X-Git-Url: http://git.uio.no/git/?p=u%2Fmrichter%2FAliRoot.git;a=blobdiff_plain;f=ZDC%2FAliZDCReconstructor.cxx;h=a156861562459edad91560a25e48ca86ff135a76;hp=2c139c9ce1ad178476cfbf2c26af78bf5fd04d98;hb=f61f312473708754f25e00d9755548d2f53caa46;hpb=e90a5fef5955b8c184924407e1f7b40996f71da1 diff --git a/ZDC/AliZDCReconstructor.cxx b/ZDC/AliZDCReconstructor.cxx index 2c139c9ce1a..a1568615624 100644 --- a/ZDC/AliZDCReconstructor.cxx +++ b/ZDC/AliZDCReconstructor.cxx @@ -17,54 +17,61 @@ /////////////////////////////////////////////////////////////////////////////// // // -// class for ZDC reconstruction // +// ************** Class for ZDC reconstruction ************** // +// Author: Chiara.Oppedisano@to.infn.it // +// // +// NOTATIONS ADOPTED TO IDENTIFY DETECTORS (used in different ages!): // +// (ZN1,ZP1) or (ZNC, ZPC) or RIGHT refers to side C (RB26) // +// (ZN2,ZP2) or (ZNA, ZPA) or LEFT refers to side A (RB24) // // // /////////////////////////////////////////////////////////////////////////////// -#include +#include +#include +#include +#include -#include "AliRunLoader.h" #include "AliRawReader.h" #include "AliESDEvent.h" +#include "AliESDZDC.h" #include "AliZDCDigit.h" #include "AliZDCRawStream.h" #include "AliZDCReco.h" #include "AliZDCReconstructor.h" -#include "AliZDCCalibData.h" +#include "AliZDCPedestals.h" +#include "AliZDCEnCalib.h" +#include "AliZDCSaturationCalib.h" +#include "AliZDCTowerCalib.h" +#include "AliZDCMBCalib.h" +#include "AliZDCTDCCalib.h" +#include "AliZDCRecoParam.h" +#include "AliZDCRecoParampp.h" +#include "AliZDCRecoParamPbPb.h" +#include "AliRunInfo.h" +#include "AliLHCClockPhase.h" ClassImp(AliZDCReconstructor) - +AliZDCRecoParam *AliZDCReconstructor::fgRecoParam=0; //reconstruction parameters +AliZDCMBCalib *AliZDCReconstructor::fgMBCalibData=0; //calibration parameters for A-A reconstruction //_____________________________________________________________________________ AliZDCReconstructor:: AliZDCReconstructor() : - - fZNCen(new TF1("fZNCen", - "(-2.287920+sqrt(2.287920*2.287920-4*(-0.007629)*(11.921710-x)))/(2*(-0.007629))",0.,164.)), - fZNPer(new TF1("fZNPer", - "(-37.812280-sqrt(37.812280*37.812280-4*(-0.190932)*(-1709.249672-x)))/(2*(-0.190932))",0.,164.)), - fZPCen(new TF1("fZPCen", - "(-1.321353+sqrt(1.321353*1.321353-4*(-0.007283)*(3.550697-x)))/(2*(-0.007283))",0.,60.)), - fZPPer(new TF1("fZPPer", - "(-42.643308-sqrt(42.643308*42.643308-4*(-0.310786)*(-1402.945615-x)))/(2*(-0.310786))",0.,60.)), - fZDCCen(new TF1("fZDCCen", - "(-1.934991+sqrt(1.934991*1.934991-4*(-0.004080)*(15.111124-x)))/(2*(-0.004080))",0.,225.)), - fZDCPer(new TF1("fZDCPer", - "(-34.380639-sqrt(34.380639*34.380639-4*(-0.104251)*(-2612.189017-x)))/(2*(-0.104251))",0.,225.)), - fbCen(new TF1("fbCen","-0.056923+0.079703*x-0.0004301*x*x+0.000001366*x*x*x",0.,220.)), - fbPer(new TF1("fbPer","17.943998-0.046846*x+0.000074*x*x",0.,220.)), - fZEMn(new TF1("fZEMn","126.2-0.05399*x+0.000005679*x*x",0.,4000.)), - fZEMp(new TF1("fZEMp","82.49-0.03611*x+0.00000385*x*x",0.,4000.)), - fZEMsp(new TF1("fZEMsp","208.7-0.09006*x+0.000009526*x*x",0.,4000.)), - fZEMb(new TF1("fZEMb", - "16.06-0.01633*x+1.44e-5*x*x-6.778e-9*x*x*x+1.438e-12*x*x*x*x-1.112e-16*x*x*x*x*x",0.,4000.)), - // - fCalibData(GetCalibData()) - -{ + fPedData(GetPedestalData()), + fEnCalibData(GetEnergyCalibData()), + fSatCalibData(GetSaturationCalibData()), + fTowCalibData(GetTowerCalibData()), + fTDCCalibData(GetTDCCalibData()), + fRecoMode(0), + fBeamEnergy(0.), + fNRun(0), + fIsCalibrationMB(kFALSE), + fPedSubMode(0), + fSignalThreshold(7), + fMeanPhase(0), + fESDZDC(NULL){ // **** Default constructor - } @@ -72,23 +79,121 @@ AliZDCReconstructor:: AliZDCReconstructor() : AliZDCReconstructor::~AliZDCReconstructor() { // destructor +// if(fgRecoParam) delete fgRecoParam; + if(fPedData) delete fPedData; + if(fEnCalibData) delete fEnCalibData; + if(fSatCalibData) delete fSatCalibData; + if(fTowCalibData) delete fTowCalibData; + if(fgMBCalibData) delete fgMBCalibData; + if(fESDZDC) delete fESDZDC; +} + +//____________________________________________________________________________ +void AliZDCReconstructor::Init() +{ + // Setting reconstruction parameters + + TString runType = GetRunInfo()->GetRunType(); + if((runType.CompareTo("CALIBRATION_MB")) == 0){ + fIsCalibrationMB = kTRUE; + } + + TString beamType = GetRunInfo()->GetBeamType(); + // This is a temporary solution to allow reconstruction in tests without beam + if(((beamType.CompareTo("UNKNOWN"))==0) && + ((runType.CompareTo("PHYSICS"))==0 || (runType.CompareTo("CALIBRATION_BC"))==0)){ + fRecoMode=1; + } + /*else if((beamType.CompareTo("UNKNOWN"))==0){ + AliError("\t UNKNOWN beam type\n"); + return; + }*/ + + fBeamEnergy = GetRunInfo()->GetBeamEnergy(); + if(fBeamEnergy<0.01){ + AliWarning(" Beam energy value missing -> setting it to 1380 GeV "); + fBeamEnergy = 1380.; + } + + if(((beamType.CompareTo("pp"))==0) || ((beamType.CompareTo("p-p"))==0) + ||((beamType.CompareTo("PP"))==0) || ((beamType.CompareTo("P-P"))==0)){ + fRecoMode=1; + } + else if(((beamType.CompareTo("p-A"))==0) || ((beamType.CompareTo("A-p"))==0) + ||((beamType.CompareTo("P-A"))==0) || ((beamType.CompareTo("A-P"))==0)){ + fRecoMode=1; + } + else if((beamType.CompareTo("A-A")) == 0 || (beamType.CompareTo("AA")) == 0){ + fRecoMode=2; + if(!fgRecoParam) fgRecoParam = const_cast(GetRecoParam()); + if(fgRecoParam){ + fgRecoParam->SetGlauberMCDist(fBeamEnergy); + } + } - delete fZNCen; - delete fZNPer; - delete fZPCen; - delete fZPPer; - delete fZDCCen; - delete fZDCPer; - delete fbCen; - delete fbPer; - delete fZEMn; - delete fZEMp; - delete fZEMsp; - delete fZEMb; + AliCDBEntry *entry = AliCDBManager::Instance()->Get("GRP/Calib/LHCClockPhase"); + if (!entry) AliFatal("LHC clock-phase shift is not found in OCDB !"); + else{ + AliLHCClockPhase *phaseLHC = (AliLHCClockPhase*)entry->GetObject(); + // 4/2/2011 According to A. Di Mauro BEAM1 measurement is more reliable + // than BEAM2 and therefore also than the average of the 2 + fMeanPhase = phaseLHC->GetMeanPhaseB1(); + } + if(fIsCalibrationMB==kFALSE) + AliInfo(Form("\n\n ***** ZDC reconstruction initialized for %s @ %1.0f + %1.0f GeV *****\n\n", + beamType.Data(), fBeamEnergy, fBeamEnergy)); + + // if EMD calibration run NO ENERGY CALIBRATION should be performed + // pp-like reconstruction must be performed (E cailb. coeff. = 1) + if((runType.CompareTo("CALIBRATION_EMD")) == 0){ + fRecoMode=1; + fBeamEnergy = 1380.; + } + + AliInfo(Form("\n ZDC reconstruction mode %d (1 -> p-p, 2-> A-A)\n\n",fRecoMode)); + + fESDZDC = new AliESDZDC(); } +//____________________________________________________________________________ +void AliZDCReconstructor::Init(TString beamType, Float_t beamEnergy) +{ + // Setting reconstruction mode + // Needed to work in the HLT framework + + fIsCalibrationMB = kFALSE; + + fBeamEnergy = beamEnergy; + + if(((beamType.CompareTo("pp"))==0) || ((beamType.CompareTo("p-p"))==0) + ||((beamType.CompareTo("PP"))==0) || ((beamType.CompareTo("P-P"))==0)){ + fRecoMode=1; + } + else if(((beamType.CompareTo("p-A"))==0) || ((beamType.CompareTo("A-p"))==0) + ||((beamType.CompareTo("P-A"))==0) || ((beamType.CompareTo("A-P"))==0)){ + fRecoMode=1; + } + else if((beamType.CompareTo("A-A")) == 0 || (beamType.CompareTo("AA")) == 0){ + fRecoMode=2; + if(!fgRecoParam) fgRecoParam = const_cast(GetRecoParam()); + if( fgRecoParam ) fgRecoParam->SetGlauberMCDist(fBeamEnergy); + } + + AliCDBEntry *entry = AliCDBManager::Instance()->Get("GRP/Calib/LHCClockPhase"); + if (!entry) AliFatal("LHC clock-phase shift is not found in OCDB !"); + else{ + AliLHCClockPhase *phaseLHC = (AliLHCClockPhase*)entry->GetObject(); + fMeanPhase = phaseLHC->GetMeanPhase(); + } + fESDZDC = new AliESDZDC(); + + AliInfo(Form("\n\n ***** ZDC reconstruction initialized for %s @ %1.0f + %1.0f GeV *****\n\n", + beamType.Data(), fBeamEnergy, fBeamEnergy)); + +} + //_____________________________________________________________________________ void AliZDCReconstructor::Reconstruct(TTree* digitsTree, TTree* clustersTree) const { @@ -96,102 +201,141 @@ void AliZDCReconstructor::Reconstruct(TTree* digitsTree, TTree* clustersTree) co // Works on the current event // Retrieving calibration data - Float_t meanPed[47]; - for(Int_t jj=0; jj<47; jj++) meanPed[jj] = fCalibData->GetMeanPed(jj); + // Parameters for mean value pedestal subtraction + int const kNch = 24; + Float_t meanPed[2*kNch]; + for(Int_t jj=0; jj<2*kNch; jj++) meanPed[jj] = fPedData->GetMeanPed(jj); + // Parameters pedestal subtraction through correlation with out-of-time signals + Float_t corrCoeff0[2*kNch], corrCoeff1[2*kNch]; + for(Int_t jj=0; jj<2*kNch; jj++){ + corrCoeff0[jj] = fPedData->GetPedCorrCoeff0(jj); + corrCoeff1[jj] = fPedData->GetPedCorrCoeff1(jj); + } // get digits AliZDCDigit digit; AliZDCDigit* pdigit = &digit; digitsTree->SetBranchAddress("ZDC", &pdigit); + //printf("\n\t # of digits in tree: %d\n",(Int_t) digitsTree->GetEntries()); // loop over digits - Float_t tZN1CorrHG[]={0.,0.,0.,0.,0.}, tZP1CorrHG[]={0.,0.,0.,0.,0.}; - Float_t dZEMCorrHG=0.; - Float_t tZN2CorrHG[]={0.,0.,0.,0.,0.}, tZP2CorrHG[]={0.,0.,0.,0.,0.}; - Float_t tZN1CorrLG[]={0.,0.,0.,0.,0.}, tZP1CorrLG[]={0.,0.,0.,0.,0.}; - Float_t dZEMCorrLG=0.; - Float_t tZN2CorrLG[]={0.,0.,0.,0.,0.}, tZP2CorrLG[]={0.,0.,0.,0.,0.