--- /dev/null
+/***************************************************************************
+ * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
+ * *
+ * Author: The ALICE Off-line Project. *
+ * Contributors are mentioned in the code where appropriate. *
+ * *
+ * Permission to use, copy, modify and distribute this software and its *
+ * documentation strictly for non-commercial purposes is hereby granted *
+ * without fee, provided that the above copyright notice appears in all *
+ * copies and that both the copyright notice and this permission notice *
+ * appear in the supporting documentation. The authors make no claims *
+ * about the suitability of this software for any purpose. It is *
+ * provided "as is" without express or implied warranty. *
+ **************************************************************************/
+
+//-----------------------------------------------------//
+// //
+// Source File : PMDClustering.cxx, Version 00 //
+// //
+// Date : September 26 2002 //
+// //
+// clustering code for alice pmd //
+// //
+//-----------------------------------------------------//
+
+/* --------------------------------------------------------------------
+ Code developed by S. C. Phatak, Institute of Physics,
+ Bhubaneswar 751 005 ( phatak@iopb.res.in ) Given the energy deposited
+ ( or ADC value ) in each cell of supermodule ( pmd or cpv ), the code
+ builds up superclusters and breaks them into clusters. The input is
+ in array fEdepCell[kNDIMX][kNDIMY] and cluster information is in array
+ fClusters[5][5000]. integer fClno gives total number of clusters in the
+ supermodule.
+
+ fEdepCell, fClno and fClusters are the only global ( public ) variables.
+ Others are local ( private ) to the code.
+ At the moment, the data is read for whole detector ( all supermodules
+ and pmd as well as cpv. This will have to be modify later )
+ LAST UPDATE : October 23, 2002
+-----------------------------------------------------------------------*/
+
+#include "Riostream.h"
+#include <TNtuple.h>
+#include <TObjArray.h>
+#include <stdio.h>
+
+#include "AliPMDcluster.h"
+#include "AliPMDClustering.h"
+#include "AliPMDClusteringV1.h"
+#include "AliLog.h"
+
+ClassImp(AliPMDClusteringV1)
+
+const Double_t AliPMDClusteringV1::fgkSqroot3by2=0.8660254; // sqrt(3.)/2.
+
+AliPMDClusteringV1::AliPMDClusteringV1():
+ fCutoff(0.0)
+{
+ for(int i = 0; i < kNDIMX; i++)
+ {
+ for(int j = 0; j < kNDIMY; j++)
+ {
+ fCoord[0][i][j] = i+j/2.;
+ fCoord[1][i][j] = fgkSqroot3by2*j;
+ fEdepCell[i][j] = 0;
+ }
+ }
+}
+// ------------------------------------------------------------------------ //
+AliPMDClusteringV1::~AliPMDClusteringV1()
+{
+
+}
+// ------------------------------------------------------------------------ //
+void AliPMDClusteringV1::DoClust(Int_t idet, Int_t ismn, Double_t celladc[48][96], TObjArray *pmdcont)
+{
+ // main function to call other necessary functions to do clustering
+ //
+ AliPMDcluster *pmdcl = 0;
+ /*
+ int id and jd defined to read the input data.
+ It is assumed that for data we have 0 <= id <= 48
+ and 0 <= jd <=96
+ */
+ int i, i1, i2, j, nmx1, incr, id, jd;
+ Int_t celldataX[15], celldataY[15];
+ Float_t clusdata[7];
+
+ Double_t cutoff, ave;
+
+ const float ktwobysqrt3 = 1.1547; // 2./sqrt(3.)
+
+ for (id = 0; id < kNDIMXr; id++)
+ {
+ for (jd = 0; jd < kNDIMYr; jd++)
+ {
+ j=jd;
+ i=id+(kNDIMYr/2-1)-(jd/2);
+ fEdepCell[i][j] = celladc[id][jd];
+ }
+ }
+ Order(); // order the data
+ cutoff = fCutoff; // cutoff used to discard cells having ener. dep.
