Bool_t save,Char_t *fname)
{
//
- // Plot length distribution
+ // Plot I0-I1 distribution
//
Double_t i0,i1;
+ TH2F *hI0I1s = new TH2F("hI0I1s","I_{0} versus I_{1}",1000,0,0.001,1000,0,0.01);
+ hI0I1s->SetXTitle("I_{0} [fm^{-3}]");
+ hI0I1s->SetYTitle("I_{1} [fm^{-2}]");
+
TH1F *hI0 = new TH1F("hI0","I_{0} = #hat{q}L / k",
- 100,0,0.001);
+ 1000,0,0.001);
hI0->SetXTitle("I_{0} [fm^{-3}]");
hI0->SetYTitle("Probability");
hI0->SetFillColor(3);
TH1F *hI1 = new TH1F("hI1","I_{1} = #omega_{c} / k",
- 100,0,0.01);
+ 1000,0,0.01);
hI1->SetXTitle("I_{1} [fm^{-2}]");
hI1->SetYTitle("Probability");
hI1->SetFillColor(4);
for(Int_t i=0; i<n; i++) {
GetI0I1(i0,i1,ellCut);
+ hI0I1s->Fill(i0,i1);
hI0->Fill(i0);
hI1->Fill(i1);
h2->Fill(2.*i1*i1/i0);
}
hI0->Scale(1/(Double_t)n);
hI1->Scale(1/(Double_t)n);
+ h2->Scale(1/(Double_t)n);
+ h3->Scale(1/(Double_t)n);
+ h4->Scale(1/(Double_t)n);
+ hI0I1s->Scale(1/(Double_t)n);
TCanvas *cI0I1 = new TCanvas("cI0I1","I0 and I1",0,0,900,700);
cI0I1->Divide(3,2);
h3->Draw();
cI0I1->cd(5);
h4->Draw();
+ cI0I1->cd(6);
+ gStyle->SetPalette(1,0);
+ hI0I1s->Draw("col,Z");
if(save) {
TFile *f = new TFile(fname,"recreate");
+ hI0I1s->Write();
hI0->Write();
hI1->Write();
h2->Write();
Bool_t save,Char_t *fname)
{
//
- // Plot lengths back-to-back distributions
+ // Plot I0-I1 back-to-back distributions
//
Double_t i01,i11,i02,i12;
TH2F *hI0s = new TH2F("hI0s","I_{0}'s back-to-back",100,0,100,100,0,100);
protected:
void Reset();
- static Float_t fgBMax; // Maximum Impact Parameter
- static Int_t fgCounter; // Counter to protect double instantiation
- static const Int_t fgkMCInts; // Number of MC integrations
+ static Float_t fgBMax; // Maximum Impact Parameter
+ static Int_t fgCounter; // Counter to protect double instantiation
+ static const Int_t fgkMCInts; // Number of MC integrations
static TF1* fgWSb; // Wood-Saxon Function (b)
static TF2* fgWSbz; // Wood-Saxon Function (b, z)