]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - TRD/AliTRDgeometry.cxx
Fix Coverity defects
[u/mrichter/AliRoot.git] / TRD / AliTRDgeometry.cxx
index 4e5340274dec35b92fd70a28800be36fef9c4f69..b2427a6b31c1a479a4964f83a6dd13ba6301727c 100644 (file)
 //                                                                           //
 ///////////////////////////////////////////////////////////////////////////////
 
-
 #include <TGeoManager.h>
 #include <TGeoPhysicalNode.h>
-#include <TGeoMatrix.h>
+#include <TVirtualMC.h>
+#include <TMath.h>
 
 #include "AliLog.h"
-#include "AliRunLoader.h"
-#include "AliAlignObj.h"
-#include "AliAlignObjAngles.h"
-
-#include "AliRun.h"
-#include "AliTRD.h"
-#include "AliTRDcalibDB.h"
-#include "AliTRDCommonParam.h"
+#include "AliAlignObjParams.h"
+
 #include "AliTRDgeometry.h"
 #include "AliTRDpadPlane.h"
 
@@ -45,126 +39,181 @@ ClassImp(AliTRDgeometry)
   //
   // The geometry constants
   //
-  const Int_t   AliTRDgeometry::fgkNsect   = kNsect;
-  const Int_t   AliTRDgeometry::fgkNplan   = kNplan;
-  const Int_t   AliTRDgeometry::fgkNcham   = kNcham;
-  const Int_t   AliTRDgeometry::fgkNdet    = kNdet;
+  const Int_t    AliTRDgeometry::fgkNsector   = kNsector;
+  const Int_t    AliTRDgeometry::fgkNlayer    = kNlayer;
+  const Int_t    AliTRDgeometry::fgkNstack    = kNstack;
+  const Int_t    AliTRDgeometry::fgkNdet      = kNdet;
 
   //
   // Dimensions of the detector
   //
 
-  // Inner and outer radius of the mother volumes 
-  const Float_t AliTRDgeometry::fgkRmin    = 294.0;
-  const Float_t AliTRDgeometry::fgkRmax    = 368.0;
+  // Total length of the TRD mother volume
+  const Float_t  AliTRDgeometry::fgkTlength   = 751.0;
 
-  // Upper and lower length of the mother volumes 
-  const Float_t AliTRDgeometry::fgkZmax1   = 378.35; 
-  const Float_t AliTRDgeometry::fgkZmax2   = 302.0; 
+  // Parameter of the super module mother volumes 
+  const Float_t  AliTRDgeometry::fgkSheight   =  77.9; 
+  const Float_t  AliTRDgeometry::fgkSwidth1   =  94.881; 
+  const Float_t  AliTRDgeometry::fgkSwidth2   = 122.353;
+  const Float_t  AliTRDgeometry::fgkSlength   = 702.0;
 
-  // Parameter of the BTR mother volumes 
-  const Float_t AliTRDgeometry::fgkSheight =  77.9; 
-  const Float_t AliTRDgeometry::fgkSwidth1 =  94.881; 
-  const Float_t AliTRDgeometry::fgkSwidth2 = 122.353;
-  const Float_t AliTRDgeometry::fgkSlenTR1 = 751.0;
-  const Float_t AliTRDgeometry::fgkSlenTR2 = 313.5; 
-  const Float_t AliTRDgeometry::fgkSlenTR3 = 159.5;  
+  // Length of the additional space in front of the supermodule
+  // used for services
+  const Float_t  AliTRDgeometry::fgkFlength   = (AliTRDgeometry::fgkTlength
+                                               - AliTRDgeometry::fgkSlength) / 2.0;
 
   // The super module side plates
-  const Float_t AliTRDgeometry::fgkSMpltT  =   0.2;
-  //const Float_t AliTRDgeometry::fgkSMgapT  =   0.5;  
+  const Float_t  AliTRDgeometry::fgkSMpltT    =   0.2;
+
+  // Vertical spacing of the chambers
+  const Float_t  AliTRDgeometry::fgkVspace    =   1.784;
+  // Horizontal spacing of the chambers
+  const Float_t  AliTRDgeometry::fgkHspace    =   2.0;
+  // Radial distance of the first ROC to the outer plates of the SM
+  const Float_t  AliTRDgeometry::fgkVrocsm    =   1.2;
 
   // Height of different chamber parts
   // Radiator
-  const Float_t AliTRDgeometry::fgkCraH    =   4.8; 
+  const Float_t  AliTRDgeometry::fgkCraH      =   4.8; 
   // Drift region
-  const Float_t AliTRDgeometry::fgkCdrH    =   3.0;
+  const Float_t  AliTRDgeometry::fgkCdrH      =   3.0;
   // Amplification region
-  const Float_t AliTRDgeometry::fgkCamH    =   0.7;
+  const Float_t  AliTRDgeometry::fgkCamH      =   0.7;
   // Readout
-  const Float_t AliTRDgeometry::fgkCroH    =   2.316;
-  // Total height
-  const Float_t AliTRDgeometry::fgkCH      = AliTRDgeometry::fgkCraH
-                                           + AliTRDgeometry::fgkCdrH
-                                           + AliTRDgeometry::fgkCamH
-                                           + AliTRDgeometry::fgkCroH;  
-
-  // Vertical spacing of the chambers
-  const Float_t AliTRDgeometry::fgkVspace  =   1.784;
-
-  // Horizontal spacing of the chambers
-  const Float_t AliTRDgeometry::fgkHspace  =   2.0;
-
-  // Radial distance of the first ROC to the outer plates of the SM
-  const Float_t AliTRDgeometry::fgkVrocsm  =   1.2;
+  const Float_t  AliTRDgeometry::fgkCroH      =   2.316;
+  // Additional width of the readout chamber frames
+  const Float_t  AliTRDgeometry::fgkCroW      =   0.9;
+  // Services on top of ROC
+  const Float_t  AliTRDgeometry::fgkCsvH      = AliTRDgeometry::fgkVspace 
+                                              -   0.742;
+  // Total height (w/o services)
+  const Float_t  AliTRDgeometry::fgkCH        = AliTRDgeometry::fgkCraH
+                                              + AliTRDgeometry::fgkCdrH
+                                              + AliTRDgeometry::fgkCamH
+                                              + AliTRDgeometry::fgkCroH;  
+  // Total height (with services)
+
+  const Float_t  AliTRDgeometry::fgkCHsv      = AliTRDgeometry::fgkCH 
+                                              + AliTRDgeometry::fgkCsvH;
+
+  // Distance of anode wire plane relative to middle of alignable volume
+  const Float_t  AliTRDgeometry::fgkAnodePos  = AliTRDgeometry::fgkCraH 
+                                              + AliTRDgeometry::fgkCdrH 
+                                              + AliTRDgeometry::fgkCamH/2.0
+                                              - AliTRDgeometry::fgkCHsv/2.0;
 
   // Thicknesses of different parts of the chamber frame
   // Lower aluminum frame
-  const Float_t AliTRDgeometry::fgkCalT    =   0.3;
-  // Lower G10 frame sides
-  const Float_t AliTRDgeometry::fgkCclsT   =   0.3;
-  // Lower G10 frame front
-  const Float_t AliTRDgeometry::fgkCclfT   =   1.0;
-  // Upper G10 frame
-  const Float_t AliTRDgeometry::fgkCcuT    =   0.9;
-  // Upper Al frame
-  const Float_t AliTRDgeometry::fgkCauT    =   1.5;
-
-  // Additional width of the readout chamber frames
-  const Float_t AliTRDgeometry::fgkCroW    =   0.9;
+  const Float_t  AliTRDgeometry::fgkCalT      =   0.4;
+  // Lower Wacosit frame sides
+  const Float_t  AliTRDgeometry::fgkCclsT     =   0.21;
+  // Lower Wacosit frame front
+  const Float_t  AliTRDgeometry::fgkCclfT     =   1.0;
+  // Thickness of glue around radiator
+  const Float_t  AliTRDgeometry::fgkCglT      =   0.25;
+  // Upper Wacosit frame around amplification region
+  const Float_t  AliTRDgeometry::fgkCcuTa     =   1.0;
+  const Float_t  AliTRDgeometry::fgkCcuTb     =   0.8;
+  // Al frame of back panel
+  const Float_t  AliTRDgeometry::fgkCauT      =   1.5;
+  // Additional Al ledge at the lower chamber frame
+  // Actually the dimensions are not realistic, but 
+  // modified in order to allow to mis-alignment. 
+  // The amount of material is, however, correct 
+  const Float_t  AliTRDgeometry::fgkCalW      =   2.5;
+  const Float_t  AliTRDgeometry::fgkCalH      =   0.4;
+  const Float_t  AliTRDgeometry::fgkCalWmod   =   0.4;
+  const Float_t  AliTRDgeometry::fgkCalHmod   =   2.5;
+  // Additional Wacosit ledge at the lower chamber frame
+  const Float_t  AliTRDgeometry::fgkCwsW      =   1.2;
+  const Float_t  AliTRDgeometry::fgkCwsH      =   0.3;
 
   // Difference of outer chamber width and pad plane width
-  //const Float_t AliTRDgeometry::fgkCpadW   =   1.0;
-  const Float_t AliTRDgeometry::fgkCpadW   =   0.0;
-  const Float_t AliTRDgeometry::fgkRpadW   =   1.0;
+  const Float_t  AliTRDgeometry::fgkCpadW     =   0.0;
+  const Float_t  AliTRDgeometry::fgkRpadW     =   1.0;
 
   //
   // Thickness of the the material layers
   //
-  const Float_t AliTRDgeometry::fgkRaThick = 0.3646;  
-  const Float_t AliTRDgeometry::fgkMyThick = 0.005;
-  const Float_t AliTRDgeometry::fgkDrThick = AliTRDgeometry::fgkCdrH;    
-  const Float_t AliTRDgeometry::fgkAmThick = AliTRDgeometry::fgkCamH;
-  const Float_t AliTRDgeometry::fgkXeThick = AliTRDgeometry::fgkDrThick
-                                           + AliTRDgeometry::fgkAmThick;
-  const Float_t AliTRDgeometry::fgkCuThick = 0.0072; 
-  const Float_t AliTRDgeometry::fgkSuThick = 0.06; 
-  const Float_t AliTRDgeometry::fgkFeThick = 0.0044; 
-  const Float_t AliTRDgeometry::fgkCoThick = 0.02;
-  const Float_t AliTRDgeometry::fgkWaThick = 0.02;
-  const Float_t AliTRDgeometry::fgkRcThick = 0.0058;
-  const Float_t AliTRDgeometry::fgkRpThick = 0.0632;
+  const Float_t  AliTRDgeometry::fgkDrThick   = AliTRDgeometry::fgkCdrH;    
+  const Float_t  AliTRDgeometry::fgkAmThick   = AliTRDgeometry::fgkCamH;
+  const Float_t  AliTRDgeometry::fgkXeThick   = AliTRDgeometry::fgkDrThick
+                                              + AliTRDgeometry::fgkAmThick;
+  const Float_t  AliTRDgeometry::fgkWrThick   = 0.00011;
+
+  const Float_t  AliTRDgeometry::fgkRMyThick  = 0.0015;
+  const Float_t  AliTRDgeometry::fgkRCbThick  = 0.0055;
+  const Float_t  AliTRDgeometry::fgkRGlThick  = 0.0065;
+  const Float_t  AliTRDgeometry::fgkRRhThick  = 0.8;
+  const Float_t  AliTRDgeometry::fgkRFbThick  = fgkCraH - 2.0 * (fgkRMyThick 
+                                                               + fgkRCbThick 
+                                                               + fgkRRhThick);
+
+  const Float_t  AliTRDgeometry::fgkPPdThick  = 0.0025; 
+  const Float_t  AliTRDgeometry::fgkPPpThick  = 0.0356; 
+  const Float_t  AliTRDgeometry::fgkPGlThick  = 0.1428;
+  const Float_t  AliTRDgeometry::fgkPCbThick  = 0.019;
+  const Float_t  AliTRDgeometry::fgkPPcThick  = 0.0486;
+  const Float_t  AliTRDgeometry::fgkPRbThick  = 0.0057;
+  const Float_t  AliTRDgeometry::fgkPElThick  = 0.0029;
+  const Float_t  AliTRDgeometry::fgkPHcThick  = fgkCroH - fgkPPdThick 
+                                                        - fgkPPpThick
+                                                        - fgkPGlThick 
+                                                        - fgkPCbThick * 2.0
+                                                        - fgkPPcThick
+                                                        - fgkPRbThick
+                                                        - fgkPElThick;
 
   //
   // Position of the material layers
   //
-  const Float_t AliTRDgeometry::fgkRaZpos  = -1.50;
-  const Float_t AliTRDgeometry::fgkMyZpos  =  0.895;
-  const Float_t AliTRDgeometry::fgkDrZpos  =  2.4;
-  const Float_t AliTRDgeometry::fgkAmZpos  =  0.0;
-  const Float_t AliTRDgeometry::fgkCuZpos  = -0.9995;
-  const Float_t AliTRDgeometry::fgkSuZpos  =  0.0000;
-  const Float_t AliTRDgeometry::fgkFeZpos  =  0.0322;
-  const Float_t AliTRDgeometry::fgkCoZpos  =  0.97;
-  const Float_t AliTRDgeometry::fgkWaZpos  =  0.99;
-  const Float_t AliTRDgeometry::fgkRcZpos  =  1.04;
-  const Float_t AliTRDgeometry::fgkRpZpos  =  1.0;
+  const Float_t  AliTRDgeometry::fgkDrZpos    =  2.4;
+  const Float_t  AliTRDgeometry::fgkAmZpos    =  0.0;
+  const Float_t  AliTRDgeometry::fgkWrZposA   =  0.0;
+  const Float_t  AliTRDgeometry::fgkWrZposB   = -fgkAmThick/2.0 + 0.001;
+  const Float_t  AliTRDgeometry::fgkCalZpos   =  0.3;
+
+  const Int_t    AliTRDgeometry::fgkMCMmax    = 16;   
+  const Int_t    AliTRDgeometry::fgkMCMrow    = 4;   
+  const Int_t    AliTRDgeometry::fgkROBmaxC0  = 6; 
+  const Int_t    AliTRDgeometry::fgkROBmaxC1  = 8; 
+  const Int_t    AliTRDgeometry::fgkADCmax    = 21;   
+  const Int_t    AliTRDgeometry::fgkTBmax     = 60;   
+  const Int_t    AliTRDgeometry::fgkPadmax    = 18;   
+  const Int_t    AliTRDgeometry::fgkColmax    = 144;
+  const Int_t    AliTRDgeometry::fgkRowmaxC0  = 12;
+  const Int_t    AliTRDgeometry::fgkRowmaxC1  = 16;
+
+  const Double_t AliTRDgeometry::fgkTime0Base = 300.65;
+  const Float_t  AliTRDgeometry::fgkTime0[6]  = { fgkTime0Base + 0 * (Cheight() + Cspace()) 
+                                                , fgkTime0Base + 1 * (Cheight() + Cspace()) 
+                                                , fgkTime0Base + 2 * (Cheight() + Cspace()) 
+                                                , fgkTime0Base + 3 * (Cheight() + Cspace()) 
+                                                , fgkTime0Base + 4 * (Cheight() + Cspace()) 
+                                                , fgkTime0Base + 5 * (Cheight() + Cspace())};
+
+  const Double_t AliTRDgeometry::fgkXtrdBeg   = 288.43; // Values depend on position of TRD
+  const Double_t AliTRDgeometry::fgkXtrdEnd   = 366.33; // mother volume inside space frame !!!
+
+  // The outer width of the chambers
+  const Float_t AliTRDgeometry::fgkCwidth[kNlayer] = {90.4, 94.8, 99.3, 103.7, 108.1, 112.6};
   
-  const Double_t AliTRDgeometry::fgkTime0Base = Rmin() + CraHght() + CdrHght() + CamHght()/2.;
-  const Float_t  AliTRDgeometry::fgkTime0[6]  = { fgkTime0Base + 0 * (Cheight() + Cspace()), 
-                                                  fgkTime0Base + 1 * (Cheight() + Cspace()), 
-                                                  fgkTime0Base + 2 * (Cheight() + Cspace()), 
-                                                  fgkTime0Base + 3 * (Cheight() + Cspace()), 
-                                                  fgkTime0Base + 4 * (Cheight() + Cspace()), 
-                                                  fgkTime0Base + 5 * (Cheight() + Cspace()) };
+  // The outer lengths of the chambers
+  // Includes the spacings between the chambers!
+  const Float_t AliTRDgeometry::fgkClength[kNlayer][kNstack] = { { 124.0, 124.0, 110.0, 124.0, 124.0 }
+                                                             , { 124.0, 124.0, 110.0, 124.0, 124.0 }
+                                                             , { 131.0, 131.0, 110.0, 131.0, 131.0 }
+                                                             , { 138.0, 138.0, 110.0, 138.0, 138.0 }
+                                                             , { 145.0, 145.0, 110.0, 145.0, 145.0 }
+                                                             , { 147.0, 147.0, 110.0, 147.0, 147.0 } };
+
+  TObjArray* AliTRDgeometry::fgClusterMatrixArray = NULL;
+
+  TObjArray* AliTRDgeometry::fgPadPlaneArray = NULL;
 
 //_____________________________________________________________________________
 AliTRDgeometry::AliTRDgeometry()
   :AliGeometry()
-  ,fMatrixArray(0)
-  ,fMatrixCorrectionArray(0)
-  ,fMatrixGeo(0)
-
 {
   //
   // AliTRDgeometry default constructor
@@ -177,10 +226,6 @@ AliTRDgeometry::AliTRDgeometry()
 //_____________________________________________________________________________
 AliTRDgeometry::AliTRDgeometry(const AliTRDgeometry &g)
   :AliGeometry(g)
-   ,fMatrixArray(g.fMatrixArray)
-   ,fMatrixCorrectionArray(g.fMatrixCorrectionArray)
-   ,fMatrixGeo(g.fMatrixGeo)
-
 {
   //
   // AliTRDgeometry copy constructor
@@ -197,9 +242,6 @@ AliTRDgeometry::~AliTRDgeometry()
   // AliTRDgeometry destructor
   //
 
-  delete fMatrixArray;
-  delete fMatrixCorrectionArray;
-
 }
 
 //_____________________________________________________________________________
@@ -209,7 +251,10 @@ AliTRDgeometry &AliTRDgeometry::operator=(const AliTRDgeometry &g)
   // Assignment operator
   //
 
-  if (this != &g) Init();
+  if (this != &g) {
+    Init();
+  }
+
   return *this;
 
 }
@@ -220,343 +265,668 @@ void AliTRDgeometry::Init()
   //
   // Initializes the geometry parameter
   //
-  // The maximum number of pads
-  // and the position of pad 0,0,0 
-  // 
-  // chambers seen from the top:
-  //     +----------------------------+
-  //     |                            |
-  //     |                            |      ^
-  //     |                            |  rphi|
-  //     |                            |      |
-  //     |0                           |      | 
-  //     +----------------------------+      +------>
-  //                                             z 
-  // chambers seen from the side:            ^
-  //     +----------------------------+ drift|
-  //     |0                           |      |
-  //     |                            |      |
-  //     +----------------------------+      +------>
-  //                                             z
-  //                                             
-  // IMPORTANT: time bin 0 is now the first one in the drift region 
-  // closest to the readout !!!
-  //
-
-  Int_t icham;
-  Int_t iplan;
-  Int_t isect;
-
-  // The outer width of the chambers
-  fCwidth[0] =  90.4;
-  fCwidth[1] =  94.8;
-  fCwidth[2] =  99.3;
-  fCwidth[3] = 103.7;
-  fCwidth[4] = 108.1;
-  fCwidth[5] = 112.6;
-
-  // The outer lengths of the chambers
-  // Includes the spacings between the chambers!
-  Float_t length[kNplan][kNcham]   = { { 124.0, 124.0, 110.0, 124.0, 124.0 }
-                                    , { 124.0, 124.0, 110.0, 124.0, 124.0 }
-                                     , { 131.0, 131.0, 110.0, 131.0, 131.0 }
-                                     , { 138.0, 138.0, 110.0, 138.0, 138.0 }
-                                     , { 145.0, 145.0, 110.0, 145.0, 145.0 }
-                                    , { 147.0, 147.0, 110.0, 147.0, 147.0 } };
-
-  for (icham = 0; icham < kNcham; icham++) {
-    for (iplan = 0; iplan < kNplan; iplan++) {
-      fClength[iplan][icham]   = length[iplan][icham];
-    }
-  }
 
   // The rotation matrix elements
-  Float_t phi = 0;
-  for (isect = 0; isect < fgkNsect; isect++) {
-    phi = -2.0 * TMath::Pi() /  (Float_t) fgkNsect * ((Float_t) isect + 0.5);
-    fRotA11[isect] = TMath::Cos(phi);
-    fRotA12[isect] = TMath::Sin(phi);
-    fRotA21[isect] = TMath::Sin(phi);
-    fRotA22[isect] = TMath::Cos(phi);
-    phi = -1.0 * phi;
-    fRotB11[isect] = TMath::Cos(phi);
-    fRotB12[isect] = TMath::Sin(phi);
-    fRotB21[isect] = TMath::Sin(phi);
-    fRotB22[isect] = TMath::Cos(phi);
+  Float_t phi = 0.0;
+  for (Int_t isector = 0; isector < fgkNsector; isector++) {
+    phi = 2.0 * TMath::Pi() /  (Float_t) fgkNsector * ((Float_t) isector + 0.5);
+    fRotB11[isector] = TMath::Cos(phi);
+    fRotB12[isector] = TMath::Sin(phi);
+    fRotB21[isector] = TMath::Sin(phi);
+    fRotB22[isector] = TMath::Cos(phi);
+  }
+  // SM status
+  for (Int_t i = 0; i < kNsector; i++) {
+    fSMstatus[i] = 1;
   }
 
-  for (isect = 0; isect < fgkNsect; isect++) {
-    SetSMstatus(isect,1);
+}
+
+//_____________________________________________________________________________
+void AliTRDgeometry::CreatePadPlaneArray()
+{
+  //
+  // Creates the array of AliTRDpadPlane objects
+  //
+
+  if (fgPadPlaneArray)
+    return;
+
+  fgPadPlaneArray = new TObjArray(fgkNlayer * fgkNstack);  
+  for (Int_t ilayer = 0; ilayer < fgkNlayer; ilayer++) {
+    for (Int_t istack = 0; istack < fgkNstack; istack++) {
+      Int_t ipp = GetDetectorSec(ilayer,istack);
+      fgPadPlaneArray->AddAt(CreatePadPlane(ilayer,istack),ipp);
+    }
   }
+
 }
 
