--- /dev/null
+/***************************************************************************
+ * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
+ * *
+ * Author: The ALICE Off-line Project. *
+ * Contributors are mentioned in the code where appropriate. *
+ * *
+ * Permission to use, copy, modify and distribute this software and its *
+ * documentation strictly for non-commercial purposes is hereby granted *
+ * without fee, provided that the above copyright notice appears in all *
+ * copies and that both the copyright notice and this permission notice *
+ * appear in the supporting documentation. The authors make no claims *
+ * about the suitability of this software for any purpose. It is *
+ * provided "as is" without express or implied warranty. *
+ **************************************************************************/
+/*
+$Log$
+*/
+
+//
+///////////////////////////////////////////////////////////////////////////////
+// //
+// Photon Multiplicity Detector Version 1 //
+// //
+//Begin_Html
+/*
+<img src="picts/AliPMDv0Class.gif">
+*/
+//End_Html
+// //
+///////////////////////////////////////////////////////////////////////////////
+////
+
+#include "AliPMDv0.h"
+#include "AliRun.h"
+#include "AliMC.h"
+#include "AliConst.h"
+#include "AliMagF.h"
+#include "iostream.h"
+
+static Int_t kdet, ncell_sm, ncell_hole;
+static Float_t zdist, zdist1;
+static Float_t sm_length, sm_thick, cell_radius, cell_wall, cell_depth;
+static Float_t boundary, th_base, th_air, th_pcb;
+static Float_t th_lead, th_steel;
+
+ClassImp(AliPMDv0)
+
+ //_____________________________________________________________________________
+ AliPMDv0::AliPMDv0()
+{
+ //
+ // Default constructor
+ //
+ fMedSens=0;
+}
+
+//_____________________________________________________________________________
+AliPMDv0::AliPMDv0(const char *name, const char *title)
+ : AliPMD(name,title)
+{
+ //
+ // Standard constructor
+ //
+ fMedSens=0;
+}
+
+//_____________________________________________________________________________
+void AliPMDv0::CreateGeometry()
+{
+ //
+ // Create geometry for Photon Multiplicity Detector Version 3 :
+ // April 2, 2001
+ //
+ //Begin_Html
+ /*
+ <img src="picts/AliPMDv0.gif">
+ */
+ //End_Html
+ //Begin_Html
+ /*
+ <img src="picts/AliPMDv0Tree.gif">
+ */
+ //End_Html
+ GetParameters();
+ CreateSupermodule();
+ CreatePMD();
+}
+
+//_____________________________________________________________________________
+void AliPMDv0::CreateSupermodule()
+{
+ //
+ // Creates the geometry of the cells, places them in supermodule which
+ // is a rhombus object.
+
+ // *** DEFINITION OF THE GEOMETRY OF THE PMD ***
+ // *** HEXAGONAL CELLS WITH CELL RADIUS 0.25 cm (see "GetParameters")
+ // -- Author : S. Chattopadhyay, 02/04/1999.
+
+ // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is placed inside another
+ // hexagonal cell made of Cu (ECCU) with larger radius, compared to ECAR. The difference
+ // in radius gives the dimension of half width of each cell wall.
+ // These cells are placed as 72 x 72 array in a
+ // rhombus shaped supermodule (EHC1). The rhombus shaped modules are designed
+ // to have closed packed structure.
+ //
+ // Each supermodule (ESMA, ESMB), made of G10 is filled with following components
+ // EAIR --> Air gap between gas hexagonal cells and G10 backing.
+ // EHC1 --> Rhombus shaped parallelopiped containing the hexagonal cells
+ // EAIR --> Air gap between gas hexagonal cells and G10 backing.
+ //
+ // ESMA, ESMB are placed in EMM1 along with EMPB (Pb converter)
+ // and EMFE (iron support)
+
+ // EMM1 made of
+ // ESMB --> Normal supermodule, mirror image of ESMA
+ // EMPB --> Pb converter
+ // EMFE --> Fe backing
+ // ESMA --> Normal supermodule
+ //
+ // ESMX, ESMY are placed in EMM2 along with EMPB (Pb converter)
+ // and EMFE (iron support)
+
+ // EMM2 made of
+ // ESMY --> Special supermodule, mirror image of ESMX,
+ // EMPB --> Pb converter
+ // EMFE --> Fe backing
+ // ESMX --> First of the two Special supermodules near the hole
+
+ // EMM3 made of
+ // ESMQ --> Special supermodule, mirror image of ESMX,
+ // EMPB --> Pb converter
+ // EMFE --> Fe backing
+ // ESMP --> Second of the two Special supermodules near the hole
+
+ // EMM2 and EMM3 are used to create the hexagonal HOLE
+
+ //
+ // EPMD
+ // |
+ // |
+ // ---------------------------------------------------------------------------
+ // | | | | |
+ // EHOL EMM1 EMM2 EMM3 EALM
+ // | | |
+ // -------------------- -------------------- --------------------
+ // | | | | | | | | | | | |
+ // ESMB EMPB EMFE ESMA ESMY EMPB EMFE ESMX ESMQ EMPB EMFE ESMP
+ // | | |
+ // ------------ ------------ -------------
+ // | | | | | | | | |
+ // EAIR EHC1 EAIR EAIR EHC2 EAIR EAIR EHC3 EAIR
+ // | | |
+ // ECCU ECCU ECCU
+ // | | |
+ // ECAR ECAR ECAR
+
+
+ Int_t i, j;
+ Float_t xb, yb, zb;
+ Int_t number;
+ Int_t ihrotm,irotdm;
+ const Float_t root3_2 = TMath::Sqrt(3.) /2.;
+ Int_t *idtmed = fIdtmed->GetArray()-599;
+
+ AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.);
+ AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.);
+
+ zdist = TMath::Abs(zdist1);
+
+
+ //Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu
+ // rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension
+ //(1mm tolerance on both side and 5mm thick G10 wall)
+ //
+
+ // **** CELL SIZE 20 mm^2 EQUIVALENT
+
+ // Inner hexagon filled with gas (Ar+CO2)
+
+ Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
+
+ hexd2[4]= - cell_depth/2.;
+ hexd2[7]= cell_depth/2.;
+ hexd2[6]= cell_radius - cell_wall;
+ hexd2[9]= cell_radius - cell_wall;
+
+ // Gas replaced by vacuum for v0(insensitive) version of PMD.
+
+ gMC->Gsvolu("ECAR", "PGON", idtmed[697], hexd2,10);
+ gMC->Gsatt("ECAR", "SEEN", 0);
+
+ // Outer hexagon made of Copper
+
+ Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
+ //total wall thickness=0.2*2
+
+ hexd1[4]= - cell_depth/2.;
+ hexd1[7]= cell_depth/2.;
+ hexd1[6]= cell_radius;
+ hexd1[9]= cell_radius;
+
+ gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
+ gMC->Gsatt("ECCU", "SEEN", 1);
+
+ // --- place inner hex inside outer hex
+
+ gMC->Gsposp("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY", hexd2, 10);
+
+// Rhombus shaped supermodules (defined by PARA)
+
+// volume for SUPERMODULE
+
+ Float_t dpara_sm1[6] = {12.5,12.5,0.8,30.,0.,0.};
+ dpara_sm1[0]=(ncell_sm+0.25)*hexd1[6] ;
+ dpara_sm1[1] = dpara_sm1[0] *root3_2;
+ dpara_sm1[2] = sm_thick/2.;
+
+//
+ gMC->Gsvolu("ESMA","PARA", idtmed[607], dpara_sm1, 6);
+ gMC->Gsatt("ESMA", "SEEN", 0);
+ //
+ gMC->Gsvolu("ESMB","PARA", idtmed[607], dpara_sm1, 6);
+ gMC->Gsatt("ESMB", "SEEN", 0);
+
+ // Air residing between the PCB and the base
+
+ Float_t dpara_air[6] = {12.5,12.5,8.,30.,0.,0.};
+ dpara_air[0]= dpara_sm1[0];
+ dpara_air[1]= dpara_sm1[1];
+ dpara_air[2]= th_air/2.;
+
+ gMC->Gsvolu("EAIR","PARA", idtmed[698], dpara_air, 6);
+ gMC->Gsatt("EAIR", "SEEN", 0);
+
+ // volume for honeycomb chamber EHC1
+
+ Float_t dpara1[6] = {12.5,12.5,0.4,30.,0.,0.};
+ dpara1[0] = dpara_sm1[0];
+ dpara1[1] = dpara_sm1[1];
+ dpara1[2] = cell_depth/2.;
+
+ gMC->Gsvolu("EHC1","PARA", idtmed[698], dpara1, 6);
+ gMC->Gsatt("EHC1", "SEEN", 1);
+
+
+
+ // Place hexagonal cells ECCU cells inside EHC1 (72 X 72)
+
+ Int_t xrow=1;
+
+ yb = -dpara1[1] + (1./root3_2)*hexd1[6];
+ zb = 0.;
+
+ for (j = 1; j <= ncell_sm; ++j) {
+ xb =-(dpara1[0] + dpara1[1]*0.577) + 2*hexd1[6]; //0.577=tan(30deg)
+ if(xrow >= 2){
+ xb = xb+(xrow-1)*hexd1[6];
+ }
+ for (i = 1; i <= ncell_sm; ++i) {
+ number = i+(j-1)*ncell_sm;
+ gMC->Gsposp("ECCU", number, "EHC1", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
+ xb += (hexd1[6]*2.);
+ }
+ xrow = xrow+1;
+ yb += (hexd1[6]*TMath::Sqrt(3.));
+ }
+
+
+ // Place EHC1 and EAIR into ESMA and ESMB
+
+ Float_t z_air1,z_air2,z_gas;
+
+ //ESMA is normal supermodule with base at bottom, with EHC1
+ z_air1= -dpara_sm1[2] + th_base + dpara_air[2];
+ gMC->Gspos("EAIR", 1, "ESMA", 0., 0., z_air1, 0, "ONLY");
+ z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
+ gMC->Gspos("EHC1", 1, "ESMA", 0., 0., z_gas, 0, "ONLY");
+ z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
+ gMC->Gspos("EAIR", 2, "ESMA", 0., 0., z_air2, 0, "ONLY");
+
+ // ESMB is mirror image of ESMA, with base at top, with EHC1
+
+ z_air1= -dpara_sm1[2] + th_pcb + dpara_air[2];
+ gMC->Gspos("EAIR", 3, "ESMB", 0., 0., z_air1, 0, "ONLY");
+ z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
+ gMC->Gspos("EHC1", 2, "ESMB", 0., 0., z_gas, 0, "ONLY");
+ z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
+ gMC->Gspos("EAIR", 4, "ESMB", 0., 0., z_air2, 0, "ONLY");
+
+
+// special supermodule EMM2(GEANT only) containing 6 unit modules
+
+// volume for SUPERMODULE
+
+ Float_t dpara_sm2[6] = {12.5,12.5,0.8,30.,0.,0.};
+ dpara_sm2[0]=(ncell_sm+0.25)*hexd1[6] ;
+ dpara_sm2[1] = (ncell_sm - ncell_hole + 0.25) * root3_2 * hexd1[6];
+ dpara_sm2[2] = sm_thick/2.;
+
+ gMC->Gsvolu("ESMX","PARA", idtmed[607], dpara_sm2, 6);
+ gMC->Gsatt("ESMX", "SEEN", 0);
+ //
+ gMC->Gsvolu("ESMY","PARA", idtmed[607], dpara_sm2, 6);
+ gMC->Gsatt("ESMY", "SEEN", 0);
+
+ Float_t dpara2[6] = {12.5,12.5,0.4,30.,0.,0.};
+ dpara2[0] = dpara_sm2[0];
+ dpara2[1] = dpara_sm2[1];
+ dpara2[2] = cell_depth/2.;
+
+ gMC->Gsvolu("EHC2","PARA", idtmed[698], dpara2, 6);
+ gMC->Gsatt("EHC2", "SEEN", 1);
+
+
+ // Air residing between the PCB and the base
+
+ Float_t dpara2_air[6] = {12.5,12.5,8.,30.,0.,0.};
+ dpara2_air[0]= dpara_sm2[0];
+ dpara2_air[1]= dpara_sm2[1];
+ dpara2_air[2]= th_air/2.;
+
+ gMC->Gsvolu("EAIX","PARA", idtmed[698], dpara2_air, 6);
+ gMC->Gsatt("EAIX", "SEEN", 0);
+
+ // Place hexagonal single cells ECCU inside EHC2
+ // skip cells which go into the hole in top left corner.