+ ave=0.;
+ nmx1=-1;
+
+ for(j=0;j<kNMX; j++)
+ {
+ i1 = fIord[0][j];
+ i2 = fIord[1][j];
+ if (fEdepCell[i1][i2] > 0.) {ave = ave + fEdepCell[i1][i2];}
+ if (fEdepCell[i1][i2] > cutoff ) nmx1 = nmx1 + 1;
+ }
+ // nmx1 --- number of cells having ener dep >= cutoff
+
+ AliDebug(1,Form("Number of cells having energy >= %f are %d",cutoff,nmx1));
+
+ // if (nmx1 == 0 | nmx1 == -1) return;
+
+ if (nmx1 == 0) nmx1 = 1;
+ ave=ave/nmx1;
+
+ AliDebug(1,Form("Number of cells in a SuperM = %d and Average = %f",
+ kNMX,ave));
+
+ incr = CrClust(ave, cutoff, nmx1);
+ RefClust(incr);
+
+ AliDebug(1,Form("Detector Plane = %d Serial Module No = %d Number of clusters = %d",idet, ismn, fClno));
+
+ for(i1=0; i1<=fClno; i1++)
+ {
+ Float_t cluXC = (Float_t) fClusters[0][i1];
+ Float_t cluYC = (Float_t) fClusters[1][i1];
+ Float_t cluADC = (Float_t) fClusters[2][i1];
+ Float_t cluCELLS = (Float_t) fClusters[3][i1];
+ Float_t cluRAD = (Float_t) fClusters[4][i1];
+ Float_t cluY0 = ktwobysqrt3*cluYC;
+ Float_t cluX0 = cluXC - cluY0/2.;
+ //
+ // Cluster X centroid is back transformed
+ //
+ clusdata[0] = cluX0 - (48-1) + cluY0/2.;
+ clusdata[1] = cluY0;
+ clusdata[2] = cluADC;
+ clusdata[3] = cluCELLS;
+ clusdata[4] = cluRAD;
+ clusdata[5] = 0.;
+
+ //
+ // Cells associated with a cluster
+ //
+ for (Int_t ihit = 0; ihit < 15; ihit++)
+ {
+ celldataX[ihit] = 2;
+ celldataY[ihit] = 5;
+ }
+
+ pmdcl = new AliPMDcluster(idet, ismn, clusdata, celldataX, celldataY);
+ pmdcont->Add(pmdcl);
+ }
+}
+// ------------------------------------------------------------------------ //
+void AliPMDClusteringV1::Order()
+{
+ // Sorting algorithm
+ // sorts the ADC values from higher to lower
+ //
+ double dd[kNMX];
+ // matrix fEdepCell converted into
+ // one dimensional array dd. adum a place holder for double
+ int i, j, i1, i2, iord1[kNMX];
+ // information of
+ // ordering is stored in iord1, original array not ordered
+ //
+ // define arrays dd and iord1
+ for(i1=0; i1 < kNDIMX; i1++)
+ {
+ for(i2=0; i2 < kNDIMY; i2++)
+ {
+ i = i1 + i2*kNDIMX;
+ iord1[i] = i;
+ dd[i] = fEdepCell[i1][i2];
+ }
+ }
+
+ TMath::Sort(kNMX,dd,iord1); //PH Using much better algorithm...
+ // store the sorted information in fIord for later use
+ for(i=0; i<kNMX; i++)
+ {
+ j = iord1[i];
+ i2 = j/kNDIMX;
+ i1 = j-i2*kNDIMX;
+ fIord[0][i]=i1;
+ fIord[1][i]=i2;
+ }
+}
+// ------------------------------------------------------------------------ //
+int AliPMDClusteringV1::CrClust(double ave, double cutoff, int nmx1)
+{
+ // Does crude clustering
+ // Finds out only the big patch by just searching the
+ // connected cells
+ //
+ int i,j,k,id1,id2,icl, numcell, clust[2][5000];
+ int jd1,jd2, icell, cellcount;
+ static int neibx[6]={1,0,-1,-1,0,1}, neiby[6]={0,1,1,0,-1,-1};
+ // neibx and neiby define ( incremental ) (i,j) for the neighbours of a
+ // cell. There are six neighbours.
