]> git.uio.no Git - u/mrichter/AliRoot.git/blobdiff - TRD/AliTRDgeometry.cxx
Move pad planes from AliTRDCommomParam to AliTRDgeometry
[u/mrichter/AliRoot.git] / TRD / AliTRDgeometry.cxx
index 574d242763b0f2bf98a70a8060e46191224ac61b..f451be96b3086499ea51aa37e6850980e5be48e4 100644 (file)
  * provided "as is" without express or implied warranty.                  *
  **************************************************************************/
 
-/*
-$Log$
-Revision 1.9  2001/03/27 12:48:33  cblume
-Correct for volume overlaps
-
-Revision 1.8  2001/03/13 09:30:35  cblume
-Update of digitization. Moved digit branch definition to AliTRD
-
-Revision 1.7  2001/02/14 18:22:26  cblume
-Change in the geometry of the padplane
-
-Revision 1.6  2000/11/01 14:53:20  cblume
-Merge with TRD-develop
-
-Revision 1.1.4.7  2000/10/16 01:16:53  cblume
-Changed timebin 0 to be the one closest to the readout
-
-Revision 1.1.4.6  2000/10/15 23:35:57  cblume
-Include geometry constants as static member
-
-Revision 1.1.4.5  2000/10/06 16:49:46  cblume
-Made Getters const
-
-Revision 1.1.4.4  2000/10/04 16:34:58  cblume
-Replace include files by forward declarations
-
-Revision 1.1.4.3  2000/09/22 14:43:40  cblume
-Allow the pad/timebin-dimensions to be changed after initialization
-
-Revision 1.1.4.2  2000/09/18 13:37:01  cblume
-Minor coding corrections
-
-Revision 1.5  2000/10/02 21:28:19  fca
-Removal of useless dependecies via forward declarations
-
-Revision 1.4  2000/06/08 18:32:58  cblume
-Make code compliant to coding conventions
-
-Revision 1.3  2000/06/07 16:25:37  cblume
-Try to remove compiler warnings on Sun and HP
-
-Revision 1.2  2000/05/08 16:17:27  cblume
-Merge TRD-develop
-
-Revision 1.1.4.1  2000/05/08 14:45:55  cblume
-Bug fix in RotateBack(). Geometry update
-
-Revision 1.4  2000/06/08 18:32:58  cblume
-Make code compliant to coding conventions
-
-Revision 1.3  2000/06/07 16:25:37  cblume
-Try to remove compiler warnings on Sun and HP
-
-Revision 1.2  2000/05/08 16:17:27  cblume
-Merge TRD-develop
-
-Revision 1.1.4.1  2000/05/08 14:45:55  cblume
-Bug fix in RotateBack(). Geometry update
-
-Revision 1.1  2000/02/28 19:00:44  cblume
-Add new TRD classes
-
-*/
+/* $Id$ */
 
 ///////////////////////////////////////////////////////////////////////////////
 //                                                                           //
@@ -83,11 +21,21 @@ Add new TRD classes
 //                                                                           //
 ///////////////////////////////////////////////////////////////////////////////
 
-#include "AliMC.h"
 
+#include <TGeoManager.h>
+#include <TGeoPhysicalNode.h>
+#include <TGeoMatrix.h>
+
+#include "AliLog.h"
+#include "AliRunLoader.h"
+#include "AliAlignObj.h"
+#include "AliAlignObjAngles.h"
+#include "AliRun.h"
+
+#include "AliTRD.h"
+#include "AliTRDcalibDB.h"
 #include "AliTRDgeometry.h"
-#include "AliTRDrecPoint.h"
-#include "AliMC.h"
+#include "AliTRDpadPlane.h"
 
 ClassImp(AliTRDgeometry)
 
@@ -96,69 +44,126 @@ ClassImp(AliTRDgeometry)
   //
   // The geometry constants
   //
-  const Int_t   AliTRDgeometry::fgkNsect   = kNsect;
-  const Int_t   AliTRDgeometry::fgkNplan   = kNplan;
-  const Int_t   AliTRDgeometry::fgkNcham   = kNcham;
-  const Int_t   AliTRDgeometry::fgkNdet    = kNdet;
+  const Int_t    AliTRDgeometry::fgkNsect     = kNsect;
+  const Int_t    AliTRDgeometry::fgkNplan     = kNplan;
+  const Int_t    AliTRDgeometry::fgkNcham     = kNcham;
+  const Int_t    AliTRDgeometry::fgkNdet      = kNdet;
 
   //
   // Dimensions of the detector
   //
-  const Float_t AliTRDgeometry::fgkRmin    = 294.0;
-  const Float_t AliTRDgeometry::fgkRmax    = 368.0;
 
-  const Float_t AliTRDgeometry::fgkZmax1   = 378.35; 
-  const Float_t AliTRDgeometry::fgkZmax2   = 302.0; 
-
-  const Float_t AliTRDgeometry::fgkSheight =  74.0; 
-  const Float_t AliTRDgeometry::fgkSwidth1 =  99.613;
-  const Float_t AliTRDgeometry::fgkSwidth2 = 125.707;
-  const Float_t AliTRDgeometry::fgkSlenTR1 = 751.0;
-  const Float_t AliTRDgeometry::fgkSlenTR2 = 313.5; 
-  const Float_t AliTRDgeometry::fgkSlenTR3 = 159.5;  
-
-  const Float_t AliTRDgeometry::fgkCheight =  11.0;  
-  const Float_t AliTRDgeometry::fgkCspace  =   1.6;
-  const Float_t AliTRDgeometry::fgkCathick =   1.0; 
-  const Float_t AliTRDgeometry::fgkCcthick =   1.0;
-  const Float_t AliTRDgeometry::fgkCaframe =   2.675; 
-  const Float_t AliTRDgeometry::fgkCcframe = AliTRDgeometry::fgkCheight 
-                                           - AliTRDgeometry::fgkCaframe;
+  // Parameter of the BTRD mother volumes 
+  const Float_t  AliTRDgeometry::fgkSheight   =  77.9; 
+  const Float_t  AliTRDgeometry::fgkSwidth1   =  94.881; 
+  const Float_t  AliTRDgeometry::fgkSwidth2   = 122.353;
+  const Float_t  AliTRDgeometry::fgkSlength   = 751.0;
+
+  // The super module side plates
+  const Float_t  AliTRDgeometry::fgkSMpltT    =   0.2;
+
+  // Height of different chamber parts
+  // Radiator
+  const Float_t  AliTRDgeometry::fgkCraH      =   4.8; 
+  // Drift region
+  const Float_t  AliTRDgeometry::fgkCdrH      =   3.0;
+  // Amplification region
+  const Float_t  AliTRDgeometry::fgkCamH      =   0.7;
+  // Readout
+  const Float_t  AliTRDgeometry::fgkCroH      =   2.316;
+  // Total height
+  const Float_t  AliTRDgeometry::fgkCH        = AliTRDgeometry::fgkCraH
+                                              + AliTRDgeometry::fgkCdrH
+                                              + AliTRDgeometry::fgkCamH
+                                              + AliTRDgeometry::fgkCroH;  
+
+  // Vertical spacing of the chambers
+  const Float_t  AliTRDgeometry::fgkVspace    =   1.784;
+  // Horizontal spacing of the chambers
+  const Float_t  AliTRDgeometry::fgkHspace    =   2.0;
+  // Radial distance of the first ROC to the outer plates of the SM
+  const Float_t  AliTRDgeometry::fgkVrocsm    =   1.2;
+
+  // Thicknesses of different parts of the chamber frame
+  // Lower aluminum frame
+  const Float_t  AliTRDgeometry::fgkCalT      =   0.4;
+  // Lower Wacosit frame sides
+  const Float_t  AliTRDgeometry::fgkCclsT     =   0.21;
+  // Lower Wacosit frame front
+  const Float_t  AliTRDgeometry::fgkCclfT     =   1.0;
+  // Thickness of glue around radiator
+  const Float_t  AliTRDgeometry::fgkCglT      =   0.25;
+  // Upper Wacosit frame
+  const Float_t  AliTRDgeometry::fgkCcuT      =   0.9;
+  // Al frame of back panel
+  const Float_t  AliTRDgeometry::fgkCauT      =   1.5;
+  // Additional Al of the lower chamber frame
+  const Float_t  AliTRDgeometry::fgkCalW      =   1.11;
+
+  // Additional width of the readout chamber frames
+  const Float_t  AliTRDgeometry::fgkCroW      =   0.9;
+
+  // Difference of outer chamber width and pad plane width
+  const Float_t  AliTRDgeometry::fgkCpadW     =   0.0;
+  const Float_t  AliTRDgeometry::fgkRpadW     =   1.0;
 
   //
   // Thickness of the the material layers
   //
-  const Float_t AliTRDgeometry::fgkSeThick = 0.02;  
-  const Float_t AliTRDgeometry::fgkRaThick = 4.78;  
-  const Float_t AliTRDgeometry::fgkPeThick = 0.20;    
-  const Float_t AliTRDgeometry::fgkMyThick = 0.005;
-  const Float_t AliTRDgeometry::fgkXeThick = 3.5;
-  const Float_t AliTRDgeometry::fgkDrThick = 3.0;
-  const Float_t AliTRDgeometry::fgkAmThick = AliTRDgeometry::fgkXeThick 
-                                           - AliTRDgeometry::fgkDrThick;
-  const Float_t AliTRDgeometry::fgkCuThick = 0.001; 
-  const Float_t AliTRDgeometry::fgkSuThick = 0.06
-  const Float_t AliTRDgeometry::fgkFeThick = 0.0044; 
-  const Float_t AliTRDgeometry::fgkCoThick = 0.02;
-  const Float_t AliTRDgeometry::fgkWaThick = 0.01;
+  const Float_t  AliTRDgeometry::fgkMyThick   = 0.005;
+  const Float_t  AliTRDgeometry::fgkRaThick   = 0.3233;  
+  const Float_t  AliTRDgeometry::fgkDrThick   = AliTRDgeometry::fgkCdrH;    
+  const Float_t  AliTRDgeometry::fgkAmThick   = AliTRDgeometry::fgkCamH;
+  const Float_t  AliTRDgeometry::fgkXeThick   = AliTRDgeometry::fgkDrThick
+                                              + AliTRDgeometry::fgkAmThick;
+  const Float_t  AliTRDgeometry::fgkWrThick   = 0.0002;
+  const Float_t  AliTRDgeometry::fgkCuThick   = 0.0072; 
+  const Float_t  AliTRDgeometry::fgkGlThick   = 0.05;
+  const Float_t  AliTRDgeometry::fgkSuThick   = 0.0919
+  const Float_t  AliTRDgeometry::fgkRcThick   = 0.0058;
+  const Float_t  AliTRDgeometry::fgkRpThick   = 0.0632;
+  const Float_t  AliTRDgeometry::fgkRoThick   = 0.0028;
 