 //_____________________________________________________________________________
-void AliTRDgeometry::CreateGeometry(Int_t *idtmed)
+AliTRDpadPlane *AliTRDgeometry::CreatePadPlane(Int_t ilayer, Int_t istack)
 {
   //
-  // Create the TRD geometry without hole
+  // Creates an AliTRDpadPlane object
   //
+
+  AliTRDpadPlane *padPlane = new AliTRDpadPlane();
+
+  padPlane->SetLayer(ilayer);
+  padPlane->SetStack(istack);
+
+  padPlane->SetRowSpacing(0.0);
+  padPlane->SetColSpacing(0.0);
+
+  padPlane->SetLengthRim(1.0);
+  padPlane->SetWidthRim(0.5);
+
+  padPlane->SetNcols(144);
+
+  padPlane->SetAnodeWireOffset(0.25);
+
   //
-  // Names of the TRD volumina (xx = detector number):
+  // The pad plane parameter
   //
-  //      Volume (Air) wrapping the readout chamber components
-  //        UTxx    includes: UAxx, UDxx, UFxx, UUxx
-  //      Obs:
-  //        UUxx    the services volume has been reduced by 7.42 mm
-  //                in order to allow shifts in radial direction
+  const Float_t kTiltAngle = 2.0;
+  switch (ilayer) {
+  case 0:
+    if (istack == 2) {
+      // L0C0 type
+      padPlane->SetNrows(12);
+      padPlane->SetLength(108.0);
+      padPlane->SetLengthOPad(8.0);
+      padPlane->SetLengthIPad(9.0);
+    }
+    else {
+      // L0C1 type
+      padPlane->SetNrows(16);
+      padPlane->SetLength(122.0);
+      padPlane->SetLengthOPad(7.5);
+      padPlane->SetLengthIPad(7.5);
+    }
+    padPlane->SetWidth(92.2);
+    padPlane->SetWidthOPad(0.515);
+    padPlane->SetWidthIPad(0.635);
+    padPlane->SetTiltingAngle(-kTiltAngle);
+    break;
+  case 1:
+    if (istack == 2) {
+      // L1C0 type
+      padPlane->SetNrows(12);
+      padPlane->SetLength(108.0);
+      padPlane->SetLengthOPad(8.0);
+      padPlane->SetLengthIPad(9.0);
+    }
+    else {
+      // L1C1 type
+      padPlane->SetNrows(16);
+      padPlane->SetLength(122.0);
+      padPlane->SetLengthOPad(7.5);
+      padPlane->SetLengthIPad(7.5);
+    }
+    padPlane->SetWidth(96.6);
+    padPlane->SetWidthOPad(0.585);
+    padPlane->SetWidthIPad(0.665);
+    padPlane->SetTiltingAngle(kTiltAngle);
+    break;
+  case 2:
+    if (istack == 2) {
+      // L2C0 type
+      padPlane->SetNrows(12);
+      padPlane->SetLength(108.0);
+      padPlane->SetLengthOPad(8.0);
+      padPlane->SetLengthIPad(9.0);
+    }
+    else {
+      // L2C1 type
+      padPlane->SetNrows(16);
+      padPlane->SetLength(129.0);
+      padPlane->SetLengthOPad(7.5);
+      padPlane->SetLengthIPad(8.0);
+    }
+    padPlane->SetWidth(101.1);
+    padPlane->SetWidthOPad(0.705);
+    padPlane->SetWidthIPad(0.695);
+    padPlane->SetTiltingAngle(-kTiltAngle);
+    break;
+  case 3:
+    if (istack == 2) {
+      // L3C0 type
+      padPlane->SetNrows(12);
+      padPlane->SetLength(108.0);
+      padPlane->SetLengthOPad(8.0);
+      padPlane->SetLengthIPad(9.0);
+    }
+    else {
+      // L3C1 type
+      padPlane->SetNrows(16);
+      padPlane->SetLength(136.0);
+      padPlane->SetLengthOPad(7.5);
+      padPlane->SetLengthIPad(8.5);
+    }
+    padPlane->SetWidth(105.5);
+    padPlane->SetWidthOPad(0.775);
+    padPlane->SetWidthIPad(0.725);
+    padPlane->SetTiltingAngle(kTiltAngle);
+    break;
+  case 4:
+    if (istack == 2) {
+      // L4C0 type
+      padPlane->SetNrows(12);
+      padPlane->SetLength(108.0);
+      padPlane->SetLengthOPad(8.0);
+    }
+    else {
+      // L4C1 type
+      padPlane->SetNrows(16);
+      padPlane->SetLength(143.0);
+      padPlane->SetLengthOPad(7.5);
+    }
+    padPlane->SetWidth(109.9);
+    padPlane->SetWidthOPad(0.845);
+    padPlane->SetLengthIPad(9.0);
+    padPlane->SetWidthIPad(0.755);
+    padPlane->SetTiltingAngle(-kTiltAngle);
+    break;
+  case 5:
+    if (istack == 2) {
+      // L5C0 type
+      padPlane->SetNrows(12);
+      padPlane->SetLength(108.0);
+      padPlane->SetLengthOPad(8.0);
+    }
+    else {
+      // L5C1 type
+      padPlane->SetNrows(16);
+      padPlane->SetLength(145.0);
+      padPlane->SetLengthOPad(8.5);
+    }
+    padPlane->SetWidth(114.4);
+    padPlane->SetWidthOPad(0.965);
+    padPlane->SetLengthIPad(9.0);
+    padPlane->SetWidthIPad(0.785);
+    padPlane->SetTiltingAngle(kTiltAngle);
+    break;
+  };
+
+  //
+  // The positions of the borders of the pads
+  //
+  // Row direction
+  //
+  Double_t row = fgkClength[ilayer][istack] / 2.0
+               - fgkRpadW
+               - padPlane->GetLengthRim();
+  for (Int_t ir = 0; ir < padPlane->GetNrows(); ir++) {
+    padPlane->SetPadRow(ir,row);
+    row -= padPlane->GetRowSpacing();
+    if (ir == 0) {
+      row -= padPlane->GetLengthOPad();
+    }
+    else {
+      row -= padPlane->GetLengthIPad();
+    }
+  }
   //
-  //      Lower part of the readout chambers (gas volume + radiator)
+  // Column direction
   //
-  //        UAxx    Aluminum frames             (Al)
-  //        UBxx    G10 frames                  (C)
-  //        UCxx    Inner volumes               (Air)
+  Double_t col = - fgkCwidth[ilayer] / 2.0
+                 - fgkCroW
+                 + padPlane->GetWidthRim();
+  for (Int_t ic = 0; ic < padPlane->GetNcols(); ic++) {
+    padPlane->SetPadCol(ic,col);
+    col += padPlane->GetColSpacing();
+    if (ic == 0) {
+      col += padPlane->GetWidthOPad();
+    }
+    else {
+      col += padPlane->GetWidthIPad();
+    }
+  }
+  // Calculate the offset to translate from the local ROC system into
+  // the local supermodule system, which is used for clusters
+  Double_t rowTmp = fgkClength[ilayer][0]
+                 + fgkClength[ilayer][1]
+                  + fgkClength[ilayer][2] / 2.0;
+  for (Int_t jstack = 0; jstack < istack; jstack++) {
+    rowTmp -= fgkClength[ilayer][jstack];
+  }
+  padPlane->SetPadRowSMOffset(rowTmp - fgkClength[ilayer][istack]/2.0);
+
+  return padPlane;
+
+}
+
+//_____________________________________________________________________________
+void AliTRDgeometry::CreateGeometry(Int_t *idtmed)
+{
   //
-  //      Upper part of the readout chambers (readout plane + fee)
+  // Create the TRD geometry
   //
-  //        UDxx    G10 frames                  (C)
-  //        UExx    Inner volumes of the G10    (Air)
-  //        UFxx    Aluminum frames             (Al)
-  //        UGxx    Inner volumes of the Al     (Air)
   //
-  //      Inner material layers
+  // Names of the TRD volumina (xx = detector number):
   //
-  //        UHxx    Radiator                    (Rohacell)
-  //        UIxx    Entrance window             (Mylar)
-  //        UJxx    Drift volume                (Xe/CO2)
-  //        UKxx    Amplification volume        (Xe/CO2)
-  //        ULxx    Pad plane                   (Cu)
-  //        UMxx    Support structure           (Rohacell)
-  //        UNxx    ROB base material           (C)
-  //        UOxx    ROB copper                  (Cu)
+  //   Volume (Air) wrapping the readout chamber components
+  //     UTxx    includes: UAxx, UDxx, UFxx, UUxx
+  //
+  //   Lower part of the readout chambers (drift volume + radiator)
+  //     UAxx    Aluminum frames                (Al)
+  //
+  //   Upper part of the readout chambers (readout plane + fee)
+  //     UDxx    Wacosit frames of amp. region  (Wacosit)
+  //     UFxx    Aluminum frame of back panel   (Al)
+  //
+  //   Services on chambers (cooling, cables, MCMs, DCS boards, ...)
+  //     UUxx    Volume containing the services (Air) 
+  //
+  //   Material layers inside sensitive area:
+  //     Name    Description                     Mat.      Thick.   Dens.    Radl.    X/X_0
+  //                                                        
+  //     URMYxx  Mylar layers (x2)               Mylar     0.0015   1.39     28.5464  0.005%
+  //     URCBxx  Carbon layer (x2)               Carbon    0.0055   1.75     24.2824  0.023%
+  //     URGLxx  Glue on the carbon layers (x2)  Araldite  0.0065   1.12     37.0664  0.018%
+  //     URRHxx  Rohacell layer (x2)             Rohacell  0.8      0.075    536.005  0.149%
+  //     URFBxx  Fiber mat layer                 PP        3.186    0.068    649.727  0.490%
+  //     
+  //     UJxx    Drift region                    Xe/CO2    3.0      0.00495  1792.37  0.167%
+  //     UKxx    Amplification region            Xe/CO2    0.7      0.00495  1792.37  0.039%
+  //     UWxx    Wire planes (x2)                Copper    0.00011  8.96     1.43503  0.008%
+  //
+  //     UPPDxx  Copper of pad plane             Copper    0.0025   8.96     1.43503  0.174%
+  //     UPPPxx  PCB of pad plane                G10       0.0356   2.0      14.9013  0.239%
+  //     UPGLxx  Glue on pad planes              Araldite  0.0923   1.12     37.0664  0.249%
+  //             + add. glue (ca. 600g)          Araldite  0.0505   1.12     37.0663  0.107%
+  //     UPCBxx  Carbon fiber mats (x2)          Carbon    0.019    1.75     24.2824  0.078%
+  //     UPHCxx  Honeycomb structure             Aramide   2.0299   0.032    1198.84  0.169%
+  //     UPPCxx  PCB of readout board            G10       0.0486   2.0      14.9013  0.326%
+  //     UPRDxx  Copper of readout board         Copper    0.0057   8.96     1.43503  0.404%
+  //     UPELxx  Electronics + cables            Copper    0.0029   8.96     1.43503  0.202%
   //
 
   const Int_t kNparTrd = 4;
   const Int_t kNparCha = 3;
 
-  Float_t xpos, ypos, zpos;
+  Float_t xpos;
+  Float_t ypos;
+  Float_t zpos;
 
   Float_t parTrd[kNparTrd];
   Float_t parCha[kNparCha];
 
-  Char_t  cTagV[6];
-  Char_t  cTagM[5];
+  const Int_t kTag = 100;
+  Char_t  cTagV[kTag];
+  Char_t  cTagM[kTag];
 
-  // The TRD mother volume for one sector (Air), full length in z-direction
+  // There are three TRD volumes for the supermodules in order to accomodate
+  // the different arrangements in front of PHOS
+  // UTR1: Default supermodule
+  // UTR2: Supermodule in front of PHOS with double carbon cover
+  // UTR3: As UTR2, but w/o middle stack
+  //
+  // The mother volume for one sector (Air), full length in z-direction
   // Provides material for side plates of super module
-  parTrd[0] = fgkSwidth1/2.;
-  parTrd[1] = fgkSwidth2/2.;
-  parTrd[2] = fgkSlenTR1/2.;
-  parTrd[3] = fgkSheight/2.;
+  parTrd[0] = fgkSwidth1/2.0;
+  parTrd[1] = fgkSwidth2/2.0;
+  parTrd[2] = fgkSlength/2.0;
+  parTrd[3] = fgkSheight/2.0;
   gMC->Gsvolu("UTR1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
-
-  // 
+  gMC->Gsvolu("UTR2","TRD1",idtmed[1302-1],parTrd,kNparTrd);
+  gMC->Gsvolu("UTR3","TRD1",idtmed[1302-1],parTrd,kNparTrd);
   // The outer aluminum plates of the super module (Al)
-  parTrd[0] = fgkSwidth1/2.;
-  parTrd[1] = fgkSwidth2/2.;
-  parTrd[2] = fgkSlenTR1/2.;
-  parTrd[3] = fgkSheight/2.;
+  parTrd[0] = fgkSwidth1/2.0;
+  parTrd[1] = fgkSwidth2/2.0;
+  parTrd[2] = fgkSlength/2.0;
+  parTrd[3] = fgkSheight/2.0;
   gMC->Gsvolu("UTS1","TRD1",idtmed[1301-1],parTrd,kNparTrd);
-
+  gMC->Gsvolu("UTS2","TRD1",idtmed[1301-1],parTrd,kNparTrd);
+  gMC->Gsvolu("UTS3","TRD1",idtmed[1301-1],parTrd,kNparTrd);
   // The inner part of the TRD mother volume for one sector (Air), 
   // full length in z-direction
-  parTrd[0] = fgkSwidth1/2. - fgkSMpltT;
-  parTrd[1] = fgkSwidth2/2. - fgkSMpltT;
-  parTrd[2] = fgkSlenTR1/2.;
-  parTrd[3] = fgkSheight/2. - fgkSMpltT;
+  parTrd[0] = fgkSwidth1/2.0 - fgkSMpltT;
+  parTrd[1] = fgkSwidth2/2.0 - fgkSMpltT;
+  parTrd[2] = fgkSlength/2.0;
+  parTrd[3] = fgkSheight/2.0 - fgkSMpltT;
   gMC->Gsvolu("UTI1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
+  gMC->Gsvolu("UTI2","TRD1",idtmed[1302-1],parTrd,kNparTrd);
+  gMC->Gsvolu("UTI3","TRD1",idtmed[1302-1],parTrd,kNparTrd);
 
-  for (Int_t icham = 0; icham < kNcham; icham++) {
-    for (Int_t iplan = 0; iplan < kNplan; iplan++) {  
+  // The inner part of the TRD mother volume for services in front
+  // of the supermodules  (Air), 
+  parTrd[0] = fgkSwidth1/2.0;
+  parTrd[1] = fgkSwidth2/2.0;
+  parTrd[2] = fgkFlength/2.0;
+  parTrd[3] = fgkSheight/2.0;
+  gMC->Gsvolu("UTF1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
+  gMC->Gsvolu("UTF2","TRD1",idtmed[1302-1],parTrd,kNparTrd);
 
-      Int_t iDet = GetDetectorSec(iplan,icham);
+  for (Int_t istack = 0; istack < kNstack; istack++) {
+    for (Int_t ilayer = 0; ilayer < kNlayer; ilayer++) {  
 
-      // The lower part of the readout chambers (gas volume + radiator) 
+      Int_t iDet = GetDetectorSec(ilayer,istack);
+
+      // The lower part of the readout chambers (drift volume + radiator) 
       // The aluminum frames 
-      sprintf(cTagV,"UA%02d",iDet);
-      parCha[0] = fCwidth[iplan]/2.;
-      parCha[1] = fClength[iplan][icham]/2. - fgkHspace/2.;
-      parCha[2] = fgkCraH/2. + fgkCdrH/2.;
-      fChamberUAboxd[iDet][0] = parCha[0];
-      fChamberUAboxd[iDet][1] = parCha[1];
-      fChamberUAboxd[iDet][2] = parCha[2];
+      snprintf(cTagV,kTag,"UA%02d",iDet);
+      parCha[0] = fgkCwidth[ilayer]/2.0;
+      parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0;
+      parCha[2] = fgkCraH/2.0 + fgkCdrH/2.0;
       gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
-      // The G10 frames 
-      sprintf(cTagV,"UB%02d",iDet);
-      parCha[0] = fCwidth[iplan]/2. - fgkCalT; 
-      parCha[1] = -1.;
-      parCha[2] = -1.;
+      // The additional aluminum on the frames
+      // This part has not the correct shape but is just supposed to
+      // represent the missing material. The correct form of the L-shaped
+      // profile would not fit into the alignable volume. 
+      snprintf(cTagV,kTag,"UZ%02d",iDet);
+      parCha[0] = fgkCalWmod/2.0;
+      parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0;
+      parCha[2] = fgkCalHmod/2.0;
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
+      // The additional Wacosit on the frames
+      snprintf(cTagV,kTag,"UP%02d",iDet);
+      parCha[0] = fgkCwsW/2.0;
+      parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0;
+      parCha[2] = fgkCwsH/2.0;
       gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha);
-      // The inner part (air)
-      sprintf(cTagV,"UC%02d",iDet);
-      parCha[0] = fCwidth[iplan]/2. - fgkCalT - fgkCclsT; 
-      parCha[1] = fClength[iplan][icham]/2. - fgkHspace/2.- fgkCclfT;
-      parCha[2] = -1.;
+      // The Wacosit frames 
+      snprintf(cTagV,kTag,"UB%02d",iDet);
+      parCha[0] = fgkCwidth[ilayer]/2.0 - fgkCalT; 
+      parCha[1] = -1.0;
+      parCha[2] = -1.0;
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha);
+      // The glue around the radiator
+      snprintf(cTagV,kTag,"UX%02d",iDet);
+      parCha[0] = fgkCwidth[ilayer]/2.0 - fgkCalT - fgkCclsT; 
+      parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCclfT;
+      parCha[2] = fgkCraH/2.0;
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha);
+      // The inner part of radiator (air)
+      snprintf(cTagV,kTag,"UC%02d",iDet);
+      parCha[0] = fgkCwidth[ilayer]/2.0 - fgkCalT - fgkCclsT - fgkCglT; 
+      parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCclfT - fgkCglT;
+      parCha[2] = -1.0;
       gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
 
-      // The upper part of the readout chambers (readout plane)
-      // The G10 frames
-      sprintf(cTagV,"UD%02d",iDet);
-      parCha[0] = fCwidth[iplan]/2. + fgkCroW;
-      parCha[1] = fClength[iplan][icham]/2. - fgkHspace/2.;
-      parCha[2] = fgkCamH/2.;
-      fChamberUDboxd[iDet][0] = parCha[0];
-      fChamberUDboxd[iDet][1] = parCha[1];
-      fChamberUDboxd[iDet][2] = parCha[2];
+      // The upper part of the readout chambers (amplification volume)
+      // The Wacosit frames
+      snprintf(cTagV,kTag,"UD%02d",iDet);
+      parCha[0] = fgkCwidth[ilayer]/2.0 + fgkCroW;
+      parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0;
+      parCha[2] = fgkCamH/2.0;
       gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha);
-      // The inner part of the G10 frame (air)
-      sprintf(cTagV,"UE%02d",iDet);
-      parCha[0] = fCwidth[iplan]/2. + fgkCroW - fgkCcuT
-      parCha[1] = fClength[iplan][icham]/2. - fgkHspace/2.- fgkCcuT;
+      // The inner part of the Wacosit frame (air)
+      snprintf(cTagV,kTag,"UE%02d",iDet);
+      parCha[0] = fgkCwidth[ilayer]/2.0 + fgkCroW - fgkCcuTb
+      parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCcuTa;
       parCha[2] = -1.;
       gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
+
+      // The back panel, including pad plane and readout boards
       // The aluminum frames
-      sprintf(cTagV,"UF%02d",iDet);
-      parCha[0] = fCwidth[iplan]/2. + fgkCroW;
-      parCha[1] = fClength[iplan][icham]/2. - fgkHspace/2.;
-      parCha[2] = fgkCroH/2.;
-      fChamberUFboxd[iDet][0] = parCha[0];
-      fChamberUFboxd[iDet][1] = parCha[1];
-      fChamberUFboxd[iDet][2] = parCha[2];
+      snprintf(cTagV,kTag,"UF%02d",iDet);
+      parCha[0] = fgkCwidth[ilayer]/2.0 + fgkCroW;
+      parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0;
+      parCha[2] = fgkCroH/2.0;
       gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
       // The inner part of the aluminum frames
-      sprintf(cTagV,"UG%02d",iDet);
-      parCha[0] = fCwidth[iplan]/2. + fgkCroW - fgkCauT; 
-      parCha[1] = fClength[iplan][icham]/2. - fgkHspace/2.- fgkCauT;
-      parCha[2] = -1.;
+      snprintf(cTagV,kTag,"UG%02d",iDet);
+      parCha[0] = fgkCwidth[ilayer]/2.0 + fgkCroW - fgkCauT; 
+      parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCauT;
+      parCha[2] = -1.0;
       gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
 
+      //
       // The material layers inside the chambers
-      parCha[0] = -1.;
-      parCha[1] = -1.;
+      //
+
+      // Mylar layer (radiator)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkRMyThick/2.0;
+      snprintf(cTagV,kTag,"URMY%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1327-1],parCha,kNparCha);
+      // Carbon layer (radiator)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkRCbThick/2.0;
+      snprintf(cTagV,kTag,"URCB%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1326-1],parCha,kNparCha);
+      // Araldite layer (radiator)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkRGlThick/2.0;
+      snprintf(cTagV,kTag,"URGL%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha);
       // Rohacell layer (radiator)
-      parCha[2] = fgkRaThick/2;
-      sprintf(cTagV,"UH%02d",iDet);
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkRRhThick/2.0;
+      snprintf(cTagV,kTag,"URRH%02d",iDet);
       gMC->Gsvolu(cTagV,"BOX ",idtmed[1315-1],parCha,kNparCha);
-      // Mylar layer (entrance window + HV cathode) 
-      parCha[2] = fgkMyThick/2;
-      sprintf(cTagV,"UI%02d",iDet);
-      gMC->Gsvolu(cTagV,"BOX ",idtmed[1308-1],parCha,kNparCha);
+      // Fiber layer (radiator)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkRFbThick/2.0;
+      snprintf(cTagV,kTag,"URFB%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1328-1],parCha,kNparCha);
+
       // Xe/Isobutane layer (drift volume) 
-      parCha[2] = fgkDrThick/2.;
-      sprintf(cTagV,"UJ%02d",iDet);
+      parCha[0] = fgkCwidth[ilayer]/2.0 - fgkCalT - fgkCclsT;
+      parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCclfT;
+      parCha[2] = fgkDrThick/2.0;
+      snprintf(cTagV,kTag,"UJ%02d",iDet);
       gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha);
+
       // Xe/Isobutane layer (amplification volume)
-      parCha[2] = fgkAmThick/2.;
-      sprintf(cTagV,"UK%02d",iDet);
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkAmThick/2.0;
+      snprintf(cTagV,kTag,"UK%02d",iDet);
       gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha);  
+      // Cu layer (wire plane)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkWrThick/2.0;
+      snprintf(cTagV,kTag,"UW%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1303-1],parCha,kNparCha);
+
       // Cu layer (pad plane)
-      parCha[2] = fgkCuThick/2;
-      sprintf(cTagV,"UL%02d",iDet);
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkPPdThick/2.0;
+      snprintf(cTagV,kTag,"UPPD%02d",iDet);
       gMC->Gsvolu(cTagV,"BOX ",idtmed[1305-1],parCha,kNparCha);
-      // G10 layer (support structure / honeycomb)
-      parCha[2] = fgkSuThick/2;
-      sprintf(cTagV,"UM%02d",iDet);
+      // G10 layer (pad plane)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkPPpThick/2.0;
+      snprintf(cTagV,kTag,"UPPP%02d",iDet);
       gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha);
-      // G10 layer (readout board)
-      parCha[2] = fgkRpThick/2;
-      sprintf(cTagV,"UN%02d",iDet);
+      // Araldite layer (glue)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkPGlThick/2.0;
+      snprintf(cTagV,kTag,"UPGL%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha);
+      // Carbon layer (carbon fiber mats)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkPCbThick/2.0;
+      snprintf(cTagV,kTag,"UPCB%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1326-1],parCha,kNparCha);
+      // Aramide layer (honeycomb)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkPHcThick/2.0;
+      snprintf(cTagV,kTag,"UPHC%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1310-1],parCha,kNparCha);
+      // G10 layer (PCB readout board)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkPPcThick/2;
+      snprintf(cTagV,kTag,"UPPC%02d",iDet);
       gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha);
-      // Cu layer (readout board)
-      parCha[2] = fgkRcThick/2;
-      sprintf(cTagV,"UO%02d",iDet);
+      // Cu layer (traces in readout board)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkPRbThick/2.0;
+      snprintf(cTagV,kTag,"UPRB%02d",iDet);
       gMC->Gsvolu(cTagV,"BOX ",idtmed[1306-1],parCha,kNparCha);
+      // Cu layer (other material on in readout board, incl. screws)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkPElThick/2.0;
+      snprintf(cTagV,kTag,"UPEL%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1304-1],parCha,kNparCha);
 