+ // cellcount --- total number of cells having nonzero ener dep
+ // numcell --- number of cells in a given supercluster
+ // ofstream ofl0("cells_loc",ios::out);
+ // initialize fInfocl[2][kNDIMX][kNDIMY]
+
+ AliDebug(1,Form("kNMX = %d nmx1 = %d kNDIMX = %d kNDIMY = %d ave = %f cutoff = %f",kNMX,nmx1,kNDIMX,kNDIMY,ave,cutoff));
+
+ for (j=0; j < kNDIMX; j++){
+ for(k=0; k < kNDIMY; k++){
+ fInfocl[0][j][k] = 0;
+ fInfocl[1][j][k] = 0;
+ }
+ }
+ for(i=0; i < kNMX; i++){
+ fInfcl[0][i] = -1;
+ id1=fIord[0][i];
+ id2=fIord[1][i];
+ if(fEdepCell[id1][id2] <= cutoff){fInfocl[0][id1][id2]=-1;}
+ }
+ // ---------------------------------------------------------------
+ // crude clustering begins. Start with cell having largest adc
+ // count and loop over the cells in descending order of adc count
+ // ---------------------------------------------------------------
+ icl=-1;
+ cellcount=-1;
+ for(icell=0; icell <= nmx1; icell++){
+ id1=fIord[0][icell];
+ id2=fIord[1][icell];
+ if(fInfocl[0][id1][id2] == 0 ){
+ // ---------------------------------------------------------------
+ // icl -- cluster #, numcell -- # of cells in it, clust -- stores
+ // coordinates of the cells in a cluster, fInfocl[0][i1][i2] is 1 for
+ // primary and 2 for secondary cells,
+ // fInfocl[1][i1][i2] stores cluster #
+ // ---------------------------------------------------------------
+ icl=icl+1;
+ numcell=0;
+ cellcount = cellcount + 1;
+ fInfocl[0][id1][id2]=1;
+ fInfocl[1][id1][id2]=icl;
+ fInfcl[0][cellcount]=icl;
+ fInfcl[1][cellcount]=id1;
+ fInfcl[2][cellcount]=id2;
+
+ clust[0][numcell]=id1;
+ clust[1][numcell]=id2;
+ for(i=1; i<5000; i++)clust[0][i]=0;
+ // ---------------------------------------------------------------
+ // check for adc count in neib. cells. If ne 0 put it in this clust
+ // ---------------------------------------------------------------
+ for(i=0; i<6; i++){
+ jd1=id1+neibx[i];
+ jd2=id2+neiby[i];
+ if( (jd1 >= 0 && jd1 < kNDIMX) && (jd2 >= 0 && jd2 < kNDIMY) &&
+ fInfocl[0][jd1][jd2] == 0){
+ numcell=numcell+1;
+ fInfocl[0][jd1][jd2]=2;
+ fInfocl[1][jd1][jd2]=icl;
+ clust[0][numcell]=jd1;
+ clust[1][numcell]=jd2;
+ cellcount=cellcount+1;
+ fInfcl[0][cellcount]=icl;
+ fInfcl[1][cellcount]=jd1;
+ fInfcl[2][cellcount]=jd2;
+ }
+ }
+ // ---------------------------------------------------------------
+ // check adc count for neighbour's neighbours recursively and
+ // if nonzero, add these to the cluster.
+ // ---------------------------------------------------------------
+ for(i=1;i < 5000;i++){
+ if(clust[0][i] != 0){
+ id1=clust[0][i];
+ id2=clust[1][i];
+ for(j=0; j<6 ; j++){
+ jd1=id1+neibx[j];
+ jd2=id2+neiby[j];
+ if( (jd1 >= 0 && jd1 < kNDIMX) && (jd2 >= 0 && jd2 < kNDIMY) &&
+ fInfocl[0][jd1][jd2] == 0 ){
+ fInfocl[0][jd1][jd2] = 2;
+ fInfocl[1][jd1][jd2] = icl;
+ numcell = numcell + 1;
+ clust[0][numcell] = jd1;
+ clust[1][numcell] = jd2;
+ cellcount = cellcount+1;
+ fInfcl[0][cellcount] = icl;
+ fInfcl[1][cellcount] = jd1;
+ fInfcl[2][cellcount] = jd2;
+ }
+ }
+ }
+ }
+ }
+ }
+ // for(icell=0; icell<=cellcount; icell++){
+ // ofl0 << fInfcl[0][icell] << " " << fInfcl[1][icell] << " " <<
+ // fInfcl[2][icell] << endl;
+ // }
+ return cellcount;
+}
+// ------------------------------------------------------------------------ //
+void AliPMDClusteringV1::RefClust(int incr)
+{
+ // Does the refining of clusters
+ // Takes the big patch and does gaussian fitting and
+ // finds out the more refined clusters
+ //
+ int i, j, k, i1, i2, id, icl, ncl[4500], iord[4500], itest;
+ int ihld;
+ int ig, nsupcl, lev1[20], lev2[20];