}; + Float_t tZN1Corr[10], tZP1Corr[10], tZN2Corr[10], tZP2Corr[10]; + Float_t dZEM1Corr[2], dZEM2Corr[2], sPMRef1[2], sPMRef2[2]; + for(Int_t i=0; i<10; i++){ + tZN1Corr[i] = tZP1Corr[i] = tZN2Corr[i] = tZP2Corr[i] = 0.; + if(i<2) dZEM1Corr[i] = dZEM2Corr[i] = sPMRef1[i] = sPMRef2[i] = 0.; + } - //printf("\n\t # of digits in tree: %d\n",(Int_t) digitsTree->GetEntries()); - for (Int_t iDigit = 0; iDigit < (digitsTree->GetEntries()/2); iDigit++) { - digitsTree->GetEntry(iDigit); - if (!pdigit) continue; - //pdigit->Print(""); - // - Int_t det = digit.GetSector(0); - Int_t quad = digit.GetSector(1); - Int_t pedindex = -1; - //printf("\n\t #%d det %d quad %d", iDigit, det, quad); - // - if(det == 1){ // *** ZN1 - pedindex = quad; - tZN1CorrHG[quad] = (Float_t) (digit.GetADCValue(0)-meanPed[pedindex]); - if(tZN1CorrHG[quad]<0.) tZN1CorrHG[quad] = 0.; - tZN1CorrLG[quad] = (Float_t) (digit.GetADCValue(1)-meanPed[pedindex+5]); - if(tZN1CorrLG[quad]<0.) tZN1CorrLG[quad] = 0.; - //printf("\t pedindex %d tZN1CorrHG[%d] = %1.0f tZN1CorrLG[%d] = %1.0f", - // pedindex, quad, tZN1CorrHG[quad], quad, tZN1CorrLG[quad]); + Int_t digNentries = digitsTree->GetEntries(); + Float_t ootDigi[kNch]; Int_t i=0; + // -- Reading out-of-time signals (last kNch entries) for current event + if(fPedSubMode==1){ + for(Int_t iDigit=kNch; iDigitGetEntry(iDigit); + else AliWarning(" Can't read more out of time values: index>kNch !!!\n"); + i++; + } + } + + for(Int_t iDigit=0; iDigit<(digNentries/2); iDigit++) { + digitsTree->GetEntry(iDigit); + if (!pdigit) continue; + // + Int_t det = digit.GetSector(0); + Int_t quad = digit.GetSector(1); + Int_t pedindex = -1; + Float_t ped2SubHg=0., ped2SubLg=0.; + if(quad!=5){ + if(det==1) pedindex = quad; + else if(det==2) pedindex = quad+5; + else if(det==3) pedindex = quad+9; + else if(det==4) pedindex = quad+12; + else if(det==5) pedindex = quad+17; + } + else pedindex = (det-1)/3+22; + // + if(fPedSubMode==0){ + ped2SubHg = meanPed[pedindex]; + ped2SubLg = meanPed[pedindex+kNch]; + } + else if(fPedSubMode==1){ + ped2SubHg = corrCoeff1[pedindex]*ootDigi[pedindex]+corrCoeff0[pedindex]; + ped2SubLg = corrCoeff1[pedindex+kNch]*ootDigi[pedindex+kNch]+corrCoeff0[pedindex+kNch]; + } + + if(quad != 5){ // ZDC (not reference PTMs!) + if(det == 1){ // *** ZNC + tZN1Corr[quad] = (Float_t) (digit.GetADCValue(0)-ped2SubHg); + tZN1Corr[quad+5] = (Float_t) (digit.GetADCValue(1)-ped2SubLg); } else if(det == 2){ // *** ZP1 - pedindex = quad+10; - tZP1CorrHG[quad] = (Float_t) (digit.GetADCValue(0)-meanPed[pedindex]); - if(tZP1CorrLG[quad]<0.) tZP1CorrLG[quad] = 0.; - tZP1CorrLG[quad] = (Float_t) (digit.GetADCValue(1)-meanPed[pedindex+5]); - if(tZP1CorrHG[quad]<0.) tZP1CorrHG[quad] = 0.; - //printf("\t pedindex %d tZP1CorrHG[%d] = %1.0f tZP1CorrLG[%d] = %1.0f", - // pedindex, quad, tZP1CorrHG[quad], quad, tZP1CorrLG[quad]); + tZP1Corr[quad] = (Float_t) (digit.GetADCValue(0)-ped2SubHg); + tZP1Corr[quad+5] = (Float_t) (digit.GetADCValue(1)-ped2SubLg); } else if(det == 3){ if(quad == 1){ // *** ZEM1 - pedindex = quad+19; - dZEMCorrHG += (Float_t) (digit.GetADCValue(0)-meanPed[pedindex]); - if(dZEMCorrHG<0.) dZEMCorrHG = 0.; - dZEMCorrLG += (Float_t) (digit.GetADCValue(1)-meanPed[pedindex+2]); - if(dZEMCorrLG<0.) dZEMCorrLG = 0.; - //printf("\t pedindex %d ADC(0) = %d ped = %1.0f ADCCorr = %1.0f\n", - // pedindex, digit.GetADCValue(0), meanPed[pedindex], dZEMCorrHG); - //printf("\t pedindex %d ADC(1) = %d ped = %1.0f ADCCorr = %1.0f\n", - // pedindex+2, digit.GetADCValue(1), meanPed[pedindex+2], dZEMCorrLG); - ////printf("\t pedindex %d dZEMCorrHG = %1.0f dZEMCorrLG = %1.0f\n", pedindex, dZEMCorrHG, dZEMCorrLG); + dZEM1Corr[0] += (Float_t) (digit.GetADCValue(0)-ped2SubHg); + dZEM1Corr[1] += (Float_t) (digit.GetADCValue(1)-ped2SubLg); } - else if(quad == 2){ // *** ZEM1 - pedindex = quad+19; - dZEMCorrHG += (Float_t) (digit.GetADCValue(0)-meanPed[pedindex]); - if(dZEMCorrHG<0.) dZEMCorrHG = 0.; - dZEMCorrLG += (Float_t) (digit.GetADCValue(1)-meanPed[pedindex+2]); - if(dZEMCorrLG<0.) dZEMCorrLG = 0.; - //printf("\t pedindex %d ADC(0) = %d ped = %1.0f ADCCorr = %1.0f\n", - // pedindex, digit.GetADCValue(0), meanPed[pedindex], dZEMCorrHG); - //printf("\t pedindex %d ADC(1) = %d ped = %1.0f ADCCorr = %1.0f\n", - // pedindex+2, digit.GetADCValue(1),meanPed[pedindex+2], dZEMCorrLG); - ////printf("\t pedindex %d dZEMCorrHG = %1.0f dZEMCorrLG = %1.0f\n", pedindex, dZEMCorrHG, dZEMCorrLG); + else if(quad == 2){ // *** ZEM2 + dZEM2Corr[0] += (Float_t) (digit.GetADCValue(0)-ped2SubHg); + dZEM2Corr[1] += (Float_t) (digit.GetADCValue(1)-ped2SubLg); } } else if(det == 4){ // *** ZN2 - pedindex = quad+24; - tZN2CorrHG[quad] = (Float_t) (digit.GetADCValue(0)-meanPed[pedindex]); - if(tZN2CorrHG[quad]<0.) tZN2CorrHG[quad] = 0.; - tZN2CorrLG[quad] = (Float_t) (digit.GetADCValue(1)-meanPed[pedindex+5]); - if(tZN2CorrLG[quad]<0.) tZN2CorrLG[quad] = 0.; - //printf("\t pedindex %d tZN2CorrHG[%d] = %1.0f tZN2CorrLG[%d] = %1.0f\n", - // pedindex, quad, tZN2CorrHG[quad], quad, tZN2CorrLG[quad]); - } + tZN2Corr[quad] = (Float_t) (digit.GetADCValue(0)-ped2SubHg); + tZN2Corr[quad+5] = (Float_t) (digit.GetADCValue(1)-ped2SubLg); + } else if(det == 5){ // *** ZP2 - pedindex = quad+34; - tZP2CorrHG[quad] = (Float_t) (digit.GetADCValue(0)-meanPed[pedindex]); - if(tZP2CorrHG[quad]<0.) tZP2CorrHG[quad] = 0.; - tZP2CorrLG[quad] = (Float_t) (digit.GetADCValue(1)-meanPed[pedindex+5]); - if(tZP2CorrLG[quad]<0.) tZP2CorrLG[quad] = 0.; - //printf("\t pedindex %d tZP2CorrHG[%d] = %1.0f tZP2CorrLG[%d] = %1.0f\n", - // pedindex, quad, tZP2CorrHG[quad], quad, tZP2CorrLG[quad]); + tZP2Corr[quad] = (Float_t) (digit.GetADCValue(0)-ped2SubHg); + tZP2Corr[quad+5] = (Float_t) (digit.GetADCValue(1)-ped2SubLg); } - } + } + else{ // Reference PMs + if(det == 1){ + sPMRef1[0] = (Float_t) (digit.GetADCValue(0)-ped2SubHg); + sPMRef1[1] = (Float_t) (digit.GetADCValue(1)-ped2SubLg); + } + else if(det == 4){ + sPMRef2[0] = (Float_t) (digit.GetADCValue(0)-ped2SubHg); + sPMRef2[1] = (Float_t) (digit.GetADCValue(1)-ped2SubLg); + } + } + // Ch. debug + /*printf("AliZDCReconstructor: digit #%d det %d quad %d pedHG %1.0f pedLG %1.0f\n", + iDigit, det, quad, ped2SubHg, ped2SubLg); + printf(" -> pedindex %d\n", pedindex); + printf(" HGChain -> RawDig %d DigCorr %1.2f", + digit.GetADCValue(0), digit.GetADCValue(0)-ped2SubHg); + printf(" LGChain -> RawDig %d DigCorr %1.2f\n", + digit.GetADCValue(1), digit.GetADCValue(1)-ped2SubLg);*/ + + }//digits loop + + UInt_t counts[32]; + Int_t tdc[32][4]; + for(Int_t jj=0; jj<32; jj++){ + counts[jj]=0; + for(Int_t ii=0; ii<4; ii++) tdc[jj][ii]=0; + } + + Int_t evQualityBlock[4] = {1,0,0,0}; + Int_t triggerBlock[4] = {0,0,0,0}; + Int_t chBlock[3] = {0,0,0}; + UInt_t puBits=0; + // reconstruct the event - ReconstructEvent(clustersTree, tZN1CorrHG, tZP1CorrHG, tZN2CorrHG, - tZP2CorrHG, tZN1CorrLG, tZP1CorrLG, tZN2CorrLG, - tZP2CorrLG, dZEMCorrHG); - + if(fRecoMode==1) + ReconstructEventpp(clustersTree, tZN1Corr, tZP1Corr, tZN2Corr, tZP2Corr, + dZEM1Corr, dZEM2Corr, sPMRef1, sPMRef2, + kFALSE, counts, tdc, + evQualityBlock, triggerBlock, chBlock, puBits); + else if(fRecoMode==2) + ReconstructEventPbPb(clustersTree, tZN1Corr, tZP1Corr, tZN2Corr, tZP2Corr, + dZEM1Corr, dZEM2Corr, sPMRef1, sPMRef2, + kFALSE, counts, tdc, + evQualityBlock, triggerBlock, chBlock, puBits); } //_____________________________________________________________________________ @@ -201,346 +345,1091 @@ void AliZDCReconstructor::Reconstruct(AliRawReader* rawReader, TTree* clustersTr // Works on the current event // Retrieving calibration data - Float_t meanPed[47]; - for(Int_t jj=0; jj<47; jj++) meanPed[jj] = fCalibData->GetMeanPed(jj); - - rawReader->Reset(); - - // loop over raw data rawDatas - Float_t tZN1CorrHG[]={0.,0.,0.,0.,0.}, tZP1CorrHG[]={0.,0.,0.,0.,0.}; - Float_t dZEMCorrHG=0.; - Float_t tZN2CorrHG[]={0.,0.,0.,0.,0.}, tZP2CorrHG[]={0.,0.,0.,0.,0.}; - Float_t tZN1CorrLG[]={0.,0.,0.,0.,0.}, tZP1CorrLG[]={0.,0.,0.,0.,0.}; - Float_t dZEMCorrLG=0.; - Float_t tZN2CorrLG[]={0.,0.,0.,0.,0.}, tZP2CorrLG[]={0.,0.,0.,0.,0.}; - // + // Parameters for pedestal subtraction + int const kNch = 24; + Float_t meanPed[2*kNch]; + for(Int_t jj=0; jj<2*kNch; jj++) meanPed[jj] = fPedData->GetMeanPed(jj); + // Parameters pedestal subtraction through correlation with out-of-time signals + Float_t corrCoeff0[2*kNch], corrCoeff1[2*kNch]; + for(Int_t jj=0; jj<2*kNch; jj++){ + corrCoeff0[jj] = fPedData->GetPedCorrCoeff0(jj); + corrCoeff1[jj] = fPedData->GetPedCorrCoeff1(jj); + //printf(" %d %1.4f %1.4f\n", jj,corrCoeff0[jj],corrCoeff1[jj]); + } + + Int_t adcZN1[5], adcZN1oot[5], adcZN1lg[5], adcZN1ootlg[5]; + Int_t adcZP1[5], adcZP1oot[5], adcZP1lg[5], adcZP1ootlg[5]; + Int_t adcZN2[5], adcZN2oot[5], adcZN2lg[5], adcZN2ootlg[5]; + Int_t adcZP2[5], adcZP2oot[5], adcZP2lg[5], adcZP2ootlg[5]; + Int_t adcZEM[2], adcZEMoot[2], adcZEMlg[2], adcZEMootlg[2]; + Int_t pmRef[2], pmRefoot[2], pmReflg[2], pmRefootlg[2]; + for(Int_t ich=0; ich<5; ich++){ + adcZN1[ich] = adcZN1oot[ich] = adcZN1lg[ich] = adcZN1ootlg[ich] = 0; + adcZP1[ich] = adcZP1oot[ich] = adcZP1lg[ich] = adcZP1ootlg[ich] = 0; + adcZN2[ich] = adcZN2oot[ich] = adcZN2lg[ich] = adcZN2ootlg[ich] = 0; + adcZP2[ich] = adcZP2oot[ich] = adcZP2lg[ich] = adcZP2ootlg[ich] = 0; + if(ich<2){ + adcZEM[ich] = adcZEMoot[ich] = adcZEMlg[ich] = adcZEMootlg[ich] = 0; + pmRef[ich] = pmRefoot[ich] = pmReflg[ich] = pmRefootlg[ich] = 0; + } + } + + Float_t tZN1Corr[10], tZP1Corr[10], tZN2Corr[10], tZP2Corr[10]; + Float_t dZEM1Corr[2], dZEM2Corr[2], sPMRef1[2], sPMRef2[2]; + for(Int_t i=0; i<10; i++){ + tZN1Corr[i] = tZP1Corr[i] = tZN2Corr[i] = tZP2Corr[i] = 0.; + if(i<2) dZEM1Corr[i] = dZEM2Corr[i] = sPMRef1[i] = sPMRef2[i] = 0.; + } + + Bool_t isScalerOn=kFALSE; + Int_t jsc=0, itdc=0, iprevtdc=-1, ihittdc=0; + UInt_t scalerData[32]; + Int_t tdcData[32][4]; + for(Int_t k=0; k<32; k++){ + scalerData[k]=0; + for(Int_t i=0; i<4; i++) tdcData[k][i]=0; + } + + + Int_t evQualityBlock[4] = {1,0,0,0}; + Int_t triggerBlock[4] = {0,0,0,0}; + Int_t chBlock[3] = {0,0,0}; + UInt_t puBits=0; + + Int_t kFirstADCGeo=0, kLastADCGeo=3, kScalerGeo=8, kZDCTDCGeo=4, kPUGeo=29; + //Int_t kTrigScales=30, kTrigHistory=31; + + // loop over raw data + //rawReader->Reset(); AliZDCRawStream rawData(rawReader); - while (rawData.Next()) { - if(rawData.IsADCDataWord()){ + while(rawData.Next()){ + + // ***************************** Reading ADCs + if((rawData.GetADCModule()>=kFirstADCGeo) && (rawData.GetADCModule()<=kLastADCGeo)){ + //printf(" **** Reading ADC raw data