+
+ xrow=1;
+ yb = -dpara2[1] + (1./root3_2)*hexd1[6];
+ zb = 0.;
+ for (j = 1; j <= (ncell_sm - ncell_hole); ++j) {
+ xb =-(dpara2[0] + dpara2[1]*0.577) + 2*hexd1[6];
+ if(xrow >= 2){
+ xb = xb+(xrow-1)*hexd1[6];
+ }
+ for (i = 1; i <= ncell_sm; ++i) {
+ number = i+(j-1)*ncell_sm;
+ gMC->Gsposp("ECCU", number, "EHC2", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
+ xb += (hexd1[6]*2.);
+ }
+ xrow = xrow+1;
+ yb += (hexd1[6]*TMath::Sqrt(3.));
+ }
+
+
+ // ESMX is normal supermodule with base at bottom, with EHC2
+
+ z_air1= -dpara_sm2[2] + th_base + dpara2_air[2];
+ gMC->Gspos("EAIX", 1, "ESMX", 0., 0., z_air1, 0, "ONLY");
+ z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
+ gMC->Gspos("EHC2", 1, "ESMX", 0., 0., z_gas, 0, "ONLY");
+ z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
+ gMC->Gspos("EAIX", 2, "ESMX", 0., 0., z_air2, 0, "ONLY");
+
+ // ESMY is mirror image of ESMX with base at bottom, with EHC2
+
+ z_air1= -dpara_sm2[2] + th_pcb + dpara2_air[2];
+ gMC->Gspos("EAIX", 3, "ESMY", 0., 0., z_air1, 0, "ONLY");
+ z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
+ gMC->Gspos("EHC2", 2, "ESMY", 0., 0., z_gas, 0, "ONLY");
+ z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
+ gMC->Gspos("EAIX", 4, "ESMY", 0., 0., z_air2, 0, "ONLY");
+
+//
+
+
+// special supermodule EMM3 (GEANT only) containing 2 unit modules
+
+// volume for SUPERMODULE
+
+ Float_t dpara_sm3[6] = {12.5,12.5,0.8,30.,0.,0.};
+ dpara_sm3[0]=(ncell_sm - ncell_hole +0.25)*hexd1[6] ;
+ dpara_sm3[1] = (ncell_hole + 0.25) * hexd1[6] * root3_2;
+ dpara_sm3[2] = sm_thick/2.;
+
+ gMC->Gsvolu("ESMP","PARA", idtmed[607], dpara_sm3, 6);
+ gMC->Gsatt("ESMP", "SEEN", 0);
+ //
+ gMC->Gsvolu("ESMQ","PARA", idtmed[607], dpara_sm3, 6);
+ gMC->Gsatt("ESMQ", "SEEN", 0);
+
+ Float_t dpara3[6] = {12.5,12.5,0.4,30.,0.,0.};
+ dpara3[0] = dpara_sm3[0];
+ dpara3[1] = dpara_sm3[1];
+ dpara3[2] = cell_depth/2.;
+
+ gMC->Gsvolu("EHC3","PARA", idtmed[698], dpara3, 6);
+ gMC->Gsatt("EHC3", "SEEN", 1);
+
+
+ // Air residing between the PCB and the base
+
+ Float_t dpara3_air[6] = {12.5,12.5,8.,30.,0.,0.};
+ dpara3_air[0]= dpara_sm3[0];
+ dpara3_air[1]= dpara_sm3[1];
+ dpara3_air[2]= th_air/2.;
+
+ gMC->Gsvolu("EAIP","PARA", idtmed[698], dpara3_air, 6);
+ gMC->Gsatt("EAIP", "SEEN", 0);
+
+
+ // Place hexagonal single cells ECCU inside EHC3
+ // skip cells which go into the hole in top left corner.
+
+ xrow=1;
+ yb = -dpara3[1] + (1./root3_2)*hexd1[6];
+ zb = 0.;
+ for (j = 1; j <= ncell_hole; ++j) {
+ xb =-(dpara3[0] + dpara3[1]*0.577) + 2*hexd1[6];
+ if(xrow >= 2){
+ xb = xb+(xrow-1)*hexd1[6];
+ }
+ for (i = 1; i <= (ncell_sm - ncell_hole); ++i) {
+ number = i+(j-1)*(ncell_sm - ncell_hole);
+ gMC->Gsposp("ECCU", number, "EHC3", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
+ xb += (hexd1[6]*2.);
+ }
+ xrow = xrow+1;
+ yb += (hexd1[6]*TMath::Sqrt(3.));
+ }
+
+ // ESMP is normal supermodule with base at bottom, with EHC3
+
+ z_air1= -dpara_sm3[2] + th_base + dpara3_air[2];
+ gMC->Gspos("EAIP", 1, "ESMP", 0., 0., z_air1, 0, "ONLY");
+ z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
+ gMC->Gspos("EHC3", 1, "ESMP", 0., 0., z_gas, 0, "ONLY");
+ z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
+ gMC->Gspos("EAIP", 2, "ESMP", 0., 0., z_air2, 0, "ONLY");
+
+ // ESMQ is mirror image of ESMP with base at bottom, with EHC3
+
+ z_air1= -dpara_sm3[2] + th_pcb + dpara3_air[2];
+ gMC->Gspos("EAIP", 3, "ESMQ", 0., 0., z_air1, 0, "ONLY");
+ z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
+ gMC->Gspos("EHC3", 2, "ESMQ", 0., 0., z_gas, 0, "ONLY");
+ z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
+ gMC->Gspos("EAIP", 4, "ESMQ", 0., 0., z_air2, 0, "ONLY");
+
+}
+
+//_____________________________________________________________________________
+
+void AliPMDv0::CreatePMD()
+{
+ //
+ // Create final detector from supermodules
+ //
+ // -- Author : Y.P. VIYOGI, 07/05/1996.
+ // -- Modified: P.V.K.S.Baba(JU), 15-12-97.
+ // -- Modified: For New Geometry YPV, March 2001.
+
+
+ const Float_t root3_2 = TMath::Sqrt(3.)/2.;
+ const Float_t pi = 3.14159;
+ Int_t i,j;
+
+ Float_t xp, yp, zp;
+
+ Int_t num_mod;
+ Int_t jhrot12,jhrot13, irotdm;
+
+ Int_t *idtmed = fIdtmed->GetArray()-599;
+
+ // VOLUMES Names : begining with "E" for all PMD volumes,
+ // The names of SIZE variables begin with S and have more meaningful
+ // characters as shown below.
+
+ // VOLUME SIZE MEDIUM : REMARKS
+ // ------ ----- ------ : ---------------------------
+
+ // EPMD GASPMD AIR : INSIDE PMD and its SIZE
+
+ // *** Define the EPMD Volume and fill with air ***
+
+
+ // Gaspmd, the dimension of HEXAGONAL mother volume of PMD,
+
+
+ Float_t gaspmd[10] = {0.,360.,6,2,-4.,12.,150.,4.,12.,150.};
+
+ gaspmd[5] = ncell_hole * cell_radius * 2. * root3_2;
+ gaspmd[8] = gaspmd[5];
+
+ gMC->Gsvolu("EPMD", "PGON", idtmed[698], gaspmd, 10);
+ gMC->Gsatt("EPMD", "SEEN", 0);
+
+ AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.);
+
+ AliMatrix(jhrot12, 90., 120., 90., 210., 0., 0.);
+ AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
+
+
+ Float_t dm_thick = 2. * sm_thick + th_lead + th_steel;
+
+ // dpara_emm1 array contains parameters of the imaginary volume EMM1,
+ // EMM1 is a master module of type 1, which has 24 copies in the PMD.
+ // EMM1 : normal volume as in old cases
+
+
+ Float_t dpara_emm1[6] = {12.5,12.5,0.8,30.,0.,0.};
+ dpara_emm1[0] = sm_length/2.;
+ dpara_emm1[1] = dpara_emm1[0] *root3_2;
+ dpara_emm1[2] = dm_thick/2.;
+
+ gMC->Gsvolu("EMM1","PARA", idtmed[698], dpara_emm1, 6);
+ gMC->Gsatt("EMM1", "SEEN", 1);
+
+ //
+ // --- DEFINE Modules, iron, and lead volumes
+
+ // Pb Convertor for EMM1
+ Float_t dpara_pb1[6] = {12.5,12.5,8.,30.,0.,0.};
+ dpara_pb1[0] = sm_length/2.;
+ dpara_pb1[1] = dpara_pb1[0] * root3_2;
+ dpara_pb1[2] = th_lead/2.;
+
+ gMC->Gsvolu("EPB1","PARA", idtmed[600], dpara_pb1, 6);
+ gMC->Gsatt ("EPB1", "SEEN", 0);
+
+ // Fe Support for EMM1
+ Float_t dpara_fe1[6] = {12.5,12.5,8.,30.,0.,0.};
+ dpara_fe1[0] = dpara_pb1[0];
+ dpara_fe1[1] = dpara_pb1[1];
+ dpara_fe1[2] = th_steel/2.;
+
+ gMC->Gsvolu("EFE1","PARA", idtmed[618], dpara_fe1, 6);
+ gMC->Gsatt ("EFE1", "SEEN", 0);
+
+
+
+ //
+ // position supermodule ESMA, ESMB, EPB1, EFE1 inside EMM1
+
+ Float_t z_ps,z_pb,z_fe,z_cv;
+
+ z_ps = - dpara_emm1[2] + sm_thick/2.;
+ gMC->Gspos("ESMB", 1, "EMM1", 0., 0., z_ps, 0, "ONLY");
+ z_pb=z_ps+sm_thick/2.+dpara_pb1[2];
+ gMC->Gspos("EPB1", 1, "EMM1", 0., 0., z_pb, 0, "ONLY");
+ z_fe=z_pb+dpara_pb1[2]+dpara_fe1[2];
+ gMC->Gspos("EFE1", 1, "EMM1", 0., 0., z_fe, 0, "ONLY");
+ z_cv=z_fe+dpara_fe1[2]+sm_thick/2.;
+ gMC->Gspos("ESMA", 1, "EMM1", 0., 0., z_cv, 0, "ONLY");
+
+
+
+ // EMM2 : special master module having full row of cells but the number
+ // of rows limited by hole.