   //
   // Position of the material layers
   //
-  const Float_t AliTRDgeometry::fgkSeZpos  = -4.14; 
-  const Float_t AliTRDgeometry::fgkRaZpos  = -1.74;
-  const Float_t AliTRDgeometry::fgkPeZpos  =  0.0000;
-  const Float_t AliTRDgeometry::fgkMyZpos  =  0.6550;
-  const Float_t AliTRDgeometry::fgkDrZpos  =  2.1600;
-  const Float_t AliTRDgeometry::fgkAmZpos  =  3.9100;
-  const Float_t AliTRDgeometry::fgkCuZpos  = -1.3370; 
-  const Float_t AliTRDgeometry::fgkSuZpos  =  0.0000;
-  const Float_t AliTRDgeometry::fgkFeZpos  =  1.3053;
-  const Float_t AliTRDgeometry::fgkCoZpos  =  1.3175;
-  const Float_t AliTRDgeometry::fgkWaZpos  =  1.3325; 
+  const Float_t  AliTRDgeometry::fgkRaZpos    =  0.0;
+  const Float_t  AliTRDgeometry::fgkDrZpos    =  2.4;
+  const Float_t  AliTRDgeometry::fgkAmZpos    =  0.0;
+  const Float_t  AliTRDgeometry::fgkWrZpos    =  0.0;
+  const Float_t  AliTRDgeometry::fgkCuZpos    = -0.9995;
+  const Float_t  AliTRDgeometry::fgkGlZpos    = -0.5; 
+  const Float_t  AliTRDgeometry::fgkSuZpos    =  0.0;
+  const Float_t  AliTRDgeometry::fgkRcZpos    =  1.04;
+  const Float_t  AliTRDgeometry::fgkRpZpos    =  1.0;
+  const Float_t  AliTRDgeometry::fgkRoZpos    =  1.05;
+
+  const Int_t    AliTRDgeometry::fgkMCMmax    = 16;   
+  const Int_t    AliTRDgeometry::fgkMCMrow    = 4;   
+  const Int_t    AliTRDgeometry::fgkROBmaxC0  = 6; 
+  const Int_t    AliTRDgeometry::fgkROBmaxC1  = 8; 
+  const Int_t    AliTRDgeometry::fgkADCmax    = 21;   
+  const Int_t    AliTRDgeometry::fgkTBmax     = 60;   
+  const Int_t    AliTRDgeometry::fgkPadmax    = 18;   
+  const Int_t    AliTRDgeometry::fgkColmax    = 144;
+  const Int_t    AliTRDgeometry::fgkRowmaxC0  = 12;
+  const Int_t    AliTRDgeometry::fgkRowmaxC1  = 16;
+
+  const Double_t AliTRDgeometry::fgkTime0Base = 300.65;
+  const Float_t  AliTRDgeometry::fgkTime0[6]  = { fgkTime0Base + 0 * (Cheight() + Cspace()) 
+                                                , fgkTime0Base + 1 * (Cheight() + Cspace()) 
+                                                , fgkTime0Base + 2 * (Cheight() + Cspace()) 
+                                                , fgkTime0Base + 3 * (Cheight() + Cspace()) 
+                                                , fgkTime0Base + 4 * (Cheight() + Cspace()) 
+                                                , fgkTime0Base + 5 * (Cheight() + Cspace())};
 
 //_____________________________________________________________________________
-AliTRDgeometry::AliTRDgeometry():AliGeometry()
+AliTRDgeometry::AliTRDgeometry()
+  :AliGeometry()
+  ,fMatrixArray(0)
+  ,fMatrixCorrectionArray(0)
+  ,fMatrixGeo(0)
+  ,fPadPlaneArray(0)
 {
   //
   // AliTRDgeometry default constructor
@@ -168,6 +173,22 @@ AliTRDgeometry::AliTRDgeometry():AliGeometry()
 
 }
 
+//_____________________________________________________________________________
+AliTRDgeometry::AliTRDgeometry(const AliTRDgeometry &g)
+  :AliGeometry(g)
+  ,fMatrixArray(0)
+  ,fMatrixCorrectionArray(0)
+  ,fMatrixGeo(0)
+  ,fPadPlaneArray(0)
+{
+  //
+  // AliTRDgeometry copy constructor
+  //
+
+  Init();
+
+}
+
 //_____________________________________________________________________________
 AliTRDgeometry::~AliTRDgeometry()
 {
@@ -175,6 +196,45 @@ AliTRDgeometry::~AliTRDgeometry()
   // AliTRDgeometry destructor
   //
 
+  if (fMatrixArray) {
+    fMatrixArray->Delete();
+    delete fMatrixArray;
+    fMatrixArray = 0;
+  }
+
+  if (fMatrixCorrectionArray) {
+    fMatrixCorrectionArray->Delete();
+    delete fMatrixCorrectionArray;
+    fMatrixCorrectionArray = 0;
+  }
+
+  if (fMatrixGeo) {
+    fMatrixGeo->Delete();
+    delete fMatrixGeo;
+    fMatrixGeo = 0;
+  }
+
+  if (fPadPlaneArray) {
+    fPadPlaneArray->Delete();
+    delete fPadPlaneArray;
+    fPadPlaneArray = 0;
+  }
+
+}
+
+//_____________________________________________________________________________
+AliTRDgeometry &AliTRDgeometry::operator=(const AliTRDgeometry &g)
+{
+  //
+  // Assignment operator
+  //
+
+  if (this != &g) {
+    Init();
+  }
+
+  return *this;
+
 }
 
 //_____________________________________________________________________________
@@ -184,96 +244,287 @@ void AliTRDgeometry::Init()
   // Initializes the geometry parameter
   //
 
+  Int_t icham;
+  Int_t iplan;
   Int_t isect;
 
-  // The width of the chambers
-  fCwidth[0] =  99.6;
-  fCwidth[1] = 104.1;
-  fCwidth[2] = 108.5;
-  fCwidth[3] = 112.9;
-  fCwidth[4] = 117.4;
-  fCwidth[5] = 121.8;
-
-  // The maximum number of pads
-  // and the position of pad 0,0,0 
-  // 
-  // chambers seen from the top:
-  //     +----------------------------+
-  //     |                            |
-  //     |                            |      ^
-  //     |                            |  rphi|
-  //     |                            |      |
-  //     |0                           |      | 
-  //     +----------------------------+      +------>
-  //                                             z 
-  // chambers seen from the side:            ^
-  //     +----------------------------+ drift|
-  //     |0                           |      |
-  //     |                            |      |
-  //     +----------------------------+      +------>
-  //                                             z
-  //                                             
-  // IMPORTANT: time bin 0 is now the first one in the drift region 
-  // closest to the readout !!!
-  //
-
-  // The pad column (rphi-direction)  
-  SetNColPad(96);
-
-  // The number of time bins. Default is 100 ns timbin size
-  SetNTimeBin(15);
-
-  // Additional time bins before and after the drift region.
-  // Default is to only sample the drift region
-  SetExpandTimeBin(0,0);
+  // The outer width of the chambers
+  fCwidth[0] =  90.4;
+  fCwidth[1] =  94.8;
+  fCwidth[2] =  99.3;
+  fCwidth[3] = 103.7;
+  fCwidth[4] = 108.1;
+  fCwidth[5] = 112.6;
+
+  // The outer lengths of the chambers
+  // Includes the spacings between the chambers!
+  Float_t length[kNplan][kNcham]   = { { 124.0, 124.0, 110.0, 124.0, 124.0 }
+                                    , { 124.0, 124.0, 110.0, 124.0, 124.0 }
+                                     , { 131.0, 131.0, 110.0, 131.0, 131.0 }
+                                     , { 138.0, 138.0, 110.0, 138.0, 138.0 }
+                                     , { 145.0, 145.0, 110.0, 145.0, 145.0 }
+                                    , { 147.0, 147.0, 110.0, 147.0, 147.0 } };
+
+  for (icham = 0; icham < kNcham; icham++) {
+    for (iplan = 0; iplan < kNplan; iplan++) {
+      fClength[iplan][icham] = length[iplan][icham];
+    }
+  }
 
   // The rotation matrix elements
-  Float_t phi = 0;
+  Float_t phi = 0.0;
   for (isect = 0; isect < fgkNsect; isect++) {
-    phi = -2.0 * kPI /  (Float_t) fgkNsect * ((Float_t) isect + 0.5);
-    fRotA11[isect] = TMath::Cos(phi);
-    fRotA12[isect] = TMath::Sin(phi);
-    fRotA21[isect] = TMath::Sin(phi);
-    fRotA22[isect] = TMath::Cos(phi);
-    phi = -1.0 * phi;
+    phi = 2.0 * TMath::Pi() /  (Float_t) fgkNsect * ((Float_t) isect + 0.5);
     fRotB11[isect] = TMath::Cos(phi);
     fRotB12[isect] = TMath::Sin(phi);
     fRotB21[isect] = TMath::Sin(phi);
     fRotB22[isect] = TMath::Cos(phi);
   }
+
+  // Initialize the SM status
+  for (isect = 0; isect < fgkNsect; isect++) {
+    SetSMstatus(isect,1);
+  }
  
 }
 
 //_____________________________________________________________________________
-void AliTRDgeometry::SetNColPad(const Int_t npad)
+void AliTRDgeometry::CreatePadPlaneArray()
 {
   //
-  // Redefines the number of pads in column direction
+  // Creates the array of AliTRDpadPlane objects
   //
 
+  if (fPadPlaneArray) {
+    fPadPlaneArray->Delete();
+    delete fPadPlaneArray;
+  }
+
+  fPadPlaneArray = new TObjArray(fgkNplan * fgkNcham);  
   for (Int_t iplan = 0; iplan < fgkNplan; iplan++) {
-    fColMax[iplan]     = npad;
-    fColPadSize[iplan] = (fCwidth[iplan] - 2. * fgkCcthick) / fColMax[iplan];
-    fCol0[iplan]       = -fCwidth[iplan]/2. + fgkCcthick;
+    for (Int_t icham = 0; icham < fgkNcham; icham++) {
+      Int_t ipp = GetDetectorSec(iplan,icham);
+      fPadPlaneArray->AddAt(CreatePadPlane(iplan,icham),ipp);
+    }
   }
 
 }
 
 //_____________________________________________________________________________
-void AliTRDgeometry::SetNTimeBin(const Int_t nbin)
+AliTRDpadPlane *AliTRDgeometry::CreatePadPlane(Int_t iplan, Int_t icham)
 {
   //
-  // Redefines the number of time bins in the drift region.
-  // The time bin width is defined by the length of the
-  // drift region divided by <nbin>.
+  // Creates an AliTRDpadPlane object
   //
 
