// "anglecorr" - switch for the angular correction
// "Bethe" - function calculating the energy loss (GeV/(g/cm^2))
//------------------------------------------------------------------
-
++
Double_t bg=GetP()/mass;
+ if (mass<0) {
+ if (mass<-990) {
+ AliDebug(2,Form("Mass %f corresponds to unknown PID particle",mass));
+ return kFALSE;
+ }
+ bg = -2*bg;
+ }
Double_t dEdx=Bethe(bg);
+ if (mass<0) dEdx *= 4;
return CorrectForMeanMaterialdEdx(xOverX0,xTimesRho,mass,dEdx,anglecorr);
}
//------------------------------------------------------------------
Double_t bg=GetP()/mass;
+ if (mass<0) {
+ if (mass<-990) {
+ AliDebug(2,Form("Mass %f corresponds to unknown PID particle",mass));
+ return kFALSE;
+ }
+ bg = -2*bg;
+ }
Double_t dEdx=BetheBlochGeant(bg,density,jp1,jp2,exEnergy,zOverA);
+
+ if (mass<0) dEdx *= 4;
return CorrectForMeanMaterialdEdx(xOverX0,xTimesRho,mass,dEdx,anglecorr);
}
//---------------------------------------------------------------------
Double_t dx=x-fX;
if(TMath::Abs(dx)<=kAlmost0) {z=fP[1]; return kTRUE;}
- Double_t f1=fP[2], f2=f1 + dx*GetC(b);
+
+ Double_t crv=GetC(b);
+ Double_t x2r = crv*dx;
+ Double_t f1=fP[2], f2=f1 + x2r;
if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
//---------------------------------------------------------------------
Double_t dx=x-fX;
if(TMath::Abs(dx)<=kAlmost0) return GetXYZ(r);
- Double_t f1=fP[2], f2=f1 + dx*GetC(b);
+
+ Double_t crv=GetC(b);
+ Double_t x2r = crv*dx;
+ Double_t f1=fP[2], f2=f1 + dx*crv;
+
if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
+ double dy2dx = (f1+f2)/(r1+r2);
r[0] = x;
- r[1] = fP[0] + dx*(f1+f2)/(r1+r2);
- r[2] = fP[1] + dx*(r2 + f2*(f1+f2)/(r1+r2))*fP[3];//Thanks to Andrea & Peter
+ r[1] = fP[0] + dx*dy2dx;
+ if (TMath::Abs(x2r)<0.05) {
+ r[2] = fP[1] + dx*(r2 + f2*dy2dx)*fP[3];//Thanks to Andrea & Peter
+ }
+ else {
+ // for small dx/R the linear apporximation of the arc by the segment is OK,
+ // but at large dx/R the error is very large and leads to incorrect Z propagation
+ // angle traversed delta = 2*asin(dist_start_end / R / 2), hence the arc is: R*deltaPhi
+ // The dist_start_end is obtained from sqrt(dx^2+dy^2) = x/(r1+r2)*sqrt(2+f1*f2+r1*r2)
+ // Similarly, the rotation angle in linear in dx only for dx<<R
+ double chord = dx*TMath::Sqrt(1+dy2dx*dy2dx); // distance from old position to new one
+ double rot = 2*TMath::ASin(0.5*chord*crv); // angular difference seen from the circle center
+ r[2] = fP[1] + rot/crv*fP[3];
+ }
+
return Local2GlobalPosition(r,fAlpha);
}
// This function forces the diagonal elements of the covariance matrix to be positive.
// In case the diagonal element is bigger than the maximal allowed value, it is set to
// the limit and the off-diagonal elements that correspond to it are set to zero.