+
+ Float_t dpara_emm2[6] = {12.5,12.5,0.8,30.,0.,0.};
+ dpara_emm2[0] = sm_length/2.;
+ dpara_emm2[1] = (ncell_sm - ncell_hole + 0.25) * cell_radius * root3_2;
+ dpara_emm2[2] = dm_thick/2.;
+
+ gMC->Gsvolu("EMM2","PARA", idtmed[698], dpara_emm2, 6);
+ gMC->Gsatt("EMM2", "SEEN", 1);
+
+
+ // Pb Convertor for EMM2
+ Float_t dpara_pb2[6] = {12.5,12.5,8.,30.,0.,0.};
+ dpara_pb2[0] = dpara_emm2[0];
+ dpara_pb2[1] = dpara_emm2[1];
+ dpara_pb2[2] = th_lead/2.;
+
+ gMC->Gsvolu("EPB2","PARA", idtmed[600], dpara_pb2, 6);
+ gMC->Gsatt ("EPB2", "SEEN", 0);
+
+ // Fe Support for EMM2
+ Float_t dpara_fe2[6] = {12.5,12.5,8.,30.,0.,0.};
+ dpara_fe2[0] = dpara_pb2[0];
+ dpara_fe2[1] = dpara_pb2[1];
+ dpara_fe2[2] = th_steel/2.;
+
+ gMC->Gsvolu("EFE2","PARA", idtmed[618], dpara_fe2, 6);
+ gMC->Gsatt ("EFE2", "SEEN", 0);
+
+
+
+ // position supermodule ESMX, ESMY inside EMM2
+
+ z_ps = - dpara_emm2[2] + sm_thick/2.;
+ gMC->Gspos("ESMY", 1, "EMM2", 0., 0., z_ps, 0, "ONLY");
+ z_pb = z_ps + sm_thick/2.+dpara_pb2[2];
+ gMC->Gspos("EPB2", 1, "EMM2", 0., 0., z_pb, 0, "ONLY");
+ z_fe = z_pb + dpara_pb2[2]+dpara_fe2[2];
+ gMC->Gspos("EFE2", 1, "EMM2", 0., 0., z_fe, 0, "ONLY");
+ z_cv = z_fe + dpara_fe2[2]+sm_thick/2.;
+ gMC->Gspos("ESMX", 1, "EMM2", 0., 0., z_cv, 0, "ONLY");
+ //
+
+
+ // EMM3 : special master module having truncated rows and columns of cells
+ // limited by hole.
+
+ Float_t dpara_emm3[6] = {12.5,12.5,0.8,30.,0.,0.};
+ dpara_emm3[0] = dpara_emm2[1]/root3_2;
+ dpara_emm3[1] = (ncell_hole + 0.25) * cell_radius *root3_2;
+ dpara_emm3[2] = dm_thick/2.;
+
+ gMC->Gsvolu("EMM3","PARA", idtmed[698], dpara_emm3, 6);
+ gMC->Gsatt("EMM3", "SEEN", 1);
+
+
+ // Pb Convertor for EMM3
+ Float_t dpara_pb3[6] = {12.5,12.5,8.,30.,0.,0.};
+ dpara_pb3[0] = dpara_emm3[0];
+ dpara_pb3[1] = dpara_emm3[1];
+ dpara_pb3[2] = th_lead/2.;
+
+ gMC->Gsvolu("EPB3","PARA", idtmed[600], dpara_pb3, 6);
+ gMC->Gsatt ("EPB3", "SEEN", 0);
+
+ // Fe Support for EMM3
+ Float_t dpara_fe3[6] = {12.5,12.5,8.,30.,0.,0.};
+ dpara_fe3[0] = dpara_pb3[0];
+ dpara_fe3[1] = dpara_pb3[1];
+ dpara_fe3[2] = th_steel/2.;
+
+ gMC->Gsvolu("EFE3","PARA", idtmed[618], dpara_fe3, 6);
+ gMC->Gsatt ("EFE3", "SEEN", 0);
+
+
+
+ // position supermodule ESMP, ESMQ inside EMM3
+
+ z_ps = - dpara_emm3[2] + sm_thick/2.;
+ gMC->Gspos("ESMQ", 1, "EMM3", 0., 0., z_ps, 0, "ONLY");
+ z_pb = z_ps + sm_thick/2.+dpara_pb3[2];
+ gMC->Gspos("EPB3", 1, "EMM3", 0., 0., z_pb, 0, "ONLY");
+ z_fe = z_pb + dpara_pb3[2]+dpara_fe3[2];
+ gMC->Gspos("EFE3", 1, "EMM3", 0., 0., z_fe, 0, "ONLY");
+ z_cv = z_fe + dpara_fe3[2] + sm_thick/2.;
+ gMC->Gspos("ESMP", 1, "EMM3", 0., 0., z_cv, 0, "ONLY");
+ //
+
+ // EHOL is a tube structure made of air
+ //
+ //Float_t d_hole[3];
+ //d_hole[0] = 0.;
+ //d_hole[1] = ncell_hole * cell_radius *2. * root3_2 + boundary;
+ //d_hole[2] = dm_thick/2.;
+ //
+ //gMC->Gsvolu("EHOL", "TUBE", idtmed[698], d_hole, 3);
+ //gMC->Gsatt("EHOL", "SEEN", 1);
+
+ //Al-rod as boundary of the supermodules
+
+ Float_t Al_rod[3] ;
+ Al_rod[0] = sm_length * 3/2. - gaspmd[5]/2 - boundary ;
+ Al_rod[1] = boundary;
+ Al_rod[2] = dm_thick/2.;
+
+ gMC->Gsvolu("EALM","BOX ", idtmed[698], Al_rod, 3);
+ gMC->Gsatt ("EALM", "SEEN", 1);
+ Float_t xalm[3];
+ xalm[0]=Al_rod[0] + gaspmd[5] + 3.0*boundary;
+ xalm[1]=-xalm[0]/2.;
+ xalm[2]=xalm[1];
+
+ Float_t yalm[3];
+ yalm[0]=0.;
+ yalm[1]=xalm[0]*root3_2;
+ yalm[2]=-yalm[1];
+
+ // delx = full side of the supermodule
+ Float_t delx=sm_length * 3.;
+ Float_t x1= delx*root3_2 /2.;
+ Float_t x4=delx/4.;
+
+
+ // placing master modules and Al-rod in PMD
+
+ Float_t dx = sm_length;
+ Float_t dy = dx * root3_2;
+
+ Float_t xsup[9] = {-dx/2., dx/2., 3.*dx/2.,
+ -dx, 0., dx,
+ -3.*dx/2., -dx/2., dx/2.};
+
+ Float_t ysup[9] = {dy, dy, dy,
+ 0., 0., 0.,
+ -dy, -dy, -dy};
+
+ // xpos and ypos are the x & y coordinates of the centres of EMM1 volumes
+
+ Float_t xoff = boundary * TMath::Tan(pi/6.);
+ Float_t xmod[3]={x4 + xoff , x4 + xoff, -2.*x4-boundary/root3_2};
+ Float_t ymod[3] = {-x1 - boundary, x1 + boundary, 0.};
+ Float_t xpos[9], ypos[9], x2, y2, x3, y3;
+
+ Float_t xemm2 = sm_length/2. -
+ (ncell_sm + ncell_hole + 0.25) * cell_radius * 0.5
+ + xoff;
+ Float_t yemm2 = -(ncell_sm + ncell_hole + 0.25) * cell_radius * root3_2
+ - boundary;
+
+ Float_t xemm3 = (ncell_sm + 0.5 * ncell_hole + 0.25) * cell_radius + xoff;
+ Float_t yemm3 = - (ncell_hole - 0.25) * cell_radius * root3_2 - boundary;
+
+ Float_t theta[3] = {0., 2.*pi/3., 4.*pi/3.};
+ Int_t irotate[3] = {0, jhrot12, jhrot13};
+
+ num_mod=0;
+ for (j=0; j<3; ++j)
+ {
+ gMC->Gsposp("EALM", j+1, "EPMD", xalm[j],yalm[j], 0., irotate[j], "ONLY", Al_rod, 3);
+ x2=xemm2*TMath::Cos(theta[j]) - yemm2*TMath::Sin(theta[j]);
+ y2=xemm2*TMath::Sin(theta[j]) + yemm2*TMath::Cos(theta[j]);
+
+ gMC->Gsposp("EMM2", j+1, "EPMD", x2,y2, 0., irotate[j], "ONLY", dpara_emm2, 6);
+
+ x3=xemm3*TMath::Cos(theta[j]) - yemm3*TMath::Sin(theta[j]);
+ y3=xemm3*TMath::Sin(theta[j]) + yemm3*TMath::Cos(theta[j]);
+
+ gMC->Gsposp("EMM3", j+4, "EPMD", x3,y3, 0., irotate[j], "ONLY", dpara_emm3, 6);
+
+ for (i=1; i<9; ++i)
+ {
+ xpos[i]=xmod[j] + xsup[i]*TMath::Cos(theta[j]) - ysup[i]*TMath::Sin(theta[j]);
+ ypos[i]=ymod[j] + xsup[i]*TMath::Sin(theta[j]) + ysup[i]*TMath::Cos(theta[j]);
+
+ printf("%f %f \n", xpos[i], ypos[i]);
+
+ num_mod = num_mod+1;
+
+ printf("\nNum_mod %d\n",num_mod);
+
+ gMC->Gsposp("EMM1", num_mod + 6, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY", dpara_emm1, 6);
+
+ }
+ }
+
+
+ // place EHOL in the centre of EPMD
+ // gMC->Gspos("EHOL", 1, "EPMD", 0.,0.,0., 0, "ONLY");
+
+ // --- Place the EPMD in ALICE
+ xp = 0.;
+ yp = 0.;
+ zp = zdist1;
+
+ gMC->Gspos("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY");
+
+}
+
+
+//_____________________________________________________________________________
+void AliPMDv0::DrawModule()
+{
+ //
+ // Draw a shaded view of the Photon Multiplicity Detector
+ //
+
+ gMC->Gsatt("*", "seen", -1);
+ gMC->Gsatt("alic", "seen", 0);
+ //
+ // Set the visibility of the components
+ //
+ gMC->Gsatt("ECAR","seen",0);
+ gMC->Gsatt("ECCU","seen",1);
+ gMC->Gsatt("EHC1","seen",1);
+ gMC->Gsatt("EHC1","seen",1);
+ gMC->Gsatt("EHC2","seen",1);
+ gMC->Gsatt("EMM1","seen",1);
+ gMC->Gsatt("EHOL","seen",1);
+ gMC->Gsatt("EPMD","seen",0);
+ //
+ gMC->Gdopt("hide", "on");
+ gMC->Gdopt("shad", "on");
+ gMC->Gsatt("*", "fill", 7);
+ gMC->SetClipBox(".");
+ gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000);
+ gMC->DefaultRange();
+ gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02);
+ gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1");
+
+ //gMC->Gdman(17, 5, "MAN");
+ gMC->Gdopt("hide", "off");
+}
+
+//_____________________________________________________________________________
+void AliPMDv0::CreateMaterials()
+{
+ //
+ // Create materials for the PMD
+ //
+ // ORIGIN : Y. P. VIYOGI
+ //
+
+ // --- The Argon- CO2 mixture ---
+ Float_t ag[2] = { 39.95 };
+ Float_t zg[2] = { 18. };
+ Float_t wg[2] = { .8,.2 };
+ Float_t dar = .001782; // --- Ar density in g/cm3 ---
+ // --- CO2 ---
+ Float_t ac[2] = { 12.,16. };
+ Float_t zc[2] = { 6.,8. };
+ Float_t wc[2] = { 1.,2. };
+ Float_t dc = .001977;
+ Float_t dco = .002; // --- CO2 density in g/cm3 ---
+
+ Float_t absl, radl, a, d, z;
+ Float_t dg;
+ Float_t x0ar;
+ //Float_t x0xe=2.4;
+ //Float_t dxe=0.005858;
+ Float_t buf[1];
+ Int_t nbuf;
+ Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 };
+ Float_t zsteel[4] = { 26.,24.,28.,14. };
+ Float_t wsteel[4] = { .715,.18,.1,.005 };
+
+ Int_t *idtmed = fIdtmed->GetArray()-599;
+ Int_t isxfld = gAlice->Field()->Integ();
+ Float_t sxmgmx = gAlice->Field()->Max();
+
+ // --- Define the various materials for GEANT ---
+ AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5);
+ x0ar = 19.55 / dar;
+ AliMaterial(2, "Argon$", 39.95, 18., dar, x0ar, 6.5e4);
+ AliMixture(3, "CO2 $", ac, zc, dc, -2, wc);
+ AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5);
+ AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5);
+ AliMaterial(7, "W $", 183.85, 74., 19.3, .35, 10.3);
+ AliMaterial(8, "G10 $", 20., 10., 1.7, 19.4, 999.);
+ AliMaterial(9, "SILIC$", 28.09, 14., 2.33, 9.36, 45.);
+ AliMaterial(10, "Be $", 9.01, 4., 1.848, 35.3, 36.7);
+ AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.);
+ AliMaterial(16, "C $", 12.01, 6., 2.265, 18.8, 49.9);
+ AliMaterial(17, "POLYCARBONATE $", 20., 10., 1.2, 34.6, 999.);
+ AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel);
+ // AliMaterial(31, "Xenon$", 131.3, 54., dxe, x0xe, 6.5e4);
+
+ AliMaterial(96, "MYLAR$", 8.73, 4.55, 1.39, 28.7, 62.);
+ AliMaterial(97, "CONCR$", 20., 10., 2.5, 10.7, 40.);
+ AliMaterial(98, "Vacum$", 1e-9, 1e-9, 1e-9, 1e16, 1e16);
+ AliMaterial(99, "Air $", 14.61, 7.3, .0012, 30420., 67500.);
+
+ // define gas-mixtures
+
+ char namate[21];
+ gMC->Gfmate((*fIdmate)[3], namate, a, z, d, radl, absl, buf, nbuf);
+ ag[1] = a;
+ zg[1] = z;
+ dg = (dar * 4 + dco) / 5;
+ AliMixture(5, "ArCO2$", ag, zg, dg, 2, wg);
+
+ // Define tracking media
+ AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