+      //
       // Position the layers in the chambers
-      xpos = 0;
-      ypos = 0;
+      //
+      xpos = 0.0;
+      ypos = 0.0;
+
       // Lower part
-      // Rohacell layer (radiator)
-      zpos = fgkRaZpos;
-      sprintf(cTagV,"UH%02d",iDet);
-      sprintf(cTagM,"UC%02d",iDet);
+      // Mylar layers (radiator)
+      zpos =  fgkRMyThick/2.0 - fgkCraH/2.0;
+      snprintf(cTagV,kTag,"URMY%02d",iDet);
+      snprintf(cTagM,kTag,"UC%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      zpos = -fgkRMyThick/2.0 + fgkCraH/2.0;
+      snprintf(cTagV,kTag,"URMY%02d",iDet);
+      snprintf(cTagM,kTag,"UC%02d",iDet);
+      gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Carbon layers (radiator)
+      zpos =  fgkRCbThick/2.0 + fgkRMyThick - fgkCraH/2.0;
+      snprintf(cTagV,kTag,"URCB%02d",iDet);
+      snprintf(cTagM,kTag,"UC%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      zpos = -fgkRCbThick/2.0 - fgkRMyThick + fgkCraH/2.0;
+      snprintf(cTagV,kTag,"URCB%02d",iDet);
+      snprintf(cTagM,kTag,"UC%02d",iDet);
+      gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Carbon layers (radiator)
+      zpos =  fgkRGlThick/2.0 + fgkRCbThick + fgkRMyThick - fgkCraH/2.0;
+      snprintf(cTagV,kTag,"URGL%02d",iDet);
+      snprintf(cTagM,kTag,"UC%02d",iDet);
       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
-      // Mylar layer (entrance window + HV cathode)   
-      zpos = fgkMyZpos;
-      sprintf(cTagV,"UI%02d",iDet);
-      sprintf(cTagM,"UC%02d",iDet);
+      zpos = -fgkRGlThick/2.0 - fgkRCbThick - fgkRMyThick + fgkCraH/2.0;
+      snprintf(cTagV,kTag,"URGL%02d",iDet);
+      snprintf(cTagM,kTag,"UC%02d",iDet);
+      gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Rohacell layers (radiator)
+      zpos =  fgkRRhThick/2.0 + fgkRGlThick + fgkRCbThick + fgkRMyThick - fgkCraH/2.0;
+      snprintf(cTagV,kTag,"URRH%02d",iDet);
+      snprintf(cTagM,kTag,"UC%02d",iDet);
       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      zpos = -fgkRRhThick/2.0 - fgkRGlThick - fgkRCbThick - fgkRMyThick + fgkCraH/2.0;
+      snprintf(cTagV,kTag,"URRH%02d",iDet);
+      snprintf(cTagM,kTag,"UC%02d",iDet);
+      gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Fiber layers (radiator)
+      zpos =  0.0;
+      snprintf(cTagV,kTag,"URFB%02d",iDet);
+      snprintf(cTagM,kTag,"UC%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+
       // Xe/Isobutane layer (drift volume) 
       zpos = fgkDrZpos;
-      sprintf(cTagV,"UJ%02d",iDet);
-      sprintf(cTagM,"UC%02d",iDet);
+      snprintf(cTagV,kTag,"UJ%02d",iDet);
+      snprintf(cTagM,kTag,"UB%02d",iDet);
       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+
       // Upper part
       // Xe/Isobutane layer (amplification volume)
       zpos = fgkAmZpos;
-      sprintf(cTagV,"UK%02d",iDet);
-      sprintf(cTagM,"UE%02d",iDet);
+      snprintf(cTagV,kTag,"UK%02d",iDet);
+      snprintf(cTagM,kTag,"UE%02d",iDet);
       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
-      // Readout part
+      // Cu layer (wire planes inside amplification volume)
+      zpos = fgkWrZposA; 
+      snprintf(cTagV,kTag,"UW%02d",iDet);
+      snprintf(cTagM,kTag,"UK%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      zpos = fgkWrZposB; 
+      snprintf(cTagV,kTag,"UW%02d",iDet);
+      snprintf(cTagM,kTag,"UK%02d",iDet);
+      gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY");
+
+      // Back panel + pad plane + readout part
       // Cu layer (pad plane)
-      zpos = fgkCuZpos; 
-      sprintf(cTagV,"UL%02d",iDet);
-      sprintf(cTagM,"UG%02d",iDet);
+      zpos =  fgkPPdThick/2.0 - fgkCroH/2.0;
+      snprintf(cTagV,kTag,"UPPD%02d",iDet);
+      snprintf(cTagM,kTag,"UG%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // G10  layer (pad plane)
+      zpos =  fgkPPpThick/2.0 + fgkPPdThick - fgkCroH/2.0;
+      snprintf(cTagV,kTag,"UPPP%02d",iDet);
+      snprintf(cTagM,kTag,"UG%02d",iDet);
       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
-      // G10 layer (support structure)
-      zpos = fgkSuZpos;
-      sprintf(cTagV,"UM%02d",iDet);
-      sprintf(cTagM,"UG%02d",iDet);
+      // Araldite layer (glue)
+      zpos =  fgkPGlThick/2.0 + fgkPPpThick + fgkPPdThick - fgkCroH/2.0;
+      snprintf(cTagV,kTag,"UPGL%02d",iDet);
+      snprintf(cTagM,kTag,"UG%02d",iDet);
       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
-      // G10 layer (readout board)
-      zpos = fgkRpZpos;
-      sprintf(cTagV,"UN%02d",iDet);
-      sprintf(cTagM,"UG%02d",iDet);
+      // Carbon layers (carbon fiber mats)
+      zpos =  fgkPCbThick/2.0 + fgkPGlThick + fgkPPpThick + fgkPPdThick - fgkCroH/2.0;
+      snprintf(cTagV,kTag,"UPCB%02d",iDet);
+      snprintf(cTagM,kTag,"UG%02d",iDet);
       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
-      // Cu layer (readout board)
-      zpos = fgkRcZpos;
-      sprintf(cTagV,"UO%02d",iDet);
-      sprintf(cTagM,"UG%02d",iDet);
+      zpos = -fgkPCbThick/2.0 - fgkPPcThick - fgkPRbThick - fgkPElThick + fgkCroH/2.0;
+      snprintf(cTagV,kTag,"UPCB%02d",iDet);
+      snprintf(cTagM,kTag,"UG%02d",iDet);
+      gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Aramide layer (honeycomb)
+      zpos =  fgkPHcThick/2.0 + fgkPCbThick + fgkPGlThick + fgkPPpThick + fgkPPdThick - fgkCroH/2.0;
+      snprintf(cTagV,kTag,"UPHC%02d",iDet);
+      snprintf(cTagM,kTag,"UG%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // G10 layer (PCB readout board)
+      zpos = -fgkPPcThick/2.0 - fgkPRbThick - fgkPElThick + fgkCroH/2.0;
+      snprintf(cTagV,kTag,"UPPC%02d",iDet);
+      snprintf(cTagM,kTag,"UG%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Cu layer (traces in readout board)
+      zpos = -fgkPRbThick/2.0 - fgkPElThick + fgkCroH/2.0;
+      snprintf(cTagV,kTag,"UPRB%02d",iDet);
+      snprintf(cTagM,kTag,"UG%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Cu layer (other materials on readout board, incl. screws)
+      zpos = -fgkPElThick/2.0 + fgkCroH/2.0;
+      snprintf(cTagV,kTag,"UPEL%02d",iDet);
+      snprintf(cTagM,kTag,"UG%02d",iDet);
       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
 
       // Position the inner volumes of the chambers in the frames
-      xpos      = 0.0;
-      ypos      = 0.0;
-      zpos      = 0.0;
-      // The inside of the lower G10 frame
-      sprintf(cTagV,"UC%02d",iDet);
-      sprintf(cTagM,"UB%02d",iDet);
+      xpos = 0.0;
+      ypos = 0.0;
+
+      // The inner part of the radiator (air)
+      zpos = 0.0;
+      snprintf(cTagV,kTag,"UC%02d",iDet);
+      snprintf(cTagM,kTag,"UX%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // The glue around the radiator
+      zpos = fgkCraH/2.0 - fgkCdrH/2.0 - fgkCraH/2.0;
+      snprintf(cTagV,kTag,"UX%02d",iDet);
+      snprintf(cTagM,kTag,"UB%02d",iDet);
       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
-      // The lower G10 frame inside the aluminum frame
-      sprintf(cTagV,"UB%02d",iDet);
-      sprintf(cTagM,"UA%02d",iDet);
+      // The lower Wacosit frame inside the aluminum frame
+      zpos = 0.0;
+      snprintf(cTagV,kTag,"UB%02d",iDet);
+      snprintf(cTagM,kTag,"UA%02d",iDet);
       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
-      // The inside of the upper G10 frame
-      sprintf(cTagV,"UE%02d",iDet);
-      sprintf(cTagM,"UD%02d",iDet);
+
+      // The inside of the upper Wacosit frame
+      zpos = 0.0;
+      snprintf(cTagV,kTag,"UE%02d",iDet);
+      snprintf(cTagM,kTag,"UD%02d",iDet);
       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+
       // The inside of the upper aluminum frame
-      sprintf(cTagV,"UG%02d",iDet);
-      sprintf(cTagM,"UF%02d",iDet);
+      zpos = 0.0;
+      snprintf(cTagV,kTag,"UG%02d",iDet);
+      snprintf(cTagM,kTag,"UF%02d",iDet);
       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");      
 
-      // Position the frames of the chambers in the TRD mother volume
-      xpos  = 0.;
-      ypos  = - fClength[iplan][0] - fClength[iplan][1] - fClength[iplan][2]/2.;
-      for (Int_t ic = 0; ic < icham; ic++) {
-        ypos += fClength[iplan][ic];        
-      }
-      ypos += fClength[iplan][icham]/2.;
-      zpos  = fgkVrocsm + fgkCraH/2. + fgkCdrH/2. - fgkSheight/2. 
-            + iplan * (fgkCH + fgkVspace);
-      // The lower aluminum frame, radiator + drift region
-      sprintf(cTagV,"UA%02d",iDet);      
-      fChamberUAorig[iDet][0] = xpos;
-      fChamberUAorig[iDet][1] = ypos;
-      fChamberUAorig[iDet][2] = zpos;
-      // The upper G10 frame, amplification region
-      sprintf(cTagV,"UD%02d",iDet);
-      zpos += fgkCamH/2. + fgkCraH/2. + fgkCdrH/2.;      
-      fChamberUDorig[iDet][0] = xpos;
-      fChamberUDorig[iDet][1] = ypos;
-      fChamberUDorig[iDet][2] = zpos;
-      // The upper aluminum frame
-      sprintf(cTagV,"UF%02d",iDet);
-      zpos += fgkCroH/2. + fgkCamH/2.;      
-      fChamberUForig[iDet][0] = xpos;
-      fChamberUForig[iDet][1] = ypos;
-      fChamberUForig[iDet][2] = zpos;
-
     }
   }
 
@@ -566,31 +936,63 @@ void AliTRDgeometry::CreateGeometry(Int_t *idtmed)
   // Create the volumes of the services
   CreateServices(idtmed);
   
-  for (Int_t icham = 0; icham < kNcham; icham++) {
-    for (Int_t iplan = 0; iplan < kNplan; iplan++) {  
-      GroupChamber(iplan,icham,idtmed);
+  for (Int_t istack = 0; istack < kNstack; istack++) {
+    for (Int_t ilayer = 0; ilayer < kNlayer; ilayer++) {  
+      AssembleChamber(ilayer,istack);
     }
   }
   
-  xpos = 0.;
-  ypos = 0.;
-  zpos = 0.;
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = 0.0;
   gMC->Gspos("UTI1",1,"UTS1",xpos,ypos,zpos,0,"ONLY");
+  gMC->Gspos("UTI2",1,"UTS2",xpos,ypos,zpos,0,"ONLY");
+  gMC->Gspos("UTI3",1,"UTS3",xpos,ypos,zpos,0,"ONLY");
 
-  xpos = 0.;
-  ypos = 0.;
-  zpos = 0.;
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = 0.0;
   gMC->Gspos("UTS1",1,"UTR1",xpos,ypos,zpos,0,"ONLY");
+  gMC->Gspos("UTS2",1,"UTR2",xpos,ypos,zpos,0,"ONLY");
+  gMC->Gspos("UTS3",1,"UTR3",xpos,ypos,zpos,0,"ONLY");
+
+  // Put the TRD volumes into the space frame mother volumes
+  // if enabled via status flag
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = 0.0;
+  for (Int_t isector = 0; isector < kNsector; isector++) {
+    if (GetSMstatus(isector)) {
+      snprintf(cTagV,kTag,"BTRD%d",isector);
+      switch (isector) {
+      case 13:
+      case 14:
+      case 15:
+        // Double carbon, w/o middle stack
+        gMC->Gspos("UTR3",1,cTagV,xpos,ypos,zpos,0,"ONLY");
+        break;
+      case 11:
+      case 12:
+       // Double carbon, all stacks
+        gMC->Gspos("UTR2",1,cTagV,xpos,ypos,zpos,0,"ONLY");
+        break;
+      default:
+       // Standard supermodule
+        gMC->Gspos("UTR1",1,cTagV,xpos,ypos,zpos,0,"ONLY");
+      };
+    }
+  }
 
   // Put the TRD volumes into the space frame mother volumes
   // if enabled via status flag
-  xpos = 0.;
-  ypos = 0.;
-  zpos = 0.;
-  for (Int_t isect = 0; isect < kNsect; isect++) {
-    if (fSMstatus[isect]) {
-      sprintf(cTagV,"BTRD%d",isect);
-      gMC->Gspos("UTR1",1,cTagV,xpos,ypos,zpos,0,"ONLY");
+  xpos = 0.0;
+  ypos = 0.5*fgkSlength + 0.5*fgkFlength;
+  zpos = 0.0;
+  for (Int_t isector = 0; isector < kNsector; isector++) {
+    if (GetSMstatus(isector)) {
+      snprintf(cTagV,kTag,"BTRD%d",isector);
+      gMC->Gspos("UTF1",1,cTagV,xpos, ypos,zpos,0,"ONLY");
+      gMC->Gspos("UTF2",1,cTagV,xpos,-ypos,zpos,0,"ONLY");
     }
   }
 
@@ -606,42 +1008,157 @@ void AliTRDgeometry::CreateFrame(Int_t *idtmed)
   //
   //        USRL    Support rails for the chambers (Al)
   //        USxx    Support cross bars between the chambers (Al)
+  //        USHx    Horizontal connection between the cross bars (Al)
+  //        USLx    Long corner ledges (Al)
   //
 
-  Int_t   iplan = 0;
+  Int_t   ilayer = 0;
 
   Float_t xpos  = 0.0;
   Float_t ypos  = 0.0;
   Float_t zpos  = 0.0;
 
-  Char_t  cTagV[5];
+  const Int_t kTag = 100;
+  Char_t  cTagV[kTag];
+  Char_t  cTagM[kTag];
+
+  const Int_t kNparTRD = 4;
+  Float_t parTRD[kNparTRD];
+  const Int_t kNparBOX = 3;
+  Float_t parBOX[kNparBOX];
+  const Int_t kNparTRP = 11;
+  Float_t parTRP[kNparTRP];
+
+  // The rotation matrices
+  const Int_t kNmatrix = 7;
+  Int_t   matrix[kNmatrix];
+  gMC->Matrix(matrix[0], 100.0,   0.0,  90.0,  90.0,  10.0,   0.0);
+  gMC->Matrix(matrix[1],  80.0,   0.0,  90.0,  90.0,  10.0, 180.0);
+  gMC->Matrix(matrix[2],  90.0,   0.0,   0.0,   0.0,  90.0,  90.0);
+  gMC->Matrix(matrix[3],  90.0, 180.0,   0.0, 180.0,  90.0,  90.0);
+  gMC->Matrix(matrix[4], 170.0,   0.0,  80.0,   0.0,  90.0,  90.0);
+  gMC->Matrix(matrix[5], 170.0, 180.0,  80.0, 180.0,  90.0,  90.0);
+  gMC->Matrix(matrix[6], 180.0, 180.0,  90.0, 180.0,  90.0,  90.0);
+
+  //
+  // The carbon inserts in the top/bottom aluminum plates
+  //
+
+  const Int_t kNparCrb = 3;
+  Float_t parCrb[kNparCrb];
+  parCrb[0] = 0.0;
+  parCrb[1] = 0.0;
+  parCrb[2] = 0.0;
+  gMC->Gsvolu("USCR","BOX ",idtmed[1326-1],parCrb,0);
+  // Bottom 1 (all sectors)
+  parCrb[0] =  77.49/2.0;
+  parCrb[1] = 104.60/2.0;
+  parCrb[2] = fgkSMpltT/2.0;
+  xpos      =   0.0;
+  ypos      =   0.0;
+  zpos      = fgkSMpltT/2.0 - fgkSheight/2.0;
+  gMC->Gsposp("USCR", 1,"UTS1", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR", 2,"UTS2", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR", 3,"UTS3", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  // Bottom 2 (all sectors)
+  parCrb[0] =  77.49/2.0;
+  parCrb[1] =  55.80/2.0;
+  parCrb[2] = fgkSMpltT/2.0;
+  xpos      =   0.0;
+  ypos      =  85.6;
+  zpos      = fgkSMpltT/2.0 - fgkSheight/2.0;
+  gMC->Gsposp("USCR", 4,"UTS1", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR", 5,"UTS2", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR", 6,"UTS3", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR", 7,"UTS1", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR", 8,"UTS2", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR", 9,"UTS3", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  // Bottom 3 (all sectors)
+  parCrb[0] =  77.49/2.0;
+  parCrb[1] =  56.00/2.0;
+  parCrb[2] = fgkSMpltT/2.0;
+  xpos      =   0.0;
+  ypos      = 148.5;
+  zpos      = fgkSMpltT/2.0 - fgkSheight/2.0;
+  gMC->Gsposp("USCR",10,"UTS1", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR",11,"UTS2", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR",12,"UTS3", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR",13,"UTS1", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR",14,"UTS2", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR",15,"UTS3", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  // Bottom 4 (all sectors)
+  parCrb[0] =  77.49/2.0;
+  parCrb[1] = 118.00/2.0;
+  parCrb[2] = fgkSMpltT/2.0;
+  xpos      =   0.0;
+  ypos      = 240.5;
+  zpos      = fgkSMpltT/2.0 - fgkSheight/2.0;
+  gMC->Gsposp("USCR",16,"UTS1", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR",17,"UTS2", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR",18,"UTS3", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR",19,"UTS1", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR",20,"UTS2", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR",21,"UTS3", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
+  // Top 1 (only in front of PHOS)
+  parCrb[0] = 111.48/2.0;
+  parCrb[1] = 105.00/2.0;
+  parCrb[2] = fgkSMpltT/2.0;
+  xpos      =   0.0;
+  ypos      =   0.0;
+  zpos      = fgkSMpltT/2.0 - fgkSheight/2.0;
+  gMC->Gsposp("USCR",22,"UTS2", xpos, ypos,-zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR",23,"UTS3", xpos, ypos,-zpos,0,"ONLY",parCrb,kNparCrb);
+  // Top 2 (only in front of PHOS)
+  parCrb[0] = 111.48/2.0;
+  parCrb[1] =  56.00/2.0;
+  parCrb[2] = fgkSMpltT/2.0;
+  xpos      =   0.0;
+  ypos      =  85.5;
+  zpos      = fgkSMpltT/2.0 - fgkSheight/2.0;
+  gMC->Gsposp("USCR",24,"UTS2", xpos, ypos,-zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR",25,"UTS3", xpos, ypos,-zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR",26,"UTS2", xpos,-ypos,-zpos,0,"ONLY",parCrb,kNparCrb);
+  gMC->Gsposp("USCR",27,"UTS3", xpos,-ypos,-zpos,0,"ONLY",parCrb,kNparCrb);
 
   //
   // The chamber support rails
   //
 
-  const Float_t kSRLwid  = 2.0;
-  const Float_t kSRLhgt  = 2.3;
-  const Float_t kSRLdst  = 0.6;
-  const Int_t   kNparSRL = 3;
+  const Float_t kSRLhgt  = 2.00;
+  const Float_t kSRLwidA = 2.3;
+  const Float_t kSRLwidB = 1.947;
+  const Float_t kSRLdst  = 1.135;
+  const Int_t   kNparSRL = 11;
   Float_t parSRL[kNparSRL];
-  parSRL[0] = kSRLwid/2.;
-  parSRL[1] = fgkSlenTR1/2.;
-  parSRL[2] = kSRLhgt/2.;
-  gMC->Gsvolu("USRL","BOX ",idtmed[1301-1],parSRL,kNparSRL);
+  // Trapezoidal shape
+  parSRL[ 0] = fgkSlength/2.0;
+  parSRL[ 1] = 0.0;
+  parSRL[ 2] = 0.0;
+  parSRL[ 3] = kSRLhgt  /2.0;
+  parSRL[ 4] = kSRLwidB /2.0;
+  parSRL[ 5] = kSRLwidA /2.0;
+  parSRL[ 6] = 5.0;
+  parSRL[ 7] = kSRLhgt  /2.0;
+  parSRL[ 8] = kSRLwidB /2.0;
+  parSRL[ 9] = kSRLwidA /2.0;
+  parSRL[10] = 5.0;
+  gMC->Gsvolu("USRL","TRAP",idtmed[1301-1],parSRL,kNparSRL);
 
   xpos  = 0.0;
   ypos  = 0.0;
   zpos  = 0.0;
-  for (iplan = 0; iplan < kNplan; iplan++) {
-    
-    xpos  = fCwidth[iplan]/2. + kSRLwid/2. + kSRLdst;
+  for (ilayer = 1; ilayer < kNlayer; ilayer++) {
+    xpos  = fgkCwidth[ilayer]/2.0 + kSRLwidA/2.0 + kSRLdst;
     ypos  = 0.0;
-    zpos  = fgkVrocsm + fgkCraH + fgkCdrH - fgkSheight/2. - kSRLhgt/2. 
-          + iplan * (fgkCH + fgkVspace);
-    gMC->Gspos("USRL",iplan+1         ,"UTI1", xpos,ypos,zpos,0,"ONLY");
-    gMC->Gspos("USRL",iplan+1+  kNplan,"UTI1",-xpos,ypos,zpos,0,"ONLY");
-
+    zpos  = fgkVrocsm + fgkSMpltT - fgkCalZpos - fgkSheight/2.0  
+          + fgkCraH + fgkCdrH - fgkCalH - kSRLhgt/2.0 
+          + ilayer * (fgkCH + fgkVspace);
+    gMC->Gspos("USRL",ilayer+1          ,"UTI1", xpos,ypos,zpos,matrix[2],"ONLY");
+    gMC->Gspos("USRL",ilayer+1+  kNlayer,"UTI1",-xpos,ypos,zpos,matrix[3],"ONLY");
+    gMC->Gspos("USRL",ilayer+1+2*kNlayer,"UTI2", xpos,ypos,zpos,matrix[2],"ONLY");
+    gMC->Gspos("USRL",ilayer+1+3*kNlayer,"UTI2",-xpos,ypos,zpos,matrix[3],"ONLY");
+    gMC->Gspos("USRL",ilayer+1+4*kNlayer,"UTI3", xpos,ypos,zpos,matrix[2],"ONLY");
+    gMC->Gspos("USRL",ilayer+1+5*kNlayer,"UTI3",-xpos,ypos,zpos,matrix[3],"ONLY");
   }
 
   //
@@ -649,62 +1166,529 @@ void AliTRDgeometry::CreateFrame(Int_t *idtmed)
   //
 
   const Float_t kSCBwid  = 1.0;
+  const Float_t kSCBthk  = 2.0;
+  const Float_t kSCHhgt  = 0.3;
+
   const Int_t   kNparSCB = 3;
   Float_t parSCB[kNparSCB];
-  parSCB[1] = kSCBwid/2.;
-  parSCB[2] = fgkCH/2.;
+  parSCB[1] = kSCBwid/2.0;
+  parSCB[2] = fgkCH  /2.0 + fgkVspace/2.0 - kSCHhgt;
+
+  const Int_t   kNparSCI = 3;
+  Float_t parSCI[kNparSCI];
+  parSCI[1] = -1;
 
   xpos  = 0.0;
   ypos  = 0.0;
   zpos  = 0.0;
-  for (iplan = 0; iplan < kNplan; iplan++) {
+  for (ilayer = 0; ilayer < kNlayer; ilayer++) {
 
-    parSCB[0] = fCwidth[iplan]/2. + kSRLdst/2.;
-
-    sprintf(cTagV,"US0%01d",iplan);
+    // The aluminum of the cross bars
+    parSCB[0] = fgkCwidth[ilayer]/2.0 + kSRLdst/2.0;
+    snprintf(cTagV,kTag,"USF%01d",ilayer);
     gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
-    xpos  = 0.0;
-    ypos  =   fgkSlenTR1/2. - kSCBwid/2.;
-    zpos  = fgkVrocsm + fgkCH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace);
-    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
 
-    sprintf(cTagV,"US1%01d",iplan);
-    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
-    xpos  = 0.0;
-    ypos  = fClength[iplan][2]/2. + fClength[iplan][1];
-    zpos  = fgkVrocsm + fgkCH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace);
-    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+    // The empty regions in the cross bars
+    Float_t thkSCB = kSCBthk;
+    if (ilayer < 2) {
+      thkSCB *= 1.5;
+    }
+    parSCI[2] = parSCB[2] - thkSCB;
+    parSCI[0] = parSCB[0]/4.0 - kSCBthk;
+    snprintf(cTagV,kTag,"USI%01d",ilayer);
+    gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parSCI,kNparSCI);
 
