+++ /dev/null
-/**************************************************************************
- * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
- * *
- * Author: The ALICE Off-line Project. *
- * Contributors are mentioned in the code where appropriate. *
- * *
- * Permission to use, copy, modify and distribute this software and its *
- * documentation strictly for non-commercial purposes is hereby granted *
- * without fee, provided that the above copyright notice appears in all *
- * copies and that both the copyright notice and this permission notice *
- * appear in the supporting documentation. The authors make no claims *
- * about the suitability of this software for any purpose. It is *
- * provided "as is" without express or implied warranty. *
- **************************************************************************/
-
-/* $Id$ */
-
-#include <Riostream.h>
-
-#include "TClonesArray.h"
-#include "TFluka.h"
-#include "TCallf77.h" //For the fortran calls
-#include "Fdblprc.h" //(DBLPRC) fluka common
-#include "Fepisor.h" //(EPISOR) fluka common
-#include "Ffinuc.h" //(FINUC) fluka common
-#include "Fiounit.h" //(IOUNIT) fluka common
-#include "Fpaprop.h" //(PAPROP) fluka common
-#include "Fpart.h" //(PART) fluka common
-#include "Ftrackr.h" //(TRACKR) fluka common
-#include "Fpaprop.h" //(PAPROP) fluka common
-#include "Ffheavy.h" //(FHEAVY) fluka common
-
-#include "TVirtualMC.h"
-#include "TG4GeometryManager.h" //For the geometry management
-#include "TG4DetConstruction.h" //For the detector construction
-
-#include "FGeometryInit.hh"
-#include "TLorentzVector.h"
-#include "FlukaVolume.h"
-
-// Fluka methods that may be needed.
-#ifndef WIN32
-# define flukam flukam_
-# define fluka_openinp fluka_openinp_
-# define fluka_closeinp fluka_closeinp_
-# define mcihad mcihad_
-# define mpdgha mpdgha_
-#else
-# define flukam FLUKAM
-# define fluka_openinp FLUKA_OPENINP
-# define fluka_closeinp FLUKA_CLOSEINP
-# define mcihad MCIHAD
-# define mpdgha MPDGHA
-#endif
-
-extern "C"
-{
- //
- // Prototypes for FLUKA functions
- //
- void type_of_call flukam(const int&);
- void type_of_call fluka_openinp(const int&, DEFCHARA);
- void type_of_call fluka_closeinp(const int&);
- int type_of_call mcihad(const int&);
- int type_of_call mpdgha(const int&);
-}
-
-//
-// Class implementation for ROOT
-//
-ClassImp(TFluka)
-
-//
-//----------------------------------------------------------------------------
-// TFluka constructors and destructors.
-//____________________________________________________________________________
-TFluka::TFluka()
- :TVirtualMC(),
- fVerbosityLevel(0),
- sInputFileName(""),
- fDetector(0),
- fCurrentFlukaRegion(-1)
-{
- //
- // Default constructor
- //
-}
-
-TFluka::TFluka(const char *title, Int_t verbosity, Bool_t isRootGeometrySupported)
- :TVirtualMC("TFluka",title, isRootGeometrySupported),
- fVerbosityLevel(verbosity),
- sInputFileName(""),
- fTrackIsEntering(0),
- fTrackIsExiting(0),
- fTrackIsNew(0),
- fDetector(0),
- fCurrentFlukaRegion(-1)
-{
- if (fVerbosityLevel >=3)
- cout << "==> TFluka::TFluka(" << title << ") constructor called." << endl;
-
-
- // create geometry manager
- if (fVerbosityLevel >=2)
- cout << "\t* Creating G4 Geometry manager..." << endl;
- fGeometryManager = new TG4GeometryManager();
- if (fVerbosityLevel >=2)
- cout << "\t* Creating G4 Detector..." << endl;
- fDetector = new TG4DetConstruction();
- FGeometryInit* geominit = FGeometryInit::GetInstance();
- if (geominit)
- geominit->setDetConstruction(fDetector);
- else {
- cerr << "ERROR: Could not create FGeometryInit!" << endl;
- cerr << " Exiting!!!" << endl;
- abort();
- }
-
- if (fVerbosityLevel >=3)
- cout << "<== TFluka::TFluka(" << title << ") constructor called." << endl;
-
- fVolumeMediaMap = new TClonesArray("FlukaVolume",1000);
- fNVolumes = 0;
- fMediaByRegion = 0;
-}
-
-TFluka::~TFluka() {
- if (fVerbosityLevel >=3)
- cout << "==> TFluka::~TFluka() destructor called." << endl;
-
- delete fGeometryManager;
- fVolumeMediaMap->Delete();
- delete fVolumeMediaMap;
-
-
- if (fVerbosityLevel >=3)
- cout << "<== TFluka::~TFluka() destructor called." << endl;
-}
-
-//
-//_____________________________________________________________________________
-// TFluka control methods
-//____________________________________________________________________________
-void TFluka::Init() {
-
- FGeometryInit* geominit = FGeometryInit::GetInstance();
- if (fVerbosityLevel >=3)
- cout << "==> TFluka::Init() called." << endl;
-
- cout << "\t* InitPhysics() - Prepare input file to be called" << endl;
- geominit->Init();
- // now we have G4 geometry created and we have to patch alice.inp
- // with the material mapping file FlukaMat.inp
- InitPhysics(); // prepare input file with the current physics settings
- cout << "\t* InitPhysics() - Prepare input file was called" << endl;
-
- if (fVerbosityLevel >=2)
- cout << "\t* Changing lfdrtr = (" << (GLOBAL.lfdrtr?'T':'F')
- << ") in fluka..." << endl;
- GLOBAL.lfdrtr = true;
-
- if (fVerbosityLevel >=2)
- cout << "\t* Opening file " << sInputFileName << endl;
- const char* fname = sInputFileName;
- fluka_openinp(lunin, PASSCHARA(fname));
-
- if (fVerbosityLevel >=2)
- cout << "\t* Calling flukam..." << endl;
- flukam(1);
-
- if (fVerbosityLevel >=2)
- cout << "\t* Closing file " << sInputFileName << endl;
- fluka_closeinp(lunin);
-
- FinishGeometry();
-
- if (fVerbosityLevel >=3)
- cout << "<== TFluka::Init() called." << endl;
-
-}
-
-void TFluka::FinishGeometry() {
-//
-// Build-up table with region to medium correspondance
-//
- char tmp[5];
-
- if (fVerbosityLevel >=3)
- cout << "==> TFluka::FinishGeometry() called." << endl;
-
-// fGeometryManager->Ggclos();
-
- FGeometryInit* flugg = FGeometryInit::GetInstance();
-
- fMediaByRegion = new Int_t[fNVolumes+2];
- for (Int_t i = 0; i < fNVolumes; i++)
- {
- FlukaVolume* vol = dynamic_cast<FlukaVolume*>((*fVolumeMediaMap)[i]);
- TString volName = vol->GetName();
- Int_t media = vol->GetMedium();
- if (fVerbosityLevel >= 3)
- printf("Finish Geometry: volName, media %d %s %d \n", i, volName.Data(), media);
- strcpy(tmp, volName.Data());
- tmp[4] = '\0';
- flugg->SetMediumFromName(tmp, media, i+1);
- fMediaByRegion[i] = media;
- }
-
- flugg->BuildMediaMap();
-
- if (fVerbosityLevel >=3)
- cout << "<== TFluka::FinishGeometry() called." << endl;
-}
-
-void TFluka::BuildPhysics() {
- if (fVerbosityLevel >=3)
- cout << "==> TFluka::BuildPhysics() called." << endl;
-
-
- if (fVerbosityLevel >=3)
- cout << "<== TFluka::BuildPhysics() called." << endl;
-}
-
-void TFluka::ProcessEvent() {
- if (fVerbosityLevel >=3)
- cout << "==> TFluka::ProcessEvent() called." << endl;
- fApplication->GeneratePrimaries();
- EPISOR.lsouit = true;
- flukam(1);
- if (fVerbosityLevel >=3)
- cout << "<== TFluka::ProcessEvent() called." << endl;
-}
-
-
-void TFluka::ProcessRun(Int_t nevent) {
- if (fVerbosityLevel >=3)
- cout << "==> TFluka::ProcessRun(" << nevent << ") called."
- << endl;
-
- if (fVerbosityLevel >=2) {
- cout << "\t* GLOBAL.fdrtr = " << (GLOBAL.lfdrtr?'T':'F') << endl;
- cout << "\t* Calling flukam again..." << endl;
- }
- fApplication->InitGeometry();
- fApplication->BeginEvent();
- ProcessEvent();
- fApplication->FinishEvent();
- if (fVerbosityLevel >=3)
- cout << "<== TFluka::ProcessRun(" << nevent << ") called."