+ AliMedium(7, "W conv.$", 7, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
+ AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
+ AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
+ AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
+ AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
+ AliMedium(9, "SILICON $", 9, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
+ AliMedium(10, "Be $", 10, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
+ AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .1, 10);
+ AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .1, .1);
+ AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
+ AliMedium(16, "C $", 16, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
+ AliMedium(17, "PLOYCARB$", 17, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
+ AliMedium(19, " S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
+ // AliMedium(31, "Xenon $", 31, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
+
+ // --- Generate explicitly delta rays in the iron, aluminium and lead ---
+ gMC->Gstpar(idtmed[600], "LOSS", 3.);
+ gMC->Gstpar(idtmed[600], "DRAY", 1.);
+
+ gMC->Gstpar(idtmed[603], "LOSS", 3.);
+ gMC->Gstpar(idtmed[603], "DRAY", 1.);
+
+ gMC->Gstpar(idtmed[604], "LOSS", 3.);
+ gMC->Gstpar(idtmed[604], "DRAY", 1.);
+
+ gMC->Gstpar(idtmed[605], "LOSS", 3.);
+ gMC->Gstpar(idtmed[605], "DRAY", 1.);
+
+ gMC->Gstpar(idtmed[606], "LOSS", 3.);
+ gMC->Gstpar(idtmed[606], "DRAY", 1.);
+
+ gMC->Gstpar(idtmed[607], "LOSS", 3.);
+ gMC->Gstpar(idtmed[607], "DRAY", 1.);
+
+ // --- Energy cut-offs in the Pb and Al to gain time in tracking ---
+ // --- without affecting the hit patterns ---
+ gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4);
+ gMC->Gstpar(idtmed[600], "CUTELE", 1e-4);
+ gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4);
+ gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4);
+ gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4);
+ gMC->Gstpar(idtmed[605], "CUTELE", 1e-4);
+ gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4);
+ gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4);
+ gMC->Gstpar(idtmed[606], "CUTGAM", 1e-4);
+ gMC->Gstpar(idtmed[606], "CUTELE", 1e-4);
+ gMC->Gstpar(idtmed[606], "CUTNEU", 1e-4);
+ gMC->Gstpar(idtmed[606], "CUTHAD", 1e-4);
+ gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4);
+ gMC->Gstpar(idtmed[603], "CUTELE", 1e-4);
+ gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4);
+ gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4);
+ gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4);
+ gMC->Gstpar(idtmed[609], "CUTELE", 1e-4);
+ gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4);
+ gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4);
+
+ // --- Prevent particles stopping in the gas due to energy cut-off ---
+ gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5);
+ gMC->Gstpar(idtmed[604], "CUTELE", 1e-5);
+ gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5);
+ gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5);
+ gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5);
+}
+
+//_____________________________________________________________________________
+void AliPMDv0::Init()
+{
+ //
+ // Initialises PMD detector after it has been built
+ //
+ Int_t i;
+ kdet=1;
+ //
+ printf("\n");
+ for(i=0;i<35;i++) printf("*");
+ printf(" PMD_INIT ");
+ for(i=0;i<35;i++) printf("*");
+ printf("\n");
+ printf(" PMD simulation package (v0) initialised\n");
+ printf(" parameters of pmd\n");
+ printf("%10.2f %10.2f %10.2f %10.2f\n", cell_radius,cell_wall,cell_depth,zdist1 );
+
+ for(i=0;i<80;i++) printf("*");
+ printf("\n");
+
+ Int_t *idtmed = fIdtmed->GetArray()-599;
+ fMedSens=idtmed[605-1];
+}
+
+//_____________________________________________________________________________
+void AliPMDv0::StepManager()
+{
+ //
+ // Called at each step in the PMD
+ //
+ Int_t copy;
+ Float_t hits[4], destep;
+ Float_t center[3] = {0,0,0};
+ Int_t vol[5];
+ //char *namep;
+
+ if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) {
+
+ gMC->CurrentVolID(copy);
+
+ //namep=gMC->CurrentVolName();
+ //printf("Current vol is %s \n",namep);
+
+ vol[0]=copy;
+ gMC->CurrentVolOffID(1,copy);
+
+ //namep=gMC->CurrentVolOffName(1);
+ //printf("Current vol 11 is %s \n",namep);
+
+ vol[1]=copy;
+ gMC->CurrentVolOffID(2,copy);
+
+ //namep=gMC->CurrentVolOffName(2);
+ //printf("Current vol 22 is %s \n",namep);
+
+ vol[2]=copy;
+
+ // if(strncmp(namep,"EHC1",4))vol[2]=1;
+
+ gMC->CurrentVolOffID(3,copy);
+
+ //namep=gMC->CurrentVolOffName(3);
+ //printf("Current vol 33 is %s \n",namep);
+
+ vol[3]=copy;
+ gMC->CurrentVolOffID(4,copy);
+
+ //namep=gMC->CurrentVolOffName(4);
+ //printf("Current vol 44 is %s \n",namep);
+
+ vol[4]=copy;
+ //printf("volume number %d,%d,%d,%d,%d,%f \n",vol[0],vol[1],vol[2],vol[3],vol[4],destep*1000000);
+
+ gMC->Gdtom(center,hits,1);
+ hits[3] = destep*1e9; //Number in eV
+ AddHit(gAlice->CurrentTrack(), vol, hits);
+ }
+}
+
+
+//------------------------------------------------------------------------
+// Get parameters
+
+void AliPMDv0::GetParameters()
+{
+ Int_t ncell_um, num_um;
+ ncell_um=24;
+ num_um=3;
+ ncell_hole=24;
+ cell_radius=0.25;
+ cell_wall=0.02;
+ cell_depth=0.25 * 2.;
+ //
+ boundary=0.7;
+ ncell_sm=ncell_um * num_um; //no. of cells in a row in one supermodule
+ sm_length= ((ncell_sm + 0.25 ) * cell_radius) * 2.;
+ //
+ th_base=0.3;
+ th_air=0.1;
+ th_pcb=0.16;
+ //
+ sm_thick = th_base + th_air + th_pcb + cell_depth + th_pcb + th_air + th_pcb;
+ //
+ th_lead=1.5;
+ th_steel=0.5;
+ //
+ zdist1 = -365.;
+}
+
+
+
+
+
+
+
+
+
+
+
+
+
--- /dev/null
+#ifndef PMDV0_H
+#define PMDV0_H
+/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
+ * See cxx source for full Copyright notice */
+
+/* $Id$ */
+
+////////////////////////////////////////////////
+// Manager and hits classes for set:PMD //
+////////////////////////////////////////////////
+
+#include "AliPMD.h"
+
+//___________________________________________
+
+class AliPMDv0 : public AliPMD {
+
+private:
+ Int_t fMedSens;
+
+public:
+ AliPMDv0();
+ AliPMDv0(const char *name, const char *title);
+ virtual ~AliPMDv0() {}
+ virtual void CreateGeometry();
+ virtual void CreatePMD();
+ virtual void CreateSupermodule();
+ virtual void GetParameters();
+ virtual void CreateMaterials();
+ virtual void Init();
+ virtual Int_t IsVersion() const {return 1;}
+ virtual void StepManager();
+ virtual void DrawModule();
+
+ ClassDef(AliPMDv0,1) //Hits manager for set:PMD
+};
+
+#endif
+
+
--- /dev/null
+/***************************************************************************
+ * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
+ * *
+ * Author: The ALICE Off-line Project. *
+ * Contributors are mentioned in the code where appropriate. *
+ * *
+ * Permission to use, copy, modify and distribute this software and its *
+ * documentation strictly for non-commercial purposes is hereby granted *
+ * without fee, provided that the above copyright notice appears in all *
+ * copies and that both the copyright notice and this permission notice *
+ * appear in the supporting documentation. The authors make no claims *
+ * about the suitability of this software for any purpose. It is *
+ * provided "as is" without express or implied warranty. *
+ **************************************************************************/
+/*
+$Log$
+*/
+//
+///////////////////////////////////////////////////////////////////////////////
+// //
+// Photon Multiplicity Detector Version 1 //
+// //
+//Begin_Html
+/*
+<img src="picts/AliPMDv1Class.gif">
+*/
+//End_Html
+// //
+///////////////////////////////////////////////////////////////////////////////
+////
+
+#include "AliPMDv1.h"
+#include "AliRun.h"
+#include "AliMC.h"
+#include "AliConst.h"
+#include "AliMagF.h"
+#include "iostream.h"
+
+static Int_t kdet, ncell_sm, ncell_hole;
+static Float_t zdist, zdist1;
+static Float_t sm_length, sm_thick, cell_radius, cell_wall, cell_depth;
+static Float_t boundary, th_base, th_air, th_pcb;
+static Float_t th_lead, th_steel;
+
+ClassImp(AliPMDv1)
+
+ //_____________________________________________________________________________
+ AliPMDv1::AliPMDv1()
+{
+ //
+ // Default constructor
+ //
+ fMedSens=0;
+}
+
+//_____________________________________________________________________________
+AliPMDv1::AliPMDv1(const char *name, const char *title)
+ : AliPMD(name,title)
+{
+ //
+ // Standard constructor
+ //
+ fMedSens=0;
+}
+
+//_____________________________________________________________________________
+void AliPMDv1::CreateGeometry()
+{
+ //
+ // Create geometry for Photon Multiplicity Detector Version 3 :
+ // April 2, 2001
+ //
+ //Begin_Html
+ /*
+ <img src="picts/AliPMDv1.gif">
+ */
+ //End_Html
+ //Begin_Html
+ /*
+ <img src="picts/AliPMDv1Tree.gif">
+ */
+ //End_Html
+ GetParameters();
+ CreateSupermodule();
+ CreatePMD();
+}
+
+//_____________________________________________________________________________
+void AliPMDv1::CreateSupermodule()
+{
+ //
+ // Creates the geometry of the cells, places them in supermodule which
+ // is a rhombus object.