+ double x[4500], y[4500], z[4500], x1, y1, z1, x2, y2, z2, dist;
+ double xc[4500], yc[4500], zc[4500], cells[4500], sum, rc[4500], rr;
+ // fClno counts the final clusters
+ // nsupcl = # of superclusters; ncl[i]= # of cells in supercluster i
+ // x, y and z store (x,y) coordinates of and energy deposited in a cell
+ // xc, yc store (x,y) coordinates of the cluster center
+ // zc stores the energy deposited in a cluster
+ // rc is cluster radius
+ // finally the cluster information is put in 2-dimensional array clusters
+ // ofstream ofl1("checking.5",ios::app);
+ fClno = -1;
+ nsupcl = -1;
+ for(i=0; i<4500; i++){ncl[i]=-1;}
+ for(i=0; i<incr; i++){
+ if(fInfcl[0][i] != nsupcl){ nsupcl=nsupcl+1; }
+ if (nsupcl > 4500) {
+ AliWarning("RefClust: Too many superclusters!");
+ nsupcl = 4500;
+ break;
+ }
+ ncl[nsupcl]=ncl[nsupcl]+1;
+ }
+
+ AliDebug(1,Form("Number of cells = %d Number of Superclusters = %d",
+ incr+1,nsupcl+1));
+
+ id=-1;
+ icl=-1;
+ for(i=0; i<nsupcl; i++){
+ if(ncl[i] == 0){
+ id=id+1;
+ icl=icl+1;
+ // one cell super-clusters --> single cluster
+ // cluster center at the centyer of the cell
+ // cluster radius = half cell dimension
+ if (fClno >= 5000) {
+ AliWarning("RefClust: Too many clusters! more than 5000");
+ return;
+ }
+ fClno = fClno + 1;
+ i1 = fInfcl[1][id];
+ i2 = fInfcl[2][id];
+ fClusters[0][fClno] = fCoord[0][i1][i2];
+ fClusters[1][fClno] = fCoord[1][i1][i2];
+ fClusters[2][fClno] = fEdepCell[i1][i2];
+ fClusters[3][fClno] = 1.;
+ fClusters[4][fClno] = 0.5;
+
+ //ofl1 << icl << " " << fCoord[0][i1][i2] << " " << fCoord[1][i1][i2] <<
+ //" " << fEdepCell[i1][i2] << " " << fClusters[3][fClno] <<endl;
+ }else if(ncl[i] == 1){
+ // two cell super-cluster --> single cluster
+ // cluster center is at ener. dep.-weighted mean of two cells
+ // cluster radius == half cell dimension
+ id = id + 1;
+ icl = icl+1;
+ if (fClno >= 5000) {
+ AliWarning("RefClust: Too many clusters! more than 5000");
+ return;
+ }
+ fClno = fClno+1;
+ i1 = fInfcl[1][id];
+ i2 = fInfcl[2][id];
+ x1 = fCoord[0][i1][i2];
+ y1 = fCoord[1][i1][i2];
+ z1 = fEdepCell[i1][i2];
+
+
+ id = id+1;
+ i1 = fInfcl[1][id];
+ i2 = fInfcl[2][id];
+ x2 = fCoord[0][i1][i2];
+ y2 = fCoord[1][i1][i2];
+ z2 = fEdepCell[i1][i2];
+
+ fClusters[0][fClno] = (x1*z1+x2*z2)/(z1+z2);
+ fClusters[1][fClno] = (y1*z1+y2*z2)/(z1+z2);
+ fClusters[2][fClno] = z1+z2;
+ fClusters[3][fClno] = 2.;
+ fClusters[4][fClno] = 0.5;
+
+
+ //ofl1 << icl << " " << fClusters[0][fClno] << " " << fClusters[1][fClno]
+ // << " " << fClusters[2][fClno] << " " <<fClusters[3][fClno] <<endl;
+ }
+ else{
+ id = id + 1;
+ iord[0] = 0;
+ // super-cluster of more than two cells - broken up into smaller
+ // clusters gaussian centers computed. (peaks separated by > 1 cell)
+ // Begin from cell having largest energy deposited This is first
+ // cluster center
+ i1 = fInfcl[1][id];
+ i2 = fInfcl[2][id];
+ x[0] = fCoord[0][i1][i2];
+ y[0] = fCoord[1][i1][i2];
+ z[0] = fEdepCell[i1][i2];
+ iord[0] = 0;
+ for(j=1;j<=ncl[i];j++){
+
+ id = id + 1;
+ i1 = fInfcl[1][id];
+ i2 = fInfcl[2][id];
+ iord[j] = j;
+ x[j] = fCoord[0][i1][i2];
+ y[j] = fCoord[1][i1][i2];
+ z[j] = fEdepCell[i1][i2];
+ }
+ // arranging cells within supercluster in decreasing order
+ for(j=1;j<=ncl[i];j++){
+ itest=0;
+ ihld=iord[j];
+ for(i1=0;i1<j;i1++){
+ if(itest == 0 && z[iord[i1]] < z[ihld]){
+ itest=1;
+ for(i2=j-1;i2>=i1;i2--){
+ iord[i2+1]=iord[i2];
+ }
+ iord[i1]=ihld;
+ }
+ }
+ }
+
+ // compute the number of Gaussians and their centers ( first
+ // guess )
+ // centers must be separated by cells having smaller ener. dep.