- fC[0] = TMath::Abs(fC[0]);
- if (fC[0]>kC0max) {
- fC[0] = kC0max;
- fC[1] = 0;
- fC[3] = 0;
- fC[6] = 0;
- fC[10] = 0;
- }
- fC[2] = TMath::Abs(fC[2]);
- if (fC[2]>kC2max) {
- fC[2] = kC2max;
- fC[1] = 0;
- fC[4] = 0;
- fC[7] = 0;
- fC[11] = 0;
- }
- fC[5] = TMath::Abs(fC[5]);
- if (fC[5]>kC5max) {
- fC[5] = kC5max;
- fC[3] = 0;
- fC[4] = 0;
- fC[8] = 0;
- fC[12] = 0;
- }
- fC[9] = TMath::Abs(fC[9]);
- if (fC[9]>kC9max) {
- fC[9] = kC9max;
- fC[6] = 0;
- fC[7] = 0;
- fC[8] = 0;
- fC[13] = 0;
- }
- fC[14] = TMath::Abs(fC[14]);
- if (fC[14]>kC14max) {
- fC[14] = kC14max;
- fC[10] = 0;
- fC[11] = 0;
- fC[12] = 0;
- fC[13] = 0;
- }
-
+
+ fC[0] = TMath::Abs(fC[0]);
+ if (fC[0]>kC0max) {
+ double scl = TMath::Sqrt(kC0max/fC[0]);
+ fC[0] = kC0max;
+ fC[1] *= scl;
+ fC[3] *= scl;
+ fC[6] *= scl;
+ fC[10] *= scl;
+ }
+ fC[2] = TMath::Abs(fC[2]);
+ if (fC[2]>kC2max) {
+ double scl = TMath::Sqrt(kC2max/fC[2]);
+ fC[2] = kC2max;
+ fC[1] *= scl;
+ fC[4] *= scl;
+ fC[7] *= scl;
+ fC[11] *= scl;
+ }
+ fC[5] = TMath::Abs(fC[5]);
+ if (fC[5]>kC5max) {
+ double scl = TMath::Sqrt(kC5max/fC[5]);
+ fC[5] = kC5max;
+ fC[3] *= scl;
+ fC[4] *= scl;
+ fC[8] *= scl;
+ fC[12] *= scl;
+ }
+ fC[9] = TMath::Abs(fC[9]);
+ if (fC[9]>kC9max) {
+ double scl = TMath::Sqrt(kC9max/fC[9]);
+ fC[9] = kC9max;
+ fC[6] *= scl;
+ fC[7] *= scl;
+ fC[8] *= scl;
+ fC[13] *= scl;
+ }
+ fC[14] = TMath::Abs(fC[14]);
+ if (fC[14]>kC14max) {
+ double scl = TMath::Sqrt(kC14max/fC[14]);
+ fC[14] = kC14max;
+ fC[10] *= scl;
+ fC[11] *= scl;
+ fC[12] *= scl;
+ fC[13] *= scl;
+ }
+
// The part below is used for tests and normally is commented out
// TMatrixDSym m(5);
// TVectorD eig(5);
//
return kTRUE;
}
-
--
- Double_t AliExternalTrackParam::GetParameterAtRadius(Double_t r, Double_t bz, Int_t &parType) const
+ //_________________________________________________________
+ Bool_t AliExternalTrackParam::GetXYZatR(Double_t xr,Double_t bz, Double_t *xyz, Double_t* alpSect) const
{
+ // This method has 3 modes of behaviour
+ // 1) xyz[3] array is provided but alpSect pointer is 0: calculate the position of track intersection
+ // with circle of radius xr and fill it in xyz array
+ // 2) alpSect pointer is provided: find alpha of the sector where the track reaches local coordinate xr
+ // Note that in this case xr is NOT the radius but the local coordinate.
+ // If the xyz array is provided, it will be filled by track lab coordinates at local X in this sector
+ // 3) Neither alpSect nor xyz pointers are provided: just check if the track reaches radius xr
//
- // Get track parameters at the radius of interest.