+
+ // *** DEFINITION OF THE GEOMETRY OF THE PMD ***
+ // *** HEXAGONAL CELLS WITH CELL RADIUS 0.25 cm (see "GetParameters")
+ // -- Author : S. Chattopadhyay, 02/04/1999.
+
+ // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is placed inside another
+ // hexagonal cell made of Cu (ECCU) with larger radius, compared to ECAR. The difference
+ // in radius gives the dimension of half width of each cell wall.
+ // These cells are placed as 72 x 72 array in a
+ // rhombus shaped supermodule (EHC1). The rhombus shaped modules are designed
+ // to have closed packed structure.
+ //
+ // Each supermodule (ESMA, ESMB), made of G10 is filled with following components
+ // EAIR --> Air gap between gas hexagonal cells and G10 backing.
+ // EHC1 --> Rhombus shaped parallelopiped containing the hexagonal cells
+ // EAIR --> Air gap between gas hexagonal cells and G10 backing.
+ //
+ // ESMA, ESMB are placed in EMM1 along with EMPB (Pb converter)
+ // and EMFE (iron support)
+
+ // EMM1 made of
+ // ESMB --> Normal supermodule, mirror image of ESMA
+ // EMPB --> Pb converter
+ // EMFE --> Fe backing
+ // ESMA --> Normal supermodule
+ //
+ // ESMX, ESMY are placed in EMM2 along with EMPB (Pb converter)
+ // and EMFE (iron support)
+
+ // EMM2 made of
+ // ESMY --> Special supermodule, mirror image of ESMX,
+ // EMPB --> Pb converter
+ // EMFE --> Fe backing
+ // ESMX --> First of the two Special supermodules near the hole
+
+ // EMM3 made of
+ // ESMQ --> Special supermodule, mirror image of ESMX,
+ // EMPB --> Pb converter
+ // EMFE --> Fe backing
+ // ESMP --> Second of the two Special supermodules near the hole
+
+ // EMM2 and EMM3 are used to create the hexagonal HOLE
+
+ //
+ // EPMD
+ // |
+ // |
+ // ---------------------------------------------------------------------------
+ // | | | | |
+ // EHOL EMM1 EMM2 EMM3 EALM
+ // | | |
+ // -------------------- -------------------- --------------------
+ // | | | | | | | | | | | |
+ // ESMB EMPB EMFE ESMA ESMY EMPB EMFE ESMX ESMQ EMPB EMFE ESMP
+ // | | |
+ // ------------ ------------ -------------
+ // | | | | | | | | |
+ // EAIR EHC1 EAIR EAIR EHC2 EAIR EAIR EHC3 EAIR
+ // | | |
+ // ECCU ECCU ECCU
+ // | | |
+ // ECAR ECAR ECAR
+
+
+ Int_t i, j;
+ Float_t xb, yb, zb;
+ Int_t number;
+ Int_t ihrotm,irotdm;
+ const Float_t root3_2 = TMath::Sqrt(3.) /2.;
+ Int_t *idtmed = fIdtmed->GetArray()-599;
+
+ AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.);
+ AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.);
+
+ zdist = TMath::Abs(zdist1);
+
+
+ //Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu
+ // rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension
+ //(1mm tolerance on both side and 5mm thick G10 wall)
+ //
+
+ // **** CELL SIZE 20 mm^2 EQUIVALENT
+
+ // Inner hexagon filled with gas (Ar+CO2)
+
+ Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
+
+ hexd2[4]= - cell_depth/2.;
+ hexd2[7]= cell_depth/2.;
+ hexd2[6]= cell_radius - cell_wall;
+ hexd2[9]= cell_radius - cell_wall;
+
+ gMC->Gsvolu("ECAR", "PGON", idtmed[604], hexd2,10);
+ gMC->Gsatt("ECAR", "SEEN", 0);
+
+ // Outer hexagon made of Copper
+
+ Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
+ //total wall thickness=0.2*2
+
+ hexd1[4]= - cell_depth/2.;
+ hexd1[7]= cell_depth/2.;
+ hexd1[6]= cell_radius;
+ hexd1[9]= cell_radius;
+
+ gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
+ gMC->Gsatt("ECCU", "SEEN", 1);
+
+ // --- place inner hex inside outer hex
+
+ gMC->Gsposp("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY", hexd2, 10);
+
+// Rhombus shaped supermodules (defined by PARA)
+
+// volume for SUPERMODULE
+
+ Float_t dpara_sm1[6] = {12.5,12.5,0.8,30.,0.,0.};
+ dpara_sm1[0]=(ncell_sm+0.25)*hexd1[6] ;
+ dpara_sm1[1] = dpara_sm1[0] *root3_2;
+ dpara_sm1[2] = sm_thick/2.;
+
+//
+ gMC->Gsvolu("ESMA","PARA", idtmed[607], dpara_sm1, 6);
+ gMC->Gsatt("ESMA", "SEEN", 0);
+ //
+ gMC->Gsvolu("ESMB","PARA", idtmed[607], dpara_sm1, 6);
+ gMC->Gsatt("ESMB", "SEEN", 0);
+
+ // Air residing between the PCB and the base
+
+ Float_t dpara_air[6] = {12.5,12.5,8.,30.,0.,0.};
+ dpara_air[0]= dpara_sm1[0];
+ dpara_air[1]= dpara_sm1[1];
+ dpara_air[2]= th_air/2.;
+
+ gMC->Gsvolu("EAIR","PARA", idtmed[698], dpara_air, 6);
+ gMC->Gsatt("EAIR", "SEEN", 0);
+
+ // volume for honeycomb chamber EHC1
+
+ Float_t dpara1[6] = {12.5,12.5,0.4,30.,0.,0.};
+ dpara1[0] = dpara_sm1[0];
+ dpara1[1] = dpara_sm1[1];
+ dpara1[2] = cell_depth/2.;
+
+ gMC->Gsvolu("EHC1","PARA", idtmed[698], dpara1, 6);
+ gMC->Gsatt("EHC1", "SEEN", 1);
+
+
+
+ // Place hexagonal cells ECCU cells inside EHC1 (72 X 72)
+
+ Int_t xrow=1;
+
+ yb = -dpara1[1] + (1./root3_2)*hexd1[6];
+ zb = 0.;
+
+ for (j = 1; j <= ncell_sm; ++j) {
+ xb =-(dpara1[0] + dpara1[1]*0.577) + 2*hexd1[6]; //0.577=tan(30deg)
+ if(xrow >= 2){
+ xb = xb+(xrow-1)*hexd1[6];
+ }
+ for (i = 1; i <= ncell_sm; ++i) {
+ number = i+(j-1)*ncell_sm;
+ gMC->Gsposp("ECCU", number, "EHC1", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
+ xb += (hexd1[6]*2.);
+ }
+ xrow = xrow+1;
+ yb += (hexd1[6]*TMath::Sqrt(3.));
+ }
+
+
+ // Place EHC1 and EAIR into ESMA and ESMB
+
+ Float_t z_air1,z_air2,z_gas;
+
+ //ESMA is normal supermodule with base at bottom, with EHC1
+ z_air1= -dpara_sm1[2] + th_base + dpara_air[2];
+ gMC->Gspos("EAIR", 1, "ESMA", 0., 0., z_air1, 0, "ONLY");
+ z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
+ gMC->Gspos("EHC1", 1, "ESMA", 0., 0., z_gas, 0, "ONLY");
+ z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
+ gMC->Gspos("EAIR", 2, "ESMA", 0., 0., z_air2, 0, "ONLY");
+
+ // ESMB is mirror image of ESMA, with base at top, with EHC1
+
+ z_air1= -dpara_sm1[2] + th_pcb + dpara_air[2];
+ gMC->Gspos("EAIR", 3, "ESMB", 0., 0., z_air1, 0, "ONLY");
+ z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
+ gMC->Gspos("EHC1", 2, "ESMB", 0., 0., z_gas, 0, "ONLY");
+ z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
+ gMC->Gspos("EAIR", 4, "ESMB", 0., 0., z_air2, 0, "ONLY");
+
+
+// special supermodule EMM2(GEANT only) containing 6 unit modules
+
+// volume for SUPERMODULE
+
+ Float_t dpara_sm2[6] = {12.5,12.5,0.8,30.,0.,0.};
+ dpara_sm2[0]=(ncell_sm+0.25)*hexd1[6] ;
+ dpara_sm2[1] = (ncell_sm - ncell_hole + 0.25) * root3_2 * hexd1[6];
+ dpara_sm2[2] = sm_thick/2.;
+
+ gMC->Gsvolu("ESMX","PARA", idtmed[607], dpara_sm2, 6);
+ gMC->Gsatt("ESMX", "SEEN", 0);
+ //
+ gMC->Gsvolu("ESMY","PARA", idtmed[607], dpara_sm2, 6);
+ gMC->Gsatt("ESMY", "SEEN", 0);
+
+ Float_t dpara2[6] = {12.5,12.5,0.4,30.,0.,0.};
+ dpara2[0] = dpara_sm2[0];
+ dpara2[1] = dpara_sm2[1];
+ dpara2[2] = cell_depth/2.;
+
+ gMC->Gsvolu("EHC2","PARA", idtmed[698], dpara2, 6);
+ gMC->Gsatt("EHC2", "SEEN", 1);
+
+
+ // Air residing between the PCB and the base
+
+ Float_t dpara2_air[6] = {12.5,12.5,8.,30.,0.,0.};
+ dpara2_air[0]= dpara_sm2[0];
+ dpara2_air[1]= dpara_sm2[1];
+ dpara2_air[2]= th_air/2.;
+
+ gMC->Gsvolu("EAIX","PARA", idtmed[698], dpara2_air, 6);
+ gMC->Gsatt("EAIX", "SEEN", 0);
+
+ // Place hexagonal single cells ECCU inside EHC2
+ // skip cells which go into the hole in top left corner.