-  fTimeMax     = nbin;
-  fTimeBinSize = fgkDrThick / ((Float_t) fTimeMax);
-  for (Int_t iplan = 0; iplan < fgkNplan; iplan++) {
-    fTime0[iplan]  = fgkRmin + fgkCcframe/2. + fgkDrZpos + 0.5 * fgkDrThick
-                             + iplan * (fgkCheight + fgkCspace);
+  AliTRDpadPlane *padPlane = new AliTRDpadPlane();
+
+  padPlane->SetPlane(iplan);
+  padPlane->SetChamber(icham);
+
+  padPlane->SetRowSpacing(0.0);
+  padPlane->SetColSpacing(0.0);
+
+  padPlane->SetLengthRim(1.0);
+  padPlane->SetWidthRim(0.5);
+
+  padPlane->SetNcols(144);
+
+  //
+  // The pad plane parameter
+  //
+  switch (iplan) {
+  case 0:
+    if (icham == 2) {
+      // L0C0 type
+      padPlane->SetNrows(12);
+      padPlane->SetLength(108.0);
+      padPlane->SetWidth(92.2);
+      padPlane->SetLengthOPad(8.0);
+      padPlane->SetWidthOPad(0.515);
+      padPlane->SetLengthIPad(9.0);
+      padPlane->SetWidthIPad(0.635);
+      padPlane->SetTiltingAngle(-2.0);
+    }
+    else {
+      // L0C1 type
+      padPlane->SetNrows(16);
+      padPlane->SetLength(122.0);
+      padPlane->SetWidth(92.2);
+      padPlane->SetLengthOPad(7.5);
+      padPlane->SetWidthOPad(0.515);
+      padPlane->SetLengthIPad(7.5);
+      padPlane->SetWidthIPad(0.635);
+      padPlane->SetTiltingAngle(-2.0);
+    }
+    break;
+  case 1:
+    if (icham == 2) {
+      // L1C0 type
+      padPlane->SetNrows(12);
+      padPlane->SetLength(108.0);
+      padPlane->SetWidth(96.6);
+      padPlane->SetLengthOPad(8.0);
+      padPlane->SetWidthOPad(0.585);
+      padPlane->SetLengthIPad(9.0);
+      padPlane->SetWidthIPad(0.665);
+      padPlane->SetTiltingAngle(2.0);
+    }
+    else {
+      // L1C1 type
+      padPlane->SetNrows(16);
+      padPlane->SetLength(122.0);
+      padPlane->SetWidth(96.6);
+      padPlane->SetLengthOPad(7.5);
+      padPlane->SetWidthOPad(0.585);
+      padPlane->SetLengthIPad(7.5);
+      padPlane->SetWidthIPad(0.665);
+      padPlane->SetTiltingAngle(2.0);
+    }
+    break;
+  case 2:
+    if (icham == 2) {
+      // L2C0 type
+      padPlane->SetNrows(12);
+      padPlane->SetLength(108.0);
+      padPlane->SetWidth(101.1);
+      padPlane->SetLengthOPad(8.0);
+      padPlane->SetWidthOPad(0.705);
+      padPlane->SetLengthIPad(9.0);
+      padPlane->SetWidthIPad(0.695);
+      padPlane->SetTiltingAngle(-2.0);
+    }
+    else {
+      // L2C1 type
+      padPlane->SetNrows(16);
+      padPlane->SetLength(129.0);
+      padPlane->SetWidth(101.1);
+      padPlane->SetLengthOPad(7.5);
+      padPlane->SetWidthOPad(0.705);
+      padPlane->SetLengthIPad(8.0);
+      padPlane->SetWidthIPad(0.695);
+      padPlane->SetTiltingAngle(-2.0);
+    }
+    break;
+  case 3:
+    if (icham == 2) {
+      // L3C0 type
+      padPlane->SetNrows(12);
+      padPlane->SetLength(108.0);
+      padPlane->SetWidth(105.5);
+      padPlane->SetLengthOPad(8.0);
+      padPlane->SetWidthOPad(0.775);
+      padPlane->SetLengthIPad(9.0);
+      padPlane->SetWidthIPad(0.725);
+      padPlane->SetTiltingAngle(2.0);
+    }
+    else {
+      // L3C1 type
+      padPlane->SetNrows(16);
+      padPlane->SetLength(136.0);
+      padPlane->SetWidth(105.5);
+      padPlane->SetLengthOPad(7.5);
+      padPlane->SetWidthOPad(0.775);
+      padPlane->SetLengthIPad(8.5);
+      padPlane->SetWidthIPad(0.725);
+      padPlane->SetTiltingAngle(2.0);
+    }
+    break;
+  case 4:
+    if (icham == 2) {
+      // L4C0 type
+      padPlane->SetNrows(12);
+      padPlane->SetLength(108.0);
+      padPlane->SetWidth(109.9);
+      padPlane->SetLengthOPad(8.0);
+      padPlane->SetWidthOPad(0.845);
+      padPlane->SetLengthIPad(9.0);
+      padPlane->SetWidthIPad(0.755);
+      padPlane->SetTiltingAngle(-2.0);
+    }
+    else {
+      // L4C1 type
+      padPlane->SetNrows(16);
+      padPlane->SetLength(143.0);
+      padPlane->SetWidth(109.9);
+      padPlane->SetLengthOPad(7.5);
+      padPlane->SetWidthOPad(0.845);
+      padPlane->SetLengthIPad(9.0);
+      padPlane->SetWidthIPad(0.755);
+      padPlane->SetTiltingAngle(-2.0);
+    }
+    break;
+  case 5:
+    if (icham == 2) {
+      // L5C0 type
+      padPlane->SetNrows(12);
+      padPlane->SetLength(108.0);
+      padPlane->SetWidth(114.4);
+      padPlane->SetLengthOPad(8.0);
+      padPlane->SetWidthOPad(0.965);
+      padPlane->SetLengthIPad(9.0);
+      padPlane->SetWidthIPad(0.785);
+      padPlane->SetTiltingAngle(2.0);
+    }
+    else {
+      // L5C1 type
+      padPlane->SetNrows(16);
+      padPlane->SetLength(145.0);
+      padPlane->SetWidth(114.4);
+      padPlane->SetLengthOPad(8.5);
+      padPlane->SetWidthOPad(0.965);
+      padPlane->SetLengthIPad(9.0);
+      padPlane->SetWidthIPad(0.785);
+      padPlane->SetTiltingAngle(2.0);
+    }
+    break;
+  };
+
+  //
+  // The positions of the borders of the pads
+  //
+  // Row direction
+  //
+  Double_t row = fClength[iplan][icham] / 2.0
+               - fgkRpadW
+               - padPlane->GetLengthRim();
+  for (Int_t ir = 0; ir < padPlane->GetNrows(); ir++) {
+    padPlane->SetPadRow(ir,row);
+    row -= padPlane->GetRowSpacing();
+    if (ir == 0) {
+      row -= padPlane->GetLengthOPad();
+    }
+    else {
+      row -= padPlane->GetLengthIPad();
+    }
+  }
+  //
+  // Column direction
+  //
+  Double_t col = fCwidth[iplan] / 2.0
+               + fgkCroW
+               - padPlane->GetWidthRim();
+  for (Int_t ic = 0; ic < padPlane->GetNcols(); ic++) {
+    padPlane->SetPadCol(ic,col);
+    col -= padPlane->GetColSpacing();
+    if (ic == 0) {
+      col -= padPlane->GetWidthOPad();
+    }
+    else {
+      col -= padPlane->GetWidthIPad();
+    }
+  }
+  // Calculate the offset to translate from the local ROC system into
+  // the local supermodule system, which is used for clusters
+  Double_t rowTmp = fClength[iplan][0]
+                 + fClength[iplan][1]
+                  + fClength[iplan][2] / 2.0;
+  for (Int_t ic = 0; ic < icham; ic++) {
+    rowTmp -= fClength[iplan][ic];
   }
+  padPlane->SetPadRowSMOffset(rowTmp - fClength[iplan][icham]/2.0);
+
+  return padPlane;
 
 }
 
@@ -281,260 +532,1070 @@ void AliTRDgeometry::SetNTimeBin(const Int_t nbin)
 void AliTRDgeometry::CreateGeometry(Int_t *idtmed)
 {
   //
-  // Create the TRD geometry
-  //
-  // Author: Christoph Blume (C.Blume@gsi.de) 20/07/99
-  //
-  // The volumes:
-  //    TRD1-3     (Air)   --- The TRD mother volumes for one sector. 
-  //                           To be placed into the spaceframe.
-  //
-  //    UAFI(/M/O) (Al)    --- The aluminum frame of the inner(/middle/outer) chambers (readout)
-  //    UCFI(/M/O) (C)     --- The carbon frame of the inner(/middle/outer) chambers 
-  //                           (driftchamber + radiator)
-  //    UAII(/M/O) (Air)   --- The inner part of the readout of the inner(/middle/outer) chambers
-  //    UFII(/M/O) (Air)   --- The inner part of the chamner and radiator of the 
-  //                           inner(/middle/outer) chambers
-  //
-  // The material layers in one chamber:
-  //    UL01       (G10)   --- The gas seal of the radiator
-  //    UL02       (CO2)   --- The gas in the radiator
-  //    UL03       (PE)    --- The foil stack
-  //    UL04       (Mylar) --- Entrance window to the driftvolume and HV-cathode
-  //    UL05       (Xe)    --- The driftvolume
-  //    UL06       (Xe)    --- The amplification region
-  //    
-  //    UL07       (Cu)    --- The pad plane
-  //    UL08       (G10)   --- The Nomex honeycomb support structure
-  //    UL09       (Cu)    --- FEE and signal lines
-  //    UL10       (PE)    --- The cooling devices
-  //    UL11       (Water) --- The cooling water
+  // Create the TRD geometry without hole
+  //
+  //
+  // Names of the TRD volumina (xx = detector number):
+  //
+  //      Volume (Air) wrapping the readout chamber components
+  //        UTxx    includes: UAxx, UDxx, UFxx, UUxx
+  //
+  //      Volume (Air) wrapping the services (fee + cooling)
+  //        UUxx    the services volume has been reduced by 7.42 mm
+  //                in order to allow shifts in radial direction
+  //
+  //      Lower part of the readout chambers (drift volume + radiator)
+  //
+  //        UAxx    Aluminum frames                 (Al)
+  //        UBxx    Wacosit frames                  (C)
+  //        UXxx    Glue around radiator            (Epoxy)
+  //        UCxx    Inner volumes                   (Air)
+  //        UZxx    Additional aluminum ledges      (Al)
+  //
+  //      Upper part of the readout chambers (readout plane + fee)
+  //
+  //        UDxx    Wacosit frames of amp. region   (C)
+  //        UExx    Inner volumes of the frame      (Air)
+  //        UFxx    Aluminum frame of back panel    (Al)
+  //        UGxx    Inner volumes of the back panel (Air)
+  //
+  //      Inner material layers
+  //
+  //        UHxx    Radiator                        (Rohacell)
+  //        UJxx    Drift volume                    (Xe/CO2)
+  //        UKxx    Amplification volume            (Xe/CO2)
+  //        UWxx    Wire plane                      (Cu)
+  //        ULxx    Pad plane                       (Cu)
+  //        UYxx    Glue layer                      (Epoxy)
+  //        UMxx    Support structure               (Rohacell)
+  //        UNxx    ROB base material               (C)
+  //        UOxx    ROB copper                      (Cu)
+  //        UVxx    ROB other materials             (Cu)
+  //
 
+  const Int_t kNparTrd = 4;
   const Int_t kNparCha = 3;
 
-  Float_t parDum[3];
+  Float_t xpos;
+  Float_t ypos;
+  Float_t zpos;
+
+  Float_t parTrd[kNparTrd];
   Float_t parCha[kNparCha];
 