- // Given function is aimed to be used to interactivelly (tree->Draw())
- // access track properties at different radii
//
- // TO BE USED WITH SPECICAL CARE -
- // it is aimed to be used for rough calculation as constant field and
- // no correction for material is used
- //
- // r - radius of interest
- // bz - magentic field
- // retun values dependens on parType:
- // parType = 0 -gx
- // parType = 1 -gy
- // parType = 2 -gz
- //
- // parType = 3 -pgx
- // parType = 4 -pgy
- // parType = 5 -pgz
- //
- // parType = 6 - r
- // parType = 7 - global position phi
- // parType = 8 - global direction phi
- // parType = 9 - direction phi- positionphi
- if (parType<0) {
- parType=-1;
- return 0;
- }
- Double_t xyz[3];
- Double_t pxyz[3];
- Double_t localX=0;
- Bool_t res = GetXatLabR(r,localX,bz,1);
- if (!res) {
- parType=-1;
- return 0;
+ double crv = GetC(bz);
+ if ( (TMath::Abs(bz))<kAlmost0Field ) crv=0.;
+ const double &fy = fP[0];
+ const double &fz = fP[1];
+ const double &sn = fP[2];
+ const double &tgl = fP[3];
+ //
+ // general circle parameterization:
+ // x = (r0+tR)cos(phi0) - tR cos(t+phi0)
+ // y = (r0+tR)sin(phi0) - tR sin(t+phi0)
+ // where qb is the sign of the curvature, tR is the track's signed radius and r0
+ // is the DCA of helix to origin
+ //
+ double tR = 1./crv; // track radius signed
+ double cs = TMath::Sqrt((1-sn)*(1+sn));
+ double x0 = fX - sn*tR; // helix center coordinates
+ double y0 = fy + cs*tR;
+ double phi0 = TMath::ATan2(y0,x0); // angle of PCA wrt to the origin
+ if (tR<0) phi0 += TMath::Pi();
+ if (phi0 > TMath::Pi()) phi0 -= 2.*TMath::Pi();
+ else if (phi0 <-TMath::Pi()) phi0 += 2.*TMath::Pi();
+ double cs0 = TMath::Cos(phi0);
+ double sn0 = TMath::Sin(phi0);
+ double r0 = x0*cs0 + y0*sn0 - tR; // DCA to origin
+ double r2R = 1.+r0/tR;
+ //
+ //
+ if (r2R<kAlmost0) return kFALSE; // helix is centered at the origin, no specific intersection with other concetric circle
+ if (!xyz && !alpSect) return kTRUE;
+ double xr2R = xr/tR;
+ double r2Ri = 1./r2R;
+ // the intersection cos(t) = [1 + (r0/tR+1)^2 - (r0/tR)^2]/[2(1+r0/tR)]
+ double cosT = 0.5*(r2R + (1-xr2R*xr2R)*r2Ri);
+ if ( TMath::Abs(cosT)>kAlmost1 ) {
+ // printf("Does not reach : %f %f\n",r0,tR);
+ return kFALSE; // track does not reach the radius xr
}
//
- // position parameters
- //
- GetXYZAt(localX,bz,xyz);
- if (parType<3) {
- return xyz[parType];
+ double t = TMath::ACos(cosT);
+ if (tR<0) t = -t;
+ // intersection point
+ double xyzi[3];
+ xyzi[0] = x0 - tR*TMath::Cos(t+phi0);
+ xyzi[1] = y0 - tR*TMath::Sin(t+phi0);
+ if (xyz) { // if postition is requested, then z is needed:
+ double t0 = TMath::ATan2(cs,-sn) - phi0;
+ double z0 = fz - t0*tR*tgl;
+ xyzi[2] = z0 + tR*t*tgl;
}
- if (parType==6) return TMath::Sqrt(xyz[0]*xyz[0]+xyz[1]*xyz[1]);
- if (parType==7) return TMath::ATan2(xyz[1],xyz[0]);
- //
- // momenta parameters