+
+ xrow=1;
+ yb = -dpara2[1] + (1./root3_2)*hexd1[6];
+ zb = 0.;
+ for (j = 1; j <= (ncell_sm - ncell_hole); ++j) {
+ xb =-(dpara2[0] + dpara2[1]*0.577) + 2*hexd1[6];
+ if(xrow >= 2){
+ xb = xb+(xrow-1)*hexd1[6];
+ }
+ for (i = 1; i <= ncell_sm; ++i) {
+ number = i+(j-1)*ncell_sm;
+ gMC->Gsposp("ECCU", number, "EHC2", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
+ xb += (hexd1[6]*2.);
+ }
+ xrow = xrow+1;
+ yb += (hexd1[6]*TMath::Sqrt(3.));
+ }
+
+
+ // ESMX is normal supermodule with base at bottom, with EHC2
+
+ z_air1= -dpara_sm2[2] + th_base + dpara2_air[2];
+ gMC->Gspos("EAIX", 1, "ESMX", 0., 0., z_air1, 0, "ONLY");
+ z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
+ gMC->Gspos("EHC2", 1, "ESMX", 0., 0., z_gas, 0, "ONLY");
+ z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
+ gMC->Gspos("EAIX", 2, "ESMX", 0., 0., z_air2, 0, "ONLY");
+
+ // ESMY is mirror image of ESMX with base at bottom, with EHC2
+
+ z_air1= -dpara_sm2[2] + th_pcb + dpara2_air[2];
+ gMC->Gspos("EAIX", 3, "ESMY", 0., 0., z_air1, 0, "ONLY");
+ z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
+ gMC->Gspos("EHC2", 2, "ESMY", 0., 0., z_gas, 0, "ONLY");
+ z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
+ gMC->Gspos("EAIX", 4, "ESMY", 0., 0., z_air2, 0, "ONLY");
+
+//
+
+
+// special supermodule EMM3 (GEANT only) containing 2 unit modules
+
+// volume for SUPERMODULE
+
+ Float_t dpara_sm3[6] = {12.5,12.5,0.8,30.,0.,0.};
+ dpara_sm3[0]=(ncell_sm - ncell_hole +0.25)*hexd1[6] ;
+ dpara_sm3[1] = (ncell_hole + 0.25) * hexd1[6] * root3_2;
+ dpara_sm3[2] = sm_thick/2.;
+
+ gMC->Gsvolu("ESMP","PARA", idtmed[607], dpara_sm3, 6);
+ gMC->Gsatt("ESMP", "SEEN", 0);
+ //
+ gMC->Gsvolu("ESMQ","PARA", idtmed[607], dpara_sm3, 6);
+ gMC->Gsatt("ESMQ", "SEEN", 0);
+
+ Float_t dpara3[6] = {12.5,12.5,0.4,30.,0.,0.};
+ dpara3[0] = dpara_sm3[0];
+ dpara3[1] = dpara_sm3[1];
+ dpara3[2] = cell_depth/2.;
+
+ gMC->Gsvolu("EHC3","PARA", idtmed[698], dpara3, 6);
+ gMC->Gsatt("EHC3", "SEEN", 1);
+
+
+ // Air residing between the PCB and the base
+
+ Float_t dpara3_air[6] = {12.5,12.5,8.,30.,0.,0.};
+ dpara3_air[0]= dpara_sm3[0];
+ dpara3_air[1]= dpara_sm3[1];
+ dpara3_air[2]= th_air/2.;
+
+ gMC->Gsvolu("EAIP","PARA", idtmed[698], dpara3_air, 6);
+ gMC->Gsatt("EAIP", "SEEN", 0);
+
+
+ // Place hexagonal single cells ECCU inside EHC3
+ // skip cells which go into the hole in top left corner.
+
+ xrow=1;
+ yb = -dpara3[1] + (1./root3_2)*hexd1[6];
+ zb = 0.;
+ for (j = 1; j <= ncell_hole; ++j) {
+ xb =-(dpara3[0] + dpara3[1]*0.577) + 2*hexd1[6];
+ if(xrow >= 2){
+ xb = xb+(xrow-1)*hexd1[6];
+ }
+ for (i = 1; i <= (ncell_sm - ncell_hole); ++i) {
+ number = i+(j-1)*(ncell_sm - ncell_hole);
+ gMC->Gsposp("ECCU", number, "EHC3", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
+ xb += (hexd1[6]*2.);
+ }
+ xrow = xrow+1;
+ yb += (hexd1[6]*TMath::Sqrt(3.));
+ }
+
+ // ESMP is normal supermodule with base at bottom, with EHC3
+
+ z_air1= -dpara_sm3[2] + th_base + dpara3_air[2];
+ gMC->Gspos("EAIP", 1, "ESMP", 0., 0., z_air1, 0, "ONLY");
+ z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
+ gMC->Gspos("EHC3", 1, "ESMP", 0., 0., z_gas, 0, "ONLY");
+ z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
+ gMC->Gspos("EAIP", 2, "ESMP", 0., 0., z_air2, 0, "ONLY");
+
+ // ESMQ is mirror image of ESMP with base at bottom, with EHC3
+
+ z_air1= -dpara_sm3[2] + th_pcb + dpara3_air[2];
+ gMC->Gspos("EAIP", 3, "ESMQ", 0., 0., z_air1, 0, "ONLY");
+ z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
+ gMC->Gspos("EHC3", 2, "ESMQ", 0., 0., z_gas, 0, "ONLY");
+ z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
+ gMC->Gspos("EAIP", 4, "ESMQ", 0., 0., z_air2, 0, "ONLY");
+
+}
+
+//_____________________________________________________________________________
+
+void AliPMDv1::CreatePMD()
+{
+ //
+ // Create final detector from supermodules
+ //
+ // -- Author : Y.P. VIYOGI, 07/05/1996.
+ // -- Modified: P.V.K.S.Baba(JU), 15-12-97.
+ // -- Modified: For New Geometry YPV, March 2001.
+
+
+ const Float_t root3_2 = TMath::Sqrt(3.)/2.;
+ const Float_t pi = 3.14159;
+ Int_t i,j;
+
+ Float_t xp, yp, zp;
+
+ Int_t num_mod;
+ Int_t jhrot12,jhrot13, irotdm;
+
+ Int_t *idtmed = fIdtmed->GetArray()-599;
+
+ // VOLUMES Names : begining with "E" for all PMD volumes,
+ // The names of SIZE variables begin with S and have more meaningful
+ // characters as shown below.
+
+ // VOLUME SIZE MEDIUM : REMARKS
+ // ------ ----- ------ : ---------------------------
+
+ // EPMD GASPMD AIR : INSIDE PMD and its SIZE
+
+ // *** Define the EPMD Volume and fill with air ***
+
+
+ // Gaspmd, the dimension of HEXAGONAL mother volume of PMD,
+
+
+ Float_t gaspmd[10] = {0.,360.,6,2,-4.,12.,150.,4.,12.,150.};
+
+ gaspmd[5] = ncell_hole * cell_radius * 2. * root3_2;
+ gaspmd[8] = gaspmd[5];
+
+ gMC->Gsvolu("EPMD", "PGON", idtmed[698], gaspmd, 10);
+ gMC->Gsatt("EPMD", "SEEN", 0);
+
+ AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.);
+
+ AliMatrix(jhrot12, 90., 120., 90., 210., 0., 0.);
+ AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
+
+
+ Float_t dm_thick = 2. * sm_thick + th_lead + th_steel;
+
+ // dpara_emm1 array contains parameters of the imaginary volume EMM1,
+ // EMM1 is a master module of type 1, which has 24 copies in the PMD.
+ // EMM1 : normal volume as in old cases
+
+
+ Float_t dpara_emm1[6] = {12.5,12.5,0.8,30.,0.,0.};
+ dpara_emm1[0] = sm_length/2.;
+ dpara_emm1[1] = dpara_emm1[0] *root3_2;
+ dpara_emm1[2] = dm_thick/2.;
+
+ gMC->Gsvolu("EMM1","PARA", idtmed[698], dpara_emm1, 6);
+ gMC->Gsatt("EMM1", "SEEN", 1);
+
+ //
+ // --- DEFINE Modules, iron, and lead volumes
+
+ // Pb Convertor for EMM1
+ Float_t dpara_pb1[6] = {12.5,12.5,8.,30.,0.,0.};
+ dpara_pb1[0] = sm_length/2.;
+ dpara_pb1[1] = dpara_pb1[0] * root3_2;
+ dpara_pb1[2] = th_lead/2.;
+
+ gMC->Gsvolu("EPB1","PARA", idtmed[600], dpara_pb1, 6);
+ gMC->Gsatt ("EPB1", "SEEN", 0);
+
+ // Fe Support for EMM1
+ Float_t dpara_fe1[6] = {12.5,12.5,8.,30.,0.,0.};
+ dpara_fe1[0] = dpara_pb1[0];
+ dpara_fe1[1] = dpara_pb1[1];
+ dpara_fe1[2] = th_steel/2.;
+
+ gMC->Gsvolu("EFE1","PARA", idtmed[618], dpara_fe1, 6);
+ gMC->Gsatt ("EFE1", "SEEN", 0);
+
+
+
+ //
+ // position supermodule ESMA, ESMB, EPB1, EFE1 inside EMM1
+
+ Float_t z_ps,z_pb,z_fe,z_cv;
+
+ z_ps = - dpara_emm1[2] + sm_thick/2.;
+ gMC->Gspos("ESMB", 1, "EMM1", 0., 0., z_ps, 0, "ONLY");
+ z_pb=z_ps+sm_thick/2.+dpara_pb1[2];
+ gMC->Gspos("EPB1", 1, "EMM1", 0., 0., z_pb, 0, "ONLY");
+ z_fe=z_pb+dpara_pb1[2]+dpara_fe1[2];
+ gMC->Gspos("EFE1", 1, "EMM1", 0., 0., z_fe, 0, "ONLY");
+ z_cv=z_fe+dpara_fe1[2]+sm_thick/2.;
+ gMC->Gspos("ESMA", 1, "EMM1", 0., 0., z_cv, 0, "ONLY");
+
+
+
+ // EMM2 : special master module having full row of cells but the number
+ // of rows limited by hole.