-    sprintf(cTagV,"US2%01d",iplan);
-    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
+    snprintf(cTagV,kTag,"USI%01d",ilayer);
+    snprintf(cTagM,kTag,"USF%01d",ilayer);
+    ypos  = 0.0;
+    zpos  = 0.0;
+    xpos  =   parSCI[0] + thkSCB/2.0;
+    gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+    xpos  = - parSCI[0] - thkSCB/2.0;
+    gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY");
+    xpos  =   3.0 * parSCI[0] + 1.5 * thkSCB;
+    gMC->Gspos(cTagV,3,cTagM,xpos,ypos,zpos,0,"ONLY");
+    xpos  = - 3.0 * parSCI[0] - 1.5 * thkSCB;
+    gMC->Gspos(cTagV,4,cTagM,xpos,ypos,zpos,0,"ONLY");
+
+    snprintf(cTagV,kTag,"USF%01d",ilayer);
     xpos  = 0.0;
-    ypos  = fClength[iplan][2]/2.;
-    zpos  = fgkVrocsm + fgkCH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace);
-    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+    zpos  = fgkVrocsm + fgkSMpltT + parSCB[2] - fgkSheight/2.0 
+          + ilayer * (fgkCH + fgkVspace);
 
-    sprintf(cTagV,"US3%01d",iplan);
-    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
-    xpos  = 0.0;
-    ypos  = - fClength[iplan][2]/2.;
-    zpos  = fgkVrocsm + fgkCH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace);
-    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+    ypos  =   fgkClength[ilayer][2]/2.0 + fgkClength[ilayer][1];
+    gMC->Gspos(cTagV, 1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+    gMC->Gspos(cTagV, 3,"UTI2", xpos,ypos,zpos,0,"ONLY");
+    gMC->Gspos(cTagV, 5,"UTI3", xpos,ypos,zpos,0,"ONLY");
 
-    sprintf(cTagV,"US4%01d",iplan);
-    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
-    xpos  = 0.0;
-    ypos  = - fClength[iplan][2]/2. - fClength[iplan][1];
-    zpos  = fgkVrocsm + fgkCH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace);
-    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+    ypos  = - fgkClength[ilayer][2]/2.0 - fgkClength[ilayer][1];
+    gMC->Gspos(cTagV, 2,"UTI1", xpos,ypos,zpos,0,"ONLY");
+    gMC->Gspos(cTagV, 4,"UTI2", xpos,ypos,zpos,0,"ONLY");
+    gMC->Gspos(cTagV, 6,"UTI3", xpos,ypos,zpos,0,"ONLY");
 
-    sprintf(cTagV,"US5%01d",iplan);
-    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
+  }
+
+  //
+  // The horizontal connections between the cross bars
+  //
+
+  const Int_t   kNparSCH = 3;
+  Float_t parSCH[kNparSCH];
+
+  for (ilayer = 1; ilayer < kNlayer-1; ilayer++) {
+
+    parSCH[0] = fgkCwidth[ilayer]/2.0;
+    parSCH[1] = (fgkClength[ilayer+1][2]/2.0 + fgkClength[ilayer+1][1]
+               - fgkClength[ilayer  ][2]/2.0 - fgkClength[ilayer  ][1])/2.0;
+    parSCH[2] = kSCHhgt/2.0;
+
+    snprintf(cTagV,kTag,"USH%01d",ilayer);
+    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCH,kNparSCH);
     xpos  = 0.0;
-    ypos  = - fgkSlenTR1/2. + kSCBwid/2.;
-    zpos  = fgkVrocsm + fgkCH/2. - fgkSheight/2. + iplan * (fgkCH + fgkVspace);
+    ypos  = fgkClength[ilayer][2]/2.0 + fgkClength[ilayer][1] + parSCH[1];
+    zpos  = fgkVrocsm + fgkSMpltT - kSCHhgt/2.0 - fgkSheight/2.0 
+          + (ilayer+1) * (fgkCH + fgkVspace);
     gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+    gMC->Gspos(cTagV,3,"UTI2", xpos,ypos,zpos,0,"ONLY");
+    gMC->Gspos(cTagV,5,"UTI3", xpos,ypos,zpos,0,"ONLY");
+    ypos  = -ypos;
+    gMC->Gspos(cTagV,2,"UTI1", xpos,ypos,zpos,0,"ONLY");
+    gMC->Gspos(cTagV,4,"UTI2", xpos,ypos,zpos,0,"ONLY");
+    gMC->Gspos(cTagV,6,"UTI3", xpos,ypos,zpos,0,"ONLY");
 
   }
 
+  //
+  // The aymmetric flat frame in the middle
+  //
+
+  // The envelope volume (aluminum)
+  parTRD[0]  =  87.60/2.0;
+  parTRD[1]  = 114.00/2.0;
+  parTRD[2]  =   1.20/2.0;
+  parTRD[3]  =  71.30/2.0;
+  gMC->Gsvolu("USDB","TRD1",idtmed[1301-1],parTRD,kNparTRD);
+  // Empty spaces (air)
+  parTRP[ 0] =   1.20/2.0;
+  parTRP[ 1] =   0.0;
+  parTRP[ 2] =   0.0;
+  parTRP[ 3] =  27.00/2.0;
+  parTRP[ 4] =  50.60/2.0;
+  parTRP[ 5] =   5.00/2.0;
+  parTRP[ 6] =   3.5;
+  parTRP[ 7] =  27.00/2.0;
+  parTRP[ 8] =  50.60/2.0;
+  parTRP[ 9] =   5.00/2.0;
+  parTRP[10] =   3.5;
+  gMC->Gsvolu("USD1","TRAP",idtmed[1302-1],parTRP,kNparTRP);
+  xpos       =  18.0;
+  ypos       =   0.0;
+  zpos       =   27.00/2.0 - 71.3/2.0;
+  gMC->Gspos("USD1",1,"USDB", xpos, ypos, zpos,matrix[2],"ONLY");
+  // Empty spaces (air)
+  parTRP[ 0] =   1.20/2.0;
+  parTRP[ 1] =   0.0;
+  parTRP[ 2] =   0.0;
+  parTRP[ 3] =  33.00/2.0;
+  parTRP[ 4] =   5.00/2.0;
+  parTRP[ 5] =  62.10/2.0;
+  parTRP[ 6] =   3.5;
+  parTRP[ 7] =  33.00/2.0;
+  parTRP[ 8] =   5.00/2.0;
+  parTRP[ 9] =  62.10/2.0;
+  parTRP[10] =   3.5;
+  gMC->Gsvolu("USD2","TRAP",idtmed[1302-1],parTRP,kNparTRP);
+  xpos       =  21.0;
+  ypos       =   0.0;
+  zpos       =  71.3/2.0 - 33.0/2.0;
+  gMC->Gspos("USD2",1,"USDB", xpos, ypos, zpos,matrix[2],"ONLY");
+  // Empty spaces (air)
+  parBOX[ 0] =  22.50/2.0;
+  parBOX[ 1] =   1.20/2.0;
+  parBOX[ 2] =  70.50/2.0;
+  gMC->Gsvolu("USD3","BOX ",idtmed[1302-1],parBOX,kNparBOX);
+  xpos       = -25.75;
+  ypos       =   0.0;
+  zpos       =   0.4;
+  gMC->Gspos("USD3",1,"USDB", xpos, ypos, zpos,        0,"ONLY");
+  // Empty spaces (air)
+  parTRP[ 0] =   1.20/2.0;
+  parTRP[ 1] =   0.0;
+  parTRP[ 2] =   0.0;
+  parTRP[ 3] =  25.50/2.0;
+  parTRP[ 4] =   5.00/2.0;
+  parTRP[ 5] =  65.00/2.0;
+  parTRP[ 6] =  -1.0;
+  parTRP[ 7] =  25.50/2.0;
+  parTRP[ 8] =   5.00/2.0;
+  parTRP[ 9] =  65.00/2.0;
+  parTRP[10] =  -1.0;
+  gMC->Gsvolu("USD4","TRAP",idtmed[1302-1],parTRP,kNparTRP);
+  xpos       =   2.0;
+  ypos       =   0.0;
+  zpos       =  -1.6;
+  gMC->Gspos("USD4",1,"USDB", xpos, ypos, zpos,matrix[6],"ONLY");
+  // Empty spaces (air)
+  parTRP[ 0] =   1.20/2.0;
+  parTRP[ 1] =   0.0;
+  parTRP[ 2] =   0.0;
+  parTRP[ 3] =  23.50/2.0;
+  parTRP[ 4] =  63.50/2.0;
+  parTRP[ 5] =   5.00/2.0;
+  parTRP[ 6] =  16.0;
+  parTRP[ 7] =  23.50/2.0;
+  parTRP[ 8] =  63.50/2.0;
+  parTRP[ 9] =   5.00/2.0;
+  parTRP[10] =  16.0;
+  gMC->Gsvolu("USD5","TRAP",idtmed[1302-1],parTRP,kNparTRP);
+  xpos       =  36.5;
+  ypos       =   0.0;
+  zpos       =  -1.5;
+  gMC->Gspos("USD5",1,"USDB", xpos, ypos, zpos,matrix[5],"ONLY");
+  // Empty spaces (air)
+  parTRP[ 0] =   1.20/2.0;
+  parTRP[ 1] =   0.0;
+  parTRP[ 2] =   0.0;
+  parTRP[ 3] =  70.50/2.0;
+  parTRP[ 4] =   4.50/2.0;
+  parTRP[ 5] =  16.50/2.0;
+  parTRP[ 6] =  -5.0;
+  parTRP[ 7] =  70.50/2.0;
+  parTRP[ 8] =   4.50/2.0;
+  parTRP[ 9] =  16.50/2.0;
+  parTRP[10] =  -5.0;
+  gMC->Gsvolu("USD6","TRAP",idtmed[1302-1],parTRP,kNparTRP);
+  xpos       = -43.7;
+  ypos       =   0.0;
+  zpos       =   0.4;
+  gMC->Gspos("USD6",1,"USDB", xpos, ypos, zpos,matrix[2],"ONLY");
+  xpos       =   0.0;
+  ypos       =   fgkClength[5][2]/2.0;
+  zpos       =   0.04;
+  gMC->Gspos("USDB",1,"UTI1", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USDB",2,"UTI1", xpos,-ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USDB",3,"UTI2", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USDB",4,"UTI2", xpos,-ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USDB",5,"UTI3", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USDB",6,"UTI3", xpos,-ypos, zpos,        0,"ONLY");
+  // Upper bar (aluminum)
+  parBOX[0] = 95.00/2.0;
+  parBOX[1] =  1.20/2.0;
+  parBOX[2] =  3.00/2.0;
+  gMC->Gsvolu("USD7","BOX ",idtmed[1301-1],parBOX,kNparBOX);
+  xpos       =   0.0;
+  ypos       =   fgkClength[5][2]/2.0;
+  zpos       =   fgkSheight/2.0 - fgkSMpltT  - 3.00/2.0;
+  gMC->Gspos("USD7",1,"UTI1", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USD7",2,"UTI1", xpos,-ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USD7",3,"UTI2", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USD7",4,"UTI2", xpos,-ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USD7",5,"UTI3", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USD7",6,"UTI3", xpos,-ypos, zpos,        0,"ONLY");
+  // Lower bar (aluminum)
+  parBOX[0] = 90.22/2.0;
+  parBOX[1] =  1.20/2.0;
+  parBOX[2] =  1.74/2.0;
+  gMC->Gsvolu("USD8","BOX ",idtmed[1301-1],parBOX,kNparBOX);
+  xpos       =   0.0;
+  ypos       =   fgkClength[5][2]/2.0 - 0.1;
+  zpos       =  -fgkSheight/2.0 + fgkSMpltT + 2.27;
+  gMC->Gspos("USD8",1,"UTI1", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USD8",2,"UTI1", xpos,-ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USD8",3,"UTI2", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USD8",4,"UTI2", xpos,-ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USD8",5,"UTI3", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USD8",6,"UTI3", xpos,-ypos, zpos,        0,"ONLY");
+  // Lower bar (aluminum)
+  parBOX[0] = 82.60/2.0;
+  parBOX[1] =  1.20/2.0;
+  parBOX[2] =  1.40/2.0;
+  gMC->Gsvolu("USD9","BOX ",idtmed[1301-1],parBOX,kNparBOX);
+  xpos       =   0.0;
+  ypos       =   fgkClength[5][2]/2.0;
+  zpos       =  -fgkSheight/2.0 + fgkSMpltT + 1.40/2.0;
+  gMC->Gspos("USD9",1,"UTI1", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USD9",2,"UTI1", xpos,-ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USD9",3,"UTI2", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USD9",4,"UTI2", xpos,-ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USD9",5,"UTI3", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USD9",6,"UTI3", xpos,-ypos, zpos,        0,"ONLY");
+  // Front sheet (aluminum)
+  parTRP[ 0] =   0.10/2.0;
+  parTRP[ 1] =   0.0;
+  parTRP[ 2] =   0.0;
+  parTRP[ 3] =  74.50/2.0;
+  parTRP[ 4] =  31.70/2.0;
+  parTRP[ 5] =  44.00/2.0;
+  parTRP[ 6] =  -5.0;
+  parTRP[ 7] =  74.50/2.0;
+  parTRP[ 8] =  31.70/2.0;
+  parTRP[ 9] =  44.00/2.0;
+  parTRP[10] =  -5.0;
+  gMC->Gsvolu("USDF","TRAP",idtmed[1302-1],parTRP,kNparTRP);
+  xpos       = -32.0;
+  ypos       =   fgkClength[5][2]/2.0 + 1.20/2.0 + 0.10/2.0;
+  zpos       =   0.0;
+  gMC->Gspos("USDF",1,"UTI1", xpos, ypos, zpos,matrix[2],"ONLY");
+  gMC->Gspos("USDF",2,"UTI1", xpos,-ypos, zpos,matrix[2],"ONLY");
+  gMC->Gspos("USDF",3,"UTI2", xpos, ypos, zpos,matrix[2],"ONLY");
+  gMC->Gspos("USDF",4,"UTI2", xpos,-ypos, zpos,matrix[2],"ONLY");
+  gMC->Gspos("USDF",5,"UTI3", xpos, ypos, zpos,matrix[2],"ONLY");
+  gMC->Gspos("USDF",6,"UTI3", xpos,-ypos, zpos,matrix[2],"ONLY");
+
+  //
+  // The flat frame in front of the chambers
+  //
+
+  // The envelope volume (aluminum)
+  parTRD[0]  =  90.00/2.0 - 0.1;
+  parTRD[1]  = 114.00/2.0 - 0.1;
+  parTRD[2]  =   1.50/2.0;
+  parTRD[3]  =  70.30/2.0;
+  gMC->Gsvolu("USCB","TRD1",idtmed[1301-1],parTRD,kNparTRD);
+  // Empty spaces (air)
+  parTRD[0]  =  87.00/2.0;
+  parTRD[1]  =  10.00/2.0;
+  parTRD[2]  =   1.50/2.0;
+  parTRD[3]  =  26.35/2.0;
+  gMC->Gsvolu("USC1","TRD1",idtmed[1302-1],parTRD,kNparTRD);
+  xpos       =  0.0;
+  ypos       =  0.0;
+  zpos       = 26.35/2.0 - 70.3/2.0;
+  gMC->Gspos("USC1",1,"USCB",xpos,ypos,zpos,0,"ONLY");
+  // Empty spaces (air)
+  parTRD[0]  =  10.00/2.0;
+  parTRD[1]  = 111.00/2.0;
+  parTRD[2]  =   1.50/2.0;
+  parTRD[3]  =  35.05/2.0;
+  gMC->Gsvolu("USC2","TRD1",idtmed[1302-1],parTRD,kNparTRD);
+  xpos       =  0.0;
+  ypos       =  0.0;
+  zpos       = 70.3/2.0 - 35.05/2.0;
+  gMC->Gspos("USC2",1,"USCB",xpos,ypos,zpos,0,"ONLY");
+  // Empty spaces (air)
+  parTRP[ 0] =   1.50/2.0;
+  parTRP[ 1] =   0.0;
+  parTRP[ 2] =   0.0;
+  parTRP[ 3] =  37.60/2.0;
+  parTRP[ 4] =  63.90/2.0;
+  parTRP[ 5] =   8.86/2.0;
+  parTRP[ 6] =  16.0;
+  parTRP[ 7] =  37.60/2.0;
+  parTRP[ 8] =  63.90/2.0;
+  parTRP[ 9] =   8.86/2.0;
+  parTRP[10] =  16.0;
+  gMC->Gsvolu("USC3","TRAP",idtmed[1302-1],parTRP,kNparTRP);
+  xpos       = -30.5;
+  ypos       =   0.0;
+  zpos       =  -2.0;
+  gMC->Gspos("USC3",1,"USCB", xpos, ypos, zpos,matrix[4],"ONLY");
+  gMC->Gspos("USC3",2,"USCB",-xpos, ypos, zpos,matrix[5],"ONLY");
+  xpos       =   0.0;
+  ypos       =   fgkClength[5][2]/2.0 + fgkClength[5][1] + fgkClength[5][0];
+  zpos       =   0.0;
+  gMC->Gspos("USCB",1,"UTI1", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USCB",2,"UTI1", xpos,-ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USCB",3,"UTI2", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USCB",4,"UTI2", xpos,-ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USCB",5,"UTI3", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USCB",6,"UTI3", xpos,-ypos, zpos,        0,"ONLY");
+  // Upper bar (aluminum)
+  parBOX[0] = 95.00/2.0;
+  parBOX[1] =  1.50/2.0;
+  parBOX[2] =  3.00/2.0;
+  gMC->Gsvolu("USC4","BOX ",idtmed[1301-1],parBOX,kNparBOX);
+  xpos       =   0.0;
+  ypos       =   fgkClength[5][2]/2.0 + fgkClength[5][1] + fgkClength[5][0];
+  zpos       =   fgkSheight/2.0 - fgkSMpltT - 3.00/2.0;
+  gMC->Gspos("USC4",1,"UTI1", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USC4",2,"UTI1", xpos,-ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USC4",3,"UTI2", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USC4",4,"UTI2", xpos,-ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USC4",5,"UTI3", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USC4",6,"UTI3", xpos,-ypos, zpos,        0,"ONLY");
+  // Lower bar (aluminum)
+  parBOX[0] = 90.22/2.0;
+  parBOX[1] =  1.50/2.0;
+  parBOX[2] =  2.00/2.0;
+  gMC->Gsvolu("USC5","BOX ",idtmed[1301-1],parBOX,kNparBOX);
+  xpos       =   0.0;
+  ypos       =   fgkClength[5][2]/2.0 + fgkClength[5][1] + fgkClength[5][0];
+  zpos       =  -fgkSheight/2.0 + fgkSMpltT + 2.60;
+  gMC->Gspos("USC5",1,"UTI1", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USC5",2,"UTI1", xpos,-ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USC5",3,"UTI2", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USC5",4,"UTI2", xpos,-ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USC5",5,"UTI3", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USC5",6,"UTI3", xpos,-ypos, zpos,        0,"ONLY");
+  // Lower bar (aluminum)
+  parBOX[0] = 82.60/2.0;
+  parBOX[1] =  1.50/2.0;
+  parBOX[2] =  1.60/2.0;
+  gMC->Gsvolu("USC6","BOX ",idtmed[1301-1],parBOX,kNparBOX);
+  xpos       =   0.0;
+  ypos       =   fgkClength[5][2]/2.0 + fgkClength[5][1] + fgkClength[5][0];
+  zpos       =  -fgkSheight/2.0 + fgkSMpltT + 1.60/2.0;
+  gMC->Gspos("USC6",1,"UTI1", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USC6",2,"UTI1", xpos,-ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USC6",3,"UTI2", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USC6",4,"UTI2", xpos,-ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USC6",5,"UTI3", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("USC6",6,"UTI3", xpos,-ypos, zpos,        0,"ONLY");
+
+  //
+  // The long corner ledges
+  //
+
+  const Int_t   kNparSCL  =  3;
+  Float_t parSCL[kNparSCL];
+  const Int_t   kNparSCLb = 11;
+  Float_t parSCLb[kNparSCLb];
+
+  // Upper ledges 
+  // Thickness of the corner ledges
+  const Float_t kSCLthkUa  =  0.6; 
+  const Float_t kSCLthkUb  =  0.6; 
+  // Width of the corner ledges
+  const Float_t kSCLwidUa  =  3.2;
+  const Float_t kSCLwidUb  =  4.8;
+  // Position of the corner ledges
+  const Float_t kSCLposxUa = 0.7;
+  const Float_t kSCLposxUb = 3.3;
+  const Float_t kSCLposzUa = 1.65;
+  const Float_t kSCLposzUb = 0.3;
+  // Vertical
+  parSCL[0]  = kSCLthkUa /2.0;
+  parSCL[1]  = fgkSlength/2.0;
+  parSCL[2]  = kSCLwidUa /2.0;
+  gMC->Gsvolu("USL1","BOX ",idtmed[1301-1],parSCL,kNparSCL);
+  xpos  =   fgkSwidth2/2.0 - fgkSMpltT - kSCLposxUa;
+  ypos  =   0.0;
+  zpos  =   fgkSheight/2.0 - fgkSMpltT - kSCLposzUa;
+  gMC->Gspos("USL1",1,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY");
+  xpos  = -xpos;
+  gMC->Gspos("USL1",2,"UTI1", xpos,ypos,zpos,matrix[1],"ONLY");
+  // Horizontal
+  parSCL[0]  = kSCLwidUb /2.0;
+  parSCL[1]  = fgkSlength/2.0;
+  parSCL[2]  = kSCLthkUb /2.0;
+  gMC->Gsvolu("USL2","BOX ",idtmed[1301-1],parSCL,kNparSCL);
+  xpos  =   fgkSwidth2/2.0 - fgkSMpltT - kSCLposxUb;
+  ypos  =   0.0;
+  zpos  =   fgkSheight/2.0 - fgkSMpltT - kSCLposzUb; 
+  gMC->Gspos("USL2",1,"UTI1", xpos,ypos,zpos,        0,"ONLY");
+  gMC->Gspos("USL2",3,"UTI2", xpos,ypos,zpos,        0,"ONLY");
+  gMC->Gspos("USL2",5,"UTI3", xpos,ypos,zpos,        0,"ONLY");
+  xpos  = -xpos;
+  gMC->Gspos("USL2",2,"UTI1", xpos,ypos,zpos,        0,"ONLY");
+  gMC->Gspos("USL2",4,"UTI2", xpos,ypos,zpos,        0,"ONLY");
+  gMC->Gspos("USL2",6,"UTI3", xpos,ypos,zpos,        0,"ONLY");
+
+  // Lower ledges 
+  // Thickness of the corner ledges
+  const Float_t kSCLthkLa  =  2.464; 
+  const Float_t kSCLthkLb  =  1.0; 
+  // Width of the corner ledges
+  const Float_t kSCLwidLa  =  8.3;
+  const Float_t kSCLwidLb  =  4.0;
+  // Position of the corner ledges
+  const Float_t kSCLposxLa = (3.0 * kSCLthkLb - kSCLthkLa) / 4.0 + 0.05;
+  const Float_t kSCLposxLb = kSCLthkLb + kSCLwidLb/2.0 + 0.05;
+  const Float_t kSCLposzLa = kSCLwidLa/2.0;
+  const Float_t kSCLposzLb = kSCLthkLb/2.0;
+  // Vertical
+  // Trapezoidal shape
+  parSCLb[ 0] = fgkSlength/2.0;
+  parSCLb[ 1] = 0.0;
+  parSCLb[ 2] = 0.0;
+  parSCLb[ 3] = kSCLwidLa /2.0;
+  parSCLb[ 4] = kSCLthkLb /2.0;
+  parSCLb[ 5] = kSCLthkLa /2.0;
+  parSCLb[ 6] = 5.0;
+  parSCLb[ 7] = kSCLwidLa /2.0;
+  parSCLb[ 8] = kSCLthkLb /2.0;
+  parSCLb[ 9] = kSCLthkLa /2.0;
+  parSCLb[10] = 5.0;
+  gMC->Gsvolu("USL3","TRAP",idtmed[1301-1],parSCLb,kNparSCLb);
+  xpos  =   fgkSwidth1/2.0 - fgkSMpltT - kSCLposxLa;
+  ypos  =   0.0;
+  zpos  = - fgkSheight/2.0 + fgkSMpltT + kSCLposzLa;
+  gMC->Gspos("USL3",1,"UTI1", xpos,ypos,zpos,matrix[2],"ONLY");
+  gMC->Gspos("USL3",3,"UTI2", xpos,ypos,zpos,matrix[2],"ONLY");
+  gMC->Gspos("USL3",5,"UTI3", xpos,ypos,zpos,matrix[2],"ONLY");
+  xpos  = -xpos;
+  gMC->Gspos("USL3",2,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY");
+  gMC->Gspos("USL3",4,"UTI2", xpos,ypos,zpos,matrix[3],"ONLY");
+  gMC->Gspos("USL3",6,"UTI3", xpos,ypos,zpos,matrix[3],"ONLY");
+  // Horizontal part
+  parSCL[0]  = kSCLwidLb /2.0;
+  parSCL[1]  = fgkSlength/2.0;
+  parSCL[2]  = kSCLthkLb /2.0;
+  gMC->Gsvolu("USL4","BOX ",idtmed[1301-1],parSCL,kNparSCL);
+  xpos  =   fgkSwidth1/2.0 - fgkSMpltT - kSCLposxLb;
+  ypos  =   0.0;
+  zpos  = - fgkSheight/2.0 + fgkSMpltT + kSCLposzLb;
+  gMC->Gspos("USL4",1,"UTI1", xpos,ypos,zpos,        0,"ONLY");
+  gMC->Gspos("USL4",3,"UTI2", xpos,ypos,zpos,        0,"ONLY");
+  gMC->Gspos("USL4",5,"UTI3", xpos,ypos,zpos,        0,"ONLY");
+  xpos  = -xpos;
+  gMC->Gspos("USL4",2,"UTI1", xpos,ypos,zpos,        0,"ONLY");
+  gMC->Gspos("USL4",4,"UTI2", xpos,ypos,zpos,        0,"ONLY");
+  gMC->Gspos("USL4",6,"UTI3", xpos,ypos,zpos,        0,"ONLY");
+
+  //
+  // Aluminum plates in the front part of the super modules
+  //
+
+  const Int_t kNparTrd = 4;
+  Float_t parTrd[kNparTrd];
+  parTrd[0] = fgkSwidth1/2.0 - 2.5;
+  parTrd[1] = fgkSwidth2/2.0 - 2.5;
+  parTrd[2] = fgkSMpltT /2.0;
+  parTrd[3] = fgkSheight/2.0 - 1.0;
+  gMC->Gsvolu("UTA1","TRD1",idtmed[1301-1],parTrd,kNparTrd);
+  xpos      =  0.0;
+  ypos      =  fgkSMpltT/2.0 - fgkFlength/2.0;
+  zpos      = -0.5;
+  gMC->Gspos("UTA1",1,"UTF1",xpos, ypos,zpos,        0,"ONLY");
+  gMC->Gspos("UTA1",2,"UTF2",xpos,-ypos,zpos,        0,"ONLY");
+
+  const Int_t kNparPlt = 3;
+  Float_t parPlt[kNparPlt];
+  parPlt[0] =  0.0;
+  parPlt[1] =  0.0;
+  parPlt[2] =  0.0;
+  gMC->Gsvolu("UTA2","BOX ",idtmed[1301-1],parPlt,0);
+  xpos      =  0.0;
+  ypos      =  0.0;
+  zpos      =  fgkSheight/2.0 - fgkSMpltT/2.0;
+  parPlt[0] = fgkSwidth2/2.0 - 0.2;
+  parPlt[1] = fgkFlength/2.0;
+  parPlt[2] = fgkSMpltT /2.0;
+  gMC->Gsposp("UTA2",1,"UTF2",xpos,ypos,zpos
+                    ,        0,"ONLY",parPlt,kNparPlt);
+  xpos      = (fgkSwidth1 + fgkSwidth2)/4.0 - fgkSMpltT/2.0 - 0.0016;
+  ypos      =  0.0;
+  zpos      =  0.0;
+  parPlt[0] = fgkSMpltT /2.0;
+  parPlt[1] = fgkFlength/2.0;
+  parPlt[2] = fgkSheight/2.0;
+  gMC->Gsposp("UTA2",2,"UTF2", xpos,ypos,zpos
+                    ,matrix[0],"ONLY",parPlt,kNparPlt);
+  gMC->Gsposp("UTA2",3,"UTF2",-xpos,ypos,zpos
+                    ,matrix[1],"ONLY",parPlt,kNparPlt);
+
+  // Additional aluminum bar
+  parBOX[0] = 80.0/2.0;
+  parBOX[1] =  1.0/2.0;
+  parBOX[2] = 10.0/2.0;
+  gMC->Gsvolu("UTA3","BOX ",idtmed[1301-1],parBOX,kNparBOX);
+  xpos      =  0.0;
+  ypos      =  1.0/2.0 + fgkSMpltT - fgkFlength/2.0;
+  zpos      =  fgkSheight/2.0 - 1.5 - 10.0/2.0;
+  gMC->Gspos("UTA3",1,"UTF1", xpos, ypos, zpos,        0,"ONLY");
+  gMC->Gspos("UTA3",2,"UTF2", xpos,-ypos, zpos,        0,"ONLY");
+
 }
 