-  Float_t xpos, ypos, zpos;
-
-  // The aluminum frames - readout + electronics (Al)
-  // The inner chambers
-  gMC->Gsvolu("UAFI","BOX ",idtmed[1301-1],parDum,0);
-  // The middle chambers
-  gMC->Gsvolu("UAFM","BOX ",idtmed[1301-1],parDum,0);
-  // The outer chambers
-  gMC->Gsvolu("UAFO","BOX ",idtmed[1301-1],parDum,0);
-
-  // The inner part of the aluminum frames (Air)
-  // The inner chambers
-  gMC->Gsvolu("UAII","BOX ",idtmed[1302-1],parDum,0);
-  // The middle chambers
-  gMC->Gsvolu("UAIM","BOX ",idtmed[1302-1],parDum,0);
-  // The outer chambers
-  gMC->Gsvolu("UAIO","BOX ",idtmed[1302-1],parDum,0);
-
-  // The carbon frames - radiator + driftchamber (C)
-  // The inner chambers
-  gMC->Gsvolu("UCFI","BOX ",idtmed[1307-1],parDum,0);
-  // The middle chambers
-  gMC->Gsvolu("UCFM","BOX ",idtmed[1307-1],parDum,0);
-  // The outer chambers
-  gMC->Gsvolu("UCFO","BOX ",idtmed[1307-1],parDum,0);
-
-  // The inner part of the carbon frames (Air)
-  // The inner chambers
-  gMC->Gsvolu("UCII","BOX ",idtmed[1302-1],parDum,0);
-  // The middle chambers
-  gMC->Gsvolu("UCIM","BOX ",idtmed[1302-1],parDum,0);
-  // The outer chambers
-  gMC->Gsvolu("UCIO","BOX ",idtmed[1302-1],parDum,0);
-
-  // The material layers inside the chambers
-  parCha[0] = -1.;
-  parCha[1] = -1.;
-  // G10 layer (radiator seal)
-  parCha[2] = fgkSeThick/2;
-  gMC->Gsvolu("UL01","BOX ",idtmed[1313-1],parCha,kNparCha);
-  // CO2 layer (radiator)
-  parCha[2] = fgkRaThick/2;
-  gMC->Gsvolu("UL02","BOX ",idtmed[1312-1],parCha,kNparCha);
-  // PE layer (radiator)
-  parCha[2] = fgkPeThick/2;
-  gMC->Gsvolu("UL03","BOX ",idtmed[1303-1],parCha,kNparCha);
-  // Mylar layer (entrance window + HV cathode) 
-  parCha[2] = fgkMyThick/2;
-  gMC->Gsvolu("UL04","BOX ",idtmed[1308-1],parCha,kNparCha);
-  // Xe/Isobutane layer (drift volume, sensitive) 
-  parCha[2] = fgkDrThick/2.;
-  gMC->Gsvolu("UL05","BOX ",idtmed[1309-1],parCha,kNparCha);
-  // Xe/Isobutane layer (amplification volume, not sensitive)
-  parCha[2] = fgkAmThick/2.;
-  gMC->Gsvolu("UL06","BOX ",idtmed[1309-1],parCha,kNparCha);
+  Char_t  cTagV[6];
+  Char_t  cTagM[5];
+
+  // The TRD mother volume for one sector (Air), full length in z-direction
+  // Provides material for side plates of super module
+  parTrd[0] = fgkSwidth1/2.0;
+  parTrd[1] = fgkSwidth2/2.0;
+  parTrd[2] = fgkSlength/2.0;
+  parTrd[3] = fgkSheight/2.0;
+  gMC->Gsvolu("UTR1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
+
+  // The outer aluminum plates of the super module (Al)
+  parTrd[0] = fgkSwidth1/2.0;
+  parTrd[1] = fgkSwidth2/2.0;
+  parTrd[2] = fgkSlength/2.0;
+  parTrd[3] = fgkSheight/2.0;
+  gMC->Gsvolu("UTS1","TRD1",idtmed[1301-1],parTrd,kNparTrd);
+
+  // The inner part of the TRD mother volume for one sector (Air), 
+  // full length in z-direction
+  parTrd[0] = fgkSwidth1/2.0 - fgkSMpltT;
+  parTrd[1] = fgkSwidth2/2.0 - fgkSMpltT;
+  parTrd[2] = fgkSlength/2.0;
+  parTrd[3] = fgkSheight/2.0 - fgkSMpltT;
+  gMC->Gsvolu("UTI1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
+
+  for (Int_t icham = 0; icham < kNcham; icham++) {
+    for (Int_t iplan = 0; iplan < kNplan; iplan++) {  
+
+      Int_t iDet = GetDetectorSec(iplan,icham);
+
+      // The lower part of the readout chambers (drift volume + radiator) 
+      // The aluminum frames 
+      sprintf(cTagV,"UA%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0;
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
+      parCha[2] = fgkCraH/2.0 + fgkCdrH/2.0;
+      fChamberUAboxd[iDet][0] = parCha[0];
+      fChamberUAboxd[iDet][1] = parCha[1];
+      fChamberUAboxd[iDet][2] = parCha[2];
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
+      // The additional aluminum on the frames
+      // This part has not the correct postion but is just supposed to
+      // represent the missing material. The correct from of the L-shaped
+      // profile would not fit into the alignable volume. 
+      sprintf(cTagV,"UZ%02d",iDet);
+      parCha[0] = fgkCroW/2.0;
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
+      parCha[2] = fgkCalW/2.0;
+      fChamberUAboxd[iDet][0] = fChamberUAboxd[iDet][0] + fgkCroW;
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
+      // The Wacosit frames 
+      sprintf(cTagV,"UB%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 - fgkCalT; 
+      parCha[1] = -1.0;
+      parCha[2] = -1.0;
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha);
+      // The glue around the radiator
+      sprintf(cTagV,"UX%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 - fgkCalT - fgkCclsT; 
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCclfT;
+      parCha[2] = fgkCraH/2.0;
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha);
+      // The inner part of radiator (air)
+      sprintf(cTagV,"UC%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 - fgkCalT - fgkCclsT - fgkCglT; 
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCclfT - fgkCglT;
+      parCha[2] = -1.0;
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
+
+      // The upper part of the readout chambers (amplification volume)
+      // The Wacosit frames
+      sprintf(cTagV,"UD%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 + fgkCroW;
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
+      parCha[2] = fgkCamH/2.0;
+      fChamberUDboxd[iDet][0] = parCha[0];
+      fChamberUDboxd[iDet][1] = parCha[1];
+      fChamberUDboxd[iDet][2] = parCha[2];
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha);
+      // The inner part of the Wacosit frame (air)
+      sprintf(cTagV,"UE%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 + fgkCroW - fgkCcuT; 
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCcuT;
+      parCha[2] = -1.;
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
+
+      // The support structure (pad plane, back panel, readout boards)
+      // The aluminum frames
+      sprintf(cTagV,"UF%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 + fgkCroW;
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
+      parCha[2] = fgkCroH/2.0;
+      fChamberUFboxd[iDet][0] = parCha[0];
+      fChamberUFboxd[iDet][1] = parCha[1];
+      fChamberUFboxd[iDet][2] = parCha[2];
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
+      // The inner part of the aluminum frames
+      sprintf(cTagV,"UG%02d",iDet);
+      parCha[0] = fCwidth[iplan]/2.0 + fgkCroW - fgkCauT; 
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCauT;
+      parCha[2] = -1.0;
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
+
+      // The material layers inside the chambers
+      // Rohacell layer (radiator)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkRaThick/2.0;
+      sprintf(cTagV,"UH%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1315-1],parCha,kNparCha);
+      // Xe/Isobutane layer (drift volume) 
+      parCha[0] = fCwidth[iplan]/2.0 - fgkCalT - fgkCclsT;
+      parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCclfT;
+      parCha[2] = fgkDrThick/2.0;
+      sprintf(cTagV,"UJ%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha);
+      // Xe/Isobutane layer (amplification volume)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkAmThick/2.0;
+      sprintf(cTagV,"UK%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha);  
+      // Cu layer (wire plane)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkWrThick/2.0;
+      sprintf(cTagV,"UW%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1303-1],parCha,kNparCha);
+      // Cu layer (pad plane)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkCuThick/2.0;
+      sprintf(cTagV,"UL%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1305-1],parCha,kNparCha);
+      // Epoxy layer (glue)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkGlThick/2.0;
+      sprintf(cTagV,"UY%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha);
+      // G10 layer (support structure / honeycomb)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkSuThick/2.0;
+      sprintf(cTagV,"UM%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1310-1],parCha,kNparCha);
+      // G10 layer (PCB readout board)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkRpThick/2;
+      sprintf(cTagV,"UN%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha);
+      // Cu layer (traces in readout board)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkRcThick/2.0;
+      sprintf(cTagV,"UO%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1306-1],parCha,kNparCha);
+      // Cu layer (other material on in readout board)
+      parCha[0] = -1.0;
+      parCha[1] = -1.0;
+      parCha[2] = fgkRoThick/2.0;
+      sprintf(cTagV,"UV%02d",iDet);
+      gMC->Gsvolu(cTagV,"BOX ",idtmed[1304-1],parCha,kNparCha);
+
+      // Position the layers in the chambers
+      xpos = 0.0;
+      ypos = 0.0;
+      // Lower part
+      // Rohacell layer (radiator)
+      zpos = fgkRaZpos;
+      sprintf(cTagV,"UH%02d",iDet);
+      sprintf(cTagM,"UC%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Xe/Isobutane layer (drift volume) 
+      zpos = fgkDrZpos;
+      sprintf(cTagV,"UJ%02d",iDet);
+      sprintf(cTagM,"UB%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Upper part
+      // Xe/Isobutane layer (amplification volume)
+      zpos = fgkAmZpos;
+      sprintf(cTagV,"UK%02d",iDet);
+      sprintf(cTagM,"UE%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Cu layer (wire plane inside amplification volume)
+      zpos = fgkWrZpos; 
+      sprintf(cTagV,"UW%02d",iDet);
+      sprintf(cTagM,"UK%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Readout part + support plane
+      // Cu layer (pad plane)
+      zpos = fgkCuZpos; 
+      sprintf(cTagV,"UL%02d",iDet);
+      sprintf(cTagM,"UG%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Epoxy layer (glue)
+      zpos = fgkGlZpos; 
+      sprintf(cTagV,"UY%02d",iDet);
+      sprintf(cTagM,"UG%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // G10 layer (support structure)
+      zpos = fgkSuZpos;
+      sprintf(cTagV,"UM%02d",iDet);
+      sprintf(cTagM,"UG%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // G10 layer (PCB readout board)
+      zpos = fgkRpZpos;
+      sprintf(cTagV,"UN%02d",iDet);
+      sprintf(cTagM,"UG%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Cu layer (traces in readout board)
+      zpos = fgkRcZpos;
+      sprintf(cTagV,"UO%02d",iDet);
+      sprintf(cTagM,"UG%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // Cu layer (other materials on readout board)
+      zpos = fgkRoZpos;
+      sprintf(cTagV,"UV%02d",iDet);
+      sprintf(cTagM,"UG%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+
+      // Position the inner volumes of the chambers in the frames
+      xpos = 0.0;
+      ypos = 0.0;
+      // The inner part of the radiator
+      zpos = 0.0;
+      sprintf(cTagV,"UC%02d",iDet);
+      sprintf(cTagM,"UX%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // The glue around the radiator
+      zpos = fgkCraH/2.0 - fgkCdrH/2.0 - fgkCraH/2.0;
+      sprintf(cTagV,"UX%02d",iDet);
+      sprintf(cTagM,"UB%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // The lower Wacosit frame inside the aluminum frame
+      zpos = 0.0;
+      sprintf(cTagV,"UB%02d",iDet);
+      sprintf(cTagM,"UA%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // The inside of the upper Wacosit frame
+      zpos = 0.0;
+      sprintf(cTagV,"UE%02d",iDet);
+      sprintf(cTagM,"UD%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+      // The inside of the upper aluminum frame
+      zpos = 0.0;
+      sprintf(cTagV,"UG%02d",iDet);
+      sprintf(cTagM,"UF%02d",iDet);
+      gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");      
+
+      // Position the frames of the chambers in the TRD mother volume
+      xpos  = 0.0;
+      ypos  = fClength[iplan][0] + fClength[iplan][1] + fClength[iplan][2]/2.0;
+      for (Int_t ic = 0; ic < icham; ic++) {
+        ypos -= fClength[iplan][ic];
+      }
+      ypos -= fClength[iplan][icham]/2.0;
+      zpos  = fgkVrocsm + fgkSMpltT + fgkCraH/2.0 + fgkCdrH/2.0 - fgkSheight/2.0
+            + iplan * (fgkCH + fgkVspace);
+      // The lower aluminum frame, radiator + drift region
+      sprintf(cTagV,"UA%02d",iDet);      
+      fChamberUAorig[iDet][0] = xpos;
+      fChamberUAorig[iDet][1] = ypos;
+      fChamberUAorig[iDet][2] = zpos;
+      // The upper G10 frame, amplification region
+      sprintf(cTagV,"UD%02d",iDet);
+      zpos += fgkCamH/2.0 + fgkCraH/2.0 + fgkCdrH/2.0;      
+      fChamberUDorig[iDet][0] = xpos;
+      fChamberUDorig[iDet][1] = ypos;
+      fChamberUDorig[iDet][2] = zpos;
+      // The upper aluminum frame
+      sprintf(cTagV,"UF%02d",iDet);
+      zpos += fgkCroH/2.0 + fgkCamH/2.0;      
+      fChamberUForig[iDet][0] = xpos;
+      fChamberUForig[iDet][1] = ypos;
+      fChamberUForig[iDet][2] = zpos;
+
+    }
+  }
+
+  // Create the volumes of the super module frame
+  CreateFrame(idtmed);
+
+  // Create the volumes of the services
+  CreateServices(idtmed);
   