+ // neighbouring centers should be either strong or well-separated
+ ig=0;
+ xc[ig]=x[iord[0]];
+ yc[ig]=y[iord[0]];
+ zc[ig]=z[iord[0]];
+ for(j=1;j<=ncl[i];j++){
+ itest=-1;
+ x1=x[iord[j]];
+ y1=y[iord[j]];
+ for(k=0;k<=ig;k++){
+ x2=xc[k]; y2=yc[k];
+ rr=Distance(x1,y1,x2,y2);
+ if( rr >= 1.1 && rr < 1.8 && z[iord[j]] > zc[k]/4.)
+ itest=itest+1;
+ if( rr >= 1.8 && rr < 2.1 && z[iord[j]] > zc[k]/10.)
+ itest=itest+1;
+ if( rr >= 2.1)itest=itest+1;
+ }
+ if(itest == ig){
+ ig=ig+1;
+ xc[ig]=x1;
+ yc[ig]=y1;
+ zc[ig]=z[iord[j]];
+ }
+ }
+ // for(j=0; j<=ig; j++){
+ //ofl1 << icl+j+1 << " " << xc[j] << " " <<yc[j] <<" "<<zc[j]<<endl;
+ //}
+ // GaussFit to adjust cluster parameters to minimize
+ GaussFit(ncl[i], ig, x[0], y[0] ,z[0], xc[0], yc[0], zc[0], rc[0]);
+ icl=icl+ig+1;
+ // compute the number of cells belonging to each cluster.
+ // cell is shared between several clusters ( if they are equidistant
+ // from it ) in the ratio of cluster energy deposition
+ for(j=0; j<=ig; j++){
+ cells[j]=0.;
+ }
+ if(ig > 0){
+ for(j=0; j<=ncl[i]; j++){
+ lev1[0]=0;
+ lev2[0]=0;
+ for(k=0; k<=ig; k++){
+ dist=Distance(x[j], y[j], xc[k], yc[k]);
+ if(dist < sqrt(3.) ){
+ lev1[0]++;
+ i1=lev1[0];
+ lev1[i1]=k;
+ }else{
+ if(dist < 2.1){
+ lev2[0]++;
+ i1=lev2[0];
+ lev2[i1]=k;
+ }
+ }
+ }
+ if(lev1[0] != 0){
+ if(lev1[0] == 1){cells[lev1[1]]=cells[lev1[1]]+1.;}
+ else{
+ sum=0.;
+ for(k=1; k<=lev1[0]; k++){
+ sum=sum+zc[lev1[k]];
+ }
+ for(k=1; k<=lev1[0]; k++){
+ cells[lev1[k]]=cells[lev1[k]]+zc[lev1[k]]/sum;
+ }
+ }
+ }else{
+ if(lev2[0] == 0){cells[lev2[1]]=cells[lev2[1]]+1.;}
+ else{
+ sum=0.;
+ for(k=1; k<=lev2[0]; k++){
+ sum=sum+zc[lev2[k]];
+ }
+ for(k=1; k<=lev2[0]; k++){
+ cells[lev2[k]]=cells[lev2[k]]+zc[lev2[k]]/sum;
+ }
+ }
+ }
+ }
+ }
+ for(j=0; j<=ig; j++){
+ if (fClno >= 5000) {
+ AliWarning("RefClust: Too many clusters! more than 5000");
+ return;
+ }
+ fClno = fClno + 1;
+ fClusters[0][fClno] = xc[j];
+ fClusters[1][fClno] = yc[j];
+ fClusters[2][fClno] = zc[j];
+ fClusters[4][fClno] = rc[j];
+ if(ig == 0){
+ fClusters[3][fClno] = ncl[i];
+ }else{
+ fClusters[3][fClno] = cells[j];
+ }
+ }
+ }
+ }
+}
+// ------------------------------------------------------------------------ //
+void AliPMDClusteringV1::GaussFit(Int_t ncell, Int_t nclust, Double_t &x, Double_t &y ,Double_t &z, Double_t &xc, Double_t &yc, Double_t &zc, Double_t &rc)
+{
+ // Does gaussian fitting
+ //
+ int i, j, i1, i2, novar, idd, jj;
+ double xx[4500], yy[4500], zz[4500], xxc[4500], yyc[4500];
+ double a[4500], b[4500], c[4500], d[4500], ha[4500], hb[4500];
+ double hc[4500], hd[4500], zzc[4500], rrc[4500];
+ int neib[4500][50];