 //_____________________________________________________________________________
@@ -715,105 +1699,409 @@ void AliTRDgeometry::CreateServices(Int_t *idtmed)
   //
   // Names of the TRD services volumina
   //
-  //        UTCL    Cooling arterias (Al)
-  //        UTCW    Cooling arterias (Water)
+  //        UTC1    Cooling arterias (Al)
+  //        UTC2    Cooling arterias (Water)
   //        UUxx    Volumes for the services at the chambers (Air)
-  //        UTPW    Power bars       (Cu)
-  //        UTCP    Cooling pipes    (Al)
+  //        UMCM    Readout MCMs     (G10/Cu/Si)
+  //        UDCS    DCSs boards      (G10/Cu)
+  //        UTP1    Power bars       (Cu)
+  //        UTCP    Cooling pipes    (Fe)
   //        UTCH    Cooling pipes    (Water)
   //        UTPL    Power lines      (Cu)
-  //        UMCM    Readout MCMs     (G10/Cu/Si)
+  //        UTGD    Gas distribution box (V2A)
   //
 
-  Int_t   iplan = 0;
-  Int_t   icham = 0;
+  Int_t   ilayer = 0;
+  Int_t   istack = 0;
 
   Float_t xpos  = 0.0;
   Float_t ypos  = 0.0;
   Float_t zpos  = 0.0;
 
-  Char_t  cTagV[5];
+  const Int_t kTag = 100;
+  Char_t  cTagV[kTag];
+
+  const Int_t kNparBox  = 3;
+  Float_t parBox[kNparBox];
+
+  const Int_t kNparTube = 3;
+  Float_t parTube[kNparTube];
+
+  // Services inside the baby frame
+  const Float_t kBBMdz = 223.0;
+  const Float_t kBBSdz =   8.5;
+
+  // Services inside the back frame
+  const Float_t kBFMdz = 118.0;
+  const Float_t kBFSdz =   8.5;
 
   // The rotation matrices
-  const Int_t kNmatrix = 3;
+  const Int_t kNmatrix = 10;
   Int_t   matrix[kNmatrix];
-  gMC->Matrix(matrix[0],100.0,  0.0, 90.0, 90.0, 10.0,  0.0);
-  gMC->Matrix(matrix[1], 80.0,  0.0, 90.0, 90.0, 10.0,180.0);
-  gMC->Matrix(matrix[2],  0.0,  0.0, 90.0, 90.0, 90.0,  0.0);
-
-  AliTRDCommonParam* commonParam = AliTRDCommonParam::Instance();
-  if (!commonParam) {
-    AliError("Could not get common parameters\n");
-    return;
-  }
+  gMC->Matrix(matrix[0], 100.0,   0.0,  90.0,  90.0,  10.0,   0.0); // rotation around y-axis
+  gMC->Matrix(matrix[1],  80.0,   0.0,  90.0,  90.0,  10.0, 180.0); // rotation around y-axis
+  gMC->Matrix(matrix[2],   0.0,   0.0,  90.0,  90.0,  90.0,   0.0);
+  gMC->Matrix(matrix[3], 180.0,   0.0,  90.0,  90.0,  90.0, 180.0);
+  gMC->Matrix(matrix[4],  90.0,   0.0,   0.0,   0.0,  90.0,  90.0);
+  gMC->Matrix(matrix[5], 100.0,   0.0,  90.0, 270.0,  10.0,   0.0);
+  gMC->Matrix(matrix[6],  80.0,   0.0,  90.0, 270.0,  10.0, 180.0);
+  gMC->Matrix(matrix[7],  90.0,  10.0,  90.0, 100.0,   0.0,   0.0); // rotation around z-axis
+  gMC->Matrix(matrix[8],  90.0, 350.0,  90.0,  80.0,   0.0,   0.0); // rotation around z-axis
+  gMC->Matrix(matrix[9],  90.0,  90.0,  90.0, 180.0,   0.0,   0.0); // rotation around z-axis
     
   //
   // The cooling arterias
   //
 
   // Width of the cooling arterias
-  const Float_t kCOLwid  =  0.5
+  const Float_t kCOLwid  =  0.8
   // Height of the cooling arterias
-  const Float_t kCOLhgt  =  5.5;
+  const Float_t kCOLhgt  =  6.5;
   // Positioning of the cooling 
-  const Float_t kCOLposx =  1.6;
-  const Float_t kCOLposz = -0.2;
+  const Float_t kCOLposx =  1.0;
+  const Float_t kCOLposz = -1.2;
   // Thickness of the walls of the cooling arterias
   const Float_t kCOLthk  =  0.1;
-  const Int_t   kNparCOL = 3;
+  const Int_t   kNparCOL =  3;
   Float_t parCOL[kNparCOL];
-  parCOL[0]  = kCOLwid/2.;
-  parCOL[1]  = fgkSlenTR1/2.;
-  parCOL[2]  = kCOLhgt/2.;
-  gMC->Gsvolu("UTCL","BOX ",idtmed[1324-1],parCOL,kNparCOL);
-  parCOL[0] -= kCOLthk;
-  parCOL[1]  = fgkSlenTR1/2.;
-  parCOL[2] -= kCOLthk;
-  gMC->Gsvolu("UTCW","BOX ",idtmed[1314-1],parCOL,kNparCOL);
+  parCOL[0] = 0.0;
+  parCOL[1] = 0.0;
+  parCOL[2] = 0.0;
+  gMC->Gsvolu("UTC1","BOX ",idtmed[1308-1],parCOL,0);
+  gMC->Gsvolu("UTC3","BOX ",idtmed[1308-1],parCOL,0);
+  parCOL[0] =  kCOLwid/2.0 - kCOLthk;
+  parCOL[1] = -1.0;
+  parCOL[2] =  kCOLhgt/2.0 - kCOLthk;
+  gMC->Gsvolu("UTC2","BOX ",idtmed[1314-1],parCOL,kNparCOL);
+  gMC->Gsvolu("UTC4","BOX ",idtmed[1314-1],parCOL,kNparCOL);
 
   xpos  = 0.0;
   ypos  = 0.0;
   zpos  = 0.0;
-  gMC->Gspos("UTCW",1,"UTCL", xpos,ypos,zpos,0,"ONLY");
+  gMC->Gspos("UTC2",1,"UTC1", xpos,ypos,zpos,0,"ONLY");
+  gMC->Gspos("UTC4",1,"UTC3", xpos,ypos,zpos,0,"ONLY");
+
+  for (ilayer = 1; ilayer < kNlayer; ilayer++) { 
+
+    // Along the chambers
+    xpos      = fgkCwidth[ilayer]/2.0 + kCOLwid/2.0 + kCOLposx;
+    ypos      = 0.0;
+    zpos      = fgkVrocsm + fgkSMpltT - fgkCalZpos 
+              + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz 
+              + ilayer * (fgkCH + fgkVspace);
+    parCOL[0] = kCOLwid   /2.0;
+    parCOL[1] = fgkSlength/2.0;
+    parCOL[2] = kCOLhgt   /2.0;
+    gMC->Gsposp("UTC1",ilayer          ,"UTI1", xpos,ypos,zpos
+                      ,matrix[0],"ONLY",parCOL,kNparCOL);
+    gMC->Gsposp("UTC1",ilayer+  kNlayer,"UTI1",-xpos,ypos,zpos
+                      ,matrix[1],"ONLY",parCOL,kNparCOL);
+    gMC->Gsposp("UTC1",ilayer+6*kNlayer,"UTI2", xpos,ypos,zpos
+                      ,matrix[0],"ONLY",parCOL,kNparCOL);
+    gMC->Gsposp("UTC1",ilayer+7*kNlayer,"UTI2",-xpos,ypos,zpos
+                      ,matrix[1],"ONLY",parCOL,kNparCOL);
+    gMC->Gsposp("UTC1",ilayer+8*kNlayer ,"UTI3", xpos,ypos,zpos
+                      ,matrix[0],"ONLY",parCOL,kNparCOL);
+    gMC->Gsposp("UTC1",ilayer+9*kNlayer,"UTI3",-xpos,ypos,zpos
+                      ,matrix[1],"ONLY",parCOL,kNparCOL);
+
+    // Front of supermodules
+    xpos      = fgkCwidth[ilayer]/2.0 + kCOLwid/2.0 + kCOLposx;
+    ypos      = 0.0;
+    zpos      = fgkVrocsm + fgkSMpltT - fgkCalZpos 
+              + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz 
+              + ilayer * (fgkCH + fgkVspace);
+    parCOL[0] = kCOLwid   /2.0;
+    parCOL[1] = fgkFlength/2.0;
+    parCOL[2] = kCOLhgt   /2.0;
+    gMC->Gsposp("UTC3",ilayer+2*kNlayer,"UTF1", xpos,ypos,zpos
+                      ,matrix[0],"ONLY",parCOL,kNparCOL);
+    gMC->Gsposp("UTC3",ilayer+3*kNlayer,"UTF1",-xpos,ypos,zpos
+                      ,matrix[1],"ONLY",parCOL,kNparCOL);
+    gMC->Gsposp("UTC3",ilayer+4*kNlayer,"UTF2", xpos,ypos,zpos
+                      ,matrix[0],"ONLY",parCOL,kNparCOL);
+    gMC->Gsposp("UTC3",ilayer+5*kNlayer,"UTF2",-xpos,ypos,zpos
+                      ,matrix[1],"ONLY",parCOL,kNparCOL);
 
-  for (iplan = 0; iplan < kNplan; iplan++) { 
-    
-    xpos  = fCwidth[iplan]/2. + kCOLwid/2. + kCOLposx;
-    ypos  = 0.0;
-    zpos  = fgkVrocsm + kCOLhgt/2. - fgkSheight/2. + kCOLposz 
-          + iplan * (fgkCH + fgkVspace);
-    if (iplan == 0) zpos += 0.25;  // To avoid overlaps !
-    gMC->Gspos("UTCL",iplan+1         ,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY");
-    gMC->Gspos("UTCL",iplan+1+  kNplan,"UTI1",-xpos,ypos,zpos,matrix[1],"ONLY");
+  }
+
+  for (ilayer = 1; ilayer < kNlayer; ilayer++) { 
+
+    // In baby frame
+    xpos      = fgkCwidth[ilayer]/2.0 + kCOLwid/2.0 + kCOLposx - 2.5;
+    ypos      = kBBSdz/2.0 - kBBMdz/2.0;
+    zpos      = fgkVrocsm + fgkSMpltT - fgkCalZpos 
+              + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz 
+              + ilayer * (fgkCH + fgkVspace);
+    parCOL[0] = kCOLwid/2.0;
+    parCOL[1] = kBBSdz /2.0;
+    parCOL[2] = kCOLhgt/2.0;
+    gMC->Gsposp("UTC3",ilayer+6*kNlayer,"BBTRD", xpos, ypos, zpos
+                      ,matrix[0],"ONLY",parCOL,kNparCOL);
+    gMC->Gsposp("UTC3",ilayer+7*kNlayer,"BBTRD",-xpos, ypos, zpos
+                      ,matrix[1],"ONLY",parCOL,kNparCOL);
 
   }
 
-  //
-  // The power bars
+  for (ilayer = 1; ilayer < kNlayer; ilayer++) { 
+
+    // In back frame
+    xpos      = fgkCwidth[ilayer]/2.0 + kCOLwid/2.0 + kCOLposx - 0.3;
+    ypos      = -kBFSdz/2.0 + kBFMdz/2.0;
+    zpos      = fgkVrocsm + fgkSMpltT - fgkCalZpos 
+              + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz 
+              + ilayer * (fgkCH + fgkVspace);
+    parCOL[0] = kCOLwid/2.0;
+    parCOL[1] = kBFSdz /2.0;
+    parCOL[2] = kCOLhgt/2.0;
+    gMC->Gsposp("UTC3",ilayer+6*kNlayer,"BFTRD", xpos,ypos,zpos
+                      ,matrix[0],"ONLY",parCOL,kNparCOL);
+    gMC->Gsposp("UTC3",ilayer+7*kNlayer,"BFTRD",-xpos,ypos,zpos
+                      ,matrix[1],"ONLY",parCOL,kNparCOL);
+
+  }
+
+  // The upper most layer
+  // Along the chambers
+  xpos      = fgkCwidth[5]/2.0 - kCOLhgt/2.0 - 1.3;
+  ypos      = 0.0;
+  zpos      = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0; 
+  parCOL[0] = kCOLwid   /2.0;
+  parCOL[1] = fgkSlength/2.0;
+  parCOL[2] = kCOLhgt   /2.0;
+  gMC->Gsposp("UTC1",6          ,"UTI1", xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parCOL,kNparCOL);
+  gMC->Gsposp("UTC1",6+  kNlayer,"UTI1",-xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parCOL,kNparCOL);
+  gMC->Gsposp("UTC1",6+6*kNlayer,"UTI2", xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parCOL,kNparCOL);
+  gMC->Gsposp("UTC1",6+7*kNlayer,"UTI2",-xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parCOL,kNparCOL);
+  gMC->Gsposp("UTC1",6+8*kNlayer,"UTI3", xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parCOL,kNparCOL);
+  gMC->Gsposp("UTC1",6+9*kNlayer,"UTI3",-xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parCOL,kNparCOL);
+  // Front of supermodules
+  xpos      = fgkCwidth[5]/2.0 - kCOLhgt/2.0 - 1.3;
+  ypos      = 0.0;
+  zpos      = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0; 
+  parCOL[0] = kCOLwid   /2.0;
+  parCOL[1] = fgkFlength/2.0;
+  parCOL[2] = kCOLhgt   /2.0;
+  gMC->Gsposp("UTC3",6+2*kNlayer,"UTF1", xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parCOL,kNparCOL);
+  gMC->Gsposp("UTC3",6+3*kNlayer,"UTF1",-xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parCOL,kNparCOL);
+  gMC->Gsposp("UTC3",6+4*kNlayer,"UTF2", xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parCOL,kNparCOL);
+  gMC->Gsposp("UTC3",6+5*kNlayer,"UTF2",-xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parCOL,kNparCOL);
+  // In baby frame
+  xpos      = fgkCwidth[5]/2.0 - kCOLhgt/2.0 - 3.1;
+  ypos      = kBBSdz/2.0 - kBBMdz/2.0;
+  zpos      = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0; 
+  parCOL[0] = kCOLwid/2.0;
+  parCOL[1] = kBBSdz /2.0;
+  parCOL[2] = kCOLhgt/2.0;
+  gMC->Gsposp("UTC3",6+6*kNlayer,"BBTRD", xpos, ypos, zpos
+                    ,matrix[3],"ONLY",parCOL,kNparCOL);
+  gMC->Gsposp("UTC3",6+7*kNlayer,"BBTRD",-xpos, ypos, zpos
+                    ,matrix[3],"ONLY",parCOL,kNparCOL);
+  // In back frame
+  xpos      = fgkCwidth[5]/2.0 - kCOLhgt/2.0 - 1.3;
+  ypos      = -kBFSdz/2.0 + kBFMdz/2.0;
+  zpos      = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0; 
+  parCOL[0] = kCOLwid/2.0;
+  parCOL[1] = kBFSdz /2.0;
+  parCOL[2] = kCOLhgt/2.0;
+  gMC->Gsposp("UTC3",6+6*kNlayer,"BFTRD", xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parCOL,kNparCOL);
+  gMC->Gsposp("UTC3",6+7*kNlayer,"BFTRD",-xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parCOL,kNparCOL);
+
+  //
+  // The power bus bars
   //
 
   const Float_t kPWRwid  =  0.6;
-  const Float_t kPWRhgt  =  4.5;
-  const Float_t kPWRposx =  1.05;
-  const Float_t kPWRposz =  0.9;
-  const Int_t   kNparPWR = 3;
+  // Increase the height of the power bus bars to take into
+  // account the material of additional cables, etc.
+  const Float_t kPWRhgtA =  5.0 + 0.2;
+  const Float_t kPWRhgtB =  5.0;
+  const Float_t kPWRposx =  2.0;
+  const Float_t kPWRposz =  0.1;
+  const Int_t   kNparPWR =  3;
   Float_t parPWR[kNparPWR];
-  parPWR[0] = kPWRwid/2.;
-  parPWR[1] = fgkSlenTR1/2.;
-  parPWR[2] = kPWRhgt/2.;
-  gMC->Gsvolu("UTPW","BOX ",idtmed[1325-1],parPWR,kNparPWR);
+  parPWR[0] = 0.0;
+  parPWR[1] = 0.0;
+  parPWR[2] = 0.0;
+  gMC->Gsvolu("UTP1","BOX ",idtmed[1325-1],parPWR,0);
+  gMC->Gsvolu("UTP3","BOX ",idtmed[1325-1],parPWR,0);
   
-  for (iplan = 0; iplan < kNplan; iplan++) { 
-    
-    xpos  = fCwidth[iplan]/2. + kPWRwid/2. + kPWRposx;
-    ypos  = 0.0;
-    zpos  = fgkVrocsm + kPWRhgt/2. - fgkSheight/2. + kPWRposz 
-          + iplan * (fgkCH + fgkVspace);
-    gMC->Gspos("UTPW",iplan+1         ,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY");
-    gMC->Gspos("UTPW",iplan+1+  kNplan,"UTI1",-xpos,ypos,zpos,matrix[1],"ONLY");
+  for (ilayer = 1; ilayer < kNlayer; ilayer++) { 
+
+    // Along the chambers
+    xpos      = fgkCwidth[ilayer]/2.0 + kPWRwid/2.0 + kPWRposx;
+    ypos      = 0.0;
+    zpos      = fgkVrocsm + fgkSMpltT - fgkCalZpos 
+              + kPWRhgtA/2.0 - fgkSheight/2.0 + kPWRposz 
+              + ilayer * (fgkCH + fgkVspace);
+    parPWR[0] = kPWRwid   /2.0;
+    parPWR[1] = fgkSlength/2.0;
+    parPWR[2] = kPWRhgtA  /2.0;
+    gMC->Gsposp("UTP1",ilayer          ,"UTI1", xpos,ypos,zpos
+                      ,matrix[0],"ONLY",parPWR,kNparPWR);
+    gMC->Gsposp("UTP1",ilayer+  kNlayer,"UTI1",-xpos,ypos,zpos
+                      ,matrix[1],"ONLY",parPWR,kNparPWR);
+    gMC->Gsposp("UTP1",ilayer+6*kNlayer,"UTI2", xpos,ypos,zpos
+                      ,matrix[0],"ONLY",parPWR,kNparPWR);
+    gMC->Gsposp("UTP1",ilayer+7*kNlayer,"UTI2",-xpos,ypos,zpos
+                      ,matrix[1],"ONLY",parPWR,kNparPWR);
+    gMC->Gsposp("UTP1",ilayer+8*kNlayer,"UTI3", xpos,ypos,zpos
+                      ,matrix[0],"ONLY",parPWR,kNparPWR);
+    gMC->Gsposp("UTP1",ilayer+9*kNlayer,"UTI3",-xpos,ypos,zpos
+                      ,matrix[1],"ONLY",parPWR,kNparPWR);
+
+    // Front of supermodule
+    xpos      = fgkCwidth[ilayer]/2.0 + kPWRwid/2.0 + kPWRposx;
+    ypos      = 0.0;
+    zpos      = fgkVrocsm + fgkSMpltT - fgkCalZpos 
+              + kPWRhgtA/2.0 - fgkSheight/2.0 + kPWRposz 
+              + ilayer * (fgkCH + fgkVspace);
+    parPWR[0] = kPWRwid   /2.0;
+    parPWR[1] = fgkFlength/2.0;
+    parPWR[2] = kPWRhgtA  /2.0;
+    gMC->Gsposp("UTP3",ilayer+2*kNlayer,"UTF1", xpos,ypos,zpos
+                      ,matrix[0],"ONLY",parPWR,kNparPWR);
+    gMC->Gsposp("UTP3",ilayer+3*kNlayer,"UTF1",-xpos,ypos,zpos
+                      ,matrix[1],"ONLY",parPWR,kNparPWR);
+    gMC->Gsposp("UTP3",ilayer+4*kNlayer,"UTF2", xpos,ypos,zpos
+                      ,matrix[0],"ONLY",parPWR,kNparPWR);
+    gMC->Gsposp("UTP3",ilayer+5*kNlayer,"UTF2",-xpos,ypos,zpos
+                      ,matrix[1],"ONLY",parPWR,kNparPWR);
+
+  }
+
+  for (ilayer = 1; ilayer < kNlayer; ilayer++) { 
+
+    // In baby frame
+    xpos      = fgkCwidth[ilayer]/2.0 + kPWRwid/2.0 + kPWRposx - 2.5;
+    ypos      = kBBSdz/2.0 - kBBMdz/2.0;
+    zpos      = fgkVrocsm + fgkSMpltT - fgkCalZpos 
+              + kPWRhgtB/2.0 - fgkSheight/2.0 + kPWRposz 
+              + ilayer * (fgkCH + fgkVspace);
+    parPWR[0] = kPWRwid /2.0;
+    parPWR[1] = kBBSdz  /2.0;
+    parPWR[2] = kPWRhgtB/2.0;
+    gMC->Gsposp("UTP3",ilayer+6*kNlayer,"BBTRD", xpos, ypos, zpos
+                      ,matrix[0],"ONLY",parPWR,kNparPWR);
+    gMC->Gsposp("UTP3",ilayer+7*kNlayer,"BBTRD",-xpos, ypos, zpos
+                      ,matrix[1],"ONLY",parPWR,kNparPWR);
+
+  }
+
+  for (ilayer = 1; ilayer < kNlayer; ilayer++) { 
+
+    // In back frame
+    xpos      = fgkCwidth[ilayer]/2.0 + kPWRwid/2.0 + kPWRposx - 0.3;
+    ypos      = -kBFSdz/2.0 + kBFMdz/2.0;
+    zpos      = fgkVrocsm + fgkSMpltT - fgkCalZpos 
+              + kPWRhgtB/2.0 - fgkSheight/2.0 + kPWRposz 
+              + ilayer * (fgkCH + fgkVspace);
+    parPWR[0] = kPWRwid /2.0;
+    parPWR[1] = kBFSdz  /2.0;
+    parPWR[2] = kPWRhgtB/2.0;
+    gMC->Gsposp("UTP3",ilayer+8*kNlayer,"BFTRD", xpos,ypos,zpos
+                      ,matrix[0],"ONLY",parPWR,kNparPWR);
+    gMC->Gsposp("UTP3",ilayer+9*kNlayer,"BFTRD",-xpos,ypos,zpos
+                      ,matrix[1],"ONLY",parPWR,kNparPWR);
 