from module %d **** \n",rawData.GetADCModule()); + // + if((rawData.IsADCDataWord()) && (rawData.GetNChannelsOn()<48)) chBlock[0] = kTRUE; + if((rawData.IsADCDataWord()) && (rawData.IsOverflow() == kTRUE)) chBlock[1] = kTRUE; + if((rawData.IsADCDataWord()) && (rawData.IsUnderflow() == kTRUE)) chBlock[2] = kTRUE; + if((rawData.IsADCDataWord()) && (rawData.IsADCEventGood() == kTRUE)) evQualityBlock[0] = kTRUE; + + if((rawData.IsADCDataWord()) && (rawData.IsUnderflow()==kFALSE) + && (rawData.IsOverflow()==kFALSE) && (rawData.IsADCEventGood()==kTRUE)){ + + Int_t adcMod = rawData.GetADCModule(); Int_t det = rawData.GetSector(0); Int_t quad = rawData.GetSector(1); Int_t gain = rawData.GetADCGain(); - Int_t pedindex; + Int_t pedindex=0; // - if(det == 1){ - pedindex = quad; - if(gain == 0) tZN1CorrHG[quad] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex]); - else tZN1CorrLG[quad] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex+5]); - } - else if(det == 2){ - pedindex = quad+10; - if(gain == 0) tZP1CorrHG[quad] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex]); - else tZP1CorrLG[quad] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex+5]); - } - else if(det == 3){ - if(quad==1){ - pedindex = quad+20; - if(gain == 0) dZEMCorrHG += (Float_t) (rawData.GetADCValue()-meanPed[pedindex]); - else dZEMCorrLG += (Float_t) (rawData.GetADCValue()-meanPed[pedindex+2]); + // Mean pedestal value subtraction ------------------------------------------------------- + if(fPedSubMode == 0){ + // **** Pb-Pb data taking 2010 -> subtracting some ch. from correlation **** + // Not interested in o.o.t. signals (ADC modules 2, 3) + //if(adcMod == 2 || adcMod == 3) continue; + // **** Pb-Pb data taking 2011 -> subtracting only ZEM from correlation **** + if(det==3){ + if(adcMod==0 || adcMod==1){ + if(gain==0) adcZEM[quad-1] = rawData.GetADCValue(); + else adcZEMlg[quad-1] = rawData.GetADCValue(); + } + else if(adcMod==2 || adcMod==3){ + if(gain==0) adcZEMoot[quad-1] = rawData.GetADCValue(); + else adcZEMootlg[quad-1] = rawData.GetADCValue(); + } + } + // When oot values are read the ADC modules 2, 3 can be skipped!!! + if(adcMod == 2 || adcMod == 3) continue; + + // ************************************************************************* + if(quad != 5){ // ZDCs (not reference PTMs) + if(det==1){ + pedindex = quad; + if(gain == 0) tZN1Corr[quad] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex]); + else tZN1Corr[quad+5] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex+kNch]); } - else if(quad==2){ - pedindex = rawData.GetSector(1)+21; - if(gain == 0) dZEMCorrHG += (Float_t) (rawData.GetADCValue()-meanPed[pedindex]); - else dZEMCorrLG += (Float_t) (rawData.GetADCValue()-meanPed[pedindex+2]); + else if(det==2){ + pedindex = quad+5; + if(gain == 0) tZP1Corr[quad] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex]); + else tZP1Corr[quad+5] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex+kNch]); } - } - else if(det == 4){ - pedindex = rawData.GetSector(1)+24; - if(gain == 0) tZN2CorrHG[quad] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex]); - else tZN2CorrLG[quad] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex+2]); - } - else if(det == 5){ - pedindex = rawData.GetSector(1)+34; - if(gain == 0) tZP2CorrHG[quad] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex]); - else tZP2CorrLG[quad] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex+5]); - } + /*else if(det == 3){ + pedindex = quad+9; + if(quad==1){ + if(gain == 0) dZEM1Corr[0] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex]); + else dZEM1Corr[1] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex+kNch]); + } + else if(quad==2){ + if(gain == 0) dZEM2Corr[0] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex]); + else dZEM2Corr[1] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex+kNch]); + } + }*/ + else if(det == 4){ + pedindex = quad+12; + if(gain == 0) tZN2Corr[quad] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex]); + else tZN2Corr[quad+5] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex+kNch]); + } + else if(det == 5){ + pedindex = quad+17; + if(gain == 0) tZP2Corr[quad] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex]); + else tZP2Corr[quad+5] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex+kNch]); + } + } + else{ // reference PM + pedindex = (det-1)/3 + 22; + if(det == 1){ + if(gain==0) sPMRef1[0] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex]); + else sPMRef1[1] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex+kNch]); + } + else if(det == 4){ + if(gain==0) sPMRef2[0] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex]); + else sPMRef2[1] += (Float_t) (rawData.GetADCValue()-meanPed[pedindex+kNch]); + } + } + // Ch. debug + /*if(gain==0){ + printf(" AliZDCReconstructor: det %d quad %d res %d -> Pedestal[%d] %1.0f", + det,quad,gain, pedindex, meanPed[pedindex]); + printf(" RawADC %d ADCCorr %1.0f\n", + rawData.GetADCValue(), rawData.GetADCValue()-meanPed[pedindex]); + }*/ + }// mean pedestal subtraction + // Pedestal subtraction from correlation ------------------------------------------------ + else if(fPedSubMode == 1){ + // In time signals + if(adcMod==0 || adcMod==1){ + if(quad != 5){ // signals from ZDCs + if(det == 1){ + if(gain==0) adcZN1[quad] = rawData.GetADCValue(); + else adcZN1lg[quad] = rawData.GetADCValue(); + } + else if(det == 2){ + if(gain==0) adcZP1[quad] = rawData.GetADCValue(); + else adcZP1lg[quad] = rawData.GetADCValue(); + } + else if(det == 3){ + if(gain==0) adcZEM[quad-1] = rawData.GetADCValue(); + else adcZEMlg[quad-1] = rawData.GetADCValue(); + } + else if(det == 4){ + if(gain==0) adcZN2[quad] = rawData.GetADCValue(); + else adcZN2lg[quad] = rawData.GetADCValue(); + } + else if(det == 5){ + if(gain==0) adcZP2[quad] = rawData.GetADCValue(); + else adcZP2lg[quad] = rawData.GetADCValue(); + } + } + else{ // signals from reference PM + if(gain==0) pmRef[quad-1] = rawData.GetADCValue(); + else pmReflg[quad-1] = rawData.GetADCValue(); + } + } + // Out-of-time pedestals + else if(adcMod==2 || adcMod==3){ + if(quad != 5){ // signals from ZDCs + if(det == 1){ + if(gain==0) adcZN1oot[quad] = rawData.GetADCValue(); + else adcZN1ootlg[quad] = rawData.GetADCValue(); + } + else if(det == 2){ + if(gain==0) adcZP1oot[quad] = rawData.GetADCValue(); + else adcZP1ootlg[quad] = rawData.GetADCValue(); + } + else if(det == 3){ + if(gain==0) adcZEMoot[quad-1] = rawData.GetADCValue(); + else adcZEMootlg[quad-1] = rawData.GetADCValue(); + } + else if(det == 4){ + if(gain==0) adcZN2oot[quad] = rawData.GetADCValue(); + else adcZN2ootlg[quad] = rawData.GetADCValue(); + } + else if(det == 5){ + if(gain==0) adcZP2oot[quad] = rawData.GetADCValue(); + else adcZP2ootlg[quad] = rawData.GetADCValue(); + } + } + else{ // signals from reference PM + if(gain==0) pmRefoot[quad-1] = rawData.GetADCValue(); + else pmRefootlg[quad-1] = rawData.GetADCValue(); + } + } + } // pedestal subtraction from correlation + // Ch. debug + /*printf("\t AliZDCReconstructor: det %d quad %d res %d -> Ped[%d] = %1.0f\n", + det,quad,gain, pedindex, meanPed[pedindex]);*/ + }//IsADCDataWord + }// ADC DATA + // ***************************** Reading Scaler + else if(rawData.GetADCModule()==kScalerGeo){ + if(rawData.IsScalerWord()==kTRUE){ + isScalerOn = kTRUE; + scalerData[jsc] = rawData.GetTriggerCount(); + // Ch. debug + //printf(" Reconstructed VME Scaler: %d %d ",jsc,scalerData[jsc]); + // + jsc++; + } + }// VME SCALER DATA + // ***************************** Reading ZDC TDC + else if(rawData.GetADCModule()==kZDCTDCGeo && rawData.IsZDCTDCDatum()==kTRUE){ + itdc = rawData.GetChannel(); + if(itdc==iprevtdc) ihittdc++; + else ihittdc=0; + iprevtdc=itdc; + if(ihittdc<4) tdcData[itdc][ihittdc] = rawData.GetZDCTDCDatum(); + // Ch. debug + //if(ihittdc==0) printf(" TDC%d %d ",itdc, tdcData[itdc][ihittdc]); + }// ZDC TDC DATA + // ***************************** Reading PU + else if(rawData.GetADCModule()==kPUGeo){ + puBits = rawData.GetDetectorPattern(); + } + // ***************************** Reading trigger history + else if(rawData.IstriggerHistoryWord()==kTRUE){ + triggerBlock[0] = rawData.IsCPTInputEMDTrigger(); + triggerBlock[1] = rawData.IsCPTInputSemiCentralTrigger(); + triggerBlock[2] = rawData.IsCPTInputCentralTrigger(); + triggerBlock[3] = rawData.IsCPTInputMBTrigger(); + } + + }//loop on raw data + + if(fPedSubMode==1){ + for(Int_t t=0; t<5; t++){ + tZN1Corr[t] = adcZN1[t] - (corrCoeff1[t]*adcZN1oot[t]+corrCoeff0[t]); + tZN1Corr[t+5] = adcZN1lg[t] - (corrCoeff1[t+kNch]*adcZN1ootlg[t]+corrCoeff0[t+kNch]); + // + tZP1Corr[t] = adcZP1[t] - (corrCoeff1[t+5]*adcZP1oot[t]+corrCoeff0[t+5]); + tZP1Corr[t+5] = adcZP1lg[t] - (corrCoeff1[t+5+kNch]*adcZP1ootlg[t]+corrCoeff0[t+5+kNch]); + // + tZN2Corr[t] = adcZN2[t] - (corrCoeff1[t+12]*adcZN2oot[t]+corrCoeff0[t+12]); + tZN2Corr[t+5] = adcZN2lg[t] - (corrCoeff1[t+12+kNch]*adcZN2ootlg[t]+corrCoeff0[t+12+kNch]); + // + tZP2Corr[t] = adcZP2[t] - (corrCoeff1[t+17]*adcZP2oot[t]+corrCoeff0[t+17]); + tZP2Corr[t+5] = adcZP2lg[t] - (corrCoeff1[t+17+kNch]*adcZP2ootlg[t]+corrCoeff0[t+17+kNch]); } + dZEM1Corr[0] = adcZEM[0] - (corrCoeff1[10]*adcZEMoot[0]+corrCoeff0[10]); + dZEM1Corr[1] = adcZEMlg[0] - (corrCoeff1[10+kNch]*adcZEMootlg[0]+corrCoeff0[10+kNch]); + dZEM2Corr[0] = adcZEM[1] - (corrCoeff1[11]*adcZEMoot[1]+corrCoeff0[11]); + dZEM2Corr[1] = adcZEMlg[1] - (corrCoeff1[11+kNch]*adcZEMootlg[1]+corrCoeff0[11+kNch]); + // + sPMRef1[0] = pmRef[0] - (corrCoeff1[22]*pmRefoot[0]+corrCoeff0[22]); + sPMRef1[1] = pmReflg[0] - (corrCoeff1[22+kNch]*pmRefootlg[0]+corrCoeff0[22+kNch]); + sPMRef2[0] = pmRef[0] - (corrCoeff1[23]*pmRefoot[1]+corrCoeff0[23]); + sPMRef2[1] = pmReflg[0] - (corrCoeff1[23+kNch]*pmRefootlg[1]+corrCoeff0[23+kNch]); + } + if(fPedSubMode==0 && fRecoMode==2){ + // **** Pb-Pb data taking 2011 -> subtracting some ch. from correlation **** + //tZN1Corr[0] = adcZN1[0] - (corrCoeff1[0]*adcZN1oot[0]+corrCoeff0[0]); + //tZN1Corr[5] = adcZN1lg[0] - (corrCoeff1[kNch]*adcZN1ootlg[0]+corrCoeff0[kNch]); + // Ch. debug + //printf(" adcZN1 %d adcZN1oot %d tZN1Corr %1.2f \n", adcZN1[0],adcZN1oot[0],tZN1Corr[0]); + //printf(" adcZN1lg %d adcZN1ootlg %d tZN1Corrlg %1.2f \n", adcZN1lg[0],adcZN1ootlg[0],tZN1Corr[5]); + // + //tZP1Corr[2] = adcZP1[2] - (corrCoeff1[2+5]*adcZP1oot[2]+corrCoeff0[2+5]); + //tZP1Corr[2+5] = adcZP1lg[2] - (corrCoeff1[2+5+kNch]*adcZP1ootlg[2]+corrCoeff0[2+5+kNch]); + // + dZEM1Corr[0] = adcZEM[0] - (corrCoeff1[10]*adcZEMoot[0]+corrCoeff0[10]); + dZEM1Corr[1] = adcZEMlg[0] - (corrCoeff1[10+kNch]*adcZEMootlg[0]+corrCoeff0[10+kNch]); + dZEM2Corr[0] = adcZEM[1] - (corrCoeff1[11]*adcZEMoot[1]+corrCoeff0[11]); + dZEM2Corr[1] = adcZEMlg[1] - (corrCoeff1[11+kNch]*adcZEMootlg[1]+corrCoeff0[11+kNch]); + // ************************************************************************* + } + else if(fPedSubMode==0 && fRecoMode==1){ + // **** p-p data taking 2011 -> temporary patch to overcome DA problem **** + // + dZEM1Corr[0] = adcZEM[0] - meanPed[10]; + dZEM1Corr[1] = adcZEMlg[0] - meanPed[10+kNch]; + dZEM2Corr[0] = adcZEM[1] - meanPed[11]; + dZEM2Corr[1] = adcZEMlg[1] - meanPed[11+kNch]; + // ************************************************************************* } - // reconstruct the event - ReconstructEvent(clustersTree, tZN1CorrHG, tZP1CorrHG, tZN2CorrHG, - tZP2CorrHG, tZN1CorrLG, tZP1CorrLG, tZN2CorrLG, - tZP2CorrLG, dZEMCorrHG); - + if(fRecoMode==1) // p-p data + ReconstructEventpp(clustersTree, tZN1Corr, tZP1Corr, tZN2Corr, tZP2Corr, + dZEM1Corr, dZEM2Corr, sPMRef1, sPMRef2, + isScalerOn, scalerData, tdcData, + evQualityBlock, triggerBlock, chBlock, puBits); + else if(fRecoMode==2) // Pb-Pb data + ReconstructEventPbPb(clustersTree, tZN1Corr, tZP1Corr, tZN2Corr, tZP2Corr, + dZEM1Corr, dZEM2Corr, sPMRef1, sPMRef2, + isScalerOn, scalerData, tdcData, + evQualityBlock, triggerBlock, chBlock, puBits); } //_____________________________________________________________________________ -void AliZDCReconstructor::ReconstructEvent(TTree *clustersTree, - Float_t* ZN1ADCCorrHG, Float_t* ZP1ADCCorrHG, - Float_t* ZN2ADCCorrHG, Float_t* ZP2ADCCorrHG, - Float_t* ZN1ADCCorrLG, Float_t* ZP1ADCCorrLG, - Float_t* ZN2ADCCorrLG, Float_t* ZP2ADCCorrLG, - Float_t corrADCZEMHG) const +void AliZDCReconstructor::ReconstructEventpp(TTree *clustersTree, + const Float_t* const corrADCZN1, const Float_t* const corrADCZP1, + const Float_t* const corrADCZN2, const Float_t* const corrADCZP2, + const Float_t* const corrADCZEM1, const Float_t* const corrADCZEM2, + Float_t* sPMRef1, Float_t* sPMRef2, Bool_t isScalerOn, UInt_t* scaler, + Int_t tdcData[32][4], const Int_t* const evQualityBlock, + const Int_t* const triggerBlock, const Int_t* const chBlock, UInt_t puBits) const { - // ***** Reconstruct one event - - // *** RECONSTRUCTION FROM SIMULATED DATA - // It passes trhough the no. of phe which is known from simulations - // --- ADCchannel -> photoelectrons - // NB-> PM gain = 10^(5), ADC resolution = 6.4*10^(-7) - // Move to V965 (E.S.,15/09/04) NB-> PM gain = 10^(5), ADC resolution = 8*10^(-7) - //Float_t zn1phe, zp1phe, zemphe, zn2phe, zp2phe, convFactor = 0.08; - //zn1phe = ZN1Corr/convFactor; - //zp1phe = ZP1Corr/convFactor; - //zemphe = ZEMCorr/convFactor; - //zn2phe = ZN2Corr/convFactor; - //zp2phe = ZP2Corr/convFactor; - ////if AliDebug(1,Form("\n znphe = %f, zpphe = %f, zemphe = %f\n",znphe, zpphe, zemphe); - // - //// --- Energy calibration - //// Conversion factors for hadronic ZDCs goes from phe yield to TRUE - //// incident energy (conversion from GeV to TeV is included); while for EM - //// calos conversion is from light yield to detected energy calculated by - //// GEANT NB -> ZN and ZP conversion factors are constant since incident - //// spectators have all the same energy, ZEM energy is obtained through a - //// fit over the whole range of incident particle energies - //// (obtained with full HIJING simulations) - //Float_t zn1energy, zp1energy, zemenergy, zdc1energy, zn2energy, zp2energy, zdc2energy; - //Float_t zn1phexTeV=329., zp1phexTeV=369., zn2phexTeV=329., zp2phexTeV=369.; - //zn1energy = zn1phe/zn1phexTeV; - //zp1energy = zp1phe/zp1phexTeV; - //zdc1energy = zn1energy+zp1energy; - //zn2energy = zn2phe/zn2phexTeV; - //zp2energy = zp2phe/zp2phexTeV; - //zdc2energy = zn2energy+zp2energy; - //zemenergy = -4.81+0.3238*zemphe; - //if(zemenergy<0) zemenergy=0; - //// if AliDebug(1,Form(" znenergy = %f TeV, zpenergy = %f TeV, zdcenergy = %f GeV, " - //// "\n zemenergy = %f TeV\n", znenergy, zpenergy, - //// zdcenergy, zemenergy); - //// if(zdcenergy==0) - //// if AliDebug(1,Form("\n\n ### ATTENZIONE!!! -> ev# %d: znenergy = %f TeV, zpenergy = %f TeV, zdcenergy = %f GeV, " - //// " zemenergy = %f TeV\n\n", fMerger->EvNum(), znenergy, zpenergy, zdcenergy, zemenergy); + // ****************** Reconstruct one event ****************** + // CH. debug + /*printf("\n*************************************************\n"); + printf(" ReconstructEventpp -> values after pedestal subtraction:\n"); + printf(" ADCZN1 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + corrADCZN1[0],corrADCZN1[1],corrADCZN1[2],corrADCZN1[3],corrADCZN1[4]); + printf(" ADCZP1 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + corrADCZP1[0],corrADCZP1[1],corrADCZP1[2],corrADCZP1[3],corrADCZP1[4]); + printf(" ADCZN2 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + corrADCZN2[0],corrADCZN2[1],corrADCZN2[2],corrADCZN2[3],corrADCZN2[4]); + printf(" ADCZP2 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + corrADCZP2[0],corrADCZP2[1],corrADCZP2[2],corrADCZP2[3],corrADCZP2[4]); + printf(" ADCZEM1 [%1.2f] ADCZEM2 [%1.2f] \n",corrADCZEM1[0],corrADCZEM2[0]); + printf("*************************************************\n");*/ + + // ---------------------- Setting reco flags for ESD + UInt_t rFlags[32]; + for(Int_t ifl=0; ifl<32; ifl++) rFlags[ifl]=0; + + if(evQualityBlock[0] == 1) rFlags[31] = 0x0; + else rFlags[31] = 0x1; // - // *** RECONSTRUCTION FROM "REAL" DATA - // - // Retrieving calibration data + if(evQualityBlock[1] == 1) rFlags[30] = 0x1; + if(evQualityBlock[2] == 1) rFlags[29] = 0x1; + if(evQualityBlock[3] == 1) rFlags[28] = 0x1; + + if(triggerBlock[0] == 1) rFlags[27] = 0x1; + if(triggerBlock[1] == 1) rFlags[26] = 0x1; + if(triggerBlock[2] == 1) rFlags[25] = 0x1; + if(triggerBlock[3] == 1) rFlags[24] = 0x1; + + if(chBlock[0] == 1) rFlags[18] = 0x1; + if(chBlock[1] == 1) rFlags[17] = 0x1; + if(chBlock[2] == 1) rFlags[16] = 0x1; + + + rFlags[13] = puBits & 0x00000020; + rFlags[12] = puBits & 0x00000010; + rFlags[11] = puBits & 0x00000080; + rFlags[10] = puBits & 0x00000040; + rFlags[9] = puBits & 0x00000020; + rFlags[8] = puBits & 0x00000010; + + if(corrADCZP1[0]>fSignalThreshold) rFlags[5] = 0x1; + if(corrADCZN1[0]>fSignalThreshold) rFlags[4] = 0x1; + if(corrADCZEM2[0]>fSignalThreshold) rFlags[3] = 0x1; + if(corrADCZEM1[0]>fSignalThreshold) rFlags[2] = 0x1; + if(corrADCZP2[0]>fSignalThreshold) rFlags[1] = 0x1; + if(corrADCZN2[0]>fSignalThreshold) rFlags[0] = 0x1; + + UInt_t recoFlag = rFlags[31] << 31 | rFlags[30] << 30 | rFlags[29] << 29 | rFlags[28] << 28 | + rFlags[27] << 27 | rFlags[26] << 26 | rFlags[25] << 25 | rFlags[24] << 24 | + 0x0 << 23 | 0x0 << 22 | 0x0 << 21 | 0x0 << 20 | + 0x0 << 19 | rFlags[18] << 18 | rFlags[17] << 17 | rFlags[16] << 16 | + 0x0 << 15 | 0x0 << 14 | rFlags[13] << 13 | rFlags[12] << 12 | + rFlags[11] << 11 |rFlags[10] << 10 | rFlags[9] << 9 | rFlags[8] << 8 | + 0x0 << 7 | 0x0 << 6 | rFlags[5] << 5 | rFlags[4] << 4 | + rFlags[3] << 3 | rFlags[2] << 2 | rFlags[1] << 1 | rFlags[0]; + // -------------------------------------------------- + + // ****** Retrieving calibration data + // --- Equalization coefficients --------------------------------------------- Float_t equalCoeffZN1[5], equalCoeffZP1[5], equalCoeffZN2[5], equalCoeffZP2[5]; for(Int_t ji=0; ji<5; ji++){ - equalCoeffZN1[ji] = fCalibData->GetZN1EqualCoeff(ji); - equalCoeffZP1[ji] = fCalibData->GetZP1EqualCoeff(ji); - equalCoeffZN2[ji] = fCalibData->GetZN2EqualCoeff(ji); - equalCoeffZP2[ji] = fCalibData->GetZP2EqualCoeff(ji); + equalCoeffZN1[ji] = fTowCalibData->GetZN1EqualCoeff(ji); + equalCoeffZP1[ji] = fTowCalibData->GetZP1EqualCoeff(ji); + equalCoeffZN2[ji] = fTowCalibData->GetZN2EqualCoeff(ji); + equalCoeffZP2[ji] = fTowCalibData->GetZP2EqualCoeff(ji); } - // - Float_t calibEne[4]; - for(Int_t ij=0; ij<4; ij++) calibEne[ij] = fCalibData->GetEnCalib(ij); - // - Float_t endPointZEM = fCalibData->GetZEMEndValue(); - Float_t cutFractionZEM = fCalibData->GetZEMCutFraction(); - Float_t dZEMSup = fCalibData->GetDZEMSup(); - Float_t dZEMInf = fCalibData->GetDZEMInf(); - // - Float_t cutValueZEM = endPointZEM*cutFractionZEM; - Float_t supValueZEM = cutValueZEM+(endPointZEM*dZEMSup); - Float_t infValueZEM = cutValueZEM-(endPointZEM*dZEMInf); - // - Float_t maxValEZN1 = fCalibData->GetEZN1MaxValue(); - Float_t maxValEZP1 = fCalibData->GetEZP1MaxValue(); - Float_t maxValEZDC1 = fCalibData->GetEZDC1MaxValue(); - Float_t maxValEZN2 = fCalibData->GetEZN2MaxValue(); - Float_t maxValEZP2 = fCalibData->GetEZP2MaxValue(); - Float_t maxValEZDC2 = fCalibData->GetEZDC2MaxValue(); - // - //printf("\n\t AliZDCReconstructor -> ZEMEndPoint %1.0f, ZEMCutValue %1.0f," - // " ZEMSupValue %1.0f, ZEMInfValue %1.0f\n",endPointZEM,cutValueZEM,supValueZEM,infValueZEM); + // --- Energy calibration factors ------------------------------------ + Float_t calibEne[6], calibSatZNA[4], calibSatZNC[4]; + // **** Energy calibration coefficient set to 1 + // **** (no trivial way to calibrate in p-p runs) + for(Int_t ij=0; ij<6; ij++) calibEne[ij] = fEnCalibData->GetEnCalib(ij); + for(Int_t ij=0; ij<4; ij++){ + calibSatZNA[ij] = fSatCalibData->GetZNASatCalib(ij); + calibSatZNC[ij] = fSatCalibData->GetZNCSatCalib(ij); + } + + // ****** Equalization of detector responses + Float_t equalTowZN1[10], equalTowZN2[10], equalTowZP1[10], equalTowZP2[10]; + for(Int_t