+ double sum, dx, dy, str, str1, aint, sum1, rr, dum;
+ double x1, x2, y1, y2;
+ str = 0.;
+ str1 = 0.;
+ rr = 0.3;
+ novar = 0;
+ j = 0; // Just put not to see the compiler warning, BKN
+
+ for(i=0; i<=ncell; i++)
+ {
+ xx[i] = *(&x+i);
+ yy[i] = *(&y+i);
+ zz[i] = *(&z+i);
+ str = str + zz[i];
+ }
+ for(i=0; i<=nclust; i++)
+ {
+ xxc[i] = *(&xc+i);
+ yyc[i] = *(&yc+i);
+ zzc[i] = *(&zc+i);
+ str1 = str1 + zzc[i];
+ rrc[i] = 0.5;
+ }
+ for(i=0; i<=nclust; i++)
+ {
+ zzc[i] = str/str1*zzc[i];
+ ha[i] = xxc[i];
+ hb[i] = yyc[i];
+ hc[i] = zzc[i];
+ hd[i] = rrc[i];
+ x1 = xxc[i];
+ y1 = yyc[i];
+ }
+ for(i=0; i<=ncell; i++){
+ idd=0;
+ x1=xx[i];
+ y1=yy[i];
+ for(j=0; j<=nclust; j++){
+ x2=xxc[j];
+ y2=yyc[j];
+ if(Distance(x1,y1,x2,y2) <= 3.){ idd=idd+1; neib[i][idd]=j; }
+ }
+ neib[i][0]=idd;
+ }
+ sum=0.;
+ for(i1=0; i1<=ncell; i1++){
+ aint=0.;
+ idd=neib[i1][0];
+ for(i2=1; i2<=idd; i2++){
+ jj=neib[i1][i2];
+ dx=xx[i1]-xxc[jj];
+ dy=yy[i1]-yyc[jj];
+ dum=rrc[j]*rrc[jj]+rr*rr;
+ aint=aint+exp(-(dx*dx+dy*dy)/dum)*zzc[idd]*rr*rr/dum;
+ }
+ sum=sum+(aint-zz[i1])*(aint-zz[i1])/str;
+ }
+// jmax=nclust*1000;
+// if(nclust > 20)jmax=20000;
+// for(j=0; j<jmax; j++){
+ str1=0.;
+ for(i=0; i<=nclust; i++){
+ a[i]=xxc[i]+0.6*(Ranmar()-0.5);
+ b[i]=yyc[i]+0.6*(Ranmar()-0.5);
+ c[i]=zzc[i]*(1.+(Ranmar()-0.5)*0.2);
+ str1=str1+zzc[i];
+ d[i]=rrc[i]*(1.+(Ranmar()-0.5)*0.1);
+ if(d[i] < 0.25)d[i]=0.25;
+ }
+ for(i=0; i<=nclust; i++){ c[i]=c[i]*str/str1; }
+ sum1=0.;
+ for(i1=0; i1<=ncell; i1++){
+ aint=0.;
+ idd=neib[i1][0];
+ for(i2=1; i2<=idd; i2++){
+ jj=neib[i1][i2];
+ dx=xx[i1]-a[jj];
+ dy=yy[i1]-b[jj];
+ dum=d[jj]*d[jj]+rr*rr;
+ aint=aint+exp(-(dx*dx+dy*dy)/dum)*c[i2]*rr*rr/dum;
+ }
+ sum1=sum1+(aint-zz[i1])*(aint-zz[i1])/str;
+ }
+
+ if(sum1 < sum){
+ for(i2=0; i2<=nclust; i2++){
+ xxc[i2]=a[i2];
+ yyc[i2]=b[i2];
+ zzc[i2]=c[i2];
+ rrc[i2]=d[i2];
+ sum=sum1;
+ }
+ }
+// }
+ for(j=0; j<=nclust; j++){
+ *(&xc+j)=xxc[j];
+ *(&yc+j)=yyc[j];
+ *(&zc+j)=zzc[j];
+ *(&rc+j)=rrc[j];
+ }
+}
+// ------------------------------------------------------------------------ //
+double AliPMDClusteringV1::Distance(double x1, double y1, double x2, double y2)
+{
+ return sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2));
+}
+// ------------------------------------------------------------------------ //
+double AliPMDClusteringV1::Ranmar() const
+{
+ // Universal random number generator proposed by Marsaglia and Zaman
+ // in report FSU-SCRI-87-50
+
+ // clock_t start;
+ int ii, jj;
+ static int i=96, j=32, itest=0, i1, i2, i3, i4, i5;
+ static double u[97], c, cd, cm, s, t;
+ static double uni;
+ int count1,count2,idum;