- << endl;
-
-}
-
-//_____________________________________________________________________________
-// methods for building/management of geometry
-//____________________________________________________________________________
-// functions from GCONS
-void TFluka::Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z,
- Float_t &dens, Float_t &radl, Float_t &absl,
- Float_t* ubuf, Int_t& nbuf) {
-//
- fGeometryManager->Gfmate(imat, name, a, z, dens, radl, absl, ubuf, nbuf);
-}
-
-void TFluka::Gfmate(Int_t imat, char *name, Double_t &a, Double_t &z,
- Double_t &dens, Double_t &radl, Double_t &absl,
- Double_t* ubuf, Int_t& nbuf) {
-//
- fGeometryManager->Gfmate(imat, name, a, z, dens, radl, absl, ubuf, nbuf);
-}
-
-// detector composition
-void TFluka::Material(Int_t& kmat, const char* name, Double_t a,
- Double_t z, Double_t dens, Double_t radl, Double_t absl,
- Float_t* buf, Int_t nwbuf) {
-//
- fGeometryManager
- ->Material(kmat, name, a, z, dens, radl, absl, buf, nwbuf);
-}
-void TFluka::Material(Int_t& kmat, const char* name, Double_t a,
- Double_t z, Double_t dens, Double_t radl, Double_t absl,
- Double_t* buf, Int_t nwbuf) {
-//
- fGeometryManager
- ->Material(kmat, name, a, z, dens, radl, absl, buf, nwbuf);
-}
-
-void TFluka::Mixture(Int_t& kmat, const char *name, Float_t *a,
- Float_t *z, Double_t dens, Int_t nlmat, Float_t *wmat) {
-//
- fGeometryManager
- ->Mixture(kmat, name, a, z, dens, nlmat, wmat);
-}
-void TFluka::Mixture(Int_t& kmat, const char *name, Double_t *a,
- Double_t *z, Double_t dens, Int_t nlmat, Double_t *wmat) {
-//
- fGeometryManager
- ->Mixture(kmat, name, a, z, dens, nlmat, wmat);
-}
-
-void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat,
- Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
- Double_t stemax, Double_t deemax, Double_t epsil,
- Double_t stmin, Float_t* ubuf, Int_t nbuf) {
- //
- fGeometryManager
- ->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax,
- epsil, stmin, ubuf, nbuf);
-}
-void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat,
- Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
- Double_t stemax, Double_t deemax, Double_t epsil,
- Double_t stmin, Double_t* ubuf, Int_t nbuf) {
- //
- fGeometryManager
- ->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax,
- epsil, stmin, ubuf, nbuf);
-}
-
-void TFluka::Matrix(Int_t& krot, Double_t thetaX, Double_t phiX,
- Double_t thetaY, Double_t phiY, Double_t thetaZ,
- Double_t phiZ) {
-//
- fGeometryManager
- ->Matrix(krot, thetaX, phiX, thetaY, phiY, thetaZ, phiZ);
-}
-
-void TFluka::Gstpar(Int_t itmed, const char *param, Double_t parval) {
-//
- fGeometryManager->Gstpar(itmed, param, parval);
-}
-
-// functions from GGEOM
-Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed,
- Float_t *upar, Int_t np) {
-//
-// fVolumeMediaMap[TString(name)] = nmed;
- if (fVerbosityLevel >= 3)
- printf("TFluka::Gsvolu() name = %s, nmed = %d\n", name, nmed);
-
- TClonesArray &lvols = *fVolumeMediaMap;
- new(lvols[fNVolumes++])
- FlukaVolume(name, nmed);
- return fGeometryManager->Gsvolu(name, shape, nmed, upar, np);
-}
-Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed,
- Double_t *upar, Int_t np) {
-//
- TClonesArray &lvols = *fVolumeMediaMap;
- new(lvols[fNVolumes++])
- FlukaVolume(name, nmed);
-
- return fGeometryManager->Gsvolu(name, shape, nmed, upar, np);
-}
-
-void TFluka::Gsdvn(const char *name, const char *mother, Int_t ndiv,
- Int_t iaxis) {
-//
-// The medium of the daughter is the one of the mother
- Int_t volid = TFluka::VolId(mother);
- Int_t med = TFluka::VolId2Mate(volid);
- TClonesArray &lvols = *fVolumeMediaMap;
- new(lvols[fNVolumes++])
- FlukaVolume(name, med);
- fGeometryManager->Gsdvn(name, mother, ndiv, iaxis);
-}
-
-void TFluka::Gsdvn2(const char *name, const char *mother, Int_t ndiv,
- Int_t iaxis, Double_t c0i, Int_t numed) {
-//
- TClonesArray &lvols = *fVolumeMediaMap;
- new(lvols[fNVolumes++])
- FlukaVolume(name, numed);
- fGeometryManager->Gsdvn2(name, mother, ndiv, iaxis, c0i, numed);
-}
-
-void TFluka::Gsdvt(const char *name, const char *mother, Double_t step,
- Int_t iaxis, Int_t numed, Int_t ndvmx) {
-//
- TClonesArray &lvols = *fVolumeMediaMap;
- new(lvols[fNVolumes++])
- FlukaVolume(name, numed);
- fGeometryManager->Gsdvt(name, mother, step, iaxis, numed, ndvmx);
-}
-
-void TFluka::Gsdvt2(const char *name, const char *mother, Double_t step,
- Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx) {
-//
- TClonesArray &lvols = *fVolumeMediaMap;
- new(lvols[fNVolumes++])
- FlukaVolume(name, numed);
- fGeometryManager->Gsdvt2(name, mother, step, iaxis, c0, numed, ndvmx);
-}
-
-void TFluka::Gsord(const char *name, Int_t iax) {
-//
- fGeometryManager->Gsord(name, iax);
-}
-
-void TFluka::Gspos(const char *name, Int_t nr, const char *mother,
- Double_t x, Double_t y, Double_t z, Int_t irot,
- const char *konly) {
-//
- fGeometryManager->Gspos(name, nr, mother, x, y, z, irot, konly);
-}
-
-void TFluka::Gsposp(const char *name, Int_t nr, const char *mother,
- Double_t x, Double_t y, Double_t z, Int_t irot,
- const char *konly, Float_t *upar, Int_t np) {
- //
- fGeometryManager->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np);
-}
-void TFluka::Gsposp(const char *name, Int_t nr, const char *mother,
- Double_t x, Double_t y, Double_t z, Int_t irot,
- const char *konly, Double_t *upar, Int_t np) {
- //
- fGeometryManager->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np);
-}
-
-void TFluka::Gsbool(const char* onlyVolName, const char* manyVolName) {
-//
- fGeometryManager->Gsbool(onlyVolName, manyVolName);
-}
-
-void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t *ppckov,
- Float_t *absco, Float_t *effic, Float_t *rindex) {
-//
- fGeometryManager->SetCerenkov(itmed, npckov, ppckov, absco, effic, rindex);
-}
-void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Double_t *ppckov,
- Double_t *absco, Double_t *effic, Double_t *rindex) {
-//
- fGeometryManager->SetCerenkov(itmed, npckov, ppckov, absco, effic, rindex);
-}
-
-// Euclid
-void TFluka::WriteEuclid(const char* fileName, const char* topVol,
- Int_t number, Int_t nlevel) {
-//
- fGeometryManager->WriteEuclid(fileName, topVol, number, nlevel);
-}
-
-
-
-//_____________________________________________________________________________
-// methods needed by the stepping
-//____________________________________________________________________________
-
-Int_t TFluka::GetMedium() const {
-//
-// Get the medium number for the current fluka region
-//
- FGeometryInit* flugg = FGeometryInit::GetInstance();
- return flugg->GetMedium(fCurrentFlukaRegion);
-}
-
-
-
-//____________________________________________________________________________
-// particle table usage
-// ID <--> PDG transformations
-//_____________________________________________________________________________
-Int_t TFluka::IdFromPDG(Int_t pdg) const
-{
- //
- // Return Fluka code from PDG and pseudo ENDF code
-
- // Catch the feedback photons
- if (pdg == 50000051) return (-1);
- // MCIHAD() goes from pdg to fluka internal.
- Int_t intfluka = mcihad(pdg);
- // KPTOIP array goes from internal to official
- return GetFlukaKPTOIP(intfluka);
-}
-
-Int_t TFluka::PDGFromId(Int_t id) const
-{
- //
- // Return PDG code and pseudo ENDF code from Fluka code
-
- // IPTOKP array goes from official to internal
-
- if (id == -1) {
-// Cerenkov photon
- if (fVerbosityLevel >= 1)
- printf("\n PDGFromId: Cerenkov Photon \n");
- return 50000050;
- }
-// Error id
- if (id == 0) {
- if (fVerbosityLevel >= 1)
- printf("PDGFromId: Error id = 0\n");
- return -1;
- }
-// Good id
- Int_t intfluka = GetFlukaIPTOKP(id);
- if (intfluka == 0) {
- if (fVerbosityLevel >= 1)
- printf("PDGFromId: Error intfluka = 0: %d\n", id);
- return -1;
- } else if (intfluka < 0) {
- if (fVerbosityLevel >= 1)
- printf("PDGFromId: Error intfluka < 0: %d\n", id);
- return -1;
- }
- if (fVerbosityLevel >= 3)
- printf("mpdgha called with %d %d \n", id, intfluka);
- // MPDGHA() goes from fluka internal to pdg.