gi=0; gi<10; gi++){ + if(gi<5){ + equalTowZN1[gi] = corrADCZN1[gi]*equalCoeffZN1[gi]; + equalTowZP1[gi] = corrADCZP1[gi]*equalCoeffZP1[gi]; + equalTowZN2[gi] = corrADCZN2[gi]*equalCoeffZN2[gi]; + equalTowZP2[gi] = corrADCZP2[gi]*equalCoeffZP2[gi]; + } + else{ + equalTowZN1[gi] = corrADCZN1[gi]*equalCoeffZN1[gi-5]; + equalTowZP1[gi] = corrADCZP1[gi]*equalCoeffZP1[gi-5]; + equalTowZN2[gi] = corrADCZN2[gi]*equalCoeffZN2[gi-5]; + equalTowZP2[gi] = corrADCZP2[gi]*equalCoeffZP2[gi-5]; + } + } + // Ch. debug + /*printf("\n ------------- EQUALIZATION -------------\n"); + printf(" ADCZN1 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + equalTowZN1[0],equalTowZN1[1],equalTowZN1[2],equalTowZN1[3],equalTowZN1[4]); + printf(" ADCZP1 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + equalTowZP1[0],equalTowZP1[1],equalTowZP1[2],equalTowZP1[3],equalTowZP1[4]); + printf(" ADCZN2 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + equalTowZN2[0],equalTowZN2[1],equalTowZN2[2],equalTowZN2[3],equalTowZN2[4]); + printf(" ADCZP2 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + equalTowZP2[0],equalTowZP2[1],equalTowZP2[2],equalTowZP2[3],equalTowZP2[4]); + printf(" ----------------------------------------\n");*/ + + // *** p-A RUN 2013 -> new calibration object + // to take into account saturation in ZN PMC + // -> 5th order pol. fun. to be applied BEFORE en. calibration + equalTowZN1[0] = equalTowZN1[0] + calibSatZNC[0]*equalTowZN1[0]*equalTowZN1[0] + + calibSatZNC[1]*equalTowZN1[0]*equalTowZN1[0]*equalTowZN1[0] + + calibSatZNC[2]*equalTowZN1[0]*equalTowZN1[0]*equalTowZN1[0]*equalTowZN1[0] + + calibSatZNC[3]*equalTowZN1[0]*equalTowZN1[0]*equalTowZN1[0]*equalTowZN1[0]*equalTowZN1[0]; + equalTowZN2[0] = equalTowZN2[0] + calibSatZNA[0]*equalTowZN2[0]*equalTowZN2[0] + + calibSatZNA[1]*equalTowZN2[0]*equalTowZN2[0]*equalTowZN2[0] + + calibSatZNA[2]*equalTowZN2[0]*equalTowZN2[0]*equalTowZN2[0]*equalTowZN2[0] + + calibSatZNA[3]*equalTowZN2[0]*equalTowZN2[0]*equalTowZN2[0]*equalTowZN2[0]*equalTowZN2[0]; + + // Ch. debug + /*printf("\n ------------- SATURATION CORRECTION -------------\n"); + printf(" ZNC PMC %1.2f\n", equalTowZN1[0]); + printf(" ZNA PMC %1.2f\n", equalTowZN2[0]); + printf(" ----------------------------------------\n");*/ - // Equalization of detector responses - Float_t equalTowZN1HG[5], equalTowZN2HG[5], equalTowZP1HG[5], equalTowZP2HG[5]; - Float_t equalTowZN1LG[5], equalTowZN2LG[5], equalTowZP1LG[5], equalTowZP2LG[5]; + // ****** Summed response for hadronic calorimeter (SUMMED and then CALIBRATED!) + Float_t calibSumZN1[]={0,0}, calibSumZN2[]={0,0}, calibSumZP1[]={0,0}, calibSumZP2[]={0,0}; for(Int_t gi=0; gi<5; gi++){ - equalTowZN1HG[gi] = ZN1ADCCorrHG[gi]*equalCoeffZN1[gi]; - equalTowZP1HG[gi] = ZP1ADCCorrHG[gi]*equalCoeffZP1[gi]; - equalTowZN2HG[gi] = ZN2ADCCorrHG[gi]*equalCoeffZN2[gi]; - equalTowZP2HG[gi] = ZP2ADCCorrHG[gi]*equalCoeffZP2[gi]; - // - equalTowZN1LG[gi] = ZN1ADCCorrLG[gi]*equalCoeffZN1[gi]; - equalTowZP1LG[gi] = ZP1ADCCorrLG[gi]*equalCoeffZP1[gi]; - equalTowZN2LG[gi] = ZN2ADCCorrLG[gi]*equalCoeffZN2[gi]; - equalTowZP2LG[gi] = ZP2ADCCorrLG[gi]*equalCoeffZP2[gi]; + calibSumZN1[0] += equalTowZN1[gi]; + calibSumZP1[0] += equalTowZP1[gi]; + calibSumZN2[0] += equalTowZN2[gi]; + calibSumZP2[0] += equalTowZP2[gi]; + // + calibSumZN1[1] += equalTowZN1[gi+5]; + calibSumZP1[1] += equalTowZP1[gi+5]; + calibSumZN2[1] += equalTowZN2[gi+5]; + calibSumZP2[1] += equalTowZP2[gi+5]; } + // High gain chain + calibSumZN1[0] = calibSumZN1[0]*calibEne[0]; + calibSumZP1[0] = calibSumZP1[0]*calibEne[1]; + calibSumZN2[0] = calibSumZN2[0]*calibEne[2]; + calibSumZP2[0] = calibSumZP2[0]*calibEne[3]; + // Low gain chain + calibSumZN1[1] = calibSumZN1[1]*calibEne[0]; + calibSumZP1[1] = calibSumZP1[1]*calibEne[1]; + calibSumZN2[1] = calibSumZN2[1]*calibEne[2]; + calibSumZP2[1] = calibSumZP2[1]*calibEne[3]; - // Energy calibration of detector responses - Float_t calibTowZN1HG[5], calibTowZN2HG[5], calibTowZP1HG[5], calibTowZP2HG[5]; - Float_t calibSumZN1HG=0., calibSumZN2HG=0., calibSumZP1HG=0., calibSumZP2HG=0.; - Float_t calibTowZN1LG[5], calibTowZN2LG[5], calibTowZP1LG[5], calibTowZP2LG[5]; - Float_t calibSumZN1LG=0., calibSumZN2LG=0., calibSumZ12LG=0., calibSumZP2LG=0.; + // ****** Energy calibration of detector responses + Float_t calibTowZN1[10], calibTowZN2[10], calibTowZP1[10], calibTowZP2[10]; for(Int_t gi=0; gi<5; gi++){ - calibTowZN1HG[gi] = equalTowZN1HG[gi]*calibEne[0]; - calibTowZP1HG[gi] = equalTowZP1HG[gi]*calibEne[1]; - calibTowZN2HG[gi] = equalTowZN2HG[gi]*calibEne[2]; - calibTowZP2HG[gi] = equalTowZP2HG[gi]*calibEne[3]; - calibSumZN1HG += calibTowZN1HG[gi]; - calibSumZP1HG += calibTowZP1HG[gi]; - calibSumZN2HG += calibTowZN2HG[gi]; - calibSumZP2HG += calibTowZP2HG[gi]; - // - calibTowZN1LG[gi] = equalTowZN1LG[gi]*calibEne[0]; - calibTowZP1LG[gi] = equalTowZP1LG[gi]*calibEne[1]; - calibTowZN2LG[gi] = equalTowZN2LG[gi]*calibEne[2]; - calibTowZP2LG[gi] = equalTowZP2LG[gi]*calibEne[3]; - calibSumZN1LG += calibTowZN1LG[gi]; - calibSumZ12LG += calibTowZP1LG[gi]; - calibSumZN2LG += calibTowZN2LG[gi]; - calibSumZP2LG += calibTowZP2LG[gi]; - } - - // --- Number of detected spectator nucleons - // *** N.B. -> It works only in Pb-Pb - Int_t nDetSpecNLeft, nDetSpecPLeft, nDetSpecNRight, nDetSpecPRight; - nDetSpecNLeft = (Int_t) (calibSumZN1HG/2.760); - nDetSpecPLeft = (Int_t) (calibSumZP1HG/2.760); - nDetSpecNRight = (Int_t) (calibSumZN2HG/2.760); - nDetSpecPRight = (Int_t) (calibSumZP2HG/2.760); - /*printf("\n\t AliZDCReconstructor -> nDetSpecNLeft %d, nDetSpecPLeft %d," - " nDetSpecNRight %d, nDetSpecPRight %d\n",nDetSpecNLeft, nDetSpecPLeft, - nDetSpecNRight, nDetSpecPRight);*/ - - // --- Number of generated spectator nucleons (from HIJING parameterization) - Int_t nGenSpecNLeft=0, nGenSpecPLeft=0, nGenSpecLeft=0; - Int_t nGenSpecNRight=0, nGenSpecPRight=0, nGenSpecRight=0; - Double_t impPar=0.; - // - // *** RECONSTRUCTION FROM SIMULATED DATA - // Cut value for Ezem (GeV) - // ### Results from production -> 0 (eZEMCut+deltaEZEMSup)){ - nGenSpecNLeft = (Int_t) (fZNCen->Eval(ZN1CalibSum)); - nGenSpecPLeft = (Int_t) (fZPCen->Eval(ZP1CalibSum)); - nGenSpecLeft = (Int_t) (fZDCCen->Eval(ZN1CalibSum+ZP1CalibSum)); - nGenSpecNRight = (Int_t) (fZNCen->Eval(ZN2CalibSum)); - nGenSpecPRight = (Int_t) (fZNCen->Eval(ZP2CalibSum)); - nGenSpecRight = (Int_t) (fZNCen->Eval(ZN2CalibSum+ZP2CalibSum)); - impPar = fbCen->Eval(ZN1CalibSum+ZP1CalibSum); - } - else if(zemenergy < (eZEMCut-deltaEZEMInf)){ - nGenSpecNLeft = (Int_t) (fZNPer->Eval(ZN1CalibSum)); - nGenSpecPLeft = (Int_t) (fZPPer->Eval(ZP1CalibSum)); - nGenSpecLeft = (Int_t) (fZDCPer->Eval(ZN1CalibSum+ZP1CalibSum)); - impPar = fbPer->Eval(ZN1CalibSum+ZP1CalibSum); - } - else if(zemenergy >= (eZEMCut-deltaEZEMInf) && zemenergy <= (eZEMCut+deltaEZEMSup)){ - nGenSpecNLeft = (Int_t) (fZEMn->Eval(zemenergy)); - nGenSpecPLeft = (Int_t) (fZEMp->Eval(zemenergy)); - nGenSpecLeft = (Int_t)(fZEMsp->Eval(zemenergy)); - impPar = fZEMb->Eval(zemenergy); - } - // ### Results from production -> 0162.) nGenSpecNLeft = (Int_t) (fZEMn->Eval(zemenergy)); - if(ZP1CalibSum>59.75) nGenSpecPLeft = (Int_t) (fZEMp->Eval(zemenergy)); - if(ZN1CalibSum+ZP1CalibSum>221.5) nGenSpecLeft = (Int_t)(fZEMsp->Eval(zemenergy)); - if(ZN1CalibSum+ZP1CalibSum>220.) impPar = fZEMb->Eval(zemenergy); - */ - // + // High gain chain + calibTowZN1[gi] = equalTowZN1[gi]*calibEne[0]; + calibTowZP1[gi] = equalTowZP1[gi]*calibEne[1]; + calibTowZN2[gi] = equalTowZN2[gi]*calibEne[2]; + calibTowZP2[gi] = equalTowZP2[gi]*calibEne[3]; + // Low gain chain + calibTowZN1[gi+5] = equalTowZN1[gi+5]*calibEne[0]; + calibTowZP1[gi+5] = equalTowZP1[gi+5]*calibEne[1]; + calibTowZN2[gi+5] = equalTowZN2[gi+5]*calibEne[2]; + calibTowZP2[gi+5] = equalTowZP2[gi+5]*calibEne[3]; + } // - // *** RECONSTRUCTION FROM REAL DATA + Float_t calibZEM1[]={0,0}, calibZEM2[]={0,0}; + calibZEM1[0] = corrADCZEM1[0]*calibEne[4]; + calibZEM1[1] = corrADCZEM1[1]*calibEne[4]; + calibZEM2[0] = corrADCZEM2[0]*calibEne[5]; + calibZEM2[1] = corrADCZEM2[1]*calibEne[5]; + // Ch. debug + /*printf("\n ------------- CALIBRATION -------------\n"); + printf(" ADCZN1 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + calibTowZN1[0],calibTowZN1[1],calibTowZN1[2],calibTowZN1[3],calibTowZN1[4]); + printf(" ADCZP1 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + calibTowZP1[0],calibTowZP1[1],calibTowZP1[2],calibTowZP1[3],calibTowZP1[4]); + printf(" ADCZN2 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + calibTowZN2[0],calibTowZN2[1],calibTowZN2[2],calibTowZN2[3],calibTowZN2[4]); + printf(" ADCZP2 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + calibTowZP2[0],calibTowZP2[1],calibTowZP2[2],calibTowZP2[3],calibTowZP2[4]); + printf(" ADCZEM1 [%1.2f] ADCZEM2 [%1.2f] \n",calibZEM1[0],calibZEM2[0]); + printf(" ----------------------------------------\n");*/ + + // ****** No. of spectator and participants nucleons + // Variables calculated to comply with ESD structure + // *** N.B. -> They have a meaning only in Pb-Pb!!!!!!!!!!!! + Int_t nDetSpecNLeft=0, nDetSpecPLeft=0, nDetSpecNRight=0, nDetSpecPRight=0; + Int_t nGenSpec=0, nGenSpecLeft=0, nGenSpecRight=0; + Int_t nPart=0, nPartTotLeft=0, nPartTotRight=0; + Double_t impPar=0., impPar1=0., impPar2=0.; + + Bool_t energyFlag = kFALSE; + // create the output tree + AliZDCReco* reco = new AliZDCReco(calibSumZN1, calibSumZP1, calibSumZN2, calibSumZP2, + calibTowZN1, calibTowZP1, calibTowZN2, calibTowZP2, + calibZEM1, calibZEM2, sPMRef1, sPMRef2, + nDetSpecNLeft, nDetSpecPLeft, nDetSpecNRight, nDetSpecPRight, + nGenSpec, nGenSpecLeft, nGenSpecRight, + nPart, nPartTotLeft, nPartTotRight, + impPar, impPar1, impPar2, + recoFlag, energyFlag, isScalerOn, scaler, tdcData); + + const Int_t kBufferSize = 4000; + clustersTree->Branch("ZDC", "AliZDCReco", &reco, kBufferSize); + // write the output tree + clustersTree->Fill(); + delete