+ /* $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ */
+ if (itest == 0) {
+ //*******************************************************
+ // following three lines if the seed to be provided by computer
+ // start = time(NULL);
+ // ii=start;
+ // jj=start;
+ //*******************************************************
+ //following two lines for fixed seed ( during testing only. Else
+ //use preceeing three lines
+ ii=8263;
+ jj=5726;
+ if(ii > 31328 ) ii = ii - ( ii / 31328 ) * 31328;
+ if(jj > 30081 ) jj = jj - ( jj / 30081 ) * 30081;
+ itest=itest+1;
+ if((( ii > 0 ) && ( ii <= 31328 )) && (( jj > 0 ) &&
+ ( jj <= 30081 ))){
+ i1=ii/177+2; i2=ii-(i1-2)*177+2; i3=jj/169+1; i4=jj-(i3-1)*169;
+ i4 = jj - (i3-1)*169;
+ count1=0;
+ while ( count1 < 97 ){
+ s=0.;
+ t=0.5;
+ count2=0;
+ while( count2 < 24 ){
+ idum=i1*i2/179;
+ idum=( i1*i2 - (i1*i2/179)*179 ) * i3;
+ i5=idum-(idum/179)*179;
+ i1=i2; i2=i3; i3=i5; idum=53*i4+1; i4=idum-(idum/169)*169;
+ if( i4*i5-((i4*i5)/64)*64 >= 32 ) s=s+t;
+ t=0.5*t;
+ count2=count2+1;
+ }
+ u[count1] = s;
+ count1 = count1 +1;
+ }
+ c = 362436./16777216.; cd = 7654321./16777216.;
+ cm = 16777213./16777216.;
+ }
+ else{
+ AliWarning("Wrong initialization");
+ }
+ }
+ else{
+ uni = u[i] - u[j];
+ if( uni < 0.) uni = uni + 1;
+ u[i] = uni;
+ i = i -1;
+ if( i < 0 ) i = 96;
+ j = j - 1;
+ if ( j < 0 ) j = 96;
+ c = c - cd;
+ if( c < 0. ) c = c+cm;
+ uni = uni-c ;
+ if( uni < 0. )uni = uni+1.;
+ }
+ return uni;
+}
+// ------------------------------------------------------------------------ //
+void AliPMDClusteringV1::SetEdepCut(Float_t decut)
+{
+ fCutoff = decut;
+}
+// ------------------------------------------------------------------------ //
--- /dev/null
+#ifndef ALIPMDCLUSTERINGV1_H
+#define ALIPMDCLUSTERINGV1_H
+/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
+ * See cxx source for full Copyright notice */
+//-----------------------------------------------------//
+// //
+// Header File : PMDClustering.h, Version 00 //
+// //
+// Date : September 26 2002 //
+// //
+// clustering code for alice pmd //
+// //
+//-----------------------------------------------------//
+/* --------------------------------------------------------------------
+ Code developed by S. C. Phatak, Institute of Physics,
+ Bhubaneswar 751 005 ( phatak@iopb.res.in ) Given the energy deposited
+ ( or ADC value ) in each cell of supermodule ( pmd or cpv ), the code
+ builds up superclusters and breaks them into clusters. The input is
+ in array d[ndimx][ndimy] and cluster information is in array
+ clusters[5][5000]. integer clno gives total number of clusters in the
+ supermodule.