-  // Cu layer (pad plane)
-  parCha[2] = fgkCuThick/2;
-  gMC->Gsvolu("UL07","BOX ",idtmed[1305-1],parCha,kNparCha);
-  // G10 layer (support structure)
-  parCha[2] = fgkSuThick/2;
-  gMC->Gsvolu("UL08","BOX ",idtmed[1313-1],parCha,kNparCha);
-  // Cu layer (FEE + signal lines)
-  parCha[2] = fgkFeThick/2;
-  gMC->Gsvolu("UL09","BOX ",idtmed[1305-1],parCha,kNparCha);
-  // PE layer (cooling devices)
-  parCha[2] = fgkCoThick/2;
-  gMC->Gsvolu("UL10","BOX ",idtmed[1303-1],parCha,kNparCha);
-  // Water layer (cooling)
-  parCha[2] = fgkWaThick/2;
-  gMC->Gsvolu("UL11","BOX ",idtmed[1314-1],parCha,kNparCha);
-
-  // Position the layers in the chambers
-  xpos = 0;
-  ypos = 0;
-
-  // G10 layer (radiator seal)
-  zpos = fgkSeZpos;
-  gMC->Gspos("UL01",1,"UCII",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL01",2,"UCIM",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL01",3,"UCIO",xpos,ypos,zpos,0,"ONLY");
-  // CO2 layer (radiator)
-  zpos = fgkRaZpos;
-  gMC->Gspos("UL02",1,"UCII",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL02",2,"UCIM",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL02",3,"UCIO",xpos,ypos,zpos,0,"ONLY");
-  // PE layer (radiator)
-  zpos = 0;
-  gMC->Gspos("UL03",1,"UL02",xpos,ypos,zpos,0,"ONLY");
-  // Mylar layer (entrance window + HV cathode)   
-  zpos = fgkMyZpos;
-  gMC->Gspos("UL04",1,"UCII",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL04",2,"UCIM",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL04",3,"UCIO",xpos,ypos,zpos,0,"ONLY");
-  // Xe/Isobutane layer (drift volume) 
-  zpos = fgkDrZpos;
-  gMC->Gspos("UL05",1,"UCII",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL05",2,"UCIM",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL05",3,"UCIO",xpos,ypos,zpos,0,"ONLY");
-  // Xe/Isobutane layer (amplification volume)
-  zpos = fgkAmZpos;
-  gMC->Gspos("UL06",1,"UCII",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL06",2,"UCIM",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL06",3,"UCIO",xpos,ypos,zpos,0,"ONLY");
-
-  // Cu layer (pad plane)
-  zpos = fgkCuZpos;
-  gMC->Gspos("UL07",1,"UAII",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL07",2,"UAIM",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL07",3,"UAIO",xpos,ypos,zpos,0,"ONLY");
-  // G10 layer (support structure)
-  zpos = fgkSuZpos;
-  gMC->Gspos("UL08",1,"UAII",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL08",2,"UAIM",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL08",3,"UAIO",xpos,ypos,zpos,0,"ONLY");
-  // Cu layer (FEE + signal lines)
-  zpos = fgkFeZpos; 
-  gMC->Gspos("UL09",1,"UAII",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL09",2,"UAIM",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL09",3,"UAIO",xpos,ypos,zpos,0,"ONLY");
-  // PE layer (cooling devices)
-  zpos = fgkCoZpos;
-  gMC->Gspos("UL10",1,"UAII",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL10",2,"UAIM",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL10",3,"UAIO",xpos,ypos,zpos,0,"ONLY");
-  // Water layer (cooling)
-  zpos = fgkWaZpos;
-  gMC->Gspos("UL11",1,"UAII",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL11",1,"UAIM",xpos,ypos,zpos,0,"ONLY");
-  gMC->Gspos("UL11",1,"UAIO",xpos,ypos,zpos,0,"ONLY");
+  for (Int_t icham = 0; icham < kNcham; icham++) {
+    for (Int_t iplan = 0; iplan < kNplan; iplan++) {  
+      GroupChamber(iplan,icham,idtmed);
+    }
+  }
+  
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = 0.0;
+  gMC->Gspos("UTI1",1,"UTS1",xpos,ypos,zpos,0,"ONLY");
+
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = 0.0;
+  gMC->Gspos("UTS1",1,"UTR1",xpos,ypos,zpos,0,"ONLY");
+
+  // Put the TRD volumes into the space frame mother volumes
+  // if enabled via status flag
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = 0.0;
+  for (Int_t isect = 0; isect < kNsect; isect++) {
+    if (fSMstatus[isect]) {
+      sprintf(cTagV,"BTRD%d",isect);
+      gMC->Gspos("UTR1",1,cTagV,xpos,ypos,zpos,0,"ONLY");
+    }
+  }
 
 }
 
 //_____________________________________________________________________________
-Bool_t AliTRDgeometry::Local2Global(Int_t idet, Float_t *local, Float_t *global) const
+void AliTRDgeometry::CreateFrame(Int_t *idtmed)
 {
   //
-  // Converts local pad-coordinates (row,col,time) into 
-  // global ALICE reference frame coordinates (x,y,z)
+  // Create the geometry of the frame of the supermodule
+  //
+  // Names of the TRD services volumina
+  //
+  //        USRL    Support rails for the chambers (Al)
+  //        USxx    Support cross bars between the chambers (Al)
+  //        USHx    Horizontal connection between the cross bars (Al)
+  //        USLx    Long corner ledges (Al)
   //
 
-  Int_t icham = GetChamber(idet);    // Chamber info (0-4)
-  Int_t isect = GetSector(idet);     // Sector info  (0-17)
-  Int_t iplan = GetPlane(idet);      // Plane info   (0-5)
+  Int_t   iplan = 0;
 
-  return Local2Global(iplan,icham,isect,local,global);
+  Float_t xpos  = 0.0;
+  Float_t ypos  = 0.0;
+  Float_t zpos  = 0.0;
+
+  Char_t  cTagV[5];
+  Char_t  cTagM[5];
+
+  // The rotation matrices
+  const Int_t kNmatrix = 4;
+  Int_t   matrix[kNmatrix];
+  gMC->Matrix(matrix[0], 100.0,   0.0,  90.0,  90.0,  10.0,   0.0);
+  gMC->Matrix(matrix[1],  80.0,   0.0,  90.0,  90.0,  10.0, 180.0);
+  gMC->Matrix(matrix[2],  90.0,   0.0,   0.0,   0.0,  90.0,  90.0);
+  gMC->Matrix(matrix[3],  90.0, 180.0,   0.0, 180.0,  90.0,  90.0);
+
+  //
+  // The chamber support rails
+  //
+
+  const Float_t kSRLwid  = 2.00;
+  const Float_t kSRLhgt  = 2.3;
+  const Float_t kSRLdst  = 1.0;
+  const Int_t   kNparSRL = 3;
+  Float_t parSRL[kNparSRL];
+  parSRL[0] = kSRLwid   /2.0;
+  parSRL[1] = fgkSlength/2.0;
+  parSRL[2] = kSRLhgt   /2.0;
+  gMC->Gsvolu("USRL","BOX ",idtmed[1301-1],parSRL,kNparSRL);
+
+  xpos  = 0.0;
+  ypos  = 0.0;
+  zpos  = 0.0;
+  for (iplan = 0; iplan < kNplan; iplan++) {
+    xpos  = fCwidth[iplan]/2.0 + kSRLwid/2.0 + kSRLdst;
+    ypos  = 0.0;
+    zpos  = fgkVrocsm + fgkSMpltT + fgkCraH + fgkCdrH + fgkCamH 
+          - fgkSheight/2.0  
+          + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos("USRL",iplan+1         ,"UTI1", xpos,ypos,zpos,0,"ONLY");
+    gMC->Gspos("USRL",iplan+1+  kNplan,"UTI1",-xpos,ypos,zpos,0,"ONLY");
+  }
+
+  //
+  // The cross bars between the chambers
+  //
+
+  const Float_t kSCBwid  = 1.0;
+  const Float_t kSCBthk  = 2.0;
+  const Float_t kSCHhgt  = 0.3;
+
+  const Int_t   kNparSCB = 3;
+  Float_t parSCB[kNparSCB];
+  parSCB[1] = kSCBwid/2.0;
+  parSCB[2] = fgkCH  /2.0 + fgkVspace/2.0 - kSCHhgt;
+
+  const Int_t   kNparSCI = 3;
+  Float_t parSCI[kNparSCI];
+  parSCI[1] = -1;
+
+  xpos  = 0.0;
+  ypos  = 0.0;
+  zpos  = 0.0;
+  for (iplan = 0; iplan < kNplan; iplan++) {
+
+    // The aluminum of the cross bars
+    parSCB[0] = fCwidth[iplan]/2.0 + kSRLdst/2.0;
+    sprintf(cTagV,"USF%01d",iplan);
+    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
+
+    // The empty regions in the cross bars
+    Float_t thkSCB = kSCBthk;
+    if (iplan < 2) {
+      thkSCB *= 1.5;
+    }
+    parSCI[2] = parSCB[2] - thkSCB;
+    parSCI[0] = parSCB[0]/4.0 - kSCBthk;
+    sprintf(cTagV,"USI%01d",iplan);
+    gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parSCI,kNparSCI);
+
+    sprintf(cTagV,"USI%01d",iplan);
+    sprintf(cTagM,"USF%01d",iplan);
+    ypos  = 0.0;
+    zpos  = 0.0;
+    xpos  =   parSCI[0] + thkSCB/2.0;
+    gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
+    xpos  = - parSCI[0] - thkSCB/2.0;
+    gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY");
+    xpos  =   3.0 * parSCI[0] + 1.5 * thkSCB;
+    gMC->Gspos(cTagV,3,cTagM,xpos,ypos,zpos,0,"ONLY");
+    xpos  = - 3.0 * parSCI[0] - 1.5 * thkSCB;
+    gMC->Gspos(cTagV,4,cTagM,xpos,ypos,zpos,0,"ONLY");
+
+    sprintf(cTagV,"USF%01d",iplan);
+    xpos  = 0.0;
+    zpos  = fgkVrocsm + fgkSMpltT + parSCB[2] - fgkSheight/2.0 
+          + iplan * (fgkCH + fgkVspace);
+
+    ypos  =   fgkSlength/2.0 - kSCBwid/2.0;
+    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+
+    ypos  =   fClength[iplan][2]/2.0 + fClength[iplan][1];
+    gMC->Gspos(cTagV,2,"UTI1", xpos,ypos,zpos,0,"ONLY");
+
+    ypos  =   fClength[iplan][2]/2.0;
+    gMC->Gspos(cTagV,3,"UTI1", xpos,ypos,zpos,0,"ONLY");
+
+    ypos  = - fClength[iplan][2]/2.0;
+    gMC->Gspos(cTagV,4,"UTI1", xpos,ypos,zpos,0,"ONLY");
+
+    ypos  = - fClength[iplan][2]/2.0 - fClength[iplan][1];
+    gMC->Gspos(cTagV,5,"UTI1", xpos,ypos,zpos,0,"ONLY");
+
+    ypos  = - fgkSlength/2.0 + kSCBwid/2.0;
+    gMC->Gspos(cTagV,6,"UTI1", xpos,ypos,zpos,0,"ONLY");
+
+  }
+
+  //
+  // The horizontal connections between the cross bars
+  //
+
+  const Int_t   kNparSCH = 3;
+  Float_t parSCH[kNparSCH];
+
+  for (iplan = 1; iplan < kNplan-1; iplan++) {
+
+    parSCH[0] = fCwidth[iplan]/2.0;
+    parSCH[1] = (fClength[iplan+1][2]/2.0 + fClength[iplan+1][1]
+               - fClength[iplan  ][2]/2.0 - fClength[iplan  ][1])/2.0;
+    parSCH[2] = kSCHhgt/2.0;
+
+    sprintf(cTagV,"USH%01d",iplan);
+    gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCH,kNparSCH);
+    xpos  = 0.0;
+    ypos  = fClength[iplan][2]/2.0 + fClength[iplan][1] + parSCH[1];
+    zpos  = fgkVrocsm + fgkSMpltT - kSCHhgt/2.0 - fgkSheight/2.0 
+          + (iplan+1) * (fgkCH + fgkVspace);
+    gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
+    ypos  = -ypos;
+    gMC->Gspos(cTagV,2,"UTI1", xpos,ypos,zpos,0,"ONLY");
+
+  }
+
+  //
+  // The long corner ledges
+  //
+
+  const Int_t   kNparSCL  =  3;
+  Float_t parSCL[kNparSCL];
+  const Int_t   kNparSCLb = 11;
+  Float_t parSCLb[kNparSCLb];
+
+  // Upper ledges 
+  // Thickness of the corner ledges
+  const Float_t kSCLthkUa  =  0.6; 
+  const Float_t kSCLthkUb  =  0.6; 
+  // Width of the corner ledges
+  const Float_t kSCLwidUa  =  3.2;
+  const Float_t kSCLwidUb  =  4.8;
+  // Position of the corner ledges
+  const Float_t kSCLposxUa = 0.7;
+  const Float_t kSCLposxUb = 3.3;
+  const Float_t kSCLposzUa = 1.6;
+  const Float_t kSCLposzUb = 0.3;
+  // Vertical
+  parSCL[0]  = kSCLthkUa /2.0;
+  parSCL[1]  = fgkSlength/2.0;
+  parSCL[2]  = kSCLwidUa /2.0;
+  gMC->Gsvolu("USL1","BOX ",idtmed[1301-1],parSCL,kNparSCL);
+  xpos  =   fgkSwidth2/2.0 - fgkSMpltT - kSCLposxUa;
+  ypos  =   0.0;
+  zpos  =   fgkSheight/2.0 - fgkSMpltT - kSCLposzUa;
+  gMC->Gspos("USL1",1,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY");
+  xpos  = -xpos;
+  gMC->Gspos("USL1",2,"UTI1", xpos,ypos,zpos,matrix[1],"ONLY");
+  // Horizontal
+  parSCL[0]  = kSCLwidUb /2.0;
+  parSCL[1]  = fgkSlength/2.0;
+  parSCL[2]  = kSCLthkUb /2.0;
+  gMC->Gsvolu("USL2","BOX ",idtmed[1301-1],parSCL,kNparSCL);
+  xpos  =   fgkSwidth2/2.0 - fgkSMpltT - kSCLposxUb;
+  ypos  =   0.0;
+  zpos  =   fgkSheight/2.0 - fgkSMpltT - kSCLposzUb; 
+  gMC->Gspos("USL2",1,"UTI1", xpos,ypos,zpos,        0,"ONLY");
+  xpos  = -xpos;
+  gMC->Gspos("USL2",2,"UTI1", xpos,ypos,zpos,        0,"ONLY");
+
+  // Lower ledges 
+  // Thickness of the corner ledges
+  const Float_t kSCLthkLa  =  2.464; 
+  const Float_t kSCLthkLb  =  1.0; 
+  // Width of the corner ledges
+  const Float_t kSCLwidLa  =  8.5;
+  const Float_t kSCLwidLb  =  3.3;
+  // Position of the corner ledges
+  const Float_t kSCLposxLa =  0.0;
+  const Float_t kSCLposxLb =  2.6;
+  const Float_t kSCLposzLa = -4.25;
+  const Float_t kSCLposzLb = -0.5;
+  // Vertical
+  // Trapezoidal shape
+  parSCLb[ 0] = fgkSlength/2.0;
+  parSCLb[ 1] = 0.0;
+  parSCLb[ 2] = 0.0;
+  parSCLb[ 3] = kSCLwidLa /2.0;
+  parSCLb[ 4] = kSCLthkLb /2.0;
+  parSCLb[ 5] = kSCLthkLa /2.0;
+  parSCLb[ 6] = 5.0;
+  parSCLb[ 7] = kSCLwidLa /2.0;
+  parSCLb[ 8] = kSCLthkLb /2.0;
+  parSCLb[ 9] = kSCLthkLa /2.0;
+  parSCLb[10] = 5.0;
+  gMC->Gsvolu("USL3","TRAP",idtmed[1301-1],parSCLb,kNparSCLb);
+  xpos  =   fgkSwidth1/2.0 - fgkSMpltT - kSCLposxLa;
+  ypos  =   0.0;
+  zpos  = - fgkSheight/2.0 + fgkSMpltT - kSCLposzLa;
+  gMC->Gspos("USL3",1,"UTI1", xpos,ypos,zpos,matrix[2],"ONLY");
+  xpos  = -xpos;
+  gMC->Gspos("USL3",2,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY");
+  // Horizontal
+  parSCL[0]  = kSCLwidLb /2.0;
+  parSCL[1]  = fgkSlength/2.0;
+  parSCL[2]  = kSCLthkLb /2.0;
+  gMC->Gsvolu("USL4","BOX ",idtmed[1301-1],parSCL,kNparSCL);
+  xpos  =   fgkSwidth1/2.0 - fgkSMpltT - kSCLposxLb;
+  ypos  =   0.0;
+  zpos  = - fgkSheight/2.0 + fgkSMpltT - kSCLposzLb;
+  gMC->Gspos("USL4",1,"UTI1", xpos,ypos,zpos,        0,"ONLY");
+  xpos  = -xpos;
+  gMC->Gspos("USL4",2,"UTI1", xpos,ypos,zpos,        0,"ONLY");
 