   }
 
+  // The upper most layer
+  // Along the chambers
+  xpos      = fgkCwidth[5]/2.0 + kPWRhgtB/2.0 - 1.3;
+  ypos      = 0.0;
+  zpos      = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0; 
+  parPWR[0] = kPWRwid   /2.0;
+  parPWR[1] = fgkSlength/2.0;
+  parPWR[2] = kPWRhgtB  /2.0 ;
+  gMC->Gsposp("UTP1",6          ,"UTI1", xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parPWR,kNparPWR);
+  gMC->Gsposp("UTP1",6+  kNlayer,"UTI1",-xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parPWR,kNparPWR);
+  gMC->Gsposp("UTP1",6+6*kNlayer,"UTI2", xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parPWR,kNparPWR);
+  gMC->Gsposp("UTP1",6+7*kNlayer,"UTI2",-xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parPWR,kNparPWR);
+  gMC->Gsposp("UTP1",6+8*kNlayer,"UTI3", xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parPWR,kNparPWR);
+  gMC->Gsposp("UTP1",6+9*kNlayer,"UTI3",-xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parPWR,kNparPWR);
+  // Front of supermodules
+  xpos      = fgkCwidth[5]/2.0 + kPWRhgtB/2.0 - 1.3;
+  ypos      = 0.0;
+  zpos      = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0; 
+  parPWR[0] = kPWRwid   /2.0;
+  parPWR[1] = fgkFlength/2.0;
+  parPWR[2] = kPWRhgtB  /2.0;
+  gMC->Gsposp("UTP3",6+2*kNlayer,"UTF1", xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parPWR,kNparPWR);
+  gMC->Gsposp("UTP3",6+3*kNlayer,"UTF1",-xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parPWR,kNparPWR);
+  gMC->Gsposp("UTP3",6+4*kNlayer,"UTF2", xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parPWR,kNparPWR);
+  gMC->Gsposp("UTP3",6+5*kNlayer,"UTF2",-xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parPWR,kNparPWR);
+  // In baby frame
+  xpos      = fgkCwidth[5]/2.0 + kPWRhgtB/2.0 - 3.0;
+  ypos      = kBBSdz/2.0 - kBBMdz/2.0;
+  zpos      = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0; 
+  parPWR[0] = kPWRwid /2.0;
+  parPWR[1] = kBBSdz  /2.0;
+  parPWR[2] = kPWRhgtB/2.0;
+  gMC->Gsposp("UTP3",6+6*kNlayer,"BBTRD", xpos, ypos, zpos
+                    ,matrix[3],"ONLY",parPWR,kNparPWR);
+  gMC->Gsposp("UTP3",6+7*kNlayer,"BBTRD",-xpos, ypos, zpos
+                    ,matrix[3],"ONLY",parPWR,kNparPWR);
+  // In back frame
+  xpos      = fgkCwidth[5]/2.0 + kPWRhgtB/2.0 - 1.3;
+  ypos      = -kBFSdz/2.0 + kBFMdz/2.0;
+  zpos      = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0; 
+  parPWR[0] = kPWRwid /2.0;
+  parPWR[1] = kBFSdz  /2.0;
+  parPWR[2] = kPWRhgtB/2.0;
+  gMC->Gsposp("UTP3",6+8*kNlayer,"BFTRD", xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parPWR,kNparPWR);
+  gMC->Gsposp("UTP3",6+9*kNlayer,"BFTRD",-xpos,ypos,zpos
+                    ,matrix[3],"ONLY",parPWR,kNparPWR);
+
+  //
+  // The gas tubes connecting the chambers in the super modules with holes
+  // Material: Stainless steel
+  //
+
+  parTube[0] = 0.0;
+  parTube[1] = 2.2/2.0;
+  parTube[2] = fgkClength[5][2]/2.0 - fgkHspace/2.0;
+  gMC->Gsvolu("UTG1","TUBE",idtmed[1308-1],parTube,kNparTube);
+  parTube[0] = 0.0;
+  parTube[1] = 2.1/2.0;
+  parTube[2] = fgkClength[5][2]/2.0 - fgkHspace/2.0;
+  gMC->Gsvolu("UTG2","TUBE",idtmed[1309-1],parTube,kNparTube);
+  xpos  = 0.0;
+  ypos  = 0.0;
+  zpos  = 0.0;
+  gMC->Gspos("UTG2",1,"UTG1",xpos,ypos,zpos,0,"ONLY");
+  for (ilayer = 0; ilayer < kNlayer; ilayer++) { 
+    xpos      = fgkCwidth[ilayer]/2.0 + kCOLwid/2.0 - 1.5;
+    ypos      = 0.0;
+    zpos      = fgkVrocsm + fgkSMpltT + kCOLhgt/2.0 - fgkSheight/2.0 + 5.0 
+              + ilayer * (fgkCH + fgkVspace);
+    gMC->Gspos("UTG1",1+ilayer,"UTI3", xpos, ypos, zpos,matrix[4],"ONLY");
+    gMC->Gspos("UTG1",7+ilayer,"UTI3",-xpos, ypos, zpos,matrix[4],"ONLY");
+  }
+
   //
   // The volumes for the services at the chambers
   //
@@ -821,33 +2109,17 @@ void AliTRDgeometry::CreateServices(Int_t *idtmed)
   const Int_t kNparServ = 3;
   Float_t parServ[kNparServ];
 
-  for (icham = 0; icham < kNcham; icham++) {
-    for (iplan = 0; iplan < kNplan; iplan++) {
+  for (istack = 0; istack < kNstack; istack++) {
+    for (ilayer = 0; ilayer < kNlayer; ilayer++) {
 
-      Int_t iDet = GetDetectorSec(iplan,icham);
+      Int_t iDet = GetDetectorSec(ilayer,istack);
 
-      sprintf(cTagV,"UU%02d",iDet);
-      parServ[0] = fCwidth[iplan]/2.;
-      parServ[1] = fClength[iplan][icham]/2. - fgkHspace/2.;
-      parServ[2] = fgkVspace/2. - 0.742/2.; //!!!!!!!!!!!!!!      
-      fChamberUUboxd[iDet][0] = parServ[0];
-      fChamberUUboxd[iDet][1] = parServ[1];
-      fChamberUUboxd[iDet][2] = parServ[2];
+      snprintf(cTagV,kTag,"UU%02d",iDet);
+      parServ[0] = fgkCwidth[ilayer]         /2.0;
+      parServ[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0;
+      parServ[2] = fgkCsvH                 /2.0;
       gMC->Gsvolu(cTagV,"BOX",idtmed[1302-1],parServ,kNparServ);
 
-      xpos  = 0.;
-      ypos  = - fClength[iplan][0] - fClength[iplan][1] - fClength[iplan][2]/2.;
-      for (Int_t ic = 0; ic < icham; ic++) {
-        ypos += fClength[iplan][ic];        
-      }
-      ypos += fClength[iplan][icham]/2.;
-      zpos  = fgkVrocsm + fgkCH + fgkVspace/2. - fgkSheight/2. 
-            + iplan * (fgkCH + fgkVspace);
-      zpos -= 0.742/2.;
-      fChamberUUorig[iDet][0] = xpos;
-      fChamberUUorig[iDet][1] = ypos;
-      fChamberUUorig[iDet][2] = zpos;
-
     }
   }
 
@@ -855,17 +2127,15 @@ void AliTRDgeometry::CreateServices(Int_t *idtmed)
   // The cooling pipes inside the service volumes
   //
 
-  const Int_t kNparTube = 3;
-  Float_t parTube[kNparTube];
-  // The aluminum pipe for the cooling
-  parTube[0] = 0.0;
-  parTube[1] = 0.0;
-  parTube[2] = 0.0;
+  // The cooling pipes
+  parTube[0] =  0.0;
+  parTube[1] =  0.0;
+  parTube[2] =  0.0;
   gMC->Gsvolu("UTCP","TUBE",idtmed[1324-1],parTube,0);
   // The cooling water
   parTube[0] =  0.0;
-  parTube[1] =  0.2/2.;
-  parTube[2] = -1.;
+  parTube[1] =  0.2/2.0;
+  parTube[2] = -1.0;
   gMC->Gsvolu("UTCH","TUBE",idtmed[1314-1],parTube,kNparTube);
   // Water inside the cooling pipe
   xpos = 0.0;
@@ -874,26 +2144,25 @@ void AliTRDgeometry::CreateServices(Int_t *idtmed)
   gMC->Gspos("UTCH",1,"UTCP",xpos,ypos,zpos,0,"ONLY");
 
   // Position the cooling pipes in the mother volume
-  const Int_t kNpar = 3;
-  Float_t par[kNpar];
-  for (icham = 0; icham < kNcham;   icham++) {
-    for (iplan = 0; iplan < kNplan; iplan++) {
-      Int_t   iDet    = GetDetectorSec(iplan,icham);
-      Int_t   iCopy   = GetDetector(iplan,icham,0) * 100;
-      Int_t   nMCMrow = commonParam->GetRowMax(iplan,icham,0);
-      Float_t ySize   = (GetChamberLength(iplan,icham) - 2.*fgkRpadW) 
+  for (istack = 0; istack < kNstack; istack++) {
+    for (ilayer = 0; ilayer < kNlayer; ilayer++) {
+      Int_t   iDet    = GetDetectorSec(ilayer,istack);
+      Int_t   iCopy   = GetDetector(ilayer,istack,0) * 100;
+      Int_t   nMCMrow = GetRowMax(ilayer,istack,0);
+      Float_t ySize   = (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW) 
                       / ((Float_t) nMCMrow);
-      sprintf(cTagV,"UU%02d",iDet);
+      snprintf(cTagV,kTag,"UU%02d",iDet);
       for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
         xpos   = 0.0;
-        ypos   = (0.5 + iMCMrow) * ySize - 1.9 
-               - fClength[iplan][icham]/2. + fgkHspace/2.;
-        zpos   = 0.0 + 0.742/2.;                 
-        par[0] = 0.0;
-        par[1] = 0.3/2.; // Thickness of the cooling pipes
-        par[2] = fCwidth[iplan]/2.;
+        ypos   = (0.5 + iMCMrow) * ySize 
+               - fgkClength[ilayer][istack]/2.0 + fgkHspace/2.0;
+        zpos   = 0.0 + 0.742/2.0;                 
+       // The cooling pipes
+        parTube[0] = 0.0;
+        parTube[1] = 0.3/2.0; // Thickness of the cooling pipes
+        parTube[2] = fgkCwidth[ilayer]/2.0;
         gMC->Gsposp("UTCP",iCopy+iMCMrow,cTagV,xpos,ypos,zpos
-                          ,matrix[2],"ONLY",par,kNpar);
+                          ,matrix[2],"ONLY",parTube,kNparTube);
       }
     }
   }
@@ -909,24 +2178,24 @@ void AliTRDgeometry::CreateServices(Int_t *idtmed)
   gMC->Gsvolu("UTPL","TUBE",idtmed[1305-1],parTube,0);
 
   // Position the power lines in the mother volume
-  for (icham = 0; icham < kNcham;   icham++) {
-    for (iplan = 0; iplan < kNplan; iplan++) {
-      Int_t   iDet    = GetDetectorSec(iplan,icham);
-      Int_t   iCopy   = GetDetector(iplan,icham,0) * 100;
-      Int_t   nMCMrow = commonParam->GetRowMax(iplan,icham,0);
-      Float_t ySize   = (GetChamberLength(iplan,icham) - 2.*fgkRpadW) 
+  for (istack = 0; istack < kNstack; istack++) {
+    for (ilayer = 0; ilayer < kNlayer; ilayer++) {
+      Int_t   iDet    = GetDetectorSec(ilayer,istack);
+      Int_t   iCopy   = GetDetector(ilayer,istack,0) * 100;
+      Int_t   nMCMrow = GetRowMax(ilayer,istack,0);
+      Float_t ySize   = (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW) 
                       / ((Float_t) nMCMrow);
-      sprintf(cTagV,"UU%02d",iDet);
+      snprintf(cTagV,kTag,"UU%02d",iDet);
       for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
-        xpos   = 0.0;
-        ypos   = (0.5 + iMCMrow) * ySize - 1.0 
-               - fClength[iplan][icham]/2. + fgkHspace/2.;
-        zpos   = -0.4 + 0.742/2.;
-        par[0] = 0.0;
-        par[1] = 0.2/2.; // Thickness of the power lines
-        par[2] = fCwidth[iplan]/2.;
+        xpos       = 0.0;
+        ypos       = (0.5 + iMCMrow) * ySize - 1.0 
+                   - fgkClength[ilayer][istack]/2.0 + fgkHspace/2.0;
+        zpos       = -0.4 + 0.742/2.0;
+        parTube[0] = 0.0;
+        parTube[1] = 0.2/2.0; // Thickness of the power lines
+        parTube[2] = fgkCwidth[ilayer]/2.0;
         gMC->Gsposp("UTPL",iCopy+iMCMrow,cTagV,xpos,ypos,zpos
-                          ,matrix[2],"ONLY",par,kNpar);
+                          ,matrix[2],"ONLY",parTube,kNparTube);
       }
     }
   }
@@ -935,472 +2204,829 @@ void AliTRDgeometry::CreateServices(Int_t *idtmed)
   // The MCMs
   //
 
+  const Float_t kMCMx    = 3.0;
+  const Float_t kMCMy    = 3.0;
+  const Float_t kMCMz    = 0.3;
+  
+  const Float_t kMCMpcTh = 0.1;
+  const Float_t kMCMcuTh = 0.0025;
+  const Float_t kMCMsiTh = 0.03;
+  const Float_t kMCMcoTh = 0.04;
+
   // The mother volume for the MCMs (air)
   const Int_t kNparMCM = 3;
   Float_t parMCM[kNparMCM];
-  parMCM[0] = 3.0/2.;
-  parMCM[1] = 3.0/2.;
-  parMCM[2] = 0.14/2.;
+  parMCM[0] = kMCMx   /2.0;
+  parMCM[1] = kMCMy   /2.0;
+  parMCM[2] = kMCMz   /2.0;
   gMC->Gsvolu("UMCM","BOX",idtmed[1302-1],parMCM,kNparMCM);
 
   // The MCM carrier G10 layer
-  parMCM[0] = 3.0/2.;
-  parMCM[1] = 3.0/2.;
-  parMCM[2] = 0.1/2.;
+  parMCM[0] = kMCMx   /2.0;
+  parMCM[1] = kMCMy   /2.0;
+  parMCM[2] = kMCMpcTh/2.0;
   gMC->Gsvolu("UMC1","BOX",idtmed[1319-1],parMCM,kNparMCM);
   // The MCM carrier Cu layer
-  parMCM[0] = 3.0/2.;
-  parMCM[1] = 3.0/2.;
-  parMCM[2] = 0.0162/2.;
+  parMCM[0] = kMCMx   /2.0;
+  parMCM[1] = kMCMy   /2.0;
+  parMCM[2] = kMCMcuTh/2.0;
   gMC->Gsvolu("UMC2","BOX",idtmed[1318-1],parMCM,kNparMCM);
   // The silicon of the chips
-  parMCM[0] = 3.0/2.;
-  parMCM[1] = 3.0/2.;
-  parMCM[2] = 0.003/2.;
+  parMCM[0] = kMCMx   /2.0;
+  parMCM[1] = kMCMy   /2.0;
+  parMCM[2] = kMCMsiTh/2.0;
   gMC->Gsvolu("UMC3","BOX",idtmed[1320-1],parMCM,kNparMCM);
+  // The aluminum of the cooling plates
+  parMCM[0] = kMCMx   /2.0;
+  parMCM[1] = kMCMy   /2.0;
+  parMCM[2] = kMCMcoTh/2.0;
+  gMC->Gsvolu("UMC4","BOX",idtmed[1324-1],parMCM,kNparMCM);
 
   // Put the MCM material inside the MCM mother volume
   xpos  =  0.0;
   ypos  =  0.0;
-  zpos  = -0.07      + 0.1/2.;
+  zpos  = -kMCMz   /2.0 + kMCMpcTh/2.0;
   gMC->Gspos("UMC1",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
-  zpos +=  0.1/2.    + 0.0162/2.;
+  zpos +=  kMCMpcTh/2.0 + kMCMcuTh/2.0;
   gMC->Gspos("UMC2",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
-  zpos +=  0.00162/2 + 0.003/2.;
+  zpos +=  kMCMcuTh/2.0 + kMCMsiTh/2.0;
   gMC->Gspos("UMC3",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
+  zpos +=  kMCMsiTh/2.0 + kMCMcoTh/2.0;
+  gMC->Gspos("UMC4",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
 
   // Position the MCMs in the mother volume
-  for (icham = 0; icham < kNcham;   icham++) {
-    for (iplan = 0; iplan < kNplan; iplan++) {
-    // Take out upper plane until TRD mothervolume is adjusted
-    //for (iplan = 0; iplan < kNplan-1; iplan++) { 
-      Int_t   iDet    = GetDetectorSec(iplan,icham);
-      Int_t   iCopy   = GetDetector(iplan,icham,0) * 1000;
-      Int_t   nMCMrow = commonParam->GetRowMax(iplan,icham,0);
-      Float_t ySize   = (GetChamberLength(iplan,icham) - 2.*fgkRpadW) 
+  for (istack = 0; istack < kNstack; istack++) {
+    for (ilayer = 0; ilayer < kNlayer; ilayer++) {
+      Int_t   iDet    = GetDetectorSec(ilayer,istack);
+      Int_t   iCopy   = GetDetector(ilayer,istack,0) * 1000;
+      Int_t   nMCMrow = GetRowMax(ilayer,istack,0);
+      Float_t ySize   = (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW)
                       / ((Float_t) nMCMrow);
       Int_t   nMCMcol = 8;
-      Float_t xSize   = (GetChamberWidth(iplan) - 2.* fgkCpadW)
-                     / ((Float_t) nMCMcol);
-      sprintf(cTagV,"UU%02d",iDet);
+      Float_t xSize   = (GetChamberWidth(ilayer)         - 2.0*fgkCpadW)
+                      / ((Float_t) nMCMcol + 6);             // Introduce 6 gaps
+      Int_t   iMCM[8] = {  1,  2,  3,  5,  8,  9, 10, 12 };  // 0..7 MCM + 6 gap structure
+      snprintf(cTagV,kTag,"UU%02d",iDet);
       for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
         for (Int_t iMCMcol = 0; iMCMcol < nMCMcol; iMCMcol++) {
-          xpos   = (0.5 + iMCMcol) * xSize + 1.0 
-                 - fCwidth[iplan]/2.;
-          ypos   = (0.5 + iMCMrow) * ySize + 1.0 
-                 - fClength[iplan][icham]/2. + fgkHspace/2.;
-          zpos   = -0.4 + 0.742/2.;
-          par[0] = 0.0;
-          par[1] = 0.2/2.; // Thickness of the power lines
-          par[2] = fCwidth[iplan]/2.;
+          xpos      = (0.5 + iMCM[iMCMcol]) * xSize + 1.0
+                    - fgkCwidth[ilayer]/2.0;
+          ypos      = (0.5 + iMCMrow) * ySize + 1.0
+                    - fgkClength[ilayer][istack]/2.0 + fgkHspace/2.0;
+          zpos      = -0.4 + 0.742/2.0;
           gMC->Gspos("UMCM",iCopy+iMCMrow*10+iMCMcol,cTagV
                            ,xpos,ypos,zpos,0,"ONLY");
-       }
+         // Add two additional smaller cooling pipes on top of the MCMs
+         // to mimic the meandering structure
+          xpos      = (0.5 + iMCM[iMCMcol]) * xSize + 1.0
+                    - fgkCwidth[ilayer]/2.0;
+          ypos      = (0.5 + iMCMrow) * ySize
+                    - fgkClength[ilayer][istack]/2.0 + fgkHspace/2.0;
+          zpos      = 0.0 + 0.742/2.0;                 
+          parTube[0] = 0.0;
+          parTube[1] = 0.3/2.0; // Thickness of the cooling pipes
+          parTube[2] = kMCMx/2.0;
+          gMC->Gsposp("UTCP",iCopy+iMCMrow*10+iMCMcol+ 50,cTagV
+                            ,xpos,ypos+1.0,zpos
+                            ,matrix[2],"ONLY",parTube,kNparTube);
+          gMC->Gsposp("UTCP",iCopy+iMCMrow*10+iMCMcol+500,cTagV
+                            ,xpos,ypos+2.0,zpos
+                            ,matrix[2],"ONLY",parTube,kNparTube);
+
+        }
       }
 
     }
   }
 
-}
-
-//_____________________________________________________________________________
-void AliTRDgeometry::GroupChamber(Int_t iplan, Int_t icham, Int_t *idtmed)
-{
   //
-  // Group volumes UA, UD, UF, UU in a single chamber (Air)
-  // UA, UD, UF, UU are boxes
-  // UT will be a box
+  // The DCS boards
   //
 