+ d, clno and clusters are the only global ( public ) variables. Others
+ are local ( private ) to the code.
+ At the moment, the data is read for whole detector ( all supermodules
+ and pmd as well as cpv. This will have to be modify later )
+ LAST UPDATE : October 23, 2002
+-----------------------------------------------------------------------*/
+#include "Rtypes.h"
+#include "AliPMDClustering.h"
+
+class TNtuple;
+class TObjArray;
+class AliPMDcluster;
+
+class AliPMDClusteringV1: public AliPMDClustering
+{
+
+ public:
+ AliPMDClusteringV1();
+ virtual ~AliPMDClusteringV1();
+
+ void DoClust(Int_t idet, Int_t ismn, Double_t celladc[][96],
+ TObjArray *pmdcont);
+ void Order();
+
+ Int_t CrClust(Double_t ave, Double_t cutoff, Int_t nmx1);
+ void RefClust(Int_t incr);
+ void GaussFit(Int_t ncell, Int_t nclust, Double_t &x,
+ Double_t &y, Double_t &z, Double_t &xc,
+ Double_t &yc, Double_t &zc, Double_t &rc);
+ Double_t Distance(Double_t x1, Double_t y1,
+ Double_t x2, Double_t y2);
+ Double_t Ranmar() const;
+ void SetEdepCut(Float_t decut);
+
+ protected:
+
+ static const Double_t fgkSqroot3by2; // fgkSqroot3by2 = sqrt(3.)/2.
+ /*enum {
+ kNMX = 4608,
+ kNDIMX = 48,
+ kNDIMY = 96
+ };*/
+ /*
+ Proposed changes inNMX, kNDIMX and kNDIMY by S. C. Phatak to account
+ for rectangular ( vs rhomboid ) geometry.
+ To keep the clustering functional, we define a rhomboid which
+ superscribes the rectangle. So we need to pad up dummy cells in x
+ direction. The number of these cells is 96/2-1=47 in each row ( value
+ of x ). For first two rows, all dummy cells are to the left. For
+ every two rows add one cell to right and subtract one from left.
+ So previous (i,j) values go over to ( i',j) i'=i+(96-j)/2-1
+ Note we use C++ convention so i and j run from 0 to 47 or 95.
+ */
+
+ enum {
+ kNMX = 9120,
+ kNDIMX = 95,
+ kNDIMY = 96,
+ kNDIMXr = 48,
+ kNDIMYr = 96
+ };
+ /*
+ kNMX : # of cells in a supermodule
+ kNDIMX : maximum number of cells along x direction (origin at one corner)
+ kNDIMY : maximum number of cells along axis at 60 degrees with x axis
+ */
+
+ Double_t fEdepCell[kNDIMX][kNDIMY]; //energy(ADC) in each cell of the supermodule
+ Double_t fClusters[5][5000]; // Cluster informations
+ Int_t fClno; // number of clusters in a supermodule
+
+ /*
+ clusters[0][i] --- x position of the cluster center
+ clusters[1][i] --- y position of the cluster center
+ clusters[2][i] --- total energy in the cluster
+ clusters[3][i] --- number of cells forming the cluster
+ ( possibly fractional )
+ clusters[4][i] --- cluster radius
+ */
+
+ Int_t fIord[2][kNMX]; // ordered list of i and j according to decreasing energy dep.
+ Int_t fInfocl[2][kNDIMX][kNDIMY]; // cellwise information on the cluster to which the cell
+ Int_t fInfcl[3][kNMX]; // cluster information [0][i] -- cluster number
+ Double_t fCoord[2][kNDIMX][kNDIMY];
+
+ /*
+ fIord --- ordered list of i and j according to decreasing energy dep.
+ fInfocl --- cellwise information on the cluster to which the cell
+ belongs and whether it has largest energy dep. or not
+ ( now redundant - probably )
+ fInfcl --- cluster information [0][i] -- cluster number
+ [1][i] -- i of the cell
+ [2][i] -- j of the cell
+ coord --- x and y coordinates of center of each cell
+ */
+
+ Float_t fCutoff; // Energy(ADC) cutoff per cell before clustering
+
+ ClassDef(AliPMDClusteringV1,1) // Does clustering for PMD
+};
+#endif