reco; +} + +//_____________________________________________________________________________ +void AliZDCReconstructor::ReconstructEventPbPb(TTree *clustersTree, + const Float_t* const corrADCZN1, const Float_t* const corrADCZP1, + const Float_t* const corrADCZN2, const Float_t* const corrADCZP2, + const Float_t* const corrADCZEM1, const Float_t* const corrADCZEM2, + Float_t* sPMRef1, Float_t* sPMRef2, Bool_t isScalerOn, UInt_t* scaler, + Int_t tdcData[32][4], const Int_t* const evQualityBlock, + const Int_t* const triggerBlock, const Int_t* const chBlock, UInt_t puBits) const +{ + // ****************** Reconstruct one event ****************** + // ---------------------- Setting reco flags for ESD + UInt_t rFlags[32]; + for(Int_t ifl=0; ifl<32; ifl++) rFlags[ifl]=0; + + if(evQualityBlock[0] == 1) rFlags[31] = 0x0; + else rFlags[31] = 0x1; // - if(corrADCZEMHG > supValueZEM){ - nGenSpecNLeft = (Int_t) (fZNCen->Eval(calibSumZN1HG)); - nGenSpecPLeft = (Int_t) (fZPCen->Eval(calibSumZP1HG)); - nGenSpecLeft = (Int_t) (fZDCCen->Eval(calibSumZN1HG+calibSumZP1HG)); - nGenSpecNRight = (Int_t) (fZNCen->Eval(calibSumZN2HG)); - nGenSpecPRight = (Int_t) (fZNCen->Eval(calibSumZP2HG)); - nGenSpecRight = (Int_t) (fZNCen->Eval(calibSumZN2HG+calibSumZP2HG)); - impPar = fbCen->Eval(calibSumZN1HG+calibSumZP1HG); - } - else if(corrADCZEMHG < infValueZEM){ - nGenSpecNLeft = (Int_t) (fZNPer->Eval(calibSumZN1HG)); - nGenSpecPLeft = (Int_t) (fZPPer->Eval(calibSumZP1HG)); - nGenSpecLeft = (Int_t) (fZDCPer->Eval(calibSumZN1HG+calibSumZP1HG)); - impPar = fbPer->Eval(calibSumZN1HG+calibSumZP1HG); - } - else if(corrADCZEMHG >= infValueZEM && corrADCZEMHG <= supValueZEM){ - nGenSpecNLeft = (Int_t) (fZEMn->Eval(corrADCZEMHG)); - nGenSpecPLeft = (Int_t) (fZEMp->Eval(corrADCZEMHG)); - nGenSpecLeft = (Int_t)(fZEMsp->Eval(corrADCZEMHG)); - impPar = fZEMb->Eval(corrADCZEMHG); + if(evQualityBlock[1] == 1) rFlags[30] = 0x1; + if(evQualityBlock[2] == 1) rFlags[29] = 0x1; + if(evQualityBlock[3] == 1) rFlags[28] = 0x1; + + if(triggerBlock[0] == 1) rFlags[27] = 0x1; + if(triggerBlock[1] == 1) rFlags[26] = 0x1; + if(triggerBlock[2] == 1) rFlags[25] = 0x1; + if(triggerBlock[3] == 1) rFlags[24] = 0x1; + + if(chBlock[0] == 1) rFlags[18] = 0x1; + if(chBlock[1] == 1) rFlags[17] = 0x1; + if(chBlock[2] == 1) rFlags[16] = 0x1; + + rFlags[13] = puBits & 0x00000020; + rFlags[12] = puBits & 0x00000010; + rFlags[11] = puBits & 0x00000080; + rFlags[10] = puBits & 0x00000040; + rFlags[9] = puBits & 0x00000020; + rFlags[8] = puBits & 0x00000010; + + if(corrADCZP1[0]>fSignalThreshold) rFlags[5] = 0x1; + if(corrADCZN1[0]>fSignalThreshold) rFlags[4] = 0x1; + if(corrADCZEM2[0]>fSignalThreshold) rFlags[3] = 0x1; + if(corrADCZEM1[0]>fSignalThreshold) rFlags[2] = 0x1; + if(corrADCZP2[0]>fSignalThreshold) rFlags[1] = 0x1; + if(corrADCZN2[0]>fSignalThreshold) rFlags[0] = 0x1; + + UInt_t recoFlag = rFlags[31] << 31 | rFlags[30] << 30 | rFlags[29] << 29 | rFlags[28] << 28 | + rFlags[27] << 27 | rFlags[26] << 26 | rFlags[25] << 25 | rFlags[24] << 24 | + 0x0 << 23 | 0x0 << 22 | 0x0 << 21 | 0x0 << 20 | + 0x0 << 19 | rFlags[18] << 18 | rFlags[17] << 17 | rFlags[16] << 16 | + 0x0 << 15 | 0x0 << 14 | rFlags[13] << 13 | rFlags[12] << 12 | + rFlags[11] << 11 |rFlags[10] << 10 | rFlags[9] << 9 | rFlags[8] << 8 | + 0x0 << 7 | 0x0 << 6 | rFlags[5] << 5 | rFlags[4] << 4 | + rFlags[3] << 3 | rFlags[2] << 2 | rFlags[1] << 1 | rFlags[0]; + // -------------------------------------------------- + + + // CH. debug +/* printf("\n*************************************************\n"); + printf(" ReconstructEventPbPb -> values after pedestal subtraction:\n"); + printf(" ADCZN1 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + corrADCZN1[0],corrADCZN1[1],corrADCZN1[2],corrADCZN1[3],corrADCZN1[4]); + printf(" ADCZP1 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + corrADCZP1[0],corrADCZP1[1],corrADCZP1[2],corrADCZP1[3],corrADCZP1[4]); + printf(" ADCZN2 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + corrADCZN2[0],corrADCZN2[1],corrADCZN2[2],corrADCZN2[3],corrADCZN2[4]); + printf(" ADCZP2 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + corrADCZP2[0],corrADCZP2[1],corrADCZP2[2],corrADCZP2[3],corrADCZP2[4]); + printf(" ADCZEM1 [%1.2f] ADCZEM2 [%1.2f] \n",corrADCZEM1[0],corrADCZEM2[0]); + printf("*************************************************\n"); +*/ + // ****** Retrieving calibration data + // --- Equalization coefficients --------------------------------------------- + Float_t equalCoeffZN1[5], equalCoeffZP1[5], equalCoeffZN2[5], equalCoeffZP2[5]; + for(Int_t ji=0; ji<5; ji++){ + equalCoeffZN1[ji] = fTowCalibData->GetZN1EqualCoeff(ji); + equalCoeffZP1[ji] = fTowCalibData->GetZP1EqualCoeff(ji); + equalCoeffZN2[ji] = fTowCalibData->GetZN2EqualCoeff(ji); + equalCoeffZP2[ji] = fTowCalibData->GetZP2EqualCoeff(ji); + } + // --- Energy calibration factors ------------------------------------ + Float_t calibEne[6], calibSatZNA[4], calibSatZNC[4]; + // **** Energy calibration coefficient set to 1 + // **** (no trivial way to calibrate in p-p runs) + for(Int_t ij=0; ij<6; ij++) calibEne[ij] = fEnCalibData->GetEnCalib(ij); + for(Int_t ij=0; ij<4; ij++){ + calibSatZNA[ij] = fSatCalibData->GetZNASatCalib(ij); + calibSatZNC[ij] = fSatCalibData->GetZNCSatCalib(ij); + } + + // ****** Equalization of detector responses + Float_t equalTowZN1[10], equalTowZN2[10], equalTowZP1[10], equalTowZP2[10]; + for(Int_t gi=0; gi<10; gi++){ + if(gi<5){ + equalTowZN1[gi] = corrADCZN1[gi]*equalCoeffZN1[gi]; + equalTowZP1[gi] = corrADCZP1[gi]*equalCoeffZP1[gi]; + equalTowZN2[gi] = corrADCZN2[gi]*equalCoeffZN2[gi]; + equalTowZP2[gi] = corrADCZP2[gi]*equalCoeffZP2[gi]; + } + else{ + equalTowZN1[gi] = corrADCZN1[gi]*equalCoeffZN1[gi-5]; + equalTowZP1[gi] = corrADCZP1[gi]*equalCoeffZP1[gi-5]; + equalTowZN2[gi] = corrADCZN2[gi]*equalCoeffZN2[gi-5]; + equalTowZP2[gi] = corrADCZP2[gi]*equalCoeffZP2[gi-5]; + } + } + + // Ch. debug +/* printf("\n ------------- EQUALIZATION -------------\n"); + printf(" ADCZN1 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + equalTowZN1[0],equalTowZN1[1],equalTowZN1[2],equalTowZN1[3],equalTowZN1[4]); + printf(" ADCZP1 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + equalTowZP1[0],equalTowZP1[1],equalTowZP1[2],equalTowZP1[3],equalTowZP1[4]); + printf(" ADCZN2 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + equalTowZN2[0],equalTowZN2[1],equalTowZN2[2],equalTowZN2[3],equalTowZN2[4]); + printf(" ADCZP2 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + equalTowZP2[0],equalTowZP2[1],equalTowZP2[2],equalTowZP2[3],equalTowZP2[4]); + printf(" ----------------------------------------\n"); +*/ + + // *** p-A RUN 2013 -> new calibration object + // to take into account saturation in ZN PMC + // -> 5th order pol. fun. to be applied BEFORE en. calibration + equalTowZN1[0] = equalTowZN1[0] + calibSatZNC[0]*equalTowZN1[0]*equalTowZN1[0] + + calibSatZNC[1]*equalTowZN1[0]*equalTowZN1[0]*equalTowZN1[0] + + calibSatZNC[2]*equalTowZN1[0]*equalTowZN1[0]*equalTowZN1[0]*equalTowZN1[0] + + calibSatZNC[3]*equalTowZN1[0]*equalTowZN1[0]*equalTowZN1[0]*equalTowZN1[0]*equalTowZN1[0]; + equalTowZN2[0] = equalTowZN2[0] + calibSatZNA[0]*equalTowZN2[0]*equalTowZN2[0] + + calibSatZNA[1]*equalTowZN2[0]*equalTowZN2[0]*equalTowZN2[0] + + calibSatZNA[2]*equalTowZN2[0]*equalTowZN2[0]*equalTowZN2[0]*equalTowZN2[0] + + calibSatZNA[3]*equalTowZN2[0]*equalTowZN2[0]*equalTowZN2[0]*equalTowZN2[0]*equalTowZN2[0]; + + // ****** Summed response for hadronic calorimeter (SUMMED and then CALIBRATED!) + Float_t calibSumZN1[]={0,0}, calibSumZN2[]={0,0}, calibSumZP1[]={0,0}, calibSumZP2[]={0,0}; + for(Int_t gi=0; gi<5; gi++){ + calibSumZN1[0] += equalTowZN1[gi]; + calibSumZP1[0] += equalTowZP1[gi]; + calibSumZN2[0] += equalTowZN2[gi]; + calibSumZP2[0] += equalTowZP2[gi]; + // + calibSumZN1[1] += equalTowZN1[gi+5]; + calibSumZP1[1] += equalTowZP1[gi+5]; + calibSumZN2[1] += equalTowZN2[gi+5]; + calibSumZP2[1] += equalTowZP2[gi+5]; } - // - if(calibSumZN1HG/maxValEZN1>1.) nGenSpecNLeft = (Int_t) (fZEMn->Eval(corrADCZEMHG)); - if(calibSumZP1HG/maxValEZP1>1.) nGenSpecPLeft = (Int_t) (fZEMp->Eval(corrADCZEMHG)); - if((calibSumZN1HG+calibSumZP1HG/maxValEZDC1)>1.){ - nGenSpecLeft = (Int_t)(fZEMsp->Eval(corrADCZEMHG)); - impPar = fZEMb->Eval(corrADCZEMHG); - } - if(calibSumZN2HG/maxValEZN2>1.) nGenSpecNRight = (Int_t) (fZEMn->Eval(corrADCZEMHG)); - if(calibSumZP2HG/maxValEZP2>1.) nGenSpecPRight = (Int_t) (fZEMp->Eval(corrADCZEMHG)); - if((calibSumZN2HG+calibSumZP2HG/maxValEZDC2)>1.) nGenSpecRight = (Int_t)(fZEMsp->Eval(corrADCZEMHG)); // - if(nGenSpecNLeft>125) nGenSpecNLeft=125; - else if(nGenSpecNLeft<0) nGenSpecNLeft=0; - if(nGenSpecPLeft>82) nGenSpecPLeft=82; - else if(nGenSpecPLeft<0) nGenSpecPLeft=0; - if(nGenSpecLeft>207) nGenSpecLeft=207; - else if(nGenSpecLeft<0) nGenSpecLeft=0; - - // --- Number of generated participants (from HIJING parameterization) - Int_t nPart, nPartTotLeft, nPartTotRight; - nPart = 207-nGenSpecNLeft-nGenSpecPLeft; - nPartTotLeft = 207-nGenSpecLeft; - nPartTotRight = 207-nGenSpecRight; - if(nPart<0) nPart=0; - if(nPartTotLeft<0) nPartTotLeft=0; - if(nPartTotRight<0) nPartTotRight=0; + //fEnCalibData->Print(""); + + // High gain chain + calibSumZN1[0] = calibSumZN1[0]*calibEne[0]*8.; + calibSumZP1[0] = calibSumZP1[0]*calibEne[1]*8.; + calibSumZN2[0] = calibSumZN2[0]*calibEne[2]*8.; + calibSumZP2[0] = calibSumZP2[0]*calibEne[3]*8.; + // Low gain chain + calibSumZN1[1] = calibSumZN1[1]*calibEne[0]; + calibSumZP1[1] = calibSumZP1[1]*calibEne[1]; + calibSumZN2[1] = calibSumZN2[1]*calibEne[2]; + calibSumZP2[1] = calibSumZP2[1]*calibEne[3]; // - // *** DEBUG *** -/* printf("\n\t AliZDCReconstructor -> calibSumZN1HG %1.0f, calibSumZP1HG %1.0f," - " calibSumZN2HG %1.0f, calibSumZP2HG %1.0f, corrADCZEMHG %1.0f\n", - calibSumZN1HG,calibSumZP1HG,calibSumZN2HG,calibSumZP2HG,corrADCZEMHG); - printf("\t AliZDCReconstructor -> nGenSpecNLeft %d, nGenSpecPLeft %d, nGenSpecLeft %d\n" - "\t\t nGenSpecNRight %d, nGenSpecPRight %d, nGenSpecRight %d\n", - nGenSpecNLeft, nGenSpecPLeft, nGenSpecLeft, - nGenSpecNRight, nGenSpecPRight, nGenSpecRight); - printf("\t AliZDCReconstructor -> NpartL %d, NpartR %d, b %1.2f fm\n\n",nPartTotLeft, nPartTotRight, impPar); -*/ - // create the output tree - AliZDCReco reco(calibSumZN1HG, calibSumZP1HG, calibSumZN2HG, calibSumZP2HG, - calibTowZN1LG, calibTowZN2LG, calibTowZP1LG, calibTowZP2LG, - corrADCZEMHG, + Float_t calibZEM1[]={0,0}, calibZEM2[]={0,0}; + calibZEM1[0] = corrADCZEM1[0]*calibEne[4]; + calibZEM1[1] = corrADCZEM1[1]*calibEne[4]; + calibZEM2[0] = corrADCZEM2[0]*calibEne[5]; + calibZEM2[1] = corrADCZEM2[1]*calibEne[5]; + + // ****** Energy calibration of detector responses + Float_t calibTowZN1[10], calibTowZN2[10], calibTowZP1[10], calibTowZP2[10]; + for(Int_t gi=0; gi<5; gi++){ + // High gain chain + calibTowZN1[gi] = equalTowZN1[gi]*2*calibEne[0]*8.; + calibTowZP1[gi] = equalTowZP1[gi]*2*calibEne[1]*8.; + calibTowZN2[gi] = equalTowZN2[gi]*2*calibEne[2]*8.; + calibTowZP2[gi] = equalTowZP2[gi]*2*calibEne[3]*8.; + // Low gain chain + calibTowZN1[gi+5] = equalTowZN1[gi+5]*2*calibEne[0]; + calibTowZP1[gi+5] = equalTowZP1[gi+5]*2*calibEne[1]; + calibTowZN2[gi+5] = equalTowZN2[gi+5]*2*calibEne[2]; + calibTowZP2[gi+5] = equalTowZP2[gi+5]*2*calibEne[3]; + } + + // Ch. debug +/* printf("\n ------------- CALIBRATION -------------\n"); + printf(" ADCZN1 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + calibTowZN1[0],calibTowZN1[1],calibTowZN1[2],calibTowZN1[3],calibTowZN1[4]); + printf(" ADCZP1 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + calibTowZP1[0],calibTowZP1[1],calibTowZP1[2],calibTowZP1[3],calibTowZP1[4]); + printf(" ADCZN2 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + calibTowZN2[0],calibTowZN2[1],calibTowZN2[2],calibTowZN2[3],calibTowZN2[4]); + printf(" ADCZP2 [%1.2f %1.2f %1.2f %1.2f %1.2f]\n", + calibTowZP2[0],calibTowZP2[1],calibTowZP2[2],calibTowZP2[3],calibTowZP2[4]); + printf(" ADCZEM1 [%1.2f] ADCZEM2 [%1.2f] \n",calibZEM1[0],calibZEM2[0]); + printf(" ----------------------------------------\n"); +*/ + // ****** Number of detected spectator nucleons + Int_t nDetSpecNLeft=0, nDetSpecPLeft=0, nDetSpecNRight=0, nDetSpecPRight=0; + if(fBeamEnergy>0.01){ + nDetSpecNLeft = (Int_t) (calibSumZN1[0]/fBeamEnergy); + nDetSpecPLeft = (Int_t) (calibSumZP1[0]/fBeamEnergy); + nDetSpecNRight = (Int_t) (calibSumZN2[0]/fBeamEnergy); + nDetSpecPRight = (Int_t) (calibSumZP2[0]/fBeamEnergy); + } + else AliWarning(" ATTENTION!!! fBeamEnergy=0 -> N_spec will be ZERO!!! \n"); + /*printf("\n\t AliZDCReconstructor -> fBeamEnergy %1.0f: nDetSpecNsideA %d, nDetSpecPsideA %d," + " nDetSpecNsideC %d, nDetSpecPsideC %d\n",fBeamEnergy,nDetSpecNLeft, nDetSpecPLeft, + nDetSpecNRight, nDetSpecPRight);*/ + + Int_t nGenSpec=0, nGenSpecA=0, nGenSpecC=0; + Int_t nPart=0, nPartA=0, nPartC=0; + Double_t b=0., bA=0., bC=0.; + + if(fIsCalibrationMB == kFALSE){ + // ****** Reconstruction parameters ------------------ + if(!fgRecoParam) fgRecoParam = const_cast(GetRecoParam()); + if(!fgRecoParam){ + AliError(" RecoParam object not retrieved correctly: not reconstructing ZDC event!!!"); + return; + } + TH1D* hNpartDist = fgRecoParam->GethNpartDist(); + TH1D* hbDist = fgRecoParam->GethbDist(); + Float_t fClkCenter = fgRecoParam->GetClkCenter(); + if(!hNpartDist || !hbDist){ + AliError("Something wrong in Glauber MC histos got from AliZDCREcoParamPbPb: NO EVENT RECO FOR ZDC DATA!!!\n\n"); + //return; + } + else{ + if(!fgMBCalibData) fgMBCalibData = const_cast(GetMBCalibData()); + TH2F *hZDCvsZEM = fgMBCalibData->GethZDCvsZEM(); + TH2F *hZDCCvsZEM = fgMBCalibData->GethZDCCvsZEM(); + TH2F *hZDCAvsZEM = fgMBCalibData->GethZDCAvsZEM(); + // + Double_t xHighEdge = hZDCvsZEM->GetXaxis()->GetXmax(); + Double_t origin = xHighEdge*fClkCenter; + // Ch. debug + //printf("\n\n xHighEdge %1.2f, origin %1.4f \n", xHighEdge, origin); + // + // ====> Summed ZDC info (sideA+side C) + TF1 *line = new TF1("line","[0]*x+[1]",0.,xHighEdge); + Float_t y = (calibSumZN1[0]+calibSumZP1[0]+calibSumZN2[0]+calibSumZP2[0])/1000.; + Float_t x = (calibZEM1[0]+calibZEM2[0])/1000.; + line->SetParameter(0, y/(x-origin)); + line->SetParameter(1, -origin*y/(x-origin)); + // Ch. debug + //printf(" ***************** Summed ZDC info (sideA+side C) \n"); + //printf(" E_{ZEM} %1.4f, E_{ZDC} %1.2f, TF1: %1.2f*x + %1.2f ", x, y,y/(x-origin),-origin*y/(x-origin)); + // + Double_t countPerc=0; + Double_t xBinCenter=0, yBinCenter=0; + for(Int_t nbinx=1; nbinx<=hZDCvsZEM->GetNbinsX(); nbinx++){ + for(Int_t nbiny=1; nbiny<=hZDCvsZEM->GetNbinsY(); nbiny++){ + xBinCenter = hZDCvsZEM->GetXaxis()->GetBinCenter(nbinx); + yBinCenter = hZDCvsZEM->GetYaxis()->GetBinCenter(nbiny); + // + if(line->GetParameter(0)>0){ + if(yBinCenter < (line->GetParameter(0)*xBinCenter + line->GetParameter(1))){ + countPerc += hZDCvsZEM->GetBinContent(nbinx,nbiny); + // Ch. debug + //printf(" xBinCenter %1.3f, yBinCenter %1.0f, countPerc %1.0f\n", + //xBinCenter, yBinCenter, countPerc); + } + } + else{ + if(yBinCenter > (line->GetParameter(0)*xBinCenter + line->GetParameter(1))){ + countPerc += hZDCvsZEM->GetBinContent(nbinx,nbiny); + // Ch. debug + //printf(" xBinCenter %1.3f, yBinCenter %1.0f, countPerc %1.0f\n", + //xBinCenter, yBinCenter, countPerc); + } + } + } + } + // + Double_t xSecPerc = 0.; + if(hZDCvsZEM->GetEntries()!=0){ + xSecPerc = countPerc/hZDCvsZEM->GetEntries(); + } + else{ + AliWarning(" Histogram hZDCvsZEM from OCDB has no entries!!!"); + } + // Ch. debug + //printf(" xSecPerc %1.4f \n", xSecPerc); + + // ====> side C + TF1 *lineC = new TF1("lineC","[0]*x+[1]",0.,xHighEdge); + Float_t yC = (calibSumZN1[0]+calibSumZP1[0])/1000.; + lineC->SetParameter(0, yC/(x-origin)); + lineC->SetParameter(1, -origin*yC/(x-origin)); + // Ch. debug + //printf(" ***************** Side C \n"); + //printf(" E_{ZEM} %1.4f, E_{ZDCC} %1.2f, TF1: %1.2f*x + %1.2f ", x, yC,yC/(x-origin),-origin*yC/(x-origin)); + // + Double_t countPercC=0; + Double_t xBinCenterC=0, yBinCenterC=0; + for(Int_t nbinx=1; nbinx<=hZDCCvsZEM->GetNbinsX(); nbinx++){ + for(Int_t nbiny=1; nbiny<=hZDCCvsZEM->GetNbinsY(); nbiny++){ + xBinCenterC = hZDCCvsZEM->GetXaxis()->GetBinCenter(nbinx); + yBinCenterC = hZDCCvsZEM->GetYaxis()->GetBinCenter(nbiny); + if(lineC->GetParameter(0)>0){ + if(yBinCenterC < (lineC->GetParameter(0)*xBinCenterC + lineC->GetParameter(1))){ + countPercC += hZDCCvsZEM->GetBinContent(nbinx,nbiny); + } + } + else{ + if(yBinCenterC > (lineC->GetParameter(0)*xBinCenterC + lineC->GetParameter(1))){ + countPercC += hZDCCvsZEM->GetBinContent(nbinx,nbiny); + } + } + } + } + // + Double_t xSecPercC = 0.; + if(hZDCCvsZEM->GetEntries()!=0){ + xSecPercC = countPercC/hZDCCvsZEM->GetEntries(); + } + else{ + AliWarning(" Histogram hZDCCvsZEM from OCDB has no entries!!!"); + } + // Ch. debug + //printf(" xSecPercC %1.4f \n", xSecPercC); + + // ====> side A + TF1 *lineA = new TF1("lineA","[0]*x+[1]",0.,xHighEdge); + Float_t yA = (calibSumZN2[0]+calibSumZP2[0])/1000.; + lineA->SetParameter(0, yA/(x-origin)); + lineA->SetParameter(1, -origin*yA/(x-origin)); + // + // Ch. debug + //printf(" ***************** Side A \n"); + //printf(" E_{ZEM} %1.4f, E_{ZDCA} %1.2f, TF1: %1.2f*x + %1.2f ", x, yA,yA/(x-origin),-origin*yA/(x-origin)); + // + Double_t countPercA=0; + Double_t xBinCenterA=0, yBinCenterA=0; + for(Int_t nbinx=1; nbinx<=hZDCAvsZEM->GetNbinsX(); nbinx++){ + for(Int_t nbiny=1; nbiny<=hZDCAvsZEM->GetNbinsY(); nbiny++){ + xBinCenterA = hZDCAvsZEM->GetXaxis()->GetBinCenter(nbinx); + yBinCenterA = hZDCAvsZEM->GetYaxis()->GetBinCenter(nbiny); + if(lineA->GetParameter(0)>0){ + if(yBinCenterA < (lineA->GetParameter(0)*xBinCenterA + lineA->GetParameter(1))){ + countPercA += hZDCAvsZEM->GetBinContent(nbinx,nbiny); + } + } + else{ + if(yBinCenterA > (lineA->GetParameter(0)*xBinCenterA + lineA->GetParameter(1))){ + countPercA += hZDCAvsZEM->GetBinContent(nbinx,nbiny); + } + } + } + } + // + Double_t xSecPercA = 0.; + if(hZDCAvsZEM->GetEntries()!=0){ + xSecPercA = countPercA/hZDCAvsZEM->GetEntries(); + } + else{ + AliWarning(" Histogram hZDCAvsZEM from OCDB has no entries!!!"); + } + // Ch. debug + //printf(" xSecPercA %1.4f \n", xSecPercA); + + // ****** Number of participants (from E_ZDC vs. E_ZEM correlation) + Double_t nPartFrac=0., nPartFracC=0., nPartFracA=0.; + for(Int_t npbin=1; npbinGetNbinsX(); npbin++){ + nPartFrac += (hNpartDist->GetBinContent(npbin))/(hNpartDist->GetEntries()); + if((1.-nPartFrac) < xSecPerc){ + nPart = (Int_t) hNpartDist->GetBinLowEdge(npbin); + // Ch. debug + //printf(" ***************** Summed ZDC info (sideA+side C) \n"); + //printf(" nPartFrac %1.4f, nPart %d\n", nPartFrac, nPart); + break; + } + } + if(nPart<0) nPart=0; + // + for(Int_t npbin=1; npbinGetNbinsX(); npbin++){ + nPartFracC += (hNpartDist->GetBinContent(npbin))/(hNpartDist->GetEntries()); + if((1.-nPartFracC) < xSecPercC){ + nPartC = (Int_t) hNpartDist->GetBinLowEdge(npbin); + // Ch. debug + //printf(" ***************** Side C \n"); + //printf(" nPartFracC %1.4f, nPartC %d\n", nPartFracC, nPartC); + break; + } + } + if(nPartC<0) nPartC=0; + // + for(Int_t npbin=1; npbinGetNbinsX(); npbin++){ + nPartFracA += (hNpartDist->GetBinContent(npbin))/(hNpartDist->GetEntries()); + if((1.