 }
+
 //_____________________________________________________________________________
-Bool_t AliTRDgeometry::Local2Global(Int_t iplan, Int_t icham, Int_t isect
-                                  , Float_t *local, Float_t *global) const
+void AliTRDgeometry::CreateServices(Int_t *idtmed)
 {
   //
-  // Converts local pad-coordinates (row,col,time) into 
-  // global ALICE reference frame coordinates (x,y,z)
+  // Create the geometry of the services
+  //
+  // Names of the TRD services volumina
+  //
+  //        UTCL    Cooling arterias (Al)
+  //        UTCW    Cooling arterias (Water)
+  //        UUxx    Volumes for the services at the chambers (Air)
+  //        UTPW    Power bars       (Cu)
+  //        UTCP    Cooling pipes    (Fe)
+  //        UTCH    Cooling pipes    (Water)
+  //        UTPL    Power lines      (Cu)
+  //        UMCM    Readout MCMs     (G10/Cu/Si)
+  //
+
+  Int_t   iplan = 0;
+  Int_t   icham = 0;
+
+  Float_t xpos  = 0.0;
+  Float_t ypos  = 0.0;
+  Float_t zpos  = 0.0;
+
+  Char_t  cTagV[5];
+
+  // The rotation matrices
+  const Int_t kNmatrix = 4;
+  Int_t   matrix[kNmatrix];
+  gMC->Matrix(matrix[0], 100.0,   0.0,  90.0,  90.0,  10.0,   0.0);
+  gMC->Matrix(matrix[1],  80.0,   0.0,  90.0,  90.0,  10.0, 180.0);
+  gMC->Matrix(matrix[2],   0.0,   0.0,  90.0,  90.0,  90.0,   0.0);
+  gMC->Matrix(matrix[3], 180.0,   0.0,  90.0,  90.0,  90.0, 180.0);
+    
+  //
+  // The cooling arterias
+  //
+
+  // Width of the cooling arterias
+  const Float_t kCOLwid  =  0.8; 
+  // Height of the cooling arterias
+  const Float_t kCOLhgt  =  6.5;
+  // Positioning of the cooling 
+  const Float_t kCOLposx =  1.8;
+  const Float_t kCOLposz = -0.1;
+  // Thickness of the walls of the cooling arterias
+  const Float_t kCOLthk  =  0.1;
+  const Int_t   kNparCOL =  3;
+  Float_t parCOL[kNparCOL];
+  parCOL[0]  = kCOLwid   /2.0;
+  parCOL[1]  = fgkSlength/2.0;
+  parCOL[2]  = kCOLhgt   /2.0;
+  gMC->Gsvolu("UTCL","BOX ",idtmed[1308-1],parCOL,kNparCOL);
+  parCOL[0] -= kCOLthk;
+  parCOL[1]  = fgkSlength/2.0;
+  parCOL[2] -= kCOLthk;
+  gMC->Gsvolu("UTCW","BOX ",idtmed[1314-1],parCOL,kNparCOL);
+
+  xpos  = 0.0;
+  ypos  = 0.0;
+  zpos  = 0.0;
+  gMC->Gspos("UTCW",1,"UTCL", xpos,ypos,zpos,0,"ONLY");
+
+  for (iplan = 1; iplan < kNplan; iplan++) { 
+
+    xpos  = fCwidth[iplan]/2.0 + kCOLwid/2.0 + kCOLposx;
+    ypos  = 0.0;
+    zpos  = fgkVrocsm + fgkSMpltT + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz 
+          + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos("UTCL",iplan       ,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY");
+    gMC->Gspos("UTCL",iplan+kNplan,"UTI1",-xpos,ypos,zpos,matrix[1],"ONLY");
+
+  }
+
+  // The upper most layer (reaching into TOF acceptance)
+  xpos  = fCwidth[5]/2.0 - kCOLhgt/2.0 - 1.3;
+  ypos  = 0.0;
+  zpos  = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0; 
+  gMC->Gspos("UTCL",6       ,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY");
+  gMC->Gspos("UTCL",6+kNplan,"UTI1",-xpos,ypos,zpos,matrix[3],"ONLY");
+
+  //
+  // The power bars
   //
 
-  Int_t    idet      = GetDetector(iplan,icham,isect); // Detector number
+  const Float_t kPWRwid  =  0.6;
+  const Float_t kPWRhgt  =  5.0;
+  const Float_t kPWRposx =  1.4;
+  const Float_t kPWRposz =  1.9;
+  const Int_t   kNparPWR =  3;
+  Float_t parPWR[kNparPWR];
+  parPWR[0] = kPWRwid   /2.0;
+  parPWR[1] = fgkSlength/2.0;
+  parPWR[2] = kPWRhgt   /2.0;
+  gMC->Gsvolu("UTPW","BOX ",idtmed[1325-1],parPWR,kNparPWR);
+  
+  for (iplan = 1; iplan < kNplan; iplan++) { 
+    
+    xpos  = fCwidth[iplan]/2.0 + kPWRwid/2.0 + kPWRposx;
+    ypos  = 0.0;
+    zpos  = fgkVrocsm + fgkSMpltT + kPWRhgt/2.0 - fgkSheight/2.0 + kPWRposz 
+          + iplan * (fgkCH + fgkVspace);
+    gMC->Gspos("UTPW",iplan       ,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY");
+    gMC->Gspos("UTPW",iplan+kNplan,"UTI1",-xpos,ypos,zpos,matrix[1],"ONLY");
+
+  }
 
-  Float_t  padRow    = local[0];                       // Pad Row position
-  Float_t  padCol    = local[1];                       // Pad Column position
-  Float_t  timeSlice = local[2];                       // Time "position"
+  // The upper most layer (reaching into TOF acceptance)
+  xpos  = fCwidth[5]/2.0 + kPWRhgt/2.0 - 1.3;
+  ypos  = 0.0;
+  zpos  = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0; 
+  gMC->Gspos("UTPW",6       ,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY");
+  gMC->Gspos("UTPW",6+kNplan,"UTI1",-xpos,ypos,zpos,matrix[3],"ONLY");
 
