *pos, Double_t *rot) const
@@ -509,95 +1323,100 @@ Int_t AliTRDgeometry::GetSector(Int_t d) const
 }
 
 //_____________________________________________________________________________
-AliTRDgeometry* AliTRDgeometry::GetGeometry(AliRunLoaderrunLoader)
+AliTRDgeometry* AliTRDgeometry::GetGeometry(AliRunLoader *runLoader)
 {
   //
-  // load the geometry from the galice file
+  // Load the geometry from the galice file
   //
 
-  if (!runLoader) runLoader = AliRunLoader::GetRunLoader();
   if (!runLoader) {
-    ::Error("AliTRDgeometry::GetGeometry", "No run loader");
+    runLoader = AliRunLoader::GetRunLoader();
+  }
+  if (!runLoader) {
+    AliErrorGeneral("AliTRDgeometry::GetGeometry","No run loader");
     return NULL;
   }
 
-  TDirectorysaveDir = gDirectory;
+  TDirectory *saveDir = gDirectory;
   runLoader->CdGAFile();
 
   // Try from the galice.root file
-  AliTRDgeometry* geom = (AliTRDgeometry*) gDirectory->Get("TRDgeometry");
+  AliTRDgeometry *geom = (AliTRDgeometry *) gDirectory->Get("TRDgeometry");
 
   if (!geom) {
-    // It is not in the file, try to get it from gAlice, 
-    // which corresponds to the run loader 
-    AliTRD * trd = (AliTRD*)runLoader->GetAliRun()->GetDetector("TRD");
+    // If it is not in the file, try to get it from the run loader 
+    AliTRD *trd = (AliTRD *) runLoader->GetAliRun()->GetDetector("TRD");
     geom = trd->GetGeometry();
   }
-  if (!geom) ::Error("AliTRDgeometry::GetGeometry", "Geometry not found");
+  if (!geom) {
+    AliErrorGeneral("AliTRDgeometry::GetGeometry","Geometry not found");
+    return NULL;
+  }
 
   saveDir->cd();
   return geom;
-}
 
+}
 
 //_____________________________________________________________________________
-Bool_t   AliTRDgeometry::ReadGeoMatrices(){
+Bool_t AliTRDgeometry::ReadGeoMatrices()
+{
   //
   // Read geo matrices from current gGeoManager for each TRD sector
   //
 
-  //
-  // fMatrixArray - 
-  //
-
-  //
-  // fMatrixCorrectionArray - 
-  //
-
-
-  if (!gGeoManager) return kFALSE;
-  fMatrixArray = new TObjArray(kNdet); 
+  if (!gGeoManager) {
+    return kFALSE;
+  }
+  fMatrixArray           = new TObjArray(kNdet); 
   fMatrixCorrectionArray = new TObjArray(kNdet);
-  fMatrixGeo   = new TObjArray(kNdet);
+  fMatrixGeo             = new TObjArray(kNdet);
   AliAlignObjAngles o;
-  //
+
   for (Int_t iLayer = AliAlignObj::kTRD1; iLayer <= AliAlignObj::kTRD6; iLayer++) {
     for (Int_t iModule = 0; iModule < AliAlignObj::LayerSize(iLayer); iModule++) {
-      UShort_t volid = AliAlignObj::LayerToVolUID(iLayer,iModule);
-      const char *path = AliAlignObj::GetVolPath(volid);
+
+      UShort_t    volid   = AliAlignObj::LayerToVolUID(iLayer,iModule);
+      const char *symname = AliAlignObj::SymName(volid);
+      TGeoPNEntry* pne = gGeoManager->GetAlignableEntry(symname);
+      const char *path = symname;
+      if(pne) path=pne->GetTitle();
       if (!gGeoManager->cd(path)) return kFALSE;      
-      TGeoHMatrix* m = gGeoManager->GetCurrentMatrix();
-      Int_t     iLayerTRD    = iLayer-AliAlignObj::kTRD1;
-      Int_t     isector      = Nsect()-1-(iModule/Ncham());
-      Int_t     ichamber     = Ncham()-1-(iModule%Ncham());
-      Int_t     lid          = GetDetector(iLayerTRD,ichamber,isector);    
-      //
-      //
+      TGeoHMatrix *m = gGeoManager->GetCurrentMatrix();
+      Int_t     iLayerTRD = iLayer - AliAlignObj::kTRD1;
+      Int_t     isector   = Nsect() - 1 - (iModule/Ncham());
+      Int_t     ichamber  = Ncham() - 1 - (iModule%Ncham());
+      Int_t     lid       = GetDetector(iLayerTRD,ichamber,isector);    
+
       //
-      // local geo system z-x-y  to x-y--z 
+      // Local geo system z-x-y  to x-y--z 
       //
       fMatrixGeo->AddAt(new TGeoHMatrix(*m),lid);
       
       TGeoRotation mchange; 
-      mchange.RotateY(90); mchange.RotateX(90);
-      //
+      mchange.RotateY(90); 
+      mchange.RotateX(90);
+
       TGeoHMatrix gMatrix(mchange.Inverse());
       gMatrix.MultiplyLeft(m);
       fMatrixArray->AddAt(new TGeoHMatrix(gMatrix),lid); 
+
       //
       //  Cluster transformation matrix
       //
       TGeoHMatrix  rotMatrix(mchange.Inverse());
       rotMatrix.MultiplyLeft(m);
-      Double_t sectorAngle = 20.*(isector%18)+10;
+      Double_t sectorAngle = 20.0 * (isector % 18) + 10.0;
       TGeoHMatrix  rotSector;
       rotSector.RotateZ(sectorAngle);
       rotMatrix.MultiplyLeft(&rotSector);      
-      //
+
       fMatrixCorrectionArray->AddAt(new TGeoHMatrix(rotMatrix),lid);       
+
     }    
   }
+
   return kTRUE;
-}
 
+}