-nPartFracA) < xSecPercA){ + nPartA = (Int_t) hNpartDist->GetBinLowEdge(npbin); + // Ch. debug + //printf(" ***************** Side A \n"); + //printf(" nPartFracA %1.4f, nPartA %d\n\n", nPartFracA, nPartA); + break; + } + } + if(nPartA<0) nPartA=0; + + // ****** Impact parameter (from E_ZDC vs. E_ZEM correlation) + Double_t bFrac=0., bFracC=0., bFracA=0.; + for(Int_t ibbin=1; ibbinGetNbinsX(); ibbin++){ + bFrac += (hbDist->GetBinContent(ibbin))/(hbDist->GetEntries()); + if(bFrac > xSecPerc){ + b = hbDist->GetBinLowEdge(ibbin); + break; + } + } + // + for(Int_t ibbin=1; ibbinGetNbinsX(); ibbin++){ + bFracC += (hbDist->GetBinContent(ibbin))/(hbDist->GetEntries()); + if(bFracC > xSecPercC){ + bC = hbDist->GetBinLowEdge(ibbin); + break; + } + } + // + for(Int_t ibbin=1; ibbinGetNbinsX(); ibbin++){ + bFracA += (hbDist->GetBinContent(ibbin))/(hbDist->GetEntries()); + if(bFracA > xSecPercA){ + bA = hbDist->GetBinLowEdge(ibbin); + break; + } + } + + // ****** Number of spectator nucleons + nGenSpec = 416 - nPart; + nGenSpecC = 416 - nPartC; + nGenSpecA = 416 - nPartA; + if(nGenSpec>416) nGenSpec=416; if(nGenSpec<0) nGenSpec=0; + if(nGenSpecC>416) nGenSpecC=416; if(nGenSpecC<0) nGenSpecC=0; + if(nGenSpecA>416) nGenSpecA=416; if(nGenSpecA<0) nGenSpecA=0; + + delete line; + delete lineC; delete lineA; + } + } // ONLY IF fIsCalibrationMB==kFALSE + + Bool_t energyFlag = kTRUE; + AliZDCReco* reco = new AliZDCReco(calibSumZN1, calibSumZP1, calibSumZN2, calibSumZP2, + calibTowZN1, calibTowZP1, calibTowZN2, calibTowZP2, + calibZEM1, calibZEM2, sPMRef1, sPMRef2, nDetSpecNLeft, nDetSpecPLeft, nDetSpecNRight, nDetSpecPRight, - nGenSpecNLeft, nGenSpecPLeft, nGenSpecLeft, nGenSpecNRight, - nGenSpecPRight, nGenSpecRight, - nPartTotLeft, nPartTotRight, impPar); - - AliZDCReco* preco = &reco; + nGenSpec, nGenSpecA, nGenSpecC, + nPart, nPartA, nPartC, b, bA, bC, + recoFlag, energyFlag, isScalerOn, scaler, tdcData); + const Int_t kBufferSize = 4000; - clustersTree->Branch("ZDC", "AliZDCReco", &preco, kBufferSize); - + clustersTree->Branch("ZDC", "AliZDCReco", &reco, kBufferSize); + //reco->Print(""); // write the output tree clustersTree->Fill(); + delete reco; } + //_____________________________________________________________________________ void AliZDCReconstructor::FillZDCintoESD(TTree *clustersTree, AliESDEvent* esd) const { // fill energies and number of participants to the ESD + // Retrieving TDC calibration data + // Parameters for TDC centering around zero + int const knTDC = 6; + Float_t tdcOffset[knTDC]; + for(Int_t jj=0; jjGetMeanTDC(jj); + //fTDCCalibData->Print(""); + AliZDCReco reco; AliZDCReco* preco = &reco; clustersTree->SetBranchAddress("ZDC", &preco); - clustersTree->GetEntry(0); - Double_t tZN1Ene[4], tZN2Ene[4]; - for(Int_t i=0; i<4; i++){ - tZN1Ene[i] = reco.GetZN1EnTow(i); - tZN2Ene[i] = reco.GetZN2EnTow(i); - } - esd->SetZDC(tZN1Ene, tZN2Ene, reco.GetZN1Energy(), reco.GetZP1Energy(), reco.GetZEMsignal(), - reco.GetZN2Energy(), reco.GetZP2Energy(), - reco.GetNPartLeft()); // - /*Double_t tZN1Ene[4], tZN2Ene[4]; - for(Int_t i=0; i<4; i++){ - tZN1Ene[i] = reco.GetZN1EnTow(i); - tZN2Ene[i] = reco.GetZN2EnTow(i); - }*/ - //esd->SetZN1TowerEnergy(tZN1Ene); - //esd->SetZN2TowerEnergy(tZN2Ene); + Float_t tZN1Ene[5], tZN2Ene[5], tZP1Ene[5], tZP2Ene[5]; + Float_t tZN1EneLR[5], tZN2EneLR[5], tZP1EneLR[5], tZP2EneLR[5]; + for(Int_t i=0; i<5; i++){ + tZN1Ene[i] = reco.GetZN1HREnTow(i); + tZN2Ene[i] = reco.GetZN2HREnTow(i); + tZP1Ene[i] = reco.GetZP1HREnTow(i); + tZP2Ene[i] = reco.GetZP2HREnTow(i); + // + tZN1EneLR[i] = reco.GetZN1LREnTow(i); + tZN2EneLR[i] = reco.GetZN2LREnTow(i); + tZP1EneLR[i] = reco.GetZP1LREnTow(i); + tZP2EneLR[i] = reco.GetZP2LREnTow(i); + } + // + fESDZDC->SetZN1TowerEnergy(tZN1Ene); + fESDZDC->SetZN2TowerEnergy(tZN2Ene); + fESDZDC->SetZP1TowerEnergy(tZP1Ene); + fESDZDC->SetZP2TowerEnergy(tZP2Ene); + // + fESDZDC->SetZN1TowerEnergyLR(tZN1EneLR); + fESDZDC->SetZN2TowerEnergyLR(tZN2EneLR); + fESDZDC->SetZP1TowerEnergyLR(tZP1EneLR); + fESDZDC->SetZP2TowerEnergyLR(tZP2EneLR); + // + Int_t nPart = reco.GetNParticipants(); + Int_t nPartA = reco.GetNPartSideA(); + Int_t nPartC = reco.GetNPartSideC(); + Double_t b = reco.GetImpParameter(); + Double_t bA = reco.GetImpParSideA(); + Double_t bC = reco.GetImpParSideC(); + UInt_t recoFlag = reco.GetRecoFlag(); + + fESDZDC->SetZDC(reco.GetZN1HREnergy(), reco.GetZP1HREnergy(), + reco.GetZEM1HRsignal(), reco.GetZEM2HRsignal(), + reco.GetZN2HREnergy(), reco.GetZP2HREnergy(), + nPart, nPartA, nPartC, b, bA, bC, recoFlag); + + // Writing ZDC scaler for cross section calculation + // ONLY IF the scaler has been read during the event + if(reco.IsScalerOn()==kTRUE){ + UInt_t counts[32]; + for(Int_t jk=0; jk<32; jk++) counts[jk] = reco.GetZDCScaler(jk); + fESDZDC->SetZDCScaler(counts); + } + + Int_t tdcValues[32][4] = {{0,}}; + Float_t tdcCorrected[32][4] = {{9999.,}}; + for(Int_t jk=0; jk<32; jk++){ + for(Int_t lk=0; lk<4; lk++){ + tdcValues[jk][lk] = reco.GetZDCTDCData(jk, lk); + // + if(jk==8 && TMath::Abs(tdcValues[jk][lk])>1e-09) fESDZDC->SetZEM1TDChit(kTRUE); + else if(jk==9 && TMath::Abs(tdcValues[jk][lk])>1e-09) fESDZDC->SetZEM2TDChit(kTRUE); + else if(jk==10 && TMath::Abs(tdcValues[jk][lk])>1e-09) fESDZDC->SetZNCTDChit(kTRUE); + else if(jk==11 && TMath::Abs(tdcValues[jk][lk])>1e-09) fESDZDC->SetZPCTDChit(kTRUE); + else if(jk==12 && TMath::Abs(tdcValues[jk][lk])>1e-09) fESDZDC->SetZNATDChit(kTRUE); + else if(jk==13 && TMath::Abs(tdcValues[jk][lk])>1e-09) fESDZDC->SetZPATDChit(kTRUE); + //Ch debug + //if((jk>=8 && jk<=13 && lk==0) || jk==15) printf(" *** ZDC: tdc%d = %d = %f ns \n",jk,tdcValues[jk][lk],0.025*tdcValues[jk][lk]); + } + } + + // Writing TDC data into ZDC ESDs + // 4/2/2011 -> Subtracting L0 (tdcValues[15]) instead of ADC gate + // we try to keep the TDC oscillations as low as possible! + for(Int_t jk=0; jk<32; jk++){ + for(Int_t lk=0; lk<4; lk++){ + if(tdcValues[jk][lk]!=0.){ + // Feb2013 _-> TDC correct entry is there ONLY IF tdc has a hit! + if(TMath::Abs(tdcValues[jk][lk])>1e-09){ + tdcCorrected[jk][lk] = 0.025*(tdcValues[jk][lk]-tdcValues[15][0])+fMeanPhase; + // Sep 2011: TDC ch. from 8 to 13 centered around 0 using OCDB + if(jk>=8 && jk<=13) tdcCorrected[jk][lk] = tdcCorrected[jk][lk] - tdcOffset[jk-8]; + //Ch. debug + //if(jk>=8 && jk<=13) printf(" *** tdcOffset%d %f tdcCorr%d %f \n",jk,tdcOffset[jk-8],tdcCorrected[jk][lk]); + } + } + } + } + + fESDZDC->SetZDCTDCData(tdcValues); + fESDZDC->SetZDCTDCCorrected(tdcCorrected); + fESDZDC->AliESDZDC::SetBit(AliESDZDC::kCorrectedTDCFilled, reco.GetEnergyFlag()); + fESDZDC->AliESDZDC::SetBit(AliESDZDC::kEnergyCalibratedSignal, kTRUE); + if(esd) esd->SetZDCData(fESDZDC); } //_____________________________________________________________________________ @@ -570,16 +1459,105 @@ AliCDBStorage* AliZDCReconstructor::SetStorage(const char *uri) } //_____________________________________________________________________________ -AliZDCCalibData* AliZDCReconstructor::GetCalibData() const +AliZDCPedestals* AliZDCReconstructor::GetPedestalData() const { - // Getting calibration object for ZDC set + // Getting pedestal calibration object for ZDC set + AliZDCPedestals *calibdata = 0x0; + AliCDBEntry *entry = AliCDBManager::Instance()->Get("ZDC/Calib/Pedestals"); + if(!entry) AliFatal("No calibration data loaded!"); + else{ + entry->SetOwner(kFALSE); - AliCDBEntry *entry = AliCDBManager::Instance()->Get("ZDC/Calib/Data"); + calibdata = dynamic_cast (entry->GetObject()); + if(!calibdata) AliFatal("Wrong calibration object in calibration file!"); + + } + return calibdata; +} + +//_____________________________________________________________________________ +AliZDCEnCalib* AliZDCReconstructor::GetEnergyCalibData() const +{ + + // Getting energy and equalization calibration object for ZDC set + AliZDCEnCalib *calibdata = 0x0; + AliCDBEntry *entry = AliCDBManager::Instance()->Get("ZDC/Calib/EnergyCalib"); if(!entry) AliFatal("No calibration data loaded!"); + else{ + entry->SetOwner(kFALSE); - AliZDCCalibData *calibdata = dynamic_cast (entry->GetObject()); - if(!calibdata) AliFatal("Wrong calibration object in calibration file!"); + calibdata = dynamic_cast (entry->GetObject()); + if(!calibdata) AliFatal("Wrong calibration object in calibration file!"); + } + return calibdata; +} +//_____________________________________________________________________________ +AliZDCSaturationCalib* AliZDCReconstructor::GetSaturationCalibData() const +{ + + // Getting energy and equalization calibration object for ZDC set + AliZDCSaturationCalib *calibdata = 0x0; + AliCDBEntry *entry = AliCDBManager::Instance()->Get("ZDC/Calib/SaturationCalib"); + if(!entry) AliFatal("No calibration data loaded!"); + else{ + entry->SetOwner(kFALSE); + + calibdata = dynamic_cast (entry->GetObject()); + if(!calibdata) AliFatal("Wrong calibration object in calibration file!"); + } + return calibdata; +} + +//_____________________________________________________________________________ +AliZDCTowerCalib* AliZDCReconstructor::GetTowerCalibData() const +{ + + // Getting energy and equalization calibration object for ZDC set + AliZDCTowerCalib *calibdata = 0x0; + AliCDBEntry *entry = AliCDBManager::Instance()->Get("ZDC/Calib/TowerCalib"); + if(!entry) AliFatal("No calibration data loaded!"); + else{ + entry->SetOwner(kFALSE); + + calibdata = dynamic_cast (entry->GetObject()); + if(!calibdata) AliFatal("Wrong calibration object in calibration file!"); + } + return calibdata; +} + +//_____________________________________________________________________________ +AliZDCMBCalib* AliZDCReconstructor::GetMBCalibData() const +{ + + // Getting energy and equalization calibration object for ZDC set + AliZDCMBCalib *calibdata = 0x0; + AliCDBEntry *entry = AliCDBManager::Instance()->Get("ZDC/Calib/MBCalib"); + if(!entry) AliFatal("No calibration data loaded!"); + else{ + entry->SetOwner(kFALSE); + + calibdata = dynamic_cast (entry->GetObject()); + if(!calibdata) AliFatal("Wrong calibration object in calibration file!"); + } + return calibdata; +} + +//_____________________________________________________________________________ +AliZDCTDCCalib* AliZDCReconstructor::GetTDCCalibData() const +{ + + // Getting TDC object for ZDC + AliZDCTDCCalib *calibdata = 0x0; + AliCDBEntry *entry = AliCDBManager::Instance()->Get("ZDC/Calib/TDCCalib"); + if(!entry) AliFatal("No calibration data loaded!"); + else{ + entry->SetOwner(kFALSE); + + calibdata = dynamic_cast (entry->GetObject()); + if(!calibdata) AliFatal("Wrong calibration object in calibration file!"); + + } return calibdata; }