+
+ Float_t dpara_emm2[6] = {12.5,12.5,0.8,30.,0.,0.};
+ dpara_emm2[0] = sm_length/2.;
+ dpara_emm2[1] = (ncell_sm - ncell_hole + 0.25) * cell_radius * root3_2;
+ dpara_emm2[2] = dm_thick/2.;
+
+ gMC->Gsvolu("EMM2","PARA", idtmed[698], dpara_emm2, 6);
+ gMC->Gsatt("EMM2", "SEEN", 1);
+
+
+ // Pb Convertor for EMM2
+ Float_t dpara_pb2[6] = {12.5,12.5,8.,30.,0.,0.};
+ dpara_pb2[0] = dpara_emm2[0];
+ dpara_pb2[1] = dpara_emm2[1];
+ dpara_pb2[2] = th_lead/2.;
+
+ gMC->Gsvolu("EPB2","PARA", idtmed[600], dpara_pb2, 6);
+ gMC->Gsatt ("EPB2", "SEEN", 0);
+
+ // Fe Support for EMM2
+ Float_t dpara_fe2[6] = {12.5,12.5,8.,30.,0.,0.};
+ dpara_fe2[0] = dpara_pb2[0];
+ dpara_fe2[1] = dpara_pb2[1];
+ dpara_fe2[2] = th_steel/2.;
+
+ gMC->Gsvolu("EFE2","PARA", idtmed[618], dpara_fe2, 6);
+ gMC->Gsatt ("EFE2", "SEEN", 0);
+
+
+
+ // position supermodule ESMX, ESMY inside EMM2
+
+ z_ps = - dpara_emm2[2] + sm_thick/2.;
+ gMC->Gspos("ESMY", 1, "EMM2", 0., 0., z_ps, 0, "ONLY");
+ z_pb = z_ps + sm_thick/2.+dpara_pb2[2];
+ gMC->Gspos("EPB2", 1, "EMM2", 0., 0., z_pb, 0, "ONLY");
+ z_fe = z_pb + dpara_pb2[2]+dpara_fe2[2];
+ gMC->Gspos("EFE2", 1, "EMM2", 0., 0., z_fe, 0, "ONLY");
+ z_cv = z_fe + dpara_fe2[2]+sm_thick/2.;
+ gMC->Gspos("ESMX", 1, "EMM2", 0., 0., z_cv, 0, "ONLY");
+ //
+
+
+ // EMM3 : special master module having truncated rows and columns of cells
+ // limited by hole.
+
+ Float_t dpara_emm3[6] = {12.5,12.5,0.8,30.,0.,0.};
+ dpara_emm3[0] = dpara_emm2[1]/root3_2;
+ dpara_emm3[1] = (ncell_hole + 0.25) * cell_radius *root3_2;
+ dpara_emm3[2] = dm_thick/2.;
+
+ gMC->Gsvolu("EMM3","PARA", idtmed[698], dpara_emm3, 6);
+ gMC->Gsatt("EMM3", "SEEN", 1);
+
+
+ // Pb Convertor for EMM3
+ Float_t dpara_pb3[6] = {12.5,12.5,8.,30.,0.,0.};
+ dpara_pb3[0] = dpara_emm3[0];
+ dpara_pb3[1] = dpara_emm3[1];
+ dpara_pb3[2] = th_lead/2.;
+
+ gMC->Gsvolu("EPB3","PARA", idtmed[600], dpara_pb3, 6);
+ gMC->Gsatt ("EPB3", "SEEN", 0);
+
+ // Fe Support for EMM3
+ Float_t dpara_fe3[6] = {12.5,12.5,8.,30.,0.,0.};
+ dpara_fe3[0] = dpara_pb3[0];
+ dpara_fe3[1] = dpara_pb3[1];
+ dpara_fe3[2] = th_steel/2.;
+
+ gMC->Gsvolu("EFE3","PARA", idtmed[618], dpara_fe3, 6);
+ gMC->Gsatt ("EFE3", "SEEN", 0);
+
+
+
+ // position supermodule ESMP, ESMQ inside EMM3
+
+ z_ps = - dpara_emm3[2] + sm_thick/2.;
+ gMC->Gspos("ESMQ", 1, "EMM3", 0., 0., z_ps, 0, "ONLY");
+ z_pb = z_ps + sm_thick/2.+dpara_pb3[2];
+ gMC->Gspos("EPB3", 1, "EMM3", 0., 0., z_pb, 0, "ONLY");
+ z_fe = z_pb + dpara_pb3[2]+dpara_fe3[2];
+ gMC->Gspos("EFE3", 1, "EMM3", 0., 0., z_fe, 0, "ONLY");
+ z_cv = z_fe + dpara_fe3[2] + sm_thick/2.;
+ gMC->Gspos("ESMP", 1, "EMM3", 0., 0., z_cv, 0, "ONLY");
+ //
+
+ // EHOL is a tube structure made of air
+ //
+ //Float_t d_hole[3];
+ //d_hole[0] = 0.;
+ //d_hole[1] = ncell_hole * cell_radius *2. * root3_2 + boundary;
+ //d_hole[2] = dm_thick/2.;
+ //
+ //gMC->Gsvolu("EHOL", "TUBE", idtmed[698], d_hole, 3);
+ //gMC->Gsatt("EHOL", "SEEN", 1);
+
+ //Al-rod as boundary of the supermodules
+
+ Float_t Al_rod[3] ;
+ Al_rod[0] = sm_length * 3/2. - gaspmd[5]/2 - boundary ;
+ Al_rod[1] = boundary;
+ Al_rod[2] = dm_thick/2.;
+
+ gMC->Gsvolu("EALM","BOX ", idtmed[698], Al_rod, 3);
+ gMC->Gsatt ("EALM", "SEEN", 1);
+ Float_t xalm[3];
+ xalm[0]=Al_rod[0] + gaspmd[5] + 3.0*boundary;
+ xalm[1]=-xalm[0]/2.;
+ xalm[2]=xalm[1];
+
+ Float_t yalm[3];
+ yalm[0]=0.;
+ yalm[1]=xalm[0]*root3_2;
+ yalm[2]=-yalm[1];
+
+ // delx = full side of the supermodule
+ Float_t delx=sm_length * 3.;
+ Float_t x1= delx*root3_2 /2.;
+ Float_t x4=delx/4.;
+
+
+ // placing master modules and Al-rod in PMD
+
+ Float_t dx = sm_length;
+ Float_t dy = dx * root3_2;
+
+ Float_t xsup[9] = {-dx/2., dx/2., 3.*dx/2.,
+ -dx, 0., dx,
+ -3.*dx/2., -dx/2., dx/2.};
+
+ Float_t ysup[9] = {dy, dy, dy,
+ 0., 0., 0.,
+ -dy, -dy, -dy};
+
+ // xpos and ypos are the x & y coordinates of the centres of EMM1 volumes
+
+ Float_t xoff = boundary * TMath::Tan(pi/6.);
+ Float_t xmod[3]={x4 + xoff , x4 + xoff, -2.*x4-boundary/root3_2};
+ Float_t ymod[3] = {-x1 - boundary, x1 + boundary, 0.};
+ Float_t xpos[9], ypos[9], x2, y2, x3, y3;
+
+ Float_t xemm2 = sm_length/2. -
+ (ncell_sm + ncell_hole + 0.25) * cell_radius * 0.5
+ + xoff;
+ Float_t yemm2 = -(ncell_sm + ncell_hole + 0.25) * cell_radius * root3_2
+ - boundary;
+
+ Float_t xemm3 = (ncell_sm + 0.5 * ncell_hole + 0.25) * cell_radius + xoff;
+ Float_t yemm3 = - (ncell_hole - 0.25) * cell_radius * root3_2 - boundary;
+
+ Float_t theta[3] = {0., 2.*pi/3., 4.*pi/3.};
+ Int_t irotate[3] = {0, jhrot12, jhrot13};
+
+ num_mod=0;
+ for (j=0; j<3; ++j)
+ {
+ gMC->Gsposp("EALM", j+1, "EPMD", xalm[j],yalm[j], 0., irotate[j], "ONLY", Al_rod, 3);
+ x2=xemm2*TMath::Cos(theta[j]) - yemm2*TMath::Sin(theta[j]);
+ y2=xemm2*TMath::Sin(theta[j]) + yemm2*TMath::Cos(theta[j]);
+
+ gMC->Gsposp("EMM2", j+1, "EPMD", x2,y2, 0., irotate[j], "ONLY", dpara_emm2, 6);
+
+ x3=xemm3*TMath::Cos(theta[j]) - yemm3*TMath::Sin(theta[j]);
+ y3=xemm3*TMath::Sin(theta[j]) + yemm3*TMath::Cos(theta[j]);
+
+ gMC->Gsposp("EMM3", j+4, "EPMD", x3,y3, 0., irotate[j], "ONLY", dpara_emm3, 6);
+
+ for (i=1; i<9; ++i)
+ {
+ xpos[i]=xmod[j] + xsup[i]*TMath::Cos(theta[j]) - ysup[i]*TMath::Sin(theta[j]);
+ ypos[i]=ymod[j] + xsup[i]*TMath::Sin(theta[j]) + ysup[i]*TMath::Cos(theta[j]);
+
+ printf("%f %f \n", xpos[i], ypos[i]);
+
+ num_mod = num_mod+1;
+
+ printf("\nNum_mod %d\n",num_mod);
+
+ gMC->Gsposp("EMM1", num_mod + 6, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY", dpara_emm1, 6);
+
+ }
+ }
+
+
+ // place EHOL in the centre of EPMD
+ // gMC->Gspos("EHOL", 1, "EPMD", 0.,0.,0., 0, "ONLY");
+
+ // --- Place the EPMD in ALICE
+ xp = 0.;
+ yp = 0.;
+ zp = zdist1;
+
+ gMC->Gspos("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY");
+
+}
+
+
+//_____________________________________________________________________________
+void AliPMDv1::DrawModule()
+{
+ //
+ // Draw a shaded view of the Photon Multiplicity Detector
+ //
+
+ gMC->Gsatt("*", "seen", -1);
+ gMC->Gsatt("alic", "seen", 0);
+ //
+ // Set the visibility of the components
+ //
+ gMC->Gsatt("ECAR","seen",0);
+ gMC->Gsatt("ECCU","seen",1);
+ gMC->Gsatt("EHC1","seen",1);
+ gMC->Gsatt("EHC1","seen",1);
+ gMC->Gsatt("EHC2","seen",1);
+ gMC->Gsatt("EMM1","seen",1);
+ gMC->Gsatt("EHOL","seen",1);
+ gMC->Gsatt("EPMD","seen",0);
+ //
+ gMC->Gdopt("hide", "on");
+ gMC->Gdopt("shad", "on");
+ gMC->Gsatt("*", "fill", 7);
+ gMC->SetClipBox(".");
+ gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000);
+ gMC->DefaultRange();
+ gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02);
+ gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1");
+
+ //gMC->Gdman(17, 5, "MAN");
+ gMC->Gdopt("hide", "off");
+}
+
+//_____________________________________________________________________________
+void AliPMDv1::CreateMaterials()
+{
+ //
+ // Create materials for the PMD
+ //
+ // ORIGIN : Y. P. VIYOGI
+ //
+
+ // --- The Argon- CO2 mixture ---
+ Float_t ag[2] = { 39.95 };
+ Float_t zg[2] = { 18. };
+ Float_t wg[2] = { .8,.2 };
+ Float_t dar = .001782; // --- Ar density in g/cm3 ---
+ // --- CO2 ---
+ Float_t ac[2] = { 12.,16. };
+ Float_t zc[2] = { 6.,8. };
+ Float_t wc[2] = { 1.,2. };
+ Float_t dc = .001977;
+ Float_t dco = .002; // --- CO2 density in g/cm3 ---
+
+ Float_t absl, radl, a, d, z;
+ Float_t dg;
+ Float_t x0ar;
+ //Float_t x0xe=2.4;
+ //Float_t dxe=0.005858;
+ Float_t buf[1];
+ Int_t nbuf;
+ Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 };
+ Float_t zsteel[4] = { 26.,24.,28.,14. };
+ Float_t wsteel[4] = { .715,.18,.1,.005 };
+
+ Int_t *idtmed = fIdtmed->GetArray()-599;
+ Int_t isxfld = gAlice->Field()->Integ();
+ Float_t sxmgmx = gAlice->Field()->Max();
+
+ // --- Define the various materials for GEANT ---
+ AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5);
+ x0ar = 19.55 / dar;
+ AliMaterial(2, "Argon$", 39.95, 18., dar, x0ar, 6.5e4);
+ AliMixture(3, "CO2 $", ac, zc, dc, -2, wc);
+ AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5);
+ AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5);