-  const Int_t kNparCha = 3;
-
-  Int_t iDet = GetDetectorSec(iplan,icham);
-
-  Float_t xyzMin[3];
-  Float_t xyzMax[3];
-  Float_t xyzOrig[3];
-  Float_t xyzBoxd[3];
-
-  Char_t  cTagV[5];
-  Char_t  cTagM[5];
-
-  for (Int_t i = 0; i < 3; i++) {
-    xyzMin[i] = +9999; xyzMax[i] = -9999;
+  const Float_t kDCSx    =  9.0;
+  const Float_t kDCSy    = 14.5;
+  const Float_t kDCSz    =  0.3;
+  
+  const Float_t kDCSpcTh =  0.15;
+  const Float_t kDCScuTh =  0.01;
+  const Float_t kDCScoTh =  0.04;
+
+  // The mother volume for the DCSs (air)
+  const Int_t kNparDCS = 3;
+  Float_t parDCS[kNparDCS];
+  parDCS[0] = kDCSx   /2.0;
+  parDCS[1] = kDCSy   /2.0;
+  parDCS[2] = kDCSz   /2.0;
+  gMC->Gsvolu("UDCS","BOX",idtmed[1302-1],parDCS,kNparDCS);
+
+  // The DCS carrier G10 layer
+  parDCS[0] = kDCSx   /2.0;
+  parDCS[1] = kDCSy   /2.0;
+  parDCS[2] = kDCSpcTh/2.0;
+  gMC->Gsvolu("UDC1","BOX",idtmed[1319-1],parDCS,kNparDCS);
+  // The DCS carrier Cu layer
+  parDCS[0] = kDCSx   /2.0;
+  parDCS[1] = kDCSy   /2.0;
+  parDCS[2] = kDCScuTh/2.0;
+  gMC->Gsvolu("UDC2","BOX",idtmed[1318-1],parDCS,kNparDCS);
+  // The aluminum of the cooling plates
+  parDCS[0] = 5.0     /2.0;
+  parDCS[1] = 5.0     /2.0;
+  parDCS[2] = kDCScoTh/2.0;
+  gMC->Gsvolu("UDC3","BOX",idtmed[1324-1],parDCS,kNparDCS);
+
+  // Put the DCS material inside the DCS mother volume
+  xpos  =  0.0;
+  ypos  =  0.0;
+  zpos  = -kDCSz   /2.0 + kDCSpcTh/2.0;
+  gMC->Gspos("UDC1",1,"UDCS",xpos,ypos,zpos,0,"ONLY");
+  zpos +=  kDCSpcTh/2.0 + kDCScuTh/2.0;
+  gMC->Gspos("UDC2",1,"UDCS",xpos,ypos,zpos,0,"ONLY");
+  zpos +=  kDCScuTh/2.0 + kDCScoTh/2.0;
+  gMC->Gspos("UDC3",1,"UDCS",xpos,ypos,zpos,0,"ONLY");
+
+  // Put the DCS board in the chamber services mother volume
+  for (istack = 0; istack < kNstack; istack++) {
+    for (ilayer = 0; ilayer < kNlayer; ilayer++) {
+      Int_t   iDet    = GetDetectorSec(ilayer,istack);
+      Int_t   iCopy   = iDet + 1;
+      xpos =  fgkCwidth[ilayer]/2.0 - 1.9 * (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW) 
+                                        / ((Float_t) GetRowMax(ilayer,istack,0));
+      ypos =  0.05 * fgkClength[ilayer][istack];
+      zpos =  kDCSz/2.0 - fgkCsvH/2.0;
+      snprintf(cTagV,kTag,"UU%02d",iDet);
+      gMC->Gspos("UDCS",iCopy,cTagV,xpos,ypos,zpos,0,"ONLY");
+    }
   }
 
-  for (Int_t i = 0; i < 3; i++) {
-
-    xyzMin[i] = TMath::Min(xyzMin[i],fChamberUAorig[iDet][i]-fChamberUAboxd[iDet][i]);
-    xyzMax[i] = TMath::Max(xyzMax[i],fChamberUAorig[iDet][i]+fChamberUAboxd[iDet][i]);
-
-    xyzMin[i] = TMath::Min(xyzMin[i],fChamberUDorig[iDet][i]-fChamberUDboxd[iDet][i]);
-    xyzMax[i] = TMath::Max(xyzMax[i],fChamberUDorig[iDet][i]+fChamberUDboxd[iDet][i]);
-
-    xyzMin[i] = TMath::Min(xyzMin[i],fChamberUForig[iDet][i]-fChamberUFboxd[iDet][i]);
-    xyzMax[i] = TMath::Max(xyzMax[i],fChamberUForig[iDet][i]+fChamberUFboxd[iDet][i]);
+  //
+  // The ORI boards
+  //
 
-    xyzMin[i] = TMath::Min(xyzMin[i],fChamberUUorig[iDet][i]-fChamberUUboxd[iDet][i]);
-    xyzMax[i] = TMath::Max(xyzMax[i],fChamberUUorig[iDet][i]+fChamberUUboxd[iDet][i]);
+  const Float_t kORIx    =  4.2;
+  const Float_t kORIy    = 13.5;
+  const Float_t kORIz    =  0.3;
+  
+  const Float_t kORIpcTh =  0.15;
+  const Float_t kORIcuTh =  0.01;
+  const Float_t kORIcoTh =  0.04;
+
+  // The mother volume for the ORIs (air)
+  const Int_t kNparORI = 3;
+  Float_t parORI[kNparORI];
+  parORI[0] = kORIx   /2.0;
+  parORI[1] = kORIy   /2.0;
+  parORI[2] = kORIz   /2.0;
+  gMC->Gsvolu("UORI","BOX",idtmed[1302-1],parORI,kNparORI);
+
+  // The ORI carrier G10 layer
+  parORI[0] = kORIx   /2.0;
+  parORI[1] = kORIy   /2.0;
+  parORI[2] = kORIpcTh/2.0;
+  gMC->Gsvolu("UOR1","BOX",idtmed[1319-1],parORI,kNparORI);
+  // The ORI carrier Cu layer
+  parORI[0] = kORIx   /2.0;
+  parORI[1] = kORIy   /2.0;
+  parORI[2] = kORIcuTh/2.0;
+  gMC->Gsvolu("UOR2","BOX",idtmed[1318-1],parORI,kNparORI);
+  // The aluminum of the cooling plates
+  parORI[0] = kORIx   /2.0;
+  parORI[1] = kORIy   /2.0;
+  parORI[2] = kORIcoTh/2.0;
+  gMC->Gsvolu("UOR3","BOX",idtmed[1324-1],parORI,kNparORI);
+
+  // Put the ORI material inside the ORI mother volume
+  xpos  =  0.0;
+  ypos  =  0.0;
+  zpos  = -kORIz   /2.0 + kORIpcTh/2.0;
+  gMC->Gspos("UOR1",1,"UORI",xpos,ypos,zpos,0,"ONLY");
+  zpos +=  kORIpcTh/2.0 + kORIcuTh/2.0;
+  gMC->Gspos("UOR2",1,"UORI",xpos,ypos,zpos,0,"ONLY");
+  zpos +=  kORIcuTh/2.0 + kORIcoTh/2.0;
+  gMC->Gspos("UOR3",1,"UORI",xpos,ypos,zpos,0,"ONLY");
+
+  // Put the ORI board in the chamber services mother volume
+  for (istack = 0; istack < kNstack; istack++) {
+    for (ilayer = 0; ilayer < kNlayer; ilayer++) {
+      Int_t   iDet    = GetDetectorSec(ilayer,istack);
+      Int_t   iCopy   = iDet + 1;
+      xpos =  fgkCwidth[ilayer]/2.0 - 1.92 * (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW) 
+                                        / ((Float_t) GetRowMax(ilayer,istack,0));
+      ypos = -16.0;
+      zpos =  kORIz/2.0 - fgkCsvH/2.0;
+      snprintf(cTagV,kTag,"UU%02d",iDet);
+      gMC->Gspos("UORI",iCopy      ,cTagV,xpos,ypos,zpos,0,"ONLY");
+      xpos = -fgkCwidth[ilayer]/2.0 + 3.8 * (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW) 
+                                        / ((Float_t) GetRowMax(ilayer,istack,0));
+      ypos = -16.0;
+      zpos =  kORIz/2.0 - fgkCsvH/2.0;
+      snprintf(cTagV,kTag,"UU%02d",iDet);
+      gMC->Gspos("UORI",iCopy+kNdet,cTagV,xpos,ypos,zpos,0,"ONLY");
+    }
+  }
 
-    xyzOrig[i] = 0.5*(xyzMax[i]+xyzMin[i]);
-    xyzBoxd[i] = 0.5*(xyzMax[i]-xyzMin[i]);
+  //
+  // Services in front of the super module
+  //
 
+  // Gas in-/outlet pipes (INOX)
+  parTube[0] = 0.0;
+  parTube[1] = 0.0;
+  parTube[2] = 0.0;
+  gMC->Gsvolu("UTG3","TUBE",idtmed[1308-1],parTube,0);
+  // The gas inside the in-/outlet pipes (Xe)
+  parTube[0] =  0.0;
+  parTube[1] =  1.2/2.0;
+  parTube[2] = -1.0;
+  gMC->Gsvolu("UTG4","TUBE",idtmed[1309-1],parTube,kNparTube);
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = 0.0;
+  gMC->Gspos("UTG4",1,"UTG3",xpos,ypos,zpos,0,"ONLY");
+  for (ilayer = 0; ilayer < kNlayer-1; ilayer++) { 
+    xpos       = 0.0;
+    ypos       = fgkClength[ilayer][2]/2.0 
+               + fgkClength[ilayer][1] 
+               + fgkClength[ilayer][0];
+    zpos       = 9.0 - fgkSheight/2.0
+               + ilayer * (fgkCH + fgkVspace);
+    parTube[0] = 0.0;
+    parTube[1] = 1.5/2.0;
+    parTube[2] = fgkCwidth[ilayer]/2.0 - 2.5;
+    gMC->Gsposp("UTG3",ilayer+1          ,"UTI1", xpos, ypos, zpos
+                      ,matrix[2],"ONLY",parTube,kNparTube);
+    gMC->Gsposp("UTG3",ilayer+1+1*kNlayer,"UTI1", xpos,-ypos, zpos
+                      ,matrix[2],"ONLY",parTube,kNparTube);
+    gMC->Gsposp("UTG3",ilayer+1+2*kNlayer,"UTI2", xpos, ypos, zpos
+                      ,matrix[2],"ONLY",parTube,kNparTube);
+    gMC->Gsposp("UTG3",ilayer+1+3*kNlayer,"UTI2", xpos,-ypos, zpos
+                      ,matrix[2],"ONLY",parTube,kNparTube);
+    gMC->Gsposp("UTG3",ilayer+1+4*kNlayer,"UTI3", xpos, ypos, zpos
+                      ,matrix[2],"ONLY",parTube,kNparTube);
+    gMC->Gsposp("UTG3",ilayer+1+5*kNlayer,"UTI3", xpos,-ypos, zpos
+                      ,matrix[2],"ONLY",parTube,kNparTube);
   }
-  
-  sprintf(cTagM,"UT%02d",iDet);
-
-  gMC->Gsvolu(cTagM,"BOX ",idtmed[1302-1],xyzBoxd,kNparCha);
-
-  sprintf(cTagV,"UA%02d",iDet);
-  gMC->Gspos(cTagV,1,cTagM,
-            fChamberUAorig[iDet][0]-xyzOrig[0],
-            fChamberUAorig[iDet][1]-xyzOrig[1],
-            fChamberUAorig[iDet][2]-xyzOrig[2],
-            0,"ONLY");
-
-  sprintf(cTagV,"UD%02d",iDet);
-  gMC->Gspos(cTagV,1,cTagM,
-            fChamberUDorig[iDet][0]-xyzOrig[0],
-            fChamberUDorig[iDet][1]-xyzOrig[1],
-            fChamberUDorig[iDet][2]-xyzOrig[2],
-            0,"ONLY");
-
-  sprintf(cTagV,"UF%02d",iDet);
-  gMC->Gspos(cTagV,1,cTagM,
-            fChamberUForig[iDet][0]-xyzOrig[0],
-            fChamberUForig[iDet][1]-xyzOrig[1],
-            fChamberUForig[iDet][2]-xyzOrig[2],
-            0,"ONLY");
-  
-  sprintf(cTagV,"UU%02d",iDet);
-  gMC->Gspos(cTagV,1,cTagM,
-             fChamberUUorig[iDet][0]-xyzOrig[0],
-             fChamberUUorig[iDet][1]-xyzOrig[1],
-             fChamberUUorig[iDet][2]-xyzOrig[2],
-             0,"ONLY");
 
-  sprintf(cTagV,"UT%02d",iDet);
-  gMC->Gspos(cTagV,1,"UTI1",xyzOrig[0],xyzOrig[1],xyzOrig[2],0,"ONLY");
+  // Gas distribution box
+  parBox[0] = 14.50/2.0;
+  parBox[1] =  4.52/2.0;
+  parBox[2] =  5.00/2.0;
+  gMC->Gsvolu("UTGD","BOX ",idtmed[1308-1],parBox,kNparBox);
+  parBox[0] = 14.50/2.0;
+  parBox[1] =  4.00/2.0;
+  parBox[2] =  4.40/2.0;
+  gMC->Gsvolu("UTGI","BOX ",idtmed[1309-1],parBox,kNparBox);
+  parTube[0] = 0.0;
+  parTube[1] = 4.0/2.0;
+  parTube[2] = 8.0/2.0;
+  gMC->Gsvolu("UTGT","TUBE",idtmed[1308-1],parTube,kNparTube);
+  parTube[0] = 0.0;
+  parTube[1] = 3.4/2.0;
+  parTube[2] = 8.0/2.0;
+  gMC->Gsvolu("UTGG","TUBE",idtmed[1309-1],parTube,kNparTube);
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = 0.0;
+  gMC->Gspos("UTGI",1,"UTGD",xpos,ypos,zpos,        0,"ONLY");
+  gMC->Gspos("UTGG",1,"UTGT",xpos,ypos,zpos,        0,"ONLY");
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = 0.0;
+  gMC->Gspos("UTGD",1,"UTF1",xpos,ypos,zpos,        0,"ONLY");
+  xpos =  -3.0;
+  ypos =   0.0;
+  zpos =   6.5;
+  gMC->Gspos("UTGT",1,"UTF1",xpos,ypos,zpos,        0,"ONLY");
+  xpos = -11.25;
+  ypos =   0.0;
+  zpos =   0.5;
+  gMC->Gspos("UTGT",3,"UTF1",xpos,ypos,zpos,matrix[2],"ONLY");
+  xpos =  11.25;
+  ypos =   0.0;
+  zpos =   0.5;
+  gMC->Gspos("UTGT",5,"UTF1",xpos,ypos,zpos,matrix[2],"ONLY");
+
+  // Cooling manifolds
+  parBox[0]  =  5.0/2.0;
+  parBox[1]  = 23.0/2.0;
+  parBox[2]  = 70.0/2.0;
+  gMC->Gsvolu("UTCM","BOX ",idtmed[1302-1],parBox,kNparBox);
+  parBox[0]  =  5.0/2.0;
+  parBox[1]  =  5.0/2.0;
+  parBox[2]  = 70.0/2.0;
+  gMC->Gsvolu("UTCA","BOX ",idtmed[1308-1],parBox,kNparBox);
+  parBox[0]  =  5.0/2.0 - 0.3;
+  parBox[1]  =  5.0/2.0 - 0.3;
+  parBox[2]  = 70.0/2.0 - 0.3;
+  gMC->Gsvolu("UTCW","BOX ",idtmed[1314-1],parBox,kNparBox);
+  xpos       =  0.0;
+  ypos       =  0.0;
+  zpos       =  0.0;
+  gMC->Gspos("UTCW",1,"UTCA", xpos, ypos, zpos,        0,"ONLY");
+  xpos       =  0.0;
+  ypos       =  5.0/2.0 - 23.0/2.0;
+  zpos       =  0.0;
+  gMC->Gspos("UTCA",1,"UTCM", xpos, ypos, zpos,        0,"ONLY");
+  parTube[0] =  0.0;
+  parTube[1] =  3.0/2.0;
+  parTube[2] = 18.0/2.0;
+  gMC->Gsvolu("UTCO","TUBE",idtmed[1308-1],parTube,kNparTube);
+  parTube[0] =  0.0;
+  parTube[1] =  3.0/2.0 - 0.3;
+  parTube[2] = 18.0/2.0;
+  gMC->Gsvolu("UTCL","TUBE",idtmed[1314-1],parTube,kNparTube);
+  xpos       =  0.0;
+  ypos       =  0.0;
+  zpos       =  0.0;
+  gMC->Gspos("UTCL",1,"UTCO", xpos, ypos, zpos,        0,"ONLY");
+  xpos       =  0.0;
+  ypos       =  2.5;
+  zpos       = -70.0/2.0 + 7.0;
+  gMC->Gspos("UTCO",1,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
+  zpos      +=  7.0;
+  gMC->Gspos("UTCO",2,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
+  zpos      +=  7.0;
+  gMC->Gspos("UTCO",3,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
+  zpos      +=  7.0;
+  gMC->Gspos("UTCO",4,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
+  zpos      +=  7.0;
+  gMC->Gspos("UTCO",5,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
+  zpos      +=  7.0;
+  gMC->Gspos("UTCO",6,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
+  zpos      +=  7.0;
+  gMC->Gspos("UTCO",7,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
+  zpos      +=  7.0;
+  gMC->Gspos("UTCO",8,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
+
+  xpos = 40.0;
+  ypos =  fgkFlength/2.0 - 23.0/2.0;
+  zpos =  0.0;
+  gMC->Gspos("UTCM",1,"UTF1", xpos, ypos, zpos,matrix[0],"ONLY");
+  gMC->Gspos("UTCM",2,"UTF1",-xpos, ypos, zpos,matrix[1],"ONLY");
+  gMC->Gspos("UTCM",3,"UTF2", xpos,-ypos, zpos,matrix[5],"ONLY");
+  gMC->Gspos("UTCM",4,"UTF2",-xpos,-ypos, zpos,matrix[6],"ONLY");
+
+  // Power connection boards (Cu)
+  parBox[0] =  0.5/2.0;
+  parBox[1] = 15.0/2.0;
+  parBox[2] =  7.0/2.0;
+  gMC->Gsvolu("UTPC","BOX ",idtmed[1325-1],parBox,kNparBox);
+  for (ilayer = 0; ilayer < kNlayer-1; ilayer++) { 
+    xpos      = fgkCwidth[ilayer]/2.0 + kPWRwid/2.0;
+    ypos      = 0.0;
+    zpos      = fgkVrocsm + fgkSMpltT + kPWRhgtA/2.0 - fgkSheight/2.0 + kPWRposz 
+              + (ilayer+1) * (fgkCH + fgkVspace);
+    gMC->Gspos("UTPC",ilayer        ,"UTF1", xpos,ypos,zpos,matrix[0],"ONLY");
+    gMC->Gspos("UTPC",ilayer+kNlayer,"UTF1",-xpos,ypos,zpos,matrix[1],"ONLY");
+  }
+  xpos      = fgkCwidth[5]/2.0 + kPWRhgtA/2.0 - 2.0;
+  ypos      = 0.0;
+  zpos      = fgkSheight/2.0 - fgkSMpltT - 2.0; 
+  gMC->Gspos("UTPC",5        ,"UTF1", xpos,ypos,zpos,matrix[3],"ONLY");
+  gMC->Gspos("UTPC",5+kNlayer,"UTF1",-xpos,ypos,zpos,matrix[3],"ONLY");
+
+  // Power connection panel (Al)
+  parBox[0] = 60.0/2.0;
+  parBox[1] = 10.0/2.0;
+  parBox[2] =  3.0/2.0;
+  gMC->Gsvolu("UTPP","BOX ",idtmed[1301-1],parBox,kNparBox);
+  xpos      =  0.0;
+  ypos      =  0.0;
+  zpos      = 18.0;
+  gMC->Gspos("UTPP",1,"UTF1", xpos,ypos,zpos,0,"ONLY");
+
+  //
+  // Electronics boxes
+  //
+
+  // Casing (INOX)
+  parBox[0] = 60.0/2.0;
+  parBox[1] = 10.0/2.0;
+  parBox[2] =  6.0/2.0;
+  gMC->Gsvolu("UTE1","BOX ",idtmed[1308-1],parBox,kNparBox);
+  // Interior (air)
+  parBox[0] = parBox[0] - 0.5;
+  parBox[1] = parBox[1] - 0.5;
+  parBox[2] = parBox[2] - 0.5;
+  gMC->Gsvolu("UTE2","BOX ",idtmed[1302-1],parBox,kNparBox);
+  xpos      = 0.0;
+  ypos      = 0.0;
+  zpos      = 0.0;
+  gMC->Gspos("UTE2",1,"UTE1",xpos,ypos,zpos,0,"ONLY");
+  xpos      = 0.0;
+  ypos      =  fgkSlength/2.0 - 10.0/2.0 - 3.0;
+  zpos      = -fgkSheight/2.0 +  6.0/2.0 + 1.0;
+  gMC->Gspos("UTE1",1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+  gMC->Gspos("UTE1",2,"UTI2", xpos,ypos,zpos,0,"ONLY");
+  gMC->Gspos("UTE1",3,"UTI3", xpos,ypos,zpos,0,"ONLY");
+
+  // Casing (INOX)
+  parBox[0] = 50.0/2.0;
+  parBox[1] = 15.0/2.0;
+  parBox[2] = 20.0/2.0;
+  gMC->Gsvolu("UTE3","BOX ",idtmed[1308-1],parBox,kNparBox);
+  // Interior (air)
+  parBox[0] = parBox[0] - 0.5;
+  parBox[1] = parBox[1] - 0.5;
+  parBox[2] = parBox[2] - 0.5;
+  gMC->Gsvolu("UTE4","BOX ",idtmed[1302-1],parBox,kNparBox);
+  xpos      = 0.0;
+  ypos      = 0.0;
+  zpos      = 0.0;
+  gMC->Gspos("UTE4",1,"UTE3",xpos,ypos,zpos,0,"ONLY");
+  xpos      = 0.0;
+  ypos      = -fgkSlength/2.0 + 15.0/2.0 + 3.0;
+  zpos      = -fgkSheight/2.0 + 20.0/2.0 + 1.0;
+  gMC->Gspos("UTE3",1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+  gMC->Gspos("UTE3",2,"UTI2", xpos,ypos,zpos,0,"ONLY");
+  gMC->Gspos("UTE3",3,"UTI3", xpos,ypos,zpos,0,"ONLY");
+
+  // Casing (INOX)
+  parBox[0] = 20.0/2.0;
+  parBox[1] =  7.0/2.0;
+  parBox[2] = 20.0/2.0;
+  gMC->Gsvolu("UTE5","BOX ",idtmed[1308-1],parBox,kNparBox);
+  // Interior (air)
+  parBox[0] = parBox[0] - 0.5;
+  parBox[1] = parBox[1] - 0.5;
+  parBox[2] = parBox[2] - 0.5;
+  gMC->Gsvolu("UTE6","BOX ",idtmed[1302-1],parBox,kNparBox);
+  xpos      = 0.0;
+  ypos      = 0.0;
+  zpos      = 0.0;
+  gMC->Gspos("UTE6",1,"UTE5",xpos,ypos,zpos,0,"ONLY");
+  xpos      = 20.0;
+  ypos      = -fgkSlength/2.0 +  7.0/2.0 + 3.0;
+  zpos      = 0.0;
+  gMC->Gspos("UTE5",1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+  gMC->Gspos("UTE5",2,"UTI2", xpos,ypos,zpos,0,"ONLY");
+  gMC->Gspos("UTE5",3,"UTI3", xpos,ypos,zpos,0,"ONLY");
+  xpos      = -xpos;
+  gMC->Gspos("UTE5",4,"UTI1", xpos,ypos,zpos,0,"ONLY");
+  gMC->Gspos("UTE5",5,"UTI2", xpos,ypos,zpos,0,"ONLY");
+  gMC->Gspos("UTE5",6,"UTI3", xpos,ypos,zpos,0,"ONLY");
 
 }
 
 //_____________________________________________________________________________
-Bool_t AliTRDgeometry::Local2Global(Int_t idet, Double_t *local
-                                   , Double_t *global) const
+void AliTRDgeometry::AssembleChamber(Int_t ilayer, Int_t istack)
 {
   //
-  // Converts local pad-coordinates (row,col,time) into 
-  // global ALICE reference frame coordinates (x,y,z)
+  // Group volumes UA, UD, UF, UU into an assembly that defines the
+  // alignable volume of a single readout chamber
   //
 
-  Int_t icham = GetChamber(idet);    // Chamber info (0-4)
-  Int_t isect = GetSector(idet);     // Sector info  (0-17)
-  Int_t iplan = GetPlane(idet);      // Plane info   (0-5)
+  const Int_t kTag = 100;
+  Char_t  cTagV[kTag];
+  Char_t  cTagM[kTag];
 
-  return Local2Global(iplan,icham,isect,local,global);
+  Double_t xpos = 0.0;
+  Double_t ypos = 0.0;
+  Double_t zpos = 0.0;
 
-}
-//_____________________________________________________________________________
-Bool_t AliTRDgeometry::Local2Global(Int_t iplan, Int_t icham, Int_t isect
-                                  , Double_t *local, Double_t *global) const
-{
-  //
-  // Converts local pad-coordinates (row,col,time) into 
-  // global ALICE reference frame coordinates (x,y,z)
-  //
+  Int_t idet = GetDetectorSec(ilayer,istack);
 
