#include <Riostream.h>
+#include "AliModule.h"
+#include "AliRun.h"
#include "TClonesArray.h"
#include "TFlukaGeo.h"
#include "TCallf77.h" //For the fortran calls
cout << "\t* InitPhysics() - Prepare input file to be called" << endl;
// now we have TGeo geometry created and we have to patch alice.inp
// with the material mapping file FlukaMat.inp
+}
+
+
+//______________________________________________________________________________
+void TFluka::FinishGeometry() {
+//
+// Build-up table with region to medium correspondance
+//
+ if (fVerbosityLevel >=3)
+ cout << "==> TFluka::FinishGeometry() called." << endl;
+
+ printf("----FinishGeometry - nothing to do with TGeo\n");
+
+ if (fVerbosityLevel >=3)
+ cout << "<== TFluka::FinishGeometry() called." << endl;
+}
+
+//______________________________________________________________________________
+void TFluka::BuildPhysics() {
+ if (fVerbosityLevel >=3)
+ cout << "==> TFluka::BuildPhysics() called." << endl;
InitPhysics(); // prepare input file with the current physics settings
cout << "\t* InitPhysics() - Prepare input file was called" << endl;
if (fVerbosityLevel >=3)
cout << "<== TFluka::Init() called." << endl;
-}
-
-//______________________________________________________________________________
-void TFluka::FinishGeometry() {
-//
-// Build-up table with region to medium correspondance
-//
- if (fVerbosityLevel >=3)
- cout << "==> TFluka::FinishGeometry() called." << endl;
-
- printf("----FinishGeometry - nothing to do with TGeo\n");
-
- if (fVerbosityLevel >=3)
- cout << "<== TFluka::FinishGeometry() called." << endl;
-}
-
-//______________________________________________________________________________
-void TFluka::BuildPhysics() {
- if (fVerbosityLevel >=3)
- cout << "==> TFluka::BuildPhysics() called." << endl;
-
-
- if (fVerbosityLevel >=3)
- cout << "<== TFluka::BuildPhysics() called." << endl;
+
+
+ if (fVerbosityLevel >=3)
+ cout << "<== TFluka::BuildPhysics() called." << endl;
}
//______________________________________________________________________________
}
//______________________________________________________________________________
-void TFluka::Gstpar(Int_t /*itmed*/, const char */*param*/, Double_t /*parval*/) {
+void TFluka::Gstpar(Int_t itmed, const char* param, Double_t parval) {
//
// Is it needed with TGeo ??? - to clear-up
- Warning("Gstpar", "Not implemented with TGeo");
+//
+
+ printf("Gstpar called with %6d %5s %12.4e %6d\n", itmed, param, parval, fGeom->GetFlukaMaterial(itmed));
+
+ Bool_t process = kFALSE;
+ if (strncmp(param, "DCAY", 4) == 0 ||
+ strncmp(param, "PAIR", 4) == 0 ||
+ strncmp(param, "COMP", 4) == 0 ||
+ strncmp(param, "PHOT", 4) == 0 ||
+ strncmp(param, "PFIS", 4) == 0 ||
+ strncmp(param, "DRAY", 4) == 0 ||
+ strncmp(param, "ANNI", 4) == 0 ||
+ strncmp(param, "BREM", 4) == 0 ||
+ strncmp(param, "MUNU", 4) == 0 ||
+ strncmp(param, "CKOV", 4) == 0 ||
+ strncmp(param, "HADR", 4) == 0 ||
+ strncmp(param, "LOSS", 4) == 0 ||
+ strncmp(param, "MULS", 4) == 0 ||
+ strncmp(param, "RAYL", 4) == 0)
+ {
+ process = kTRUE;
+ }
+ if (process) {
+ SetProcess(param, Int_t (parval), fGeom->GetFlukaMaterial(itmed));
+ } else {
+ SetCut(param, parval, fGeom->GetFlukaMaterial(itmed));
+ }
+
+
+
}
// functions from GGEOM
// set methods
//
+void TFluka::SetProcess(const char* flagName, Int_t flagValue, Int_t imed)
+{
+ strcpy(&fProcessFlag[fNbOfProc][0],flagName);
+ fProcessValue[fNbOfProc] = flagValue;
+ fProcessMedium[fNbOfProc] = imed;
+ fNbOfProc++;
+}
+
//______________________________________________________________________________
void TFluka::SetProcess(const char* flagName, Int_t flagValue)
{
Int_t i;
- if (iNbOfProc < 100) {
- for (i=0; i<iNbOfProc; i++) {
- if (strcmp(&sProcessFlag[i][0],flagName) == 0) {
- iProcessValue[iNbOfProc] = flagValue;
- goto fin;
+ if (fNbOfProc < 100) {
+ for (i=0; i<fNbOfProc; i++) {
+ if (strcmp(&fProcessFlag[i][0],flagName) == 0) {
+ fProcessValue[fNbOfProc] = flagValue;
+ return;
}
}
- strcpy(&sProcessFlag[iNbOfProc][0],flagName);
- iProcessValue[iNbOfProc++] = flagValue;
+ strcpy(&fProcessFlag[fNbOfProc][0],flagName);
+ fProcessValue[fNbOfProc++] = flagValue;
}
else
cout << "Nb of SetProcess calls exceeds 100 - ignored" << endl;
-fin:
- iNbOfProc = iNbOfProc;
+}
+
+//______________________________________________________________________________
+void TFluka::SetCut(const char* cutName, Double_t cutValue, Int_t imed)
+{
+ strcpy(&fCutFlag[fNbOfCut][0],cutName);
+ fCutValue[fNbOfCut] = cutValue;