- return mpdgha(intfluka);
-}
-
-//_____________________________________________________________________________
-// methods for physics management
-//____________________________________________________________________________
-//
-// set methods
-//
-
-void TFluka::SetProcess(const char* flagName, Int_t flagValue)
-{
- Int_t i;
- if (iNbOfProc < 100) {
- for (i=0; i<iNbOfProc; i++) {
- if (strcmp(&sProcessFlag[i][0],flagName) == 0) {
- iProcessValue[iNbOfProc] = flagValue;
- goto fin;
- }
- }
- strcpy(&sProcessFlag[iNbOfProc][0],flagName);
- iProcessValue[iNbOfProc++] = flagValue;
- }
- else
- cout << "Nb of SetProcess calls exceeds 100 - ignored" << endl;
-fin:
- iNbOfProc = iNbOfProc;
-}
-
-void TFluka::SetCut(const char* cutName, Double_t cutValue)
-{
- Int_t i;
- if (iNbOfCut < 100) {
- for (i=0; i<iNbOfCut; i++) {
- if (strcmp(&sCutFlag[i][0],cutName) == 0) {
- fCutValue[iNbOfCut] = cutValue;
- goto fin;
- }
- }
- strcpy(&sCutFlag[iNbOfCut][0],cutName);
- fCutValue[iNbOfCut++] = cutValue;
- }
- else
- cout << "Nb of SetCut calls exceeds 100 - ignored" << endl;
-fin:
- iNbOfCut = iNbOfCut;
-}
-
-Double_t TFluka::Xsec(char*, Double_t, Int_t, Int_t)
-{
- printf("WARNING: Xsec not yet implemented !\n"); return -1.;
-}
-
-
-void TFluka::InitPhysics()
-{
- Int_t i, j, k;
- Double_t fCut;
- Double_t zero, one, two, three;
- FILE *pAliceCoreInp, *pAliceFlukaMat, *pAliceInp;
-
- zero = 0.0;
- one = 1.0;
- two = 2.0;
- three = 3.0;
-
- FGeometryInit* geominit = FGeometryInit::GetInstance();
- Float_t fLastMaterial = geominit->GetLastMaterialIndex();
- printf(" last FLUKA material is %g\n", fLastMaterial);
-
-// construct file names
- TString sAliceCoreInp = getenv("ALICE_ROOT");
- sAliceCoreInp +="/TFluka/input/";
- TString sAliceTmp = "flukaMat.inp";
- TString sAliceInp = GetInputFileName();
- sAliceCoreInp += GetCoreInputFileName();
-/* open files */
- if ((pAliceCoreInp = fopen(sAliceCoreInp.Data(),"r")) == NULL) {
- printf("\nCannot open file %s\n",sAliceCoreInp.Data());
- exit(1);
- }
- if ((pAliceFlukaMat = fopen(sAliceTmp.Data(),"r")) == NULL) {
- printf("\nCannot open file %s\n",sAliceTmp.Data());
- exit(1);
- }
- if ((pAliceInp = fopen(sAliceInp.Data(),"w")) == NULL) {
- printf("\nCannot open file %s\n",sAliceInp.Data());
- exit(1);
- }
-
-// copy core input file
- Char_t sLine[255];
- Float_t fEventsPerRun;
-
- while ((fgets(sLine,255,pAliceCoreInp)) != NULL) {
- if (strncmp(sLine,"GEOEND",6) != 0)
- fprintf(pAliceInp,"%s",sLine); // copy until GEOEND card
- else {
- fprintf(pAliceInp,"GEOEND\n"); // add GEOEND card
- goto flukamat;
- }
- } // end of while until GEOEND card
-
-flukamat:
- while ((fgets(sLine,255,pAliceFlukaMat)) != NULL) { // copy flukaMat.inp file
- fprintf(pAliceInp,"%s\n",sLine);
- }
-
- while ((fgets(sLine,255,pAliceCoreInp)) != NULL) {
- if (strncmp(sLine,"START",5) != 0)
- fprintf(pAliceInp,"%s\n",sLine);
- else {
- sscanf(sLine+10,"%10f",&fEventsPerRun);
- goto fin;
- }
- } //end of while until START card
-
-fin:
-// in G3 the process control values meaning can be different for
-// different processes, but for most of them is:
-// 0 process is not activated
-// 1 process is activated WITH generation of secondaries
-// 2 process is activated WITHOUT generation of secondaries
-// if process does not generate secondaries => 1 same as 2
-//
-// Exceptions:
-// MULS: also 3
-// LOSS: also 3, 4
-// RAYL: only 0,1
-// HADR: may be > 2
-//
-
-// Loop over number of SetProcess calls
- fprintf(pAliceInp,"*----------------------------------------------------------------------------- \n");
- fprintf(pAliceInp,"*----- The following data are generated from SetProcess and SetCut calls ----- \n");
- fprintf(pAliceInp,"*----------------------------------------------------------------------------- \n");
- for (i=0; i<iNbOfProc; i++) {
-
- // annihilation
- // G3 default value: 1
- // G4 processes: G4eplusAnnihilation/G4IeplusAnnihilation
- // Particles: e+
- // Physics: EM
- // flag = 0 no annihilation
- // flag = 1 annihilation, decays processed
- // flag = 2 annihilation, no decay product stored
- // gMC ->SetProcess("ANNI",1); // EMFCUT -1. 0. 0. 3. lastmat 0. ANNH-THR
- if (strncmp(&sProcessFlag[i][0],"ANNI",4) == 0) {
- if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
- fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for e+ annihilation - resets to default=0.\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('ANNI',1) or SetProcess('ANNI',2)\n");
- // -one = kinetic energy threshold (GeV) for e+ annihilation (resets to default=0)
- // zero = not used
- // zero = not used
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- // "ANNH-THR";
- fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fANNH-THR\n",-one,zero,zero,three,fLastMaterial,one);
- }
- else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*No annihilation - no FLUKA card generated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('ANNI',0)\n");
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('ANNI',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- }
-
- // bremsstrahlung and pair production are both activated
- // G3 default value: 1
- // G4 processes: G4eBremsstrahlung/G4IeBremsstrahlung,
- // G4MuBremsstrahlung/G4IMuBremsstrahlung,
- // G4LowEnergyBremstrahlung
- // Particles: e-/e+; mu+/mu-
- // Physics: EM
- // flag = 0 no bremsstrahlung
- // flag = 1 bremsstrahlung, photon processed
- // flag = 2 bremsstrahlung, no photon stored
- // gMC ->SetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat
- // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR
- // G3 default value: 1
- // G4 processes: G4GammaConversion,
- // G4MuPairProduction/G4IMuPairProduction
- // G4LowEnergyGammaConversion
- // Particles: gamma, mu
- // Physics: EM
- // flag = 0 no delta rays
- // flag = 1 delta rays, secondaries processed
- // flag = 2 delta rays, no secondaries stored
- // gMC ->SetProcess("PAIR",1); // PAIRBREM 1. 0. 0. 3. lastmat
- // EMFCUT 0. 0. -1. 3. lastmat 0. PHOT-THR
- else if ((strncmp(&sProcessFlag[i][0],"PAIR",4) == 0) && (iProcessValue[i] == 1 || iProcessValue[i] == 2)) {
- for (j=0; j<iNbOfProc; j++) {
- if ((strncmp(&sProcessFlag[j][0],"BREM",4) == 0) && (iProcessValue[j] == 1 || iProcessValue[j] == 2)) {
- fprintf(pAliceInp,"*\n*Bremsstrahlung and pair production by muons and charged hadrons both activated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',1) and SetProcess('PAIR',1)\n");
- fprintf(pAliceInp,"*Energy threshold set by call SetCut('BCUTM',cut) or set to 0.\n");
- fprintf(pAliceInp,"*Energy threshold set by call SetCut('PPCUTM',cut) or set to 0.\n");
- // three = bremsstrahlung and pair production by muons and charged hadrons both are activated
- fprintf(pAliceInp,"PAIRBREM %10.1f",three);
- // direct pair production by muons
- // G4 particles: "e-", "e+"
- // G3 default value: 0.01 GeV
- //gMC ->SetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons
- fCut = 0.0;
- for (k=0; k<iNbOfCut; k++) {
- if (strncmp(&sCutFlag[k][0],"PPCUTM",6) == 0) fCut = fCutValue[k];
- }
- fprintf(pAliceInp,"%10.4g",fCut);
- // fCut; = e+, e- kinetic energy threshold (in GeV) for explicit pair production.
- // muon and hadron bremsstrahlung
- // G4 particles: "gamma"
- // G3 default value: CUTGAM=0.001 GeV
- //gMC ->SetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung
- fCut = 0.0;
- for (k=0; k<iNbOfCut; k++) {
- if (strncmp(&sCutFlag[k][0],"BCUTM",5) == 0) fCut = fCutValue[k];
- }
- fprintf(pAliceInp,"%10.4g%10.1f%10.1f\n",fCut,three,fLastMaterial);
- // fCut = photon energy threshold (GeV) for explicit bremsstrahlung production
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
-
- // for e+ and e-
- fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for e+/e- bremsstrahlung - resets to default=0.\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',1);\n");
- fCut = -1.0;
- for (k=0; k<iNbOfCut; k++) {
- if (strncmp(&sCutFlag[k][0],"BCUTE",5) == 0) fCut = fCutValue[k];
- }
- //fCut = kinetic energy threshold (GeV) for e+/e- bremsstrahlung (resets to default=0)
- // zero = not used
- // zero = not used
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- // "ELPO-THR";
- fprintf(pAliceInp,"EMFCUT %10.4g%10.1f%10.1f%10.1f%10.1f%10.1fELPO-THR\n",fCut,zero,zero,three,fLastMaterial,one);
-
- // for e+ and e-
- fprintf(pAliceInp,"*\n*Pair production by electrons is activated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('PAIR',1);\n");
- fCut = -1.0;
- for (j=0; j<iNbOfCut; j++) {
- if (strncmp(&sCutFlag[j][0],"CUTGAM",6) == 0) fCut = fCutValue[j];
- }
- // fCut = energy threshold (GeV) for gamma pair production (< 0.0 : resets to default, = 0.0 : ignored)
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.4g%10.1f%10.1f%10.1fPHOT-THR\n",zero,zero,fCut,three,fLastMaterial,one);
- goto BOTH;
- } // end of if for BREM
- } // end of loop for BREM
-
- // only pair production by muons and charged hadrons is activated
- fprintf(pAliceInp,"*\n*Pair production by muons and charged hadrons is activated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)\n");
- fprintf(pAliceInp,"*Energy threshold set by call SetCut('PPCUTM',cut) or set to 0.\n");
- // direct pair production by muons
- // G4 particles: "e-", "e+"
- // G3 default value: 0.01 GeV
- //gMC ->SetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons
- // one = pair production by muons and charged hadrons is activated
- // zero = e+, e- kinetic energy threshold (in GeV) for explicit pair production.