-  Float_t  row0      = GetRow0(iplan,icham,isect);
-  Float_t  col0      = GetCol0(iplan);
-  Float_t  time0     = GetTime0(iplan);
+  //
+  // The volumes for the services at the chambers
+  //
+
+  const Int_t kNparServ = 3;
+  Float_t parServ[kNparServ];
+
+  for (icham = 0; icham < kNcham; icham++) {
+    for (iplan = 0; iplan < kNplan; iplan++) {
+
+      Int_t iDet = GetDetectorSec(iplan,icham);
+
+      sprintf(cTagV,"UU%02d",iDet);
+      parServ[0] = fCwidth[iplan]        /2.0;
+      parServ[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
+      parServ[2] = fgkVspace             /2.0 - 0.742/2.0; 
+      fChamberUUboxd[iDet][0] = parServ[0];
+      fChamberUUboxd[iDet][1] = parServ[1];
+      fChamberUUboxd[iDet][2] = parServ[2];
+      gMC->Gsvolu(cTagV,"BOX",idtmed[1302-1],parServ,kNparServ);
+
+      xpos  = 0.0;
+      ypos  = fClength[iplan][0] + fClength[iplan][1] + fClength[iplan][2]/2.0;
+      for (Int_t ic = 0; ic < icham; ic++) {
+        ypos -= fClength[iplan][ic];
+      }
+      ypos -= fClength[iplan][icham]/2.0;
+      zpos  = fgkVrocsm + fgkSMpltT + fgkCH + fgkVspace/2.0 - fgkSheight/2.0
+            + iplan * (fgkCH + fgkVspace);
+      zpos -= 0.742/2.0;
+      fChamberUUorig[iDet][0] = xpos;
+      fChamberUUorig[iDet][1] = ypos;
+      fChamberUUorig[iDet][2] = zpos;
+
+    }
+  }
+
+  //
+  // The cooling pipes inside the service volumes
+  //
+
+  const Int_t kNparTube = 3;
+  Float_t parTube[kNparTube];
+  // The cooling pipes
+  parTube[0] = 0.0;
+  parTube[1] = 0.0;
+  parTube[2] = 0.0;
+  gMC->Gsvolu("UTCP","TUBE",idtmed[1324-1],parTube,0);
+  // The cooling water
+  parTube[0] =  0.0;
+  parTube[1] =  0.2/2.0;
+  parTube[2] = -1.;
+  gMC->Gsvolu("UTCH","TUBE",idtmed[1314-1],parTube,kNparTube);
+  // Water inside the cooling pipe
+  xpos = 0.0;
+  ypos = 0.0;
+  zpos = 0.0;
+  gMC->Gspos("UTCH",1,"UTCP",xpos,ypos,zpos,0,"ONLY");
+
+  // Position the cooling pipes in the mother volume
+  const Int_t kNpar = 3;
+  Float_t par[kNpar];
+  for (icham = 0; icham < kNcham;   icham++) {
+    for (iplan = 0; iplan < kNplan; iplan++) {
+      Int_t   iDet    = GetDetectorSec(iplan,icham);
+      Int_t   iCopy   = GetDetector(iplan,icham,0) * 100;
+      Int_t   nMCMrow = GetRowMax(iplan,icham,0);
+      Float_t ySize   = (GetChamberLength(iplan,icham) - 2.0*fgkRpadW) 
+                      / ((Float_t) nMCMrow);
+      sprintf(cTagV,"UU%02d",iDet);
+      for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
+        xpos   = 0.0;
+        ypos   = (0.5 + iMCMrow) * ySize - 1.9 
+               - fClength[iplan][icham]/2.0 + fgkHspace/2.0;
+        zpos   = 0.0 + 0.742/2.0;                 
+        par[0] = 0.0;
+        par[1] = 0.3/2.0; // Thickness of the cooling pipes
+        par[2] = fCwidth[iplan]/2.0;
+        gMC->Gsposp("UTCP",iCopy+iMCMrow,cTagV,xpos,ypos,zpos
+                          ,matrix[2],"ONLY",par,kNpar);
+      }
+    }
+  }
+
+  //
+  // The power lines
+  //
 
-  Float_t  rot[3];
+  // The copper power lines
+  parTube[0] = 0.0;
+  parTube[1] = 0.0;
+  parTube[2] = 0.0;
+  gMC->Gsvolu("UTPL","TUBE",idtmed[1305-1],parTube,0);
+
+  // Position the power lines in the mother volume
+  for (icham = 0; icham < kNcham;   icham++) {
+    for (iplan = 0; iplan < kNplan; iplan++) {
+      Int_t   iDet    = GetDetectorSec(iplan,icham);
+      Int_t   iCopy   = GetDetector(iplan,icham,0) * 100;
+      Int_t   nMCMrow = GetRowMax(iplan,icham,0);
+      Float_t ySize   = (GetChamberLength(iplan,icham) - 2.0*fgkRpadW) 
+                      / ((Float_t) nMCMrow);
+      sprintf(cTagV,"UU%02d",iDet);
+      for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
+        xpos   = 0.0;
+        ypos   = (0.5 + iMCMrow) * ySize - 1.0 
+               - fClength[iplan][icham]/2.0 + fgkHspace/2.0;
+        zpos   = -0.4 + 0.742/2.0;
+        par[0] = 0.0;
+        par[1] = 0.2/2.0; // Thickness of the power lines
+        par[2] = fCwidth[iplan]/2.0;
+        gMC->Gsposp("UTPL",iCopy+iMCMrow,cTagV,xpos,ypos,zpos
+                          ,matrix[2],"ONLY",par,kNpar);
+      }
+    }
+  }
 
-  // calculate (x,y,z) position in rotated chamber
-  rot[0] = time0 - (timeSlice - fTimeBefore) * fTimeBinSize;
-  rot[1] = col0  + padCol                    * fColPadSize[iplan];
-  rot[2] = row0  + padRow                    * fRowPadSize[iplan][icham][isect];
+  //
+  // The MCMs
+  //
 
-  // Rotate back to original position
-  return RotateBack(idet,rot,global);
+  const Float_t kMCMx    = 3.0;
+  const Float_t kMCMy    = 3.0;
+  const Float_t kMCMz    = 0.3;
+  
+  const Float_t kMCMpcTh = 0.1;
+  const Float_t kMCMcuTh = 0.0025;
+  const Float_t kMCMsiTh = 0.03;
+  const Float_t kMCMcoTh = 0.04;
+
+  // The mother volume for the MCMs (air)
+  const Int_t kNparMCM = 3;
+  Float_t parMCM[kNparMCM];
+  parMCM[0] = kMCMx   /2.0;
+  parMCM[1] = kMCMy   /2.0;
+  parMCM[2] = kMCMz   /2.0;
+  gMC->Gsvolu("UMCM","BOX",idtmed[1302-1],parMCM,kNparMCM);
+
+  // The MCM carrier G10 layer
+  parMCM[0] = kMCMx   /2.0;
+  parMCM[1] = kMCMy   /2.0;
+  parMCM[2] = kMCMpcTh/2.0;
+  gMC->Gsvolu("UMC1","BOX",idtmed[1319-1],parMCM,kNparMCM);
+  // The MCM carrier Cu layer
+  parMCM[0] = kMCMx   /2.0;
+  parMCM[1] = kMCMy   /2.0;
+  parMCM[2] = kMCMcuTh/2.0;
+  gMC->Gsvolu("UMC2","BOX",idtmed[1318-1],parMCM,kNparMCM);
+  // The silicon of the chips
+  parMCM[0] = kMCMx   /2.0;
+  parMCM[1] = kMCMy   /2.0;
+  parMCM[2] = kMCMsiTh/2.0;
+  gMC->Gsvolu("UMC3","BOX",idtmed[1320-1],parMCM,kNparMCM);
+  // The aluminum of the cooling plates
+  parMCM[0] = kMCMx   /2.0;
+  parMCM[1] = kMCMy   /2.0;
+  parMCM[2] = kMCMcoTh/2.0;
+  gMC->Gsvolu("UMC4","BOX",idtmed[1324-1],parMCM,kNparMCM);
+
+  // Put the MCM material inside the MCM mother volume
+  xpos  =  0.0;
+  ypos  =  0.0;
+  zpos  = -kMCMz   /2.0 + kMCMpcTh/2.0;
+  gMC->Gspos("UMC1",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
+  zpos +=  kMCMpcTh/2.0 + kMCMcuTh/2.0;
+  gMC->Gspos("UMC2",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
+  zpos +=  kMCMcuTh/2.0 + kMCMsiTh/2.0;
+  gMC->Gspos("UMC3",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
+  zpos +=  kMCMsiTh/2.0 + kMCMcoTh/2.0;
+  gMC->Gspos("UMC4",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
+
+  // Position the MCMs in the mother volume
+  for (icham = 0; icham < kNcham;   icham++) {
+    for (iplan = 0; iplan < kNplan; iplan++) {
+      Int_t   iDet    = GetDetectorSec(iplan,icham);
+      Int_t   iCopy   = GetDetector(iplan,icham,0) * 1000;
+      Int_t   nMCMrow = GetRowMax(iplan,icham,0);
+      Float_t ySize   = (GetChamberLength(iplan,icham) - 2.0*fgkRpadW) 
+                      / ((Float_t) nMCMrow);
+      Int_t   nMCMcol = 8;
+      Float_t xSize   = (GetChamberWidth(iplan)        - 2.0*fgkCpadW)
+                     / ((Float_t) nMCMcol);
+      sprintf(cTagV,"UU%02d",iDet);
+      for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
+        for (Int_t iMCMcol = 0; iMCMcol < nMCMcol; iMCMcol++) {
+          xpos   = (0.5 + iMCMcol) * xSize + 1.0 
+                 - fCwidth[iplan]/2.0;
+          ypos   = (0.5 + iMCMrow) * ySize + 1.0 
+                 - fClength[iplan][icham]/2.0 + fgkHspace/2.0;
+          zpos   = -0.4 + 0.742/2.0;
+          par[0] = 0.0;
+          par[1] = 0.2/2.0; // Thickness of the power lines
+          par[2] = fCwidth[iplan]/2.0;
+          gMC->Gspos("UMCM",iCopy+iMCMrow*10+iMCMcol,cTagV
+                           ,xpos,ypos,zpos,0,"ONLY");
+       }
+      }
+
+    }
+  }
 
 }
 
 //_____________________________________________________________________________
-Bool_t AliTRDgeometry::Rotate(Int_t d, Float_t *pos, Float_t *rot) const
+void AliTRDgeometry::GroupChamber(Int_t iplan, Int_t icham, Int_t *idtmed)
 {
   //
-  // Rotates all chambers in the position of sector 0 and transforms
-  // the coordinates in the ALICE restframe <pos> into the 
-  // corresponding local frame <rot>.
+  // Group volumes UA, UD, UF, UU in a single chamber (Air)
+  // UA, UD, UF, UU are boxes
+  // UT will be a box
   //
 
-  Int_t sector = GetSector(d);
+  const Int_t kNparCha = 3;
 
-  rot[0] =  pos[0] * fRotA11[sector] + pos[1] * fRotA12[sector];
-  rot[1] = -pos[0] * fRotA21[sector] + pos[1] * fRotA22[sector];
-  rot[2] =  pos[2];
+  Int_t iDet = GetDetectorSec(iplan,icham);
 