+ AliMaterial(7, "W $", 183.85, 74., 19.3, .35, 10.3);
+ AliMaterial(8, "G10 $", 20., 10., 1.7, 19.4, 999.);
+ AliMaterial(9, "SILIC$", 28.09, 14., 2.33, 9.36, 45.);
+ AliMaterial(10, "Be $", 9.01, 4., 1.848, 35.3, 36.7);
+ AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.);
+ AliMaterial(16, "C $", 12.01, 6., 2.265, 18.8, 49.9);
+ AliMaterial(17, "POLYCARBONATE $", 20., 10., 1.2, 34.6, 999.);
+ AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel);
+ // AliMaterial(31, "Xenon$", 131.3, 54., dxe, x0xe, 6.5e4);
+
+ AliMaterial(96, "MYLAR$", 8.73, 4.55, 1.39, 28.7, 62.);
+ AliMaterial(97, "CONCR$", 20., 10., 2.5, 10.7, 40.);
+ AliMaterial(98, "Vacum$", 1e-9, 1e-9, 1e-9, 1e16, 1e16);
+ AliMaterial(99, "Air $", 14.61, 7.3, .0012, 30420., 67500.);
+
+ // define gas-mixtures
+
+ char namate[21];
+ gMC->Gfmate((*fIdmate)[3], namate, a, z, d, radl, absl, buf, nbuf);
+ ag[1] = a;
+ zg[1] = z;
+ dg = (dar * 4 + dco) / 5;
+ AliMixture(5, "ArCO2$", ag, zg, dg, 2, wg);
+
+ // Define tracking media
+ AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
+ AliMedium(7, "W conv.$", 7, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
+ AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
+ AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
+ AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
+ AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
+ AliMedium(9, "SILICON $", 9, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
+ AliMedium(10, "Be $", 10, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
+ AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .1, 10);
+ AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .1, .1);
+ AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
+ AliMedium(16, "C $", 16, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
+ AliMedium(17, "PLOYCARB$", 17, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
+ AliMedium(19, " S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
+ // AliMedium(31, "Xenon $", 31, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
+
+ // --- Generate explicitly delta rays in the iron, aluminium and lead ---
+ gMC->Gstpar(idtmed[600], "LOSS", 3.);
+ gMC->Gstpar(idtmed[600], "DRAY", 1.);
+
+ gMC->Gstpar(idtmed[603], "LOSS", 3.);
+ gMC->Gstpar(idtmed[603], "DRAY", 1.);
+
+ gMC->Gstpar(idtmed[604], "LOSS", 3.);
+ gMC->Gstpar(idtmed[604], "DRAY", 1.);
+
+ gMC->Gstpar(idtmed[605], "LOSS", 3.);
+ gMC->Gstpar(idtmed[605], "DRAY", 1.);
+
+ gMC->Gstpar(idtmed[606], "LOSS", 3.);
+ gMC->Gstpar(idtmed[606], "DRAY", 1.);
+
+ gMC->Gstpar(idtmed[607], "LOSS", 3.);
+ gMC->Gstpar(idtmed[607], "DRAY", 1.);
+
+ // --- Energy cut-offs in the Pb and Al to gain time in tracking ---
+ // --- without affecting the hit patterns ---
+ gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4);
+ gMC->Gstpar(idtmed[600], "CUTELE", 1e-4);
+ gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4);
+ gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4);
+ gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4);
+ gMC->Gstpar(idtmed[605], "CUTELE", 1e-4);
+ gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4);
+ gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4);
+ gMC->Gstpar(idtmed[606], "CUTGAM", 1e-4);
+ gMC->Gstpar(idtmed[606], "CUTELE", 1e-4);
+ gMC->Gstpar(idtmed[606], "CUTNEU", 1e-4);
+ gMC->Gstpar(idtmed[606], "CUTHAD", 1e-4);
+ gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4);
+ gMC->Gstpar(idtmed[603], "CUTELE", 1e-4);
+ gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4);
+ gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4);
+ gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4);
+ gMC->Gstpar(idtmed[609], "CUTELE", 1e-4);
+ gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4);
+ gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4);
+
+ // --- Prevent particles stopping in the gas due to energy cut-off ---
+ gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5);
+ gMC->Gstpar(idtmed[604], "CUTELE", 1e-5);
+ gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5);
+ gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5);
+ gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5);
+}
+
+//_____________________________________________________________________________
+void AliPMDv1::Init()
+{
+ //
+ // Initialises PMD detector after it has been built
+ //
+ Int_t i;
+ kdet=1;
+ //
+ printf("\n");
+ for(i=0;i<35;i++) printf("*");
+ printf(" PMD_INIT ");
+ for(i=0;i<35;i++) printf("*");
+ printf("\n");
+ printf(" PMD simulation package (v1) initialised\n");
+ printf(" parameters of pmd\n");
+ printf("%10.2f %10.2f %10.2f %10.2f\n", cell_radius,cell_wall,cell_depth,zdist1 );
+
+ for(i=0;i<80;i++) printf("*");
+ printf("\n");
+
+ Int_t *idtmed = fIdtmed->GetArray()-599;
+ fMedSens=idtmed[605-1];
+}
+
+//_____________________________________________________________________________
+void AliPMDv1::StepManager()
+{
+ //
+ // Called at each step in the PMD
+ //
+ Int_t copy;
+ Float_t hits[4], destep;
+ Float_t center[3] = {0,0,0};
+ Int_t vol[5];
+ //char *namep;
+
+ if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) {
+
+ gMC->CurrentVolID(copy);
+
+ //namep=gMC->CurrentVolName();
+ //printf("Current vol is %s \n",namep);
+
+ vol[0]=copy;
+ gMC->CurrentVolOffID(1,copy);
+
+ //namep=gMC->CurrentVolOffName(1);
+ //printf("Current vol 11 is %s \n",namep);
+
+ vol[1]=copy;
+ gMC->CurrentVolOffID(2,copy);
+
+ //namep=gMC->CurrentVolOffName(2);
+ //printf("Current vol 22 is %s \n",namep);
+
+ vol[2]=copy;
+
+ // if(strncmp(namep,"EHC1",4))vol[2]=1;
+
+ gMC->CurrentVolOffID(3,copy);
+
+ //namep=gMC->CurrentVolOffName(3);
+ //printf("Current vol 33 is %s \n",namep);
+
+ vol[3]=copy;
+ gMC->CurrentVolOffID(4,copy);
+
+ //namep=gMC->CurrentVolOffName(4);
+ //printf("Current vol 44 is %s \n",namep);
+
+ vol[4]=copy;
+ //printf("volume number %d,%d,%d,%d,%d,%f \n",vol[0],vol[1],vol[2],vol[3],vol[4],destep*1000000);
+
+ gMC->Gdtom(center,hits,1);
+ hits[3] = destep*1e9; //Number in eV
+ AddHit(gAlice->CurrentTrack(), vol, hits);
+ }
+}
+
+
+//------------------------------------------------------------------------
+// Get parameters
+
+void AliPMDv1::GetParameters()
+{
+ Int_t ncell_um, num_um;
+ ncell_um=24;
+ num_um=3;
+ ncell_hole=24;
+ cell_radius=0.25;
+ cell_wall=0.02;
+ cell_depth=0.25 * 2.;
+ //
+ boundary=0.7;
+ ncell_sm=ncell_um * num_um; //no. of cells in a row in one supermodule
+ sm_length= ((ncell_sm + 0.25 ) * cell_radius) * 2.;
+ //
+ th_base=0.3;
+ th_air=0.1;
+ th_pcb=0.16;
+ //
+ sm_thick = th_base + th_air + th_pcb + cell_depth + th_pcb + th_air + th_pcb;
+ //
+ th_lead=1.5;
+ th_steel=0.5;
+ //
+ zdist1 = -365.;
+}
+
+
+
+
+
+
+
+
+
+
+
+
+
--- /dev/null
+#ifndef PMDV1_H
+#define PMDV1_H
+/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
+ * See cxx source for full Copyright notice */
+
+/* $Id$ */
+
+////////////////////////////////////////////////
+// Manager and hits classes for set:PMD //
+////////////////////////////////////////////////
+
+#include "AliPMD.h"
+
+//___________________________________________
+
+class AliPMDv1 : public AliPMD {
+
+private:
+ Int_t fMedSens;
+
+public:
+ AliPMDv1();
+ AliPMDv1(const char *name, const char *title);
+ virtual ~AliPMDv1() {}
+ virtual void CreateGeometry();
+ virtual void CreatePMD();
+ virtual void CreateSupermodule();
+ virtual void GetParameters();
+ virtual void CreateMaterials();
+ virtual void Init();
+ virtual Int_t IsVersion() const {return 1;}
+ virtual void StepManager();
+ virtual void DrawModule();
+
+ ClassDef(AliPMDv1,1) //Hits manager for set:PMD
+};
+
+#endif
+
+
# C++ sources
-SRCS = AliPMD.cxx AliPMDv0.cxx AliPMDv1.cxx AliPMDv2.cxx AliPMDv3.cxx AliPMDRecPoint.cxx
+SRCS = AliPMD.cxx AliPMDv0.cxx AliPMDv1.cxx AliPMDRecPoint.cxx
# C++ Headers
#pragma link C++ class AliPMD+;
#pragma link C++ class AliPMDv0+;
#pragma link C++ class AliPMDv1+;
-#pragma link C++ class AliPMDv2+;
-#pragma link C++ class AliPMDv3+;
#pragma link C++ class AliPMDhit+;
#pragma link C++ class AliPMDRecPoint+;
#endif