- // zero = no explicit bremsstrahlung production is simulated
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"PAIRBREM %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,three,fLastMaterial);
-
- // for e+ and e-
- fprintf(pAliceInp,"*\n*Pair production by electrons is activated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)\n");
- fCut = -1.0;
- for (j=0; j<iNbOfCut; j++) {
- if (strncmp(&sCutFlag[j][0],"CUTGAM",6) == 0) fCut = fCutValue[j];
- }
- // zero = energy threshold (GeV) for Compton scattering (= 0.0 : ignored)
- // zero = energy threshold (GeV) for Photoelectric (= 0.0 : ignored)
- // fCut = energy threshold (GeV) for gamma pair production (< 0.0 : resets to default, = 0.0 : ignored)
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.4g%10.1f%10.1f%10.1fPHOT-THR\n",zero,zero,fCut,three,fLastMaterial,one);
-
-BOTH:
- k = 0;
- } // end of if for PAIR
-
-
-
- // bremsstrahlung
- // G3 default value: 1
- // G4 processes: G4eBremsstrahlung/G4IeBremsstrahlung,
- // G4MuBremsstrahlung/G4IMuBremsstrahlung,
- // G4LowEnergyBremstrahlung
- // Particles: e-/e+; mu+/mu-
- // Physics: EM
- // flag = 0 no bremsstrahlung
- // flag = 1 bremsstrahlung, photon processed
- // flag = 2 bremsstrahlung, no photon stored
- // gMC ->SetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat
- // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR
- else if (strncmp(&sProcessFlag[i][0],"BREM",4) == 0) {
- for (j=0; j<iNbOfProc; j++) {
- if ((strncmp(&sProcessFlag[j][0],"PAIR",4) == 0) && iProcessValue[j] == 1) goto NOBREM;
- }
- if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
- fprintf(pAliceInp,"*\n*Bremsstrahlung by muons and charged hadrons is activated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',1) or SetProcess('BREM',2)\n");
- fprintf(pAliceInp,"*Energy threshold set by call SetCut('BCUTM',cut) or set to 0.\n");
- // two = bremsstrahlung by muons and charged hadrons is activated
- // zero = no meaning
- // muon and hadron bremsstrahlung
- // G4 particles: "gamma"
- // G3 default value: CUTGAM=0.001 GeV
- //gMC ->SetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung
- fCut = 0.0;
- for (j=0; j<iNbOfCut; j++) {
- if (strncmp(&sCutFlag[j][0],"BCUTM",5) == 0) fCut = fCutValue[j];
- }
- // fCut = photon energy threshold (GeV) for explicit bremsstrahlung production
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"PAIRBREM %10.1f%10.1f%10.4g%10.1f%10.1f\n",two,zero,fCut,three,fLastMaterial);
-
- // for e+ and e-
- fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for e+/e- bremsstrahlung - resets to default=0.\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',1);");
- // - one = kinetic energy threshold (GeV) for e+/e- bremsstrahlung (resets to default=0)
- // zero = not used
- // zero = not used
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- //"ELPO-THR";
- fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fELPO-THR\n",-one,zero,zero,three,fLastMaterial,one);
- }
- else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*No bremsstrahlung - no FLUKA card generated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',0)\n");
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('BREM',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
-NOBREM:
- j = 0;
- } // end of else if (strncmp(&sProcessFlag[i][0],"BREM",4) == 0)
-
-
- // Cerenkov photon generation
- // G3 default value: 0
- // G4 process: G4Cerenkov
- //
- // Particles: charged
- // Physics: Optical
- // flag = 0 no Cerenkov photon generation
- // flag = 1 Cerenkov photon generation
- // flag = 2 Cerenkov photon generation with primary stopped at each step
- //xx gMC ->SetProcess("CKOV",1); // ??? Cerenkov photon generation
- else if (strncmp(&sProcessFlag[i][0],"CKOV",4) == 0) {
- if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
- fprintf(pAliceInp,"*\n*Cerenkov photon generation\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('CKOV',1) or SetProcess('CKOV',2)\n");
- Double_t emin = 2.07e-9; // minimum Cerenkov photon emission energy (in GeV!). Default: 2.07E-9 GeV (corresponding to 600 nm)
- Double_t emax = 4.96e-9; // maximum Cerenkov photon emission energy (in GeV!). Default: 4.96E-9 GeV (corresponding to 250 nm)
- fprintf(pAliceInp,"OPT-PROD %10.4g%10.4g%10.1f%10.1f%10.1f%10.1fCERENKOV\n",emin,emax,zero,three,fLastMaterial,one);
- }
- else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*No Cerenkov photon generation\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('CKOV',0)\n");
- // zero = not used
- // zero = not used
- // zero = not used
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- //"CERE-OFF";
- fprintf(pAliceInp,"OPT-PROD %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fCERE-OFF\n",zero,zero,zero,three,fLastMaterial,one);
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('CKOV',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- } // end of else if (strncmp(&sProcessFlag[i][0],"CKOV",4) == 0)
-
-
- // Compton scattering
- // G3 default value: 1
- // G4 processes: G4ComptonScattering,
- // G4LowEnergyCompton,
- // G4PolarizedComptonScattering
- // Particles: gamma
- // Physics: EM
- // flag = 0 no Compton scattering
- // flag = 1 Compton scattering, electron processed
- // flag = 2 Compton scattering, no electron stored
- // gMC ->SetProcess("COMP",1); // EMFCUT -1. 0. 0. 3. lastmat 0. PHOT-THR
- else if (strncmp(&sProcessFlag[i][0],"COMP",4) == 0) {
- if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
- fprintf(pAliceInp,"*\n*Energy threshold (GeV) for Compton scattering - resets to default=0.\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('COMP',1);\n");
- // - one = energy threshold (GeV) for Compton scattering - resets to default=0.
- // zero = not used
- // zero = not used
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- //"PHOT-THR";
- fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fPHOT-THR\n",-one,zero,zero,three,fLastMaterial,one);
- }
- else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*No Compton scattering - no FLUKA card generated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('COMP',0)\n");
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('COMP',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- } // end of else if (strncmp(&sProcessFlag[i][0],"COMP",4) == 0)
-
- // decay
- // G3 default value: 1
- // G4 process: G4Decay
- //
- // Particles: all which decay is applicable for
- // Physics: General
- // flag = 0 no decays
- // flag = 1 decays, secondaries processed
- // flag = 2 decays, no secondaries stored
- //gMC ->SetProcess("DCAY",1); // not available
- else if ((strncmp(&sProcessFlag[i][0],"DCAY",4) == 0) && iProcessValue[i] == 1)
- cout << "SetProcess for flag=" << &sProcessFlag[i][0] << " value=" << iProcessValue[i] << " not avaliable!" << endl;
-
- // delta-ray
- // G3 default value: 2
- // !! G4 treats delta rays in different way
- // G4 processes: G4eIonisation/G4IeIonization,
- // G4MuIonisation/G4IMuIonization,
- // G4hIonisation/G4IhIonisation
- // Particles: charged
- // Physics: EM
- // flag = 0 no energy loss
- // flag = 1 restricted energy loss fluctuations
- // flag = 2 complete energy loss fluctuations
- // flag = 3 same as 1
- // flag = 4 no energy loss fluctuations
- // gMC ->SetProcess("DRAY",0); // DELTARAY 1.E+6 0. 0. 3. lastmat 0.
- else if (strncmp(&sProcessFlag[i][0],"DRAY",4) == 0) {
- if (iProcessValue[i] == 0 || iProcessValue[i] == 4) {
- fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for delta ray production\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('DRAY',0) or SetProcess('DRAY',4)\n");
- fprintf(pAliceInp,"*No delta ray production by muons - threshold set artificially high\n");
- Double_t emin = 1.0e+6; // kinetic energy threshold (GeV) for delta ray production (discrete energy transfer)
- // zero = ignored
- // zero = ignored
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- fprintf(pAliceInp,"DELTARAY %10.4g%10.1f%10.1f%10.1f%10.1f%10.1f\n",emin,zero,zero,three,fLastMaterial,one);
- }
- else if (iProcessValue[i] == 1 || iProcessValue[i] == 2 || iProcessValue[i] == 3) {
- fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for delta ray production\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('DRAY',flag), flag=1,2,3\n");
- fprintf(pAliceInp,"*Delta ray production by muons switched on\n");
- fprintf(pAliceInp,"*Energy threshold set by call SetCut('DCUTM',cut) or set to 1.0e+6.\n");
- fCut = 1.0e+6;
- for (j=0; j<iNbOfCut; j++) {
- if (strncmp(&sCutFlag[j][0],"DCUTM",5) == 0) fCut = fCutValue[j];
- }
- // fCut = kinetic energy threshold (GeV) for delta ray production (discrete energy transfer)
- // zero = ignored
- // zero = ignored
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- fprintf(pAliceInp,"DELTARAY %10.4g%10.1f%10.1f%10.1f%10.1f%10.1f\n",fCut,zero,zero,three,fLastMaterial,one);
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('DRAY',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- } // end of else if (strncmp(&sProcessFlag[i][0],"DRAY",4) == 0)
-
- // hadronic process
- // G3 default value: 1
- // G4 processes: all defined by TG4PhysicsConstructorHadron
- //
- // Particles: hadrons
- // Physics: Hadron
- // flag = 0 no multiple scattering
- // flag = 1 hadronic interactions, secondaries processed
- // flag = 2 hadronic interactions, no secondaries stored
- // gMC ->SetProcess("HADR",1); // ??? hadronic process
- //Select pure GEANH (HADR 1) or GEANH/NUCRIN (HADR 3) ?????
- else if (strncmp(&sProcessFlag[i][0],"HADR",4) == 0) {
- if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
- fprintf(pAliceInp,"*\n*Hadronic interaction is ON by default in FLUKA\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*Hadronic interaction is set OFF\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('HADR',0);\n");
- // zero = ignored
- // three = multiple scattering for hadrons and muons is completely suppressed
- // zero = no spin-relativistic corrections
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"MULSOPT %10.1f%10.1f%10.1f%10.1f%10.1f\n",zero,three,zero,three,fLastMaterial);
-
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('HADR',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- } // end of else if (strncmp(&sProcessFlag[i][0],"HADR",4) == 0)
-
-
- // energy loss
- // G3 default value: 2
- // G4 processes: G4eIonisation/G4IeIonization,
- // G4MuIonisation/G4IMuIonization,
- // G4hIonisation/G4IhIonisation
- //
- // Particles: charged
- // Physics: EM
- // flag=0 no energy loss
- // flag=1 restricted energy loss fluctuations
- // flag=2 complete energy loss fluctuations
- // flag=3 same as 1
- // flag=4 no energy loss fluctuations
- // If the value ILOSS is changed, then (in G3) cross-sections and energy
- // loss tables must be recomputed via the command 'PHYSI'
- // gMC ->SetProcess("LOSS",2); // ??? IONFLUCT ? energy loss
- else if (strncmp(&sProcessFlag[i][0],"LOSS",4) == 0) {
- if (iProcessValue[i] == 2) { // complete energy loss fluctuations
- fprintf(pAliceInp,"*\n*Complete energy loss fluctuations do not exist in FLUKA\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('LOSS',2);\n");
- fprintf(pAliceInp,"*flag=2=complete energy loss fluctuations\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- else if (iProcessValue[i] == 1 || iProcessValue[i] == 3) { // restricted energy loss fluctuations
- fprintf(pAliceInp,"*\n*Restricted energy loss fluctuations\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('LOSS',1) or SetProcess('LOSS',3)\n");
- // one = restricted energy loss fluctuations (for hadrons and muons) switched on
- // one = restricted energy loss fluctuations (for e+ and e-) switched on
- // one = minimal accuracy
- // three = lower bound of the material indices in which the respective thresholds apply
- // upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,one,one,three,fLastMaterial);
- }
- else if (iProcessValue[i] == 4) { // no energy loss fluctuations
- fprintf(pAliceInp,"*\n*No energy loss fluctuations\n");
- fprintf(pAliceInp,"*\n*Generated from call: SetProcess('LOSS',4)\n");
- // - one = restricted energy loss fluctuations (for hadrons and muons) switched off
- // - one = restricted energy loss fluctuations (for e+ and e-) switched off
- // one = minimal accuracy
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",-one,-one,one,three,fLastMaterial);
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('LOSS',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- } // end of else if (strncmp(&sProcessFlag[i][0],"LOSS",4) == 0)
-
-
- // multiple scattering
- // G3 default value: 1
- // G4 process: G4MultipleScattering/G4IMultipleScattering
- //
- // Particles: charged
- // Physics: EM
- // flag = 0 no multiple scattering
- // flag = 1 Moliere or Coulomb scattering
- // flag = 2 Moliere or Coulomb scattering
- // flag = 3 Gaussian scattering
- // gMC ->SetProcess("MULS",1); // MULSOPT multiple scattering
- else if (strncmp(&sProcessFlag[i][0],"MULS",4) == 0) {
- if (iProcessValue[i] == 1 || iProcessValue[i] == 2 || iProcessValue[i] == 3) {
- fprintf(pAliceInp,"*\n*Multiple scattering is ON by default for e+e- and for hadrons/muons\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*Multiple scattering is set OFF\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('MULS',0);\n");
- // zero = ignored
- // three = multiple scattering for hadrons and muons is completely suppressed
- // three = multiple scattering for e+ and e- is completely suppressed
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"MULSOPT %10.1f%10.1f%10.1f%10.1f%10.1f\n",zero,three,three,three,fLastMaterial);
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('MULS',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- } // end of else if (strncmp(&sProcessFlag[i][0],"MULS",4) == 0)
-
-
- // muon nuclear interaction
- // G3 default value: 0
- // G4 processes: G4MuNuclearInteraction,
- // G4MuonMinusCaptureAtRest
- //
- // Particles: mu
- // Physics: Not set
- // flag = 0 no muon-nuclear interaction
- // flag = 1 nuclear interaction, secondaries processed
- // flag = 2 nuclear interaction, secondaries not processed
- // gMC ->SetProcess("MUNU",1); // MUPHOTON 1. 0. 0. 3. lastmat
- else if (strncmp(&sProcessFlag[i][0],"MUNU",4) == 0) {
- if (iProcessValue[i] == 1) {
- fprintf(pAliceInp,"*\n*Muon nuclear interactions with production of secondary hadrons\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('MUNU',1);\n");
- // one = full simulation of muon nuclear interactions and production of secondary hadrons
- // zero = ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25.