-  AliTRDCommonParam* commonParam = AliTRDCommonParam::Instance();
-  if (!commonParam) {
-    AliError("Could not get common parameters\n");
-    return kFALSE;
-  }
+  // Create the assembly for a given ROC
+  snprintf(cTagM,kTag,"UT%02d",idet);
+  TGeoVolume *roc = new TGeoVolumeAssembly(cTagM);
 
-  AliTRDcalibDB* calibration = AliTRDcalibDB::Instance();
-  if (!calibration) {
-    AliError("Could not get calibration data\n");
-    return kFALSE;  
-  }
-  
-  AliTRDpadPlane *padPlane = commonParam->GetPadPlane(iplan,icham);
+  // Add the lower part of the chamber (aluminum frame),
+  // including radiator and drift region
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = fgkCraH/2.0 + fgkCdrH/2.0 - fgkCHsv/2.0;
+  snprintf(cTagV,kTag,"UA%02d",idet);
+  TGeoVolume *rocA = gGeoManager->GetVolume(cTagV);
+  roc->AddNode(rocA,1,new TGeoTranslation(xpos,ypos,zpos));
 
-  // calculate (x,y,z) position in rotated chamber
-  Int_t    row       = ((Int_t) local[0]);
-  Int_t    col       = ((Int_t) local[1]);
-  Float_t  timeSlice = local[2] + 0.5;
-  Float_t  time0     = GetTime0(iplan);
+  // Add the additional aluminum ledges
+  xpos = fgkCwidth[ilayer]/2.0 + fgkCalWmod/2.0;
+  ypos = 0.0;
+  zpos = fgkCraH + fgkCdrH - fgkCalZpos - fgkCalHmod/2.0 - fgkCHsv/2.0;
+  snprintf(cTagV,kTag,"UZ%02d",idet);
+  TGeoVolume *rocZ = gGeoManager->GetVolume(cTagV);
+  roc->AddNode(rocZ,1,new TGeoTranslation( xpos,ypos,zpos));
+  roc->AddNode(rocZ,2,new TGeoTranslation(-xpos,ypos,zpos));
+
+  // Add the additional wacosit ledges
+  xpos = fgkCwidth[ilayer]/2.0 + fgkCwsW/2.0;
+  ypos = 0.0;
+  zpos = fgkCraH + fgkCdrH - fgkCwsH/2.0 - fgkCHsv/2.0;
+  snprintf(cTagV,kTag,"UP%02d",idet);
+  TGeoVolume *rocP = gGeoManager->GetVolume(cTagV);
+  roc->AddNode(rocP,1,new TGeoTranslation( xpos,ypos,zpos));
+  roc->AddNode(rocP,2,new TGeoTranslation(-xpos,ypos,zpos));
+
+  // Add the middle part of the chamber (G10 frame),
+  // including amplification region
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = fgkCamH/2.0 + fgkCraH + fgkCdrH - fgkCHsv/2.0;
+  snprintf(cTagV,kTag,"UD%02d",idet);
+  TGeoVolume *rocD = gGeoManager->GetVolume(cTagV);
+  roc->AddNode(rocD,1,new TGeoTranslation(xpos,ypos,zpos));
 
-  Int_t idet = GetDetector(iplan, icham, isect);
+  // Add the upper part of the chamber (aluminum frame),
+  // including back panel and FEE
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = fgkCroH/2.0 + fgkCamH + fgkCraH + fgkCdrH - fgkCHsv/2.0;
+  snprintf(cTagV,kTag,"UF%02d",idet);
+  TGeoVolume *rocF = gGeoManager->GetVolume(cTagV);
+  roc->AddNode(rocF,1,new TGeoTranslation(xpos,ypos,zpos));
 
-  Double_t  rot[3];
-  rot[0] = time0 - (timeSlice - calibration->GetT0(idet, col, row))
-      * calibration->GetVdrift(idet, col, row)/calibration->GetSamplingFrequency();
-  rot[1] = padPlane->GetColPos(col) - 0.5 * padPlane->GetColSize(col);
-  rot[2] = padPlane->GetRowPos(row) - 0.5 * padPlane->GetRowSize(row);
+  // Add the volume with services on top of the back panel
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = fgkCsvH/2.0 + fgkCroH + fgkCamH + fgkCraH + fgkCdrH - fgkCHsv/2.0;
+  snprintf(cTagV,kTag,"UU%02d",idet);
+  TGeoVolume *rocU = gGeoManager->GetVolume(cTagV);
+  roc->AddNode(rocU,1,new TGeoTranslation(xpos,ypos,zpos));
 
-  // Rotate back to original position
-  return RotateBack(idet,rot,global);
+  // Place the ROC assembly into the super modules
+  xpos = 0.0;
+  ypos = 0.0;
+  ypos  = fgkClength[ilayer][0] + fgkClength[ilayer][1] + fgkClength[ilayer][2]/2.0;
+  for (Int_t ic = 0; ic < istack; ic++) {
+    ypos -= fgkClength[ilayer][ic];
+  }
+  ypos -= fgkClength[ilayer][istack]/2.0;
+  zpos  = fgkVrocsm + fgkSMpltT + fgkCHsv/2.0 - fgkSheight/2.0
+        + ilayer * (fgkCH + fgkVspace);
+  TGeoVolume *sm1 = gGeoManager->GetVolume("UTI1");
+  TGeoVolume *sm2 = gGeoManager->GetVolume("UTI2");
+  TGeoVolume *sm3 = gGeoManager->GetVolume("UTI3");
+  sm1->AddNode(roc,1,new TGeoTranslation(xpos,ypos,zpos));
+  sm2->AddNode(roc,1,new TGeoTranslation(xpos,ypos,zpos));
+  if (istack != 2) {
+    // w/o middle stack
+    sm3->AddNode(roc,1,new TGeoTranslation(xpos,ypos,zpos));
+  }
 
 }
 
 //_____________________________________________________________________________
-Bool_t AliTRDgeometry::Global2Local(Int_t mode, Double_t *local, Double_t *global
-                                  , Int_t* index) const
+Bool_t AliTRDgeometry::RotateBack(Int_t det
+                                , const Double_t * const loc
+                                , Double_t *glb) const
 {
   //
-  // Converts local pad-coordinates (row,col,time) into 
-  // global ALICE reference frame coordinates (x,y,z)
-  //
-  // index[0] = plane number
-  // index[1] = chamber number
-  // index[2] = sector number
-  //
-  // mode=0  - local coordinate in y, z,             x - rotated global   
-  // mode=2  - local coordinate in pad, and pad row, x - rotated global
+  // Rotates a chambers to transform the corresponding local frame
+  // coordinates <loc> into the coordinates of the ALICE restframe <glb>.
   //
 
-  Int_t idet = GetDetector(index[0],index[1],index[2]); // Detector number
-  RotateBack(idet,global,local);
-  if (mode == 0) return kTRUE;
+  Int_t sector = GetSector(det);
+
+  glb[0] = loc[0] * fRotB11[sector] - loc[1] * fRotB12[sector];
+  glb[1] = loc[0] * fRotB21[sector] + loc[1] * fRotB22[sector];
+  glb[2] = loc[2];
 
   return kTRUE;
 
 }
 
 //_____________________________________________________________________________
-Bool_t AliTRDgeometry::Global2Detector(Double_t global[3], Int_t index[3])
+Int_t AliTRDgeometry::GetDetectorSec(Int_t layer, Int_t stack)
 {
-  //  
-  //  Find detector for given global point - Ideal geometry 
-  //  
   //
-  // input    = global position
-  // output   = index
-  // index[0] = plane number
-  // index[1] = chamber number
-  // index[2] = sector number
+  // Convert plane / stack into detector number for one single sector
   //
 
-  //
-  // Find sector
-  //
-  Float_t fi = TMath::ATan2(global[1],global[0]);
-  if (fi < 0) {
-    fi += 2*TMath::Pi();
-  }
-  index[2] = fgkNsect - 1 - TMath::Nint((fi - GetAlpha()/2.)/GetAlpha());
+  return (layer + stack * fgkNlayer);
 
-  //
-  // Find plane
-  //
-  Float_t locx = global[0] * fRotA11[index[2]] + global[1] * fRotA12[index[2]];  
-  index[0] = 0;
-  Float_t max = locx - GetTime0(0);
-  for (Int_t iplane=1; iplane<fgkNplan;iplane++){
-    Float_t dist = TMath::Abs(locx - GetTime0(iplane));
-    if (dist < max){
-      index[0] = iplane;
-      max = dist;
-    }
-  }
+}
 
+//_____________________________________________________________________________
+Int_t AliTRDgeometry::GetDetector(Int_t layer, Int_t stack, Int_t sector)
+{
   //
-  // Find chamber
+  // Convert layer / stack / sector into detector number
   //
-  if (TMath::Abs(global[2]) < 0.5*GetChamberLength(index[0],2)){
-    index[1]=2;
-  }
-  else{
-    Double_t localZ = global[2];
-    if (global[2] > 0){
-      localZ -= 0.5*(GetChamberLength(index[0],2)+GetChamberLength(index[0],1));
-      index[1] = (TMath::Abs(localZ) < 0.5*GetChamberLength(index[0],3)) ? 1:0;
-    }
-    else{
-      localZ += 0.5*(GetChamberLength(index[0],2)+GetChamberLength(index[0],3));
-      index[1] = (TMath::Abs(localZ) < 0.5*GetChamberLength(index[0],1)) ? 3:4;
-    }
-  }  
 
-  return kTRUE;
+  return (layer + stack * fgkNlayer + sector * fgkNlayer * fgkNstack);
 
 }
 
 //_____________________________________________________________________________
-Bool_t AliTRDgeometry::Rotate(Int_t d, Double_t *pos, Double_t *rot) const
+Int_t AliTRDgeometry::GetLayer(Int_t det)
 {
   //
-  // Rotates all chambers in the position of sector 0 and transforms
-  // the coordinates in the ALICE restframe <pos> into the 
-  // corresponding local frame <rot>.
+  // Reconstruct the layer number from the detector number
   //
 
-  Int_t sector = GetSector(d);
-
-  rot[0] =  pos[0] * fRotA11[sector] + pos[1] * fRotA12[sector];
-  rot[1] = -pos[0] * fRotA21[sector] + pos[1] * fRotA22[sector];
-  rot[2] =  pos[2];
-
-  return kTRUE;
+  return ((Int_t) (det % fgkNlayer));
 
 }
 
 //_____________________________________________________________________________
-Bool_t AliTRDgeometry::RotateBack(Int_t d, Double_t *rot, Double_t *pos) const
+Int_t AliTRDgeometry::GetStack(Int_t det)
 {
   //
-  // Rotates a chambers from the position of sector 0 into its
-  // original position and transforms the corresponding local frame 
-  // coordinates <rot> into the coordinates of the ALICE restframe <pos>.
+  // Reconstruct the stack number from the detector number
   //
 
-  Int_t sector = GetSector(d);
-
-  pos[0] =  rot[0] * fRotB11[sector] + rot[1] * fRotB12[sector];
-  pos[1] = -rot[0] * fRotB21[sector] + rot[1] * fRotB22[sector];
-  pos[2] =  rot[2];
-
-  return kTRUE;
+  return ((Int_t) (det % (fgkNlayer * fgkNstack)) / fgkNlayer);
 
 }
 
 //_____________________________________________________________________________
-Int_t AliTRDgeometry::GetDetectorSec(Int_t p, Int_t c)
+Int_t AliTRDgeometry::GetStack(Double_t z, Int_t layer)
 {
   //
-  // Convert plane / chamber into detector number for one single sector
+  // Reconstruct the chamber number from the z position and layer number
+  //
+  // The return function has to be protected for positiveness !!
   //
 
-  return (p + c * fgkNplan);
+  if ((layer <          0) || 
+      (layer >= fgkNlayer)) return -1;
+       
+  Int_t    istck = fgkNstack;
+  Double_t zmin;
+  Double_t zmax;
+
+  do {
+    istck--;
+    if (istck < 0) break;
+    AliTRDpadPlane *pp = GetPadPlane(layer,istck);
+    zmax  = pp->GetRow0();
+    Int_t nrows = pp->GetNrows();
+    zmin = zmax -         2 * pp->GetLengthOPad() 
+                - (nrows-2) * pp->GetLengthIPad() 
+                - (nrows-1) * pp->GetRowSpacing();
+  } while((z < zmin) || (z > zmax));
+  
+  return istck;
 
 }
 
 //_____________________________________________________________________________
-Int_t AliTRDgeometry::GetDetector(Int_t p, Int_t c, Int_t s)
+Int_t AliTRDgeometry::GetSector(Int_t det)
 {
   //
-  // Convert plane / chamber / sector into detector number
+  // Reconstruct the sector number from the detector number
   //
 
-  return (p + c * fgkNplan + s * fgkNplan * fgkNcham);
+  return ((Int_t) (det / (fgkNlayer * fgkNstack)));
 
 }
 
 //_____________________________________________________________________________
-Int_t AliTRDgeometry::GetPlane(Int_t d) const
+AliTRDpadPlane *AliTRDgeometry::GetPadPlane(Int_t layer, Int_t stack)
 {
   //
-  // Reconstruct the plane number from the detector number
+  // Returns the pad plane for a given plane <pl> and stack <st> number
   //
 
-  return ((Int_t) (d % fgkNplan));
+  if (!fgPadPlaneArray) {
+    CreatePadPlaneArray();
+  }
+
+  Int_t ipp = GetDetectorSec(layer,stack);
+  return ((AliTRDpadPlane *) fgPadPlaneArray->At(ipp));
 
 }
 
 //_____________________________________________________________________________
-Int_t AliTRDgeometry::GetChamber(Int_t d) const
+Int_t AliTRDgeometry::GetRowMax(Int_t layer, Int_t stack, Int_t /*sector*/)
 {
   //
-  // Reconstruct the chamber number from the detector number
+  // Returns the number of rows on the pad plane
   //
 
-  return ((Int_t) (d % (fgkNplan * fgkNcham)) / fgkNplan);
+  return GetPadPlane(layer,stack)->GetNrows();
 
 }
 
 //_____________________________________________________________________________
-Int_t AliTRDgeometry::GetSector(Int_t d) const
+Int_t AliTRDgeometry::GetColMax(Int_t layer)
 {
   //
-  // Reconstruct the sector number from the detector number
+  // Returns the number of rows on the pad plane
   //
 
-  return ((Int_t) (d / (fgkNplan * fgkNcham)));
+  return GetPadPlane(layer,0)->GetNcols();
 
 }
 
 //_____________________________________________________________________________
-AliTRDgeometry* AliTRDgeometry::GetGeometry(AliRunLoader* runLoader)
+Double_t AliTRDgeometry::GetRow0(Int_t layer, Int_t stack, Int_t /*sector*/)
 {
   //
-  // load the geometry from the galice file
+  // Returns the position of the border of the first pad in a row
   //
 
-  if (!runLoader) runLoader = AliRunLoader::GetRunLoader();
-  if (!runLoader) {
-    //AliError("No run loader");
-    return NULL;
-  }
-
-  TDirectory* saveDir = gDirectory;
-  runLoader->CdGAFile();
+  return GetPadPlane(layer,stack)->GetRow0();
 
-  // Try from the galice.root file
-  AliTRDgeometry* geom = (AliTRDgeometry*) gDirectory->Get("TRDgeometry");
+}
 
-  if (!geom) {
-    // It is not in the file, try to get it from gAlice, 
-    // which corresponds to the run loader 
-    AliTRD * trd = (AliTRD*)runLoader->GetAliRun()->GetDetector("TRD");
-    geom = trd->GetGeometry();
-  }
-  if (!geom) {
-    //AliError("Geometry not found");
-    return NULL;
-  }
+//_____________________________________________________________________________
+Double_t AliTRDgeometry::GetCol0(Int_t layer)
+{
+  //
+  // Returns the position of the border of the first pad in a column
+  //
 
-  saveDir->cd();
-  return geom;
+  return GetPadPlane(layer,0)->GetCol0();
 
 }
 
 //_____________________________________________________________________________
-Bool_t AliTRDgeometry::ReadGeoMatrices()
+Bool_t AliTRDgeometry::CreateClusterMatrixArray()
 {
   //
-  // Read geo matrices from current gGeoManager for each TRD sector
+  // Create the matrices to transform cluster coordinates from the 
+  // local chamber system to the tracking coordinate system
   //
 
-  if (!gGeoManager) return kFALSE;
-  fMatrixArray = new TObjArray(kNdet); 
-  fMatrixCorrectionArray = new TObjArray(kNdet);
-  fMatrixGeo   = new TObjArray(kNdet);
-  AliAlignObjAngles o;
+  if (!gGeoManager) {
+    return kFALSE;
+  }
 
-  for (Int_t iLayer = AliAlignObj::kTRD1; iLayer <= AliAlignObj::kTRD6; iLayer++) {
-    for (Int_t iModule = 0; iModule < AliAlignObj::LayerSize(iLayer); iModule++) {
-      UShort_t volid = AliAlignObj::LayerToVolUID(iLayer,iModule);
-      const char *path = AliAlignObj::GetVolPath(volid);
-      if (!gGeoManager->cd(path)) return kFALSE;      
-      TGeoHMatrix* m = gGeoManager->GetCurrentMatrix();
-      Int_t     iLayerTRD    = iLayer-AliAlignObj::kTRD1;
-      Int_t     isector      = Nsect()-1-(iModule/Ncham());
-      Int_t     ichamber     = Ncham()-1-(iModule%Ncham());
-      Int_t     lid          = GetDetector(iLayerTRD,ichamber,isector);    
+  if(fgClusterMatrixArray)
+    return kTRUE;
 
-      //
-      // Local geo system z-x-y  to x-y--z 
-      //
-      fMatrixGeo->AddAt(new TGeoHMatrix(*m),lid);
+  TString volPath;
+  TString vpStr   = "ALIC_1/B077_1/BSEGMO";
+  TString vpApp1  = "_1/BTRD";
+  TString vpApp2  = "_1";
+  TString vpApp3a = "/UTR1_1/UTS1_1/UTI1_1";
+  TString vpApp3b = "/UTR2_1/UTS2_1/UTI2_1";
+  TString vpApp3c = "/UTR3_1/UTS3_1/UTI3_1";
+
+  fgClusterMatrixArray = new TObjArray(kNdet);
+  AliAlignObjParams o;
+
+  for (Int_t iLayer = AliGeomManager::kTRD1; iLayer <= AliGeomManager::kTRD6; iLayer++) {
+    for (Int_t iModule = 0; iModule < AliGeomManager::LayerSize(iLayer); iModule++) {
       
-      TGeoRotation mchange; 
-      mchange.RotateY(90); mchange.RotateX(90);
+      Int_t        isector   = iModule/Nstack();
+      Int_t        istack    = iModule%Nstack();
+      Int_t        iLayerTRD = iLayer - AliGeomManager::kTRD1;
+      Int_t        lid       = GetDetector(iLayerTRD,istack,isector);    
+
+      // Check for disabled supermodules
+      volPath  = vpStr;
+      volPath += isector;
+      volPath += vpApp1;
+      volPath += isector;
+      volPath += vpApp2;
+      switch (isector) {
+      case 13:
+      case 14:
+      case 15:
+        // Check for holes in from of PHOS
+        if (istack == 2) {
+          continue;
+       }
+        volPath += vpApp3c;
+        break;
+      case 11:
+      case 12:
+        volPath += vpApp3b;
+        break;
+      default:
+        volPath += vpApp3a;
+      };
+      if (!gGeoManager->CheckPath(volPath)) {
+       continue;
+      }
 
-      TGeoHMatrix gMatrix(mchange.Inverse());
-      gMatrix.MultiplyLeft(m);
-      fMatrixArray->AddAt(new TGeoHMatrix(gMatrix),lid); 
+      UShort_t     volid   = AliGeomManager::LayerToVolUID(iLayer,iModule);
+      const char  *symname = AliGeomManager::SymName(volid);
+      TGeoPNEntry *pne     = gGeoManager->GetAlignableEntry(symname);
+      const char  *path    = symname;
+      if (pne) {
+        path = pne->GetTitle();
+      }
+      else {
+       continue;
+      }
+      if (!strstr(path,"ALIC")) {
+        AliDebugClass(1,Form("Not a valid path: %s\n",path));
+        continue;
+      }
+      if (!gGeoManager->cd(path)) {
+        AliErrorClass(Form("Cannot go to path: %s\n",path));
+        continue;
+      }
+      TGeoHMatrix *m         = gGeoManager->GetCurrentMatrix();
+      
+      TGeoRotation mchange; 
+      mchange.RotateY(90); 
+      mchange.RotateX(90);
 
       //
-      //  Cluster transformation matrix
+      // Cluster transformation matrix
       //
       TGeoHMatrix  rotMatrix(mchange.Inverse());
       rotMatrix.MultiplyLeft(m);
-      Double_t sectorAngle = 20.*(isector%18)+10;
+      Double_t sectorAngle = 20.0 * (isector % 18) + 10.0;
       TGeoHMatrix  rotSector;
       rotSector.RotateZ(sectorAngle);
-      rotMatrix.MultiplyLeft(&rotSector);      
+      rotMatrix.MultiplyLeft(&rotSector.Inverse());
 
-      fMatrixCorrectionArray->AddAt(new TGeoHMatrix(rotMatrix),lid);       
+      fgClusterMatrixArray->AddAt(new TGeoHMatrix(rotMatrix),lid);       
 
     }    
   }
@@ -1409,3 +3035,91 @@ Bool_t AliTRDgeometry::ReadGeoMatrices()
 
 }
 
+//_____________________________________________________________________________
+TGeoHMatrix *AliTRDgeometry::GetClusterMatrix(Int_t det)
+{
+  //
+  // Returns the cluster transformation matrix for a given detector
+  //
+
+  if (!fgClusterMatrixArray) {
+    if (!CreateClusterMatrixArray()) {
+      return NULL;
+    }
+  }  
+  return (TGeoHMatrix *) fgClusterMatrixArray->At(det);
+
+}
+
+//_____________________________________________________________________________
+Bool_t AliTRDgeometry::ChamberInGeometry(Int_t det)
+{
+  //
+  // Checks whether the given detector is part of the current geometry
+  //
+
+  if (!GetClusterMatrix(det)) {
+    return kFALSE;
+  }
+  else {
+    return kTRUE;
+  }
+
+}
+
+//_____________________________________________________________________________
+Bool_t AliTRDgeometry::IsHole(Int_t /*la*/, Int_t st, Int_t se) const
+{
+  //
+  // Checks for holes in front of PHOS
+  //
+
+  if (((se == 13) || (se == 14) || (se == 15)) && 
+      (st == 2)) {
+    return kTRUE; 
+  }
+
+  return kFALSE;
+
+}
+
+//_____________________________________________________________________________
+Bool_t AliTRDgeometry::IsOnBoundary(Int_t det, Float_t y, Float_t z, Float_t eps) const
+{
+  //
+  // Checks whether position is at the boundary of the sensitive volume 
+  //
+
+  Int_t ly = GetLayer(det);
+  if ((ly <          0) || 
+      (ly >= fgkNlayer)) return kTRUE;
+       
+  Int_t stk = GetStack(det);
+  if ((stk <          0) || 
+      (stk >= fgkNstack)) return kTRUE;
+
+  AliTRDpadPlane *pp = (AliTRDpadPlane*) fgPadPlaneArray->At(GetDetectorSec(ly, stk));
+  if(!pp) return kTRUE;
+
+  Double_t max  = pp->GetRow0();
+  Int_t n = pp->GetNrows();
+  Double_t min = max - 2 * pp->GetLengthOPad() 
+                 - (n-2) * pp->GetLengthIPad() 
+                 - (n-1) * pp->GetRowSpacing();
+  if(z < min+eps || z > max-eps){ 
+    //printf("z : min[%7.2f (%7.2f)] %7.2f max[(%7.2f) %7.2f]\n", min, min+eps, z, max-eps, max);
+    return kTRUE;
+  }
+  min  = pp->GetCol0();
+  n = pp->GetNcols();
+  max = min +2 * pp->GetWidthOPad() 
+       + (n-2) * pp->GetWidthIPad() 
+       + (n-1) * pp->GetColSpacing();
+  if(y < min+eps || y > max-eps){ 
+    //printf("y : min[%7.2f (%7.2f)] %7.2f max[(%7.2f) %7.2f]\n", min, min+eps, y, max-eps, max);
+    return kTRUE;
+  }
+
+  return kFALSE;
+
+}