- //
- GetPxPyPzAt(localX,bz,pxyz);
- if (parType==8) return TMath::ATan2(pxyz[1],pxyz[0]);
- if (parType==9) {
- Double_t diff = TMath::ATan2(pxyz[1],pxyz[0])-TMath::ATan2(xyz[1],xyz[0]);
- if (diff>TMath::Pi()) diff-=TMath::TwoPi();
- if (diff<-TMath::Pi()) diff+=TMath::TwoPi();
- return diff;
+ else xyzi[2] = 0;
+ //
+ Local2GlobalPosition(xyzi,fAlpha);
+ //
+ if (xyz) {
+ xyz[0] = xyzi[0];
+ xyz[1] = xyzi[1];
+ xyz[2] = xyzi[2];
}
- if (parType>=3&&parType<6) {
- return pxyz[parType%3];
+ //
+ if (alpSect) {
+ double &alp = *alpSect;
+ // determine the sector of crossing
+ double phiPos = TMath::Pi()+TMath::ATan2(-xyzi[1],-xyzi[0]);
+ int sect = ((Int_t)(phiPos*TMath::RadToDeg()))/20;
+ alp = TMath::DegToRad()*(20*sect+10);
+ double x2r,f1,f2,r1,r2,dx,dy2dx,yloc=0, ylocMax = xr*TMath::Tan(TMath::Pi()/18); // min max Y within sector at given X
+ //
+ while(1) {
+ Double_t ca=TMath::Cos(alp-fAlpha), sa=TMath::Sin(alp-fAlpha);
+ if ((cs*ca+sn*sa)<0) {
+ AliDebug(1,Form("Rotation to target sector impossible: local cos(phi) would become %.2f",cs*ca+sn*sa));
+ return kFALSE;
+ }
+ //
+ f1 = sn*ca - cs*sa;
+ if (TMath::Abs(f1) >= kAlmost1) {
+ AliDebug(1,Form("Rotation to target sector impossible: local sin(phi) would become %.2f",f1));
+ return kFALSE;
+ }
+ //
+ double tmpX = fX*ca + fy*sa;
+ double tmpY = -fX*sa + fy*ca;
+ //
+ // estimate Y at X=xr
+ dx=xr-tmpX;
+ x2r = crv*dx;
+ f2=f1 + x2r;
+ if (TMath::Abs(f2) >= kAlmost1) {
+ AliDebug(1,Form("Propagation in target sector failed ! %.10e",f2));
+ return kFALSE;
+ }
+ r1 = TMath::Sqrt((1.-f1)*(1.+f1));
+ r2 = TMath::Sqrt((1.-f2)*(1.+f2));
+ dy2dx = (f1+f2)/(r1+r2);
+ yloc = tmpY + dx*dy2dx;
+ if (yloc>ylocMax) {alp += 2*TMath::Pi()/18; sect++;}
+ else if (yloc<-ylocMax) {alp -= 2*TMath::Pi()/18; sect--;}
+ else break;
+ if (alp >= TMath::Pi()) alp -= 2*TMath::Pi();
+ else if (alp < -TMath::Pi()) alp += 2*TMath::Pi();
+ // if (sect>=18) sect = 0;
+ // if (sect<=0) sect = 17;
+ }
+ //
+ // if alpha was requested, then recalculate the position at intersection in sector
+ if (xyz) {
+ xyz[0] = xr;
+ xyz[1] = yloc;
+ if (TMath::Abs(x2r)<0.05) xyz[2] = fz + dx*(r2 + f2*dy2dx)*tgl;
+ else {
+ // for small dx/R the linear apporximation of the arc by the segment is OK,
+ // but at large dx/R the error is very large and leads to incorrect Z propagation
+ // angle traversed delta = 2*asin(dist_start_end / R / 2), hence the arc is: R*deltaPhi
+ // The dist_start_end is obtained from sqrt(dx^2+dy^2) = x/(r1+r2)*sqrt(2+f1*f2+r1*r2)
+ // Similarly, the rotation angle in linear in dx only for dx<<R
+ double chord = dx*TMath::Sqrt(1+dy2dx*dy2dx); // distance from old position to new one
+ double rot = 2*TMath::ASin(0.5*chord*crv); // angular difference seen from the circle center
+ xyz[2] = fz + rot/crv*tgl;
+ }
+ Local2GlobalPosition(xyz,alp);
+ }
}
- return 0;
+ return kTRUE;
+ //
}
-