-  return kTRUE;
+  Float_t xyzMin[3];
+  Float_t xyzMax[3];
+  Float_t xyzOrig[3];
+  Float_t xyzBoxd[3];
+
+  Char_t  cTagV[5];
+  Char_t  cTagM[5];
+
+  for (Int_t i = 0; i < 3; i++) {
+    xyzMin[i] = +9999.0; 
+    xyzMax[i] = -9999.0;
+  }
+
+  for (Int_t i = 0; i < 3; i++) {
+
+    xyzMin[i] = TMath::Min(xyzMin[i],fChamberUAorig[iDet][i]-fChamberUAboxd[iDet][i]);
+    xyzMax[i] = TMath::Max(xyzMax[i],fChamberUAorig[iDet][i]+fChamberUAboxd[iDet][i]);
+
+    xyzMin[i] = TMath::Min(xyzMin[i],fChamberUDorig[iDet][i]-fChamberUDboxd[iDet][i]);
+    xyzMax[i] = TMath::Max(xyzMax[i],fChamberUDorig[iDet][i]+fChamberUDboxd[iDet][i]);
+
+    xyzMin[i] = TMath::Min(xyzMin[i],fChamberUForig[iDet][i]-fChamberUFboxd[iDet][i]);
+    xyzMax[i] = TMath::Max(xyzMax[i],fChamberUForig[iDet][i]+fChamberUFboxd[iDet][i]);
+
+    xyzMin[i] = TMath::Min(xyzMin[i],fChamberUUorig[iDet][i]-fChamberUUboxd[iDet][i]);
+    xyzMax[i] = TMath::Max(xyzMax[i],fChamberUUorig[iDet][i]+fChamberUUboxd[iDet][i]);
+
+    xyzOrig[i] = 0.5*(xyzMax[i]+xyzMin[i]);
+    xyzBoxd[i] = 0.5*(xyzMax[i]-xyzMin[i]);
+
+  }
+  
+  sprintf(cTagM,"UT%02d",iDet);
+  gMC->Gsvolu(cTagM,"BOX ",idtmed[1302-1],xyzBoxd,kNparCha);
+
+  sprintf(cTagV,"UA%02d",iDet);
+  gMC->Gspos(cTagV,1,cTagM
+           ,fChamberUAorig[iDet][0]-xyzOrig[0]
+           ,fChamberUAorig[iDet][1]-xyzOrig[1]
+           ,fChamberUAorig[iDet][2]-xyzOrig[2]
+           ,0,"ONLY");
+
+  sprintf(cTagV,"UZ%02d",iDet);
+  gMC->Gspos(cTagV,1,cTagM
+           ,fChamberUAorig[iDet][0]-xyzOrig[0] + fChamberUAboxd[iDet][0] - fgkCroW/2.0
+           ,fChamberUAorig[iDet][1]-xyzOrig[1]
+           ,fChamberUAorig[iDet][2]-xyzOrig[2] + fgkCraH/2.0 + fgkCdrH/2.0 - fgkCalW/2.0
+           ,0,"ONLY");
+  gMC->Gspos(cTagV,2,cTagM
+           ,fChamberUAorig[iDet][0]-xyzOrig[0] - fChamberUAboxd[iDet][0] + fgkCroW/2.0
+           ,fChamberUAorig[iDet][1]-xyzOrig[1]
+           ,fChamberUAorig[iDet][2]-xyzOrig[2] + fgkCraH/2.0 + fgkCdrH/2.0 - fgkCalW/2.0
+           ,0,"ONLY");
+
+  sprintf(cTagV,"UD%02d",iDet);
+  gMC->Gspos(cTagV,1,cTagM
+           ,fChamberUDorig[iDet][0]-xyzOrig[0]
+           ,fChamberUDorig[iDet][1]-xyzOrig[1]
+           ,fChamberUDorig[iDet][2]-xyzOrig[2]
+           ,0,"ONLY");
+
+  sprintf(cTagV,"UF%02d",iDet);
+  gMC->Gspos(cTagV,1,cTagM
+           ,fChamberUForig[iDet][0]-xyzOrig[0]
+           ,fChamberUForig[iDet][1]-xyzOrig[1]
+           ,fChamberUForig[iDet][2]-xyzOrig[2]
+           ,0,"ONLY");
+  
+  sprintf(cTagV,"UU%02d",iDet);
+  gMC->Gspos(cTagV,1,cTagM
+            ,fChamberUUorig[iDet][0]-xyzOrig[0]
+            ,fChamberUUorig[iDet][1]-xyzOrig[1]
+            ,fChamberUUorig[iDet][2]-xyzOrig[2]
+            ,0,"ONLY");
+
+  sprintf(cTagV,"UT%02d",iDet);
+  gMC->Gspos(cTagV,1,"UTI1"
+            ,xyzOrig[0]
+            ,xyzOrig[1]
+            ,xyzOrig[2]
+            ,0,"ONLY");
 
 }
 
 //_____________________________________________________________________________
-Bool_t AliTRDgeometry::RotateBack(Int_t d, Float_t *rot, Float_t *pos) const
+Bool_t AliTRDgeometry::RotateBack(Int_t det, Double_t *loc, Double_t *glb) const
 {
   //
-  // Rotates a chambers from the position of sector 0 into its
-  // original position and transforms the corresponding local frame 
-  // coordinates <rot> into the coordinates of the ALICE restframe <pos>.
+  // Rotates a chambers to transform the corresponding local frame
+  // coordinates <loc> into the coordinates of the ALICE restframe <glb>.
   //
 
-  Int_t sector = GetSector(d);
+  Int_t sector = GetSector(det);
 
-  pos[0] =  rot[0] * fRotB11[sector] + rot[1] * fRotB12[sector];
-  pos[1] = -rot[0] * fRotB21[sector] + rot[1] * fRotB22[sector];
-  pos[2] =  rot[2];
+  glb[0] = loc[0] * fRotB11[sector] - loc[1] * fRotB12[sector];
+  glb[1] = loc[0] * fRotB21[sector] + loc[1] * fRotB22[sector];
+  glb[2] = loc[2];
 
   return kTRUE;
 
 }
 
 //_____________________________________________________________________________
-Int_t AliTRDgeometry::GetDetector(Int_t p, Int_t c, Int_t s) const
+Int_t AliTRDgeometry::GetDetectorSec(Int_t p, Int_t c)
+{
+  //
+  // Convert plane / chamber into detector number for one single sector
+  //
+
+  return (p + c * fgkNplan);
+
+}
+
+//_____________________________________________________________________________
+Int_t AliTRDgeometry::GetDetector(Int_t p, Int_t c, Int_t s)
 {
   //
   // Convert plane / chamber / sector into detector number
@@ -578,42 +1639,204 @@ Int_t AliTRDgeometry::GetSector(Int_t d) const
 }
 
 //_____________________________________________________________________________
-void AliTRDgeometry::GetGlobal(const AliRecPoint *p, TVector3 &pos
-                             , TMatrix &mat) const
+AliTRDpadPlane *AliTRDgeometry::GetPadPlane(Int_t p, Int_t c)
+{
+  //
+  // Returns the pad plane for a given plane <p> and chamber <c> number
+  //
+
+  if (!fPadPlaneArray) {
+    CreatePadPlaneArray();
+  }
+
+  Int_t ipp = GetDetectorSec(p,c);
+  return ((AliTRDpadPlane *) fPadPlaneArray->At(ipp));
+
+}
+
+//_____________________________________________________________________________
+Int_t AliTRDgeometry::GetRowMax(Int_t p, Int_t c, Int_t /*s*/)
 {
-  // 
-  // Returns the global coordinate and error matrix of a AliTRDrecPoint
+  //
+  // Returns the number of rows on the pad plane
   //
 
-  GetGlobal(p,pos);
-  mat.Zero();
+  return GetPadPlane(p,c)->GetNrows();
 
 }
 
 //_____________________________________________________________________________
-void AliTRDgeometry::GetGlobal(const AliRecPoint *p, TVector3 &pos) const
+Int_t AliTRDgeometry::GetColMax(Int_t p)
 {
-  // 
-  // Returns the global coordinate and error matrix of a AliTRDrecPoint
+  //
+  // Returns the number of rows on the pad plane
   //
 
-  Int_t detector = ((AliTRDrecPoint *) p)->GetDetector();
+  return GetPadPlane(p,0)->GetNcols();
 
-  Float_t global[3];
-  Float_t local[3];
-  local[0] = ((AliTRDrecPoint *) p)->GetLocalRow();
-  local[1] = ((AliTRDrecPoint *) p)->GetLocalCol();
-  local[2] = ((AliTRDrecPoint *) p)->GetLocalTime();
+}
 
-  if (Local2Global(detector,local,global)) {
-    pos.SetX(global[0]);
-    pos.SetY(global[1]);
-    pos.SetZ(global[2]);
+//_____________________________________________________________________________
+Double_t AliTRDgeometry::GetRow0(Int_t p, Int_t c, Int_t /*s*/)
+{
+  //
+  // Returns the position of the border of the first pad in a row
+  //
+
+  return GetPadPlane(p,c)->GetRow0();
+
+}
+
+//_____________________________________________________________________________
+Double_t AliTRDgeometry::GetCol0(Int_t p)
+{
+  //
+  // Returns the position of the border of the first pad in a column
+  //
+
+  return GetPadPlane(p,0)->GetCol0();
+
+}
+
+//_____________________________________________________________________________
+Int_t AliTRDgeometry::GetPadRowFromMCM(Int_t irob, Int_t imcm) const
+{
+  //
+  // Return on which row this mcm sits 
+  //
+
+  return fgkMCMrow*(irob/2) + imcm/fgkMCMrow;
+
+}
+
+//_____________________________________________________________________________
+Int_t AliTRDgeometry::GetPadColFromADC(Int_t irob, Int_t imcm, Int_t iadc) const
+{
+  //
+  // Return which pad is connected to this adc channel. return -1 if it
+  // is one of the not directly connected adc channels (0, 1 20)
+  //
+
+  if (iadc < 2 || iadc > 19 ) return -1;
+
+  return (iadc-2) + (imcm%fgkMCMrow)*fgkPadmax + GetRobSide(irob)*fgkColmax/2;
+
+}
+
+//_____________________________________________________________________________
+Int_t AliTRDgeometry::GetMCMfromPad(Int_t irow, Int_t icol) const
+{
+  //
+  // Return on which mcm this pad is
+  //
+
+  if ( irow < 0 || icol < 0 || irow > fgkRowmaxC1 || icol > fgkColmax ) return -1;
+
+  return (icol%(fgkColmax/2))/fgkPadmax + fgkMCMrow*(irow%fgkMCMrow);
+
+}
+
+//_____________________________________________________________________________
+Int_t AliTRDgeometry::GetROBfromPad(Int_t irow, Int_t icol) const
+{
+  //
+  // Return on which rob this pad is
+  //
+
+  return (irow/fgkMCMrow)*2 + GetColSide(icol);
+
+}
+
+//_____________________________________________________________________________
+Int_t AliTRDgeometry::GetRobSide(Int_t irob) const
+{
+  //
+  // Return on which side this rob sits (A side = 0, B side = 1)
+  //
+
+  if ( irob < 0 || irob >= fgkROBmaxC1 ) return -1;
+
+  return irob%2;
+
+}
+
+//_____________________________________________________________________________
+Int_t AliTRDgeometry::GetColSide(Int_t icol) const
+{
+  //
+  // Return on which side this column sits (A side = 0, B side = 1)
+  //
+
+  if ( icol < 0 || icol >= fgkColmax ) return -1;
+
+  return icol/(fgkColmax/2);
+
+}
+
+//_____________________________________________________________________________
+Bool_t AliTRDgeometry::ReadGeoMatrices()
+{
+  //
+  // Read geo matrices from current gGeoManager for each TRD sector
+  //
+
+  if (!gGeoManager) {
+    return kFALSE;
   }
-  else {
-    pos.SetX(0.0);
-    pos.SetY(0.0);
-    pos.SetZ(0.0);
+
+  fMatrixArray           = new TObjArray(kNdet); 
+  fMatrixCorrectionArray = new TObjArray(kNdet);
+  fMatrixGeo             = new TObjArray(kNdet);
+  AliAlignObjAngles o;
+
+  for (Int_t iLayer = AliGeomManager::kTRD1; iLayer <= AliGeomManager::kTRD6; iLayer++) {
+    for (Int_t iModule = 0; iModule < AliGeomManager::LayerSize(iLayer); iModule++) {
+
+      UShort_t     volid   = AliGeomManager::LayerToVolUID(iLayer,iModule);
+      const char  *symname = AliGeomManager::SymName(volid);
+      TGeoPNEntry *pne     = gGeoManager->GetAlignableEntry(symname);
+      const char  *path    = symname;
+      if (pne) {
+        path = pne->GetTitle();
+      }
+      if (!gGeoManager->cd(path)) {
+        return kFALSE;
+      }
+      TGeoHMatrix *m         = gGeoManager->GetCurrentMatrix();
+      Int_t        iLayerTRD = iLayer - AliGeomManager::kTRD1;
+      Int_t        isector   = iModule/Ncham();
+      Int_t        ichamber  = iModule%Ncham();
+      Int_t        lid       = GetDetector(iLayerTRD,ichamber,isector);    
+
+      //
+      // Local geo system z-x-y  to x-y--z 
+      //
+      fMatrixGeo->AddAt(new TGeoHMatrix(*m),lid);
+      
+      TGeoRotation mchange; 
+      mchange.RotateY(90); 
+      mchange.RotateX(90);
+
+      TGeoHMatrix gMatrix(mchange.Inverse());
+      gMatrix.MultiplyLeft(m);
+      fMatrixArray->AddAt(new TGeoHMatrix(gMatrix),lid); 
+
+      //
+      // Cluster transformation matrix
+      //
+      TGeoHMatrix  rotMatrix(mchange.Inverse());
+      rotMatrix.MultiplyLeft(m);
+      Double_t sectorAngle = 20.0 * (isector % 18) + 10.0;
+      TGeoHMatrix  rotSector;
+      rotSector.RotateZ(sectorAngle);
+      rotMatrix.MultiplyLeft(&rotSector.Inverse());
+
+      fMatrixCorrectionArray->AddAt(new TGeoHMatrix(rotMatrix),lid);       
+
+    }    
   }
 
+  return kTRUE;
+
 }
+