- // zero = fraction of rho-like interactions ( must be < 1) - Default = 0.75.
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"MUPHOTON %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,three,fLastMaterial);
- }
- else if (iProcessValue[i] == 2) {
- fprintf(pAliceInp,"*\n*Muon nuclear interactions without production of secondary hadrons\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('MUNU',2);\n");
- // two = full simulation of muon nuclear interactions and production of secondary hadrons
- // zero = ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25.
- // zero = fraction of rho-like interactions ( must be < 1) - Default = 0.75.
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"MUPHOTON %10.1f%10.1f%10.1f%10.1f%10.1f\n",two,zero,zero,three,fLastMaterial);
- }
- else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*No muon nuclear interaction - no FLUKA card generated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('MUNU',0)\n");
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('MUNU',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- } // end of else if (strncmp(&sProcessFlag[i][0],"MUNU",4) == 0)
-
-
- // photofission
- // G3 default value: 0
- // G4 process: ??
- //
- // Particles: gamma
- // Physics: ??
- // gMC ->SetProcess("PFIS",0); // PHOTONUC -1. 0. 0. 3. lastmat 0.
- // flag = 0 no photon fission
- // flag = 1 photon fission, secondaries processed
- // flag = 2 photon fission, no secondaries stored
- else if (strncmp(&sProcessFlag[i][0],"PFIS",4) == 0) {
- if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*No photonuclear interactions\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',0);\n");
- // - one = no photonuclear interactions
- // zero = not used
- // zero = not used
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"PHOTONUC %10.1f%10.1f%10.1f%10.1f%10.1f\n",-one,zero,zero,three,fLastMaterial);
- }
- else if (iProcessValue[i] == 1) {
- fprintf(pAliceInp,"*\n*Photon nuclear interactions are activated at all energies\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',1);\n");
- // one = photonuclear interactions are activated at all energies
- // zero = not used
- // zero = not used
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"PHOTONUC %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,three,fLastMaterial);
- }
- else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*No photofission - no FLUKA card generated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',0)\n");
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('PFIS',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- }
-
-
- // photo electric effect
- // G3 default value: 1
- // G4 processes: G4PhotoElectricEffect
- // G4LowEnergyPhotoElectric
- // Particles: gamma
- // Physics: EM
- // flag = 0 no photo electric effect
- // flag = 1 photo electric effect, electron processed
- // flag = 2 photo electric effect, no electron stored
- // gMC ->SetProcess("PHOT",1); // EMFCUT 0. -1. 0. 3. lastmat 0. PHOT-THR
- else if (strncmp(&sProcessFlag[i][0],"PHOT",4) == 0) {
- if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
- fprintf(pAliceInp,"*\n*Photo electric effect is activated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('PHOT',1);\n");
- // zero = ignored
- // - one = resets to default=0.
- // zero = ignored
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- //"PHOT-THR";
- fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fPHOT-THR\n",zero,-one,zero,three,fLastMaterial,one);
- }
- else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*No photo electric effect - no FLUKA card generated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('PHOT',0)\n");
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('PHOT',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- } // else if (strncmp(&sProcessFlag[i][0],"PHOT",4) == 0)
-
-
- // Rayleigh scattering
- // G3 default value: 0
- // G4 process: G4OpRayleigh
- //
- // Particles: optical photon
- // Physics: Optical
- // flag = 0 Rayleigh scattering off
- // flag = 1 Rayleigh scattering on
- //xx gMC ->SetProcess("RAYL",1);
- else if (strncmp(&sProcessFlag[i][0],"RAYL",4) == 0) {
- if (iProcessValue[i] == 1) {
- fprintf(pAliceInp,"*\n*Rayleigh scattering is ON by default in FLUKA\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*Rayleigh scattering is set OFF\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('RAYL',0);\n");
- // - one = no Rayleigh scattering and no binding corrections for Compton
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"EMFRAY %10.1f%10.1f%10.1f%10.1f\n",-one,three,three,fLastMaterial);
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('RAYL',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- } // end of else if (strncmp(&sProcessFlag[i][0],"RAYL",4) == 0)
-
-
- // synchrotron radiation in magnetic field
- // G3 default value: 0
- // G4 process: G4SynchrotronRadiation
- //
- // Particles: ??
- // Physics: Not set
- // flag = 0 no synchrotron radiation
- // flag = 1 synchrotron radiation
- //xx gMC ->SetProcess("SYNC",1); // synchrotron radiation generation
- else if (strncmp(&sProcessFlag[i][0],"SYNC",4) == 0) {
- fprintf(pAliceInp,"*\n*Synchrotron radiation generation is NOT implemented in FLUKA\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
-
-
- // Automatic calculation of tracking medium parameters
- // flag = 0 no automatic calculation
- // flag = 1 automatic calculation
- //xx gMC ->SetProcess("AUTO",1); // ??? automatic computation of the tracking medium parameters
- else if (strncmp(&sProcessFlag[i][0],"AUTO",4) == 0) {
- fprintf(pAliceInp,"*\n*Automatic calculation of tracking medium parameters is always ON in FLUKA\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
-
-
- // To control energy loss fluctuation model
- // flag = 0 Urban model
- // flag = 1 PAI model
- // flag = 2 PAI+ASHO model (not active at the moment)
- //xx gMC ->SetProcess("STRA",1); // ??? energy fluctuation model
- else if (strncmp(&sProcessFlag[i][0],"STRA",4) == 0) {
- if (iProcessValue[i] == 0 || iProcessValue[i] == 2 || iProcessValue[i] == 3) {
- fprintf(pAliceInp,"*\n*Ionization energy losses calculation is activated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('STRA',n);, n=0,1,2\n");
- // one = restricted energy loss fluctuations (for hadrons and muons) switched on
- // one = restricted energy loss fluctuations (for e+ and e-) switched on
- // one = minimal accuracy
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,one,one,three,fLastMaterial);
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('STRA',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- } // else if (strncmp(&sProcessFlag[i][0],"STRA",4) == 0)
-
-
-
-
- else { // processes not yet treated
-
- // light photon absorption (Cerenkov photons)
- // it is turned on when Cerenkov process is turned on
- // G3 default value: 0
- // G4 process: G4OpAbsorption, G4OpBoundaryProcess
- //
- // Particles: optical photon
- // Physics: Optical
- // flag = 0 no absorption of Cerenkov photons
- // flag = 1 absorption of Cerenkov photons
- // gMC ->SetProcess("LABS",2); // ??? Cerenkov light absorption
-
-
-
- cout << "SetProcess for flag=" << &sProcessFlag[i][0] << " value=" << iProcessValue[i] << " not yet implemented!" << endl;
- }
- } //end of loop number of SetProcess calls
-
-
-// Loop over number of SetCut calls
- for (Int_t i=0; i<iNbOfCut; i++) {
-
- // cuts used in SetProcess calls
- if (strncmp(&sCutFlag[i][0],"BCUTM",5) == 0) continue;
- else if (strncmp(&sCutFlag[i][0],"BCUTE",5) == 0) continue;
- else if (strncmp(&sCutFlag[i][0],"DCUTM",5) == 0) continue;
- else if (strncmp(&sCutFlag[i][0],"PPCUTM",6) == 0) continue;
-
- // gammas
- // G4 particles: "gamma"
- // G3 default value: 0.001 GeV
- //gMC ->SetCut("CUTGAM",cut); // cut for gammas
- else if (strncmp(&sCutFlag[i][0],"CUTGAM",6) == 0) {
- fprintf(pAliceInp,"*\n*Cut for gamma\n");
- fprintf(pAliceInp,"*Generated from call: SetCut('CUTGAM',cut);\n");
- // -fCutValue[i];
- // 7.0 = lower bound of the particle id-numbers to which the cut-off
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f\n",-fCutValue[i],7.0);
- }
-
- // electrons
- // G4 particles: "e-"
- // ?? positrons
- // G3 default value: 0.001 GeV
- //gMC ->SetCut("CUTELE",cut); // cut for e+,e-
- else if (strncmp(&sCutFlag[i][0],"CUTELE",6) == 0) {
- fprintf(pAliceInp,"*\n*Cut for electrons\n");
- fprintf(pAliceInp,"*Generated from call: SetCut('CUTELE',cut);\n");
- // -fCutValue[i];
- // three = lower bound of the particle id-numbers to which the cut-off
- // 4.0 = upper bound of the particle id-numbers to which the cut-off
- // one = step length in assigning numbers
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-fCutValue[i],three,4.0,one);
- }
-
- // neutral hadrons
- // G4 particles: of type "baryon", "meson", "nucleus" with zero charge
- // G3 default value: 0.01 GeV
- //gMC ->SetCut("CUTNEU",cut); // cut for neutral hadrons
- else if (strncmp(&sCutFlag[i][0],"CUTNEU",6) == 0) {
- fprintf(pAliceInp,"*\n*Cut for neutral hadrons\n");
- fprintf(pAliceInp,"*Generated from call: SetCut('CUTNEU',cut);\n");
-
- // 8.0 = Neutron
- // 9.0 = Antineutron
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],8.0,9.0);
-
- // 12.0 = Kaon zero long
- // 12.0 = Kaon zero long
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],12.0,12.0);
-
- // 17.0 = Lambda, 18.0 = Antilambda
- // 19.0 = Kaon zero short
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],17.0,19.0);
-
- // 22.0 = Sigma zero, Pion zero, Kaon zero
- // 25.0 = Antikaon zero
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],22.0,25.0);
-
- // 32.0 = Antisigma zero
- // 32.0 = Antisigma zero
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],32.0,32.0);
-
- // 34.0 = Xi zero
- // 35.0 = AntiXi zero
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],34.0,35.0);
-
- // 47.0 = D zero
- // 48.0 = AntiD zero
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],47.0,48.0);
-
- // 53.0 = Xi_c zero
- // 53.0 = Xi_c zero
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],53.0,53.0);
-
- // 55.0 = Xi'_c zero
- // 56.0 = Omega_c zero
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],55.0,56.0);
-
- // 59.0 = AntiXi_c zero
- // 59.0 = AntiXi_c zero
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],59.0,59.0);
-
- // 61.0 = AntiXi'_c zero
- // 62.0 = AntiOmega_c zero
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],61.0,62.0);
- }
-
- // charged hadrons
- // G4 particles: of type "baryon", "meson", "nucleus" with non-zero charge
- // G3 default value: 0.01 GeV
- //gMC ->SetCut("CUTHAD",cut); // cut for charged hadrons
- else if (strncmp(&sCutFlag[i][0],"CUTHAD",6) == 0) {
- fprintf(pAliceInp,"*\n*Cut for charged hadrons\n");
- fprintf(pAliceInp,"*Generated from call: SetCut('CUTHAD',cut);\n");
-
- // 1.0 = Proton
- // 2.0 = Antiproton
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],1.0,2.0);
-
- // 13.0 = Positive Pion, Negative Pion, Positive Kaon
- // 16.0 = Negative Kaon
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],13.0,16.0);
-
- // 20.0 = Negative Sigma
- // 21.0 = Positive Sigma
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],20.0,21.0);
-
- // 31.0 = Antisigma minus
- // 33.0 = Antisigma plus
- // 2.0 = step length
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-fCutValue[i],31.0,33.0,2.0);
-
- // 36.0 = Negative Xi, Positive Xi, Omega minus
- // 39.0 = Antiomega
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],36.0,39.0);
-
- // 45.0 = D plus
- // 46.0 = D minus
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],45.0,46.0);
-
- // 49.0 = D_s plus, D_s minus, Lambda_c plus
- // 52.0 = Xi_c plus
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],49.0,52.0);
-
- // 54.0 = Xi'_c plus
- // 60.0 = AntiXi'_c minus
- // 6.0 = step length
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-fCutValue[i],54.0,60.0,6.0);
-
- // 57.0 = Antilambda_c minus
- // 58.0 = AntiXi_c minus
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],57.0,58.0);
- }
-
- // muons
- // G4 particles: "mu+", "mu-"
- // G3 default value: 0.01 GeV
- //gMC ->SetCut("CUTMUO",cut); // cut for mu+, mu-
- else if (strncmp(&sCutFlag[i][0],"CUTMUO",6) == 0) {
- fprintf(pAliceInp,"*\n*Cut for muons\n");
- fprintf(pAliceInp,"*Generated from call: SetCut('CUTMUO',cut);\n");
- // 10.0 = Muon+
- // 11.0 = Muon-
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],10.0,11.0);
- }
-
- // delta-rays by electrons
- // G4 particles: "e-"
- // G3 default value: 10**4 GeV
- // gMC ->SetCut("DCUTE",cut); // cut for deltarays by electrons ???????????????
- else if (strncmp(&sCutFlag[i][0],"DCUTE",5) == 0) {
- fprintf(pAliceInp,"*\n*Cut for delta rays by electrons ????????????\n");
- fprintf(pAliceInp,"*Generated from call: SetCut('DCUTE',cut);\n");
- // -fCutValue[i];
- // zero = ignored
- // zero = ignored
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"EMFCUT %10.4g%10.1f%10.1f%10.1f%10.1f\n",-fCutValue[i],zero,zero,three,fLastMaterial);
- }
-
- //
- // time of flight cut in seconds
- // G4 particles: all
- // G3 default value: 0.01 GeV
- //gMC ->SetCut("TOFMAX",tofmax); // time of flight cuts in seconds
- else if (strncmp(&sCutFlag[i][0],"TOFMAX",6) == 0) {
- fprintf(pAliceInp,"*\n*Time of flight cuts in seconds\n");
- fprintf(pAliceInp,"*Generated from call: SetCut('TOFMAX',tofmax);\n");
- // zero = ignored
- // zero = ignored
- // -6.0 = lower bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied
- // 64.0 = upper bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied
- fprintf(pAliceInp,"TIME-CUT %10.4g%10.1f%10.1f%10.1f%10.1f\n",fCutValue[i]*1.e9,zero,zero,-6.0,64.0);
- }
-
- else {
- cout << "SetCut for flag=" << &sCutFlag[i][0] << " value=" << fCutValue[i] << " not yet implemented!" << endl;
- }
- } //end of loop over SetCut calls
-
-// Add START and STOP card
- fprintf(pAliceInp,"START %10.1f\n",fEventsPerRun);
- fprintf(pAliceInp,"STOP \n");
-
-} // end of InitPhysics
-
-
-void TFluka::SetMaxStep(Double_t)
-{
-// SetMaxStep is dummy procedure in TFluka !
- if (fVerbosityLevel >=3)
- cout << "SetMaxStep is dummy procedure in TFluka !" << endl;
-}
-
-void TFluka::SetMaxNStep(Int_t)
-{
-// SetMaxNStep is dummy procedure in TFluka !
- if (fVerbosityLevel >=3)
- cout << "SetMaxNStep is dummy procedure in TFluka !" << endl;
-}
-
-void TFluka::SetUserDecay(Int_t)
-{
-// SetUserDecay is dummy procedure in TFluka !
- if (fVerbosityLevel >=3)
- cout << "SetUserDecay is dummy procedure in TFluka !" << endl;
-}
-
-//
-// dynamic properties
-//
-void TFluka::TrackPosition(TLorentzVector& position) const
-{
-// Return the current position in the master reference frame of the
-// track being transported
-// TRACKR.atrack = age of the particle
-// TRACKR.xtrack = x-position of the last point
-// TRACKR.ytrack = y-position of the last point
-// TRACKR.ztrack = z-position of the last point
- Int_t caller = GetCaller();
- if (caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw
- position.SetX(GetXsco());
- position.SetY(GetYsco());
- position.SetZ(GetZsco());
- position.SetT(TRACKR.atrack);
- }
- else if (caller == 4) { // mgdraw
- position.SetX(TRACKR.xtrack[TRACKR.ntrack]);
- position.SetY(TRACKR.ytrack[TRACKR.ntrack]);
- position.SetZ(TRACKR.ztrack[TRACKR.ntrack]);
- position.SetT(TRACKR.atrack);
- }
- else if (caller == 5) { // sodraw
- position.SetX(TRACKR.xtrack[TRACKR.ntrack]);
- position.SetY(TRACKR.ytrack[TRACKR.ntrack]);
- position.SetZ(TRACKR.ztrack[TRACKR.ntrack]);
- position.SetT(0);
- }
- else
- Warning("TrackPosition","position not available");
-}
-
-//
-void TFluka::TrackPosition(Double_t& x, Double_t& y, Double_t& z) const
-{
-// Return the current position in the master reference frame of the
-// track being transported
-// TRACKR.atrack = age of the particle
-// TRACKR.xtrack = x-position of the last point
-// TRACKR.ytrack = y-position of the last point
-// TRACKR.ztrack = z-position of the last point
- Int_t caller = GetCaller();
- if (caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw
- x = GetXsco();
- y = GetYsco();
- z = GetZsco();
- }
- else if (caller == 4 || caller == 5) { // mgdraw, sodraw
- x = TRACKR.xtrack[TRACKR.ntrack];
- y = TRACKR.ytrack[TRACKR.ntrack];
- z = TRACKR.ztrack[TRACKR.ntrack];
- }
- else
- Warning("TrackPosition","position not available");
-}
-
-void TFluka::TrackMomentum(TLorentzVector& momentum) const
-{
-// Return the direction and the momentum (GeV/c) of the track
-// currently being transported
-// TRACKR.ptrack = momentum of the particle (not always defined, if
-// < 0 must be obtained from etrack)
-// TRACKR.cx,y,ztrck = direction cosines of the current particle
-// TRACKR.etrack = total energy of the particle
-// TRACKR.jtrack = identity number of the particle
-// PAPROP.am[TRACKR.jtrack] = particle mass in gev
- Int_t caller = GetCaller();
- if (caller != 2) { // not eedraw
- if (TRACKR.ptrack >= 0) {
- momentum.SetPx(TRACKR.ptrack*TRACKR.cxtrck);
- momentum.SetPy(TRACKR.ptrack*TRACKR.cytrck);
- momentum.SetPz(TRACKR.ptrack*TRACKR.cztrck);
- momentum.SetE(TRACKR.etrack);
- return;
- }
- else {
- Double_t p = sqrt(TRACKR.etrack*TRACKR.etrack - PAPROP.am[TRACKR.jtrack+6]*PAPROP.am[TRACKR.jtrack+6]);
- momentum.SetPx(p*TRACKR.cxtrck);
- momentum.SetPy(p*TRACKR.cytrck);
- momentum.SetPz(p*TRACKR.cztrck);
- momentum.SetE(TRACKR.etrack);
- return;
- }
- }
- else
- Warning("TrackMomentum","momentum not available");
-}
-
-void TFluka::TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& e) const
-{
-// Return the direction and the momentum (GeV/c) of the track
-// currently being transported
-// TRACKR.ptrack = momentum of the particle (not always defined, if
-// < 0 must be obtained from etrack)
-// TRACKR.cx,y,ztrck = direction cosines of the current particle
-// TRACKR.etrack = total energy of the particle
-// TRACKR.jtrack = identity number of the particle
-// PAPROP.am[TRACKR.jtrack] = particle mass in gev
- Int_t caller = GetCaller();
- if (caller != 2) { // not eedraw
- if (TRACKR.ptrack >= 0) {
- px = TRACKR.ptrack*TRACKR.cxtrck;
- py = TRACKR.ptrack*TRACKR.cytrck;
- pz = TRACKR.ptrack*TRACKR.cztrck;
- e = TRACKR.etrack;
- return;
- }
- else {
- Double_t p = sqrt(TRACKR.etrack*TRACKR.etrack - PAPROP.am[TRACKR.jtrack+6]*PAPROP.am[TRACKR.jtrack+6]);
- px = p*TRACKR.cxtrck;
- py = p*TRACKR.cytrck;
- pz = p*TRACKR.cztrck;
- e = TRACKR.etrack;
- return;
- }
- }
- else
- Warning("TrackMomentum","momentum not available");
-}
-
-Double_t TFluka::TrackStep() const
-{
-// Return the length in centimeters of the current step
-// TRACKR.ctrack = total curved path
- Int_t caller = GetCaller();
- if (caller == 11 || caller==12 || caller == 3 || caller == 6) //bxdraw,endraw,usdraw
- return 0.0;
- else if (caller == 4) //mgdraw
- return TRACKR.ctrack;
- else
- return -1.0;
-}
-
-Double_t TFluka::TrackLength() const
-{
-// TRACKR.cmtrck = cumulative curved path since particle birth
- Int_t caller = GetCaller();
- if (caller == 11 || caller==12 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw
- return TRACKR.cmtrck;
- else
- return -1.0;
-}
-
-Double_t TFluka::TrackTime() const
-{
-// Return the current time of flight of the track being transported
-// TRACKR.atrack = age of the particle
- Int_t caller = GetCaller();
- if (caller == 11 || caller==12 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw
- return TRACKR.atrack;
- else
- return -1;
-}
-
-Double_t TFluka::Edep() const
-{
-// Energy deposition
-// if TRACKR.ntrack = 0, TRACKR.mtrack = 0:
-// -->local energy deposition (the value and the point are not recorded in TRACKR)
-// but in the variable "rull" of the procedure "endraw.cxx"
-// if TRACKR.ntrack > 0, TRACKR.mtrack = 0:
-// -->no energy loss along the track
-// if TRACKR.ntrack > 0, TRACKR.mtrack > 0:
-// -->energy loss distributed along the track
-// TRACKR.dtrack = energy deposition of the jth deposition even
-
- // If coming from bxdraw we have 2 steps of 0 length and 0 edep
- Int_t caller = GetCaller();
- if (caller == 11 || caller==12) return 0.0;
- Double_t sum = 0;
- for ( Int_t j=0;j<TRACKR.mtrack;j++) {
- sum +=TRACKR.dtrack[j];
- }
- if (TRACKR.ntrack == 0 && TRACKR.mtrack == 0)
- return fRull + sum;
- else {
- return sum;
- }
-}
-
-Int_t TFluka::TrackPid() const
-{
-// Return the id of the particle transported
-// TRACKR.jtrack = identity number of the particle
- Int_t caller = GetCaller();
- if (caller != 2) // not eedraw
- return PDGFromId(TRACKR.jtrack);
- else
- return -1000;
-}
-
-Double_t TFluka::TrackCharge() const
-{
-// Return charge of the track currently transported
-// PAPROP.ichrge = electric charge of the particle
-// TRACKR.jtrack = identity number of the particle
- Int_t caller = GetCaller();
- if (caller != 2) // not eedraw
- return PAPROP.ichrge[TRACKR.jtrack+6];
- else
- return -1000.0;
-}
-
-Double_t TFluka::TrackMass() const
-{
-// PAPROP.am = particle mass in GeV
-// TRACKR.jtrack = identity number of the particle
- Int_t caller = GetCaller();
- if (caller != 2) { // not eedraw
-// cout << "JTRACK=" << TRACKR.jtrack << " mass=" << PAPROP.am[TRACKR.jtrack+6] << endl;
- return PAPROP.am[TRACKR.jtrack+6];
- }
- else
- return -1000.0;
-}
-
-Double_t TFluka::Etot() const
-{
-// TRACKR.etrack = total energy of the particle
- Int_t caller = GetCaller();
- if (caller != 2) // not eedraw
- return TRACKR.etrack;
- else
- return -1000.0;
-}
-
-//
-// track status
-//
-Bool_t TFluka::IsNewTrack() const
-{
-// Return true for the first call of Stepping()
- return fTrackIsNew;
-}
-
-Bool_t TFluka::IsTrackInside() const
-{
-// True if the track is not at the boundary of the current volume
-// In Fluka a step is always inside one kind of material
-// If the step would go behind the region of one material,
-// it will be shortened to reach only the boundary.
-// Therefore IsTrackInside() is always true.
- Int_t caller = GetCaller();
- if (caller == 11 || caller==12) // bxdraw
- return 0;
- else
- return 1;
-}
-
-Bool_t TFluka::IsTrackEntering() const
-{
-// True if this is the first step of the track in the current volume
-
- Int_t caller = GetCaller();
- if (caller == 11) // bxdraw entering
- return 1;
- else return 0;
-}
-
-Bool_t TFluka::IsTrackExiting() const
-{
- Int_t caller = GetCaller();
- if (caller == 12) // bxdraw exiting
- return 1;
- else return 0;
-}
-
-Bool_t TFluka::IsTrackOut() const
-{
-// True if the track is out of the setup
-// means escape
-// Icode = 14: escape - call from Kaskad
-// Icode = 23: escape - call from Emfsco
-// Icode = 32: escape - call from Kasneu
-// Icode = 40: escape - call from Kashea
-// Icode = 51: escape - call from Kasoph
- if (fIcode == 14 ||
- fIcode == 23 ||
- fIcode == 32 ||
- fIcode == 40 ||
- fIcode == 51) return 1;
- else return 0;
-}
-
-Bool_t TFluka::IsTrackDisappeared() const
-{
-// means all inelastic interactions and decays
-// fIcode from usdraw
- if (fIcode == 101 || // inelastic interaction
- fIcode == 102 || // particle decay
- fIcode == 214 || // in-flight annihilation
- fIcode == 215 || // annihilation at rest
- fIcode == 217 || // pair production
- fIcode == 221) return 1;
- else return 0;
-}
-
-Bool_t TFluka::IsTrackStop() const
-{
-// True if the track energy has fallen below the threshold
-// means stopped by signal or below energy threshold
-// Icode = 12: stopping particle - call from Kaskad
-// Icode = 15: time kill - call from Kaskad
-// Icode = 21: below threshold, iarg=1 - call from Emfsco
-// Icode = 22: below threshold, iarg=2 - call from Emfsco
-// Icode = 24: time kill - call from Emfsco
-// Icode = 31: below threshold - call from Kasneu
-// Icode = 33: time kill - call from Kasneu
-// Icode = 41: time kill - call from Kashea
-// Icode = 52: time kill - call from Kasoph
- if (fIcode == 12 ||
- fIcode == 15 ||
- fIcode == 21 ||
- fIcode == 22 ||
- fIcode == 24 ||
- fIcode == 31 ||
- fIcode == 33 ||
- fIcode == 41 ||
- fIcode == 52) return 1;
- else return 0;
-}
-
-Bool_t TFluka::IsTrackAlive() const
-{
-// means not disappeared or not out
- if (IsTrackDisappeared() || IsTrackOut() ) return 0;
- else return 1;
-}
-
-//
-// secondaries
-//
-
-Int_t TFluka::NSecondaries() const
-// Number of secondary particles generated in the current step
-// FINUC.np = number of secondaries except light and heavy ions
-// FHEAVY.npheav = number of secondaries for light and heavy secondary ions
-{
- Int_t caller = GetCaller();
- if (caller == 6) // valid only after usdraw
- return FINUC.np + FHEAVY.npheav;
- else
- return 0;
-} // end of NSecondaries
-
-void TFluka::GetSecondary(Int_t isec, Int_t& particleId,
- TLorentzVector& position, TLorentzVector& momentum)
-{
- Int_t caller = GetCaller();
- if (caller == 6) { // valid only after usdraw
- if (isec >= 0 && isec < FINUC.np) {
- particleId = PDGFromId(FINUC.kpart[isec]);
- position.SetX(fXsco);
- position.SetY(fYsco);
- position.SetZ(fZsco);
- position.SetT(TRACKR.atrack);
- momentum.SetPx(FINUC.plr[isec]*FINUC.cxr[isec]);
- momentum.SetPy(FINUC.plr[isec]*FINUC.cyr[isec]);
- momentum.SetPz(FINUC.plr[isec]*FINUC.czr[isec]);
- momentum.SetE(FINUC.tki[isec] + PAPROP.am[FINUC.kpart[isec]+6]);
- }
- else if (isec >= FINUC.np && isec < FINUC.np + FHEAVY.npheav) {
- Int_t jsec = isec - FINUC.np;
- particleId = FHEAVY.kheavy[jsec]; // this is Fluka id !!!
- position.SetX(fXsco);
- position.SetY(fYsco);
- position.SetZ(fZsco);
- position.SetT(TRACKR.atrack);
- momentum.SetPx(FHEAVY.pheavy[jsec]*FHEAVY.cxheav[jsec]);
- momentum.SetPy(FHEAVY.pheavy[jsec]*FHEAVY.cyheav[jsec]);
- momentum.SetPz(FHEAVY.pheavy[jsec]*FHEAVY.czheav[jsec]);
- if (FHEAVY.tkheav[jsec] >= 3 && FHEAVY.tkheav[jsec] <= 6)
- momentum.SetE(FHEAVY.tkheav[jsec] + PAPROP.am[jsec+6]);
- else if (FHEAVY.tkheav[jsec] > 6)
- momentum.SetE(FHEAVY.tkheav[jsec] + FHEAVY.amnhea[jsec]); // to be checked !!!
- }
- else
- Warning("GetSecondary","isec out of range");
- }
- else
- Warning("GetSecondary","no secondaries available");
-} // end of GetSecondary
-
-TMCProcess TFluka::ProdProcess(Int_t) const
-// Name of the process that has produced the secondary particles
-// in the current step
-{
- const TMCProcess kIpNoProc = kPNoProcess;
- const TMCProcess kIpPDecay = kPDecay;
- const TMCProcess kIpPPair = kPPair;
-// const TMCProcess kIpPPairFromPhoton = kPPairFromPhoton;
-// const TMCProcess kIpPPairFromVirtualPhoton = kPPairFromVirtualPhoton;
- const TMCProcess kIpPCompton = kPCompton;
- const TMCProcess kIpPPhotoelectric = kPPhotoelectric;
- const TMCProcess kIpPBrem = kPBrem;
-// const TMCProcess kIpPBremFromHeavy = kPBremFromHeavy;
-// const TMCProcess kIpPBremFromElectronOrPositron = kPBremFromElectronOrPositron;
- const TMCProcess kIpPDeltaRay = kPDeltaRay;
-// const TMCProcess kIpPMoller = kPMoller;
-// const TMCProcess kIpPBhabha = kPBhabha;
- const TMCProcess kIpPAnnihilation = kPAnnihilation;
-// const TMCProcess kIpPAnnihilInFlight = kPAnnihilInFlight;
-// const TMCProcess kIpPAnnihilAtRest = kPAnnihilAtRest;
- const TMCProcess kIpPHadronic = kPHadronic;
- const TMCProcess kIpPMuonNuclear = kPMuonNuclear;
- const TMCProcess kIpPPhotoFission = kPPhotoFission;
- const TMCProcess kIpPRayleigh = kPRayleigh;
-// const TMCProcess kIpPCerenkov = kPCerenkov;
-// const TMCProcess kIpPSynchrotron = kPSynchrotron;
-
- Int_t mugamma = TRACKR.jtrack == 7 || TRACKR.jtrack == 10 || TRACKR.jtrack == 11;
- if (fIcode == 102) return kIpPDecay;
- else if (fIcode == 104 || fIcode == 217) return kIpPPair;
-// else if (fIcode == 104) return kIpPairFromPhoton;
-// else if (fIcode == 217) return kIpPPairFromVirtualPhoton;
- else if (fIcode == 219) return kIpPCompton;
- else if (fIcode == 221) return kIpPPhotoelectric;
- else if (fIcode == 105 || fIcode == 208) return kIpPBrem;
-// else if (fIcode == 105) return kIpPBremFromHeavy;
-// else if (fIcode == 208) return kPBremFromElectronOrPositron;
- else if (fIcode == 103 || fIcode == 400) return kIpPDeltaRay;
- else if (fIcode == 210 || fIcode == 212) return kIpPDeltaRay;
-// else if (fIcode == 210) return kIpPMoller;
-// else if (fIcode == 212) return kIpPBhabha;
- else if (fIcode == 214 || fIcode == 215) return kIpPAnnihilation;
-// else if (fIcode == 214) return kIpPAnnihilInFlight;
-// else if (fIcode == 215) return kIpPAnnihilAtRest;
- else if (fIcode == 101) return kIpPHadronic;
- else if (fIcode == 101) {
- if (!mugamma) return kIpPHadronic;
- else if (TRACKR.jtrack == 7) return kIpPPhotoFission;
- else return kIpPMuonNuclear;
- }
- else if (fIcode == 225) return kIpPRayleigh;
-// Fluka codes 100, 300 and 400 still to be investigasted
- else return kIpNoProc;
-}
-
-//Int_t StepProcesses(TArrayI &proc) const
-// Return processes active in the current step
-//{
-//ck = total energy of the particl ????????????????
-//}
-
-
-Int_t TFluka::VolId2Mate(Int_t id) const
-{
-//
-// Returns the material number for a given volume ID
-//
- if (fVerbosityLevel >= 3)
- printf("VolId2Mate %d %d\n", id, fMediaByRegion[id-1]);
- return fMediaByRegion[id-1];
-}
-
-const char* TFluka::VolName(Int_t id) const
-{
-//
-// Returns the volume name for a given volume ID
-//
- FlukaVolume* vol = dynamic_cast<FlukaVolume*>((*fVolumeMediaMap)[id-1]);
- const char* name = vol->GetName();
- if (fVerbosityLevel >= 3)
- printf("VolName %d %s \n", id, name);
- return name;
-}
-
-Int_t TFluka::VolId(const Text_t* volName) const
-{
-//
-// Converts from volume name to volume ID.
-// Time consuming. (Only used during set-up)
-// Could be replaced by hash-table
-//
- char tmp[5];
- Int_t i =0;
- for (i = 0; i < fNVolumes; i++)
- {
- FlukaVolume* vol = dynamic_cast<FlukaVolume*>((*fVolumeMediaMap)[i]);
- TString name = vol->GetName();
- strcpy(tmp, name.Data());
- tmp[4] = '\0';
- if (!strcmp(tmp, volName)) break;
- }
- i++;
-
- return i;
-}
-
-
-Int_t TFluka::CurrentVolID(Int_t& copyNo) const
-{
-//
-// Return the logical id and copy number corresponding to the current fluka region
-//
- int ir = fCurrentFlukaRegion;
- int id = (FGeometryInit::GetInstance())->CurrentVolID(ir, copyNo);
- copyNo++;
- if (fVerbosityLevel >= 3)
- printf("CurrentVolID: %d %d %d \n", ir, id, copyNo);
- return id;
-}
-
-Int_t TFluka::CurrentVolOffID(Int_t off, Int_t& copyNo) const
-{
-//
-// Return the logical id and copy number of off'th mother
-// corresponding to the current fluka region
-//
- if (off == 0)
- return CurrentVolID(copyNo);
-
- int ir = fCurrentFlukaRegion;
- int id = (FGeometryInit::GetInstance())->CurrentVolOffID(ir, off, copyNo);
- copyNo++;
- if (fVerbosityLevel >= 3)
- printf("CurrentVolOffID: %d %d %d \n", ir, id, copyNo);
- if (id == -1)
- if (fVerbosityLevel >= 0)
- printf("CurrentVolOffID: Warning Mother not found !!!\n");
- return id;
-}
-
-
-const char* TFluka::CurrentVolName() const
-{
-//
-// Return the current volume name
-//
- Int_t copy;
- Int_t id = TFluka::CurrentVolID(copy);
- const char* name = TFluka::VolName(id);
- if (fVerbosityLevel >= 3)
- printf("CurrentVolumeName: %d %s \n", fCurrentFlukaRegion, name);
- return name;
-}
-
-const char* TFluka::CurrentVolOffName(Int_t off) const
-{
-//
-// Return the volume name of the off'th mother of the current volume
-//
- Int_t copy;
- Int_t id = TFluka::CurrentVolOffID(off, copy);
- const char* name = TFluka::VolName(id);
- if (fVerbosityLevel >= 3)
- printf("CurrentVolumeOffName: %d %s \n", fCurrentFlukaRegion, name);
- return name;
-}
-
-Int_t TFluka::CurrentMaterial(Float_t & /*a*/, Float_t & /*z*/,
- Float_t & /*dens*/, Float_t & /*radl*/, Float_t & /*absl*/) const
-{
-//
-// Return the current medium number
-//
- Int_t copy;
- Int_t id = TFluka::CurrentVolID(copy);
- Int_t med = TFluka::VolId2Mate(id);
- if (fVerbosityLevel >= 3)
- printf("CurrentMaterial: %d %d \n", fCurrentFlukaRegion, med);
- return med;
-}
-
-void TFluka::Gmtod(Float_t* xm, Float_t* xd, Int_t iflag)
- {
-// Transforms a position from the world reference frame
-// to the current volume reference frame.
-//
-// Geant3 desription:
-// ==================
-// Computes coordinates XD (in DRS)
-// from known coordinates XM in MRS
-// The local reference system can be initialized by
-// - the tracking routines and GMTOD used in GUSTEP
-// - a call to GMEDIA(XM,NUMED)
-// - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER)
-// (inverse routine is GDTOM)
-//
-// If IFLAG=1 convert coordinates
-// IFLAG=2 convert direction cosinus
-//
-// ---
- Double_t xmD[3], xdD[3];
- xmD[0] = xm[0]; xmD[1] = xm[1]; xmD[2] = xm[2];
- (FGeometryInit::GetInstance())->Gmtod(xmD, xdD, iflag);
- xd[0] = xdD[0]; xd[1] = xdD[1]; xd[2] = xdD[2];
- }
-
-
-void TFluka::Gmtod(Double_t* xm, Double_t* xd, Int_t iflag)
- {
-// Transforms a position from the world reference frame
-// to the current volume reference frame.
-//
-// Geant3 desription:
-// ==================
-// Computes coordinates XD (in DRS)
-// from known coordinates XM in MRS
-// The local reference system can be initialized by
-// - the tracking routines and GMTOD used in GUSTEP
-// - a call to GMEDIA(XM,NUMED)
-// - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER)
-// (inverse routine is GDTOM)
-//
-// If IFLAG=1 convert coordinates
-// IFLAG=2 convert direction cosinus
-//
-// ---
- (FGeometryInit::GetInstance())->Gmtod(xm, xd, iflag);
- }
-
-void TFluka::Gdtom(Float_t* xd, Float_t* xm, Int_t iflag)
- {
-// Transforms a position from the current volume reference frame
-// to the world reference frame.
-//
-// Geant3 desription:
-// ==================
-// Computes coordinates XM (Master Reference System
-// knowing the coordinates XD (Detector Ref System)
-// The local reference system can be initialized by
-// - the tracking routines and GDTOM used in GUSTEP
-// - a call to GSCMED(NLEVEL,NAMES,NUMBER)
-// (inverse routine is GMTOD)
-//
-// If IFLAG=1 convert coordinates
-// IFLAG=2 convert direction cosinus
-//
-// ---
- Double_t xmD[3], xdD[3];
- xdD[0] = xd[0]; xdD[1] = xd[1]; xdD[2] = xd[2];
- (FGeometryInit::GetInstance())->Gdtom(xdD, xmD, iflag);
- xm[0] = xmD[0]; xm[1] = xmD[1]; xm[2] = xmD[2];
- }
-void TFluka::Gdtom(Double_t* xd, Double_t* xm, Int_t iflag)
- {
-// Transforms a position from the current volume reference frame
-// to the world reference frame.
-//
-// Geant3 desription:
-// ==================
-// Computes coordinates XM (Master Reference System
-// knowing the coordinates XD (Detector Ref System)
-// The local reference system can be initialized by
-// - the tracking routines and GDTOM used in GUSTEP
-// - a call to GSCMED(NLEVEL,NAMES,NUMBER)
-// (inverse routine is GMTOD)
-//
-// If IFLAG=1 convert coordinates
-// IFLAG=2 convert direction cosinus
-//
-// ---
-
- (FGeometryInit::GetInstance())->Gdtom(xd, xm, iflag);
- }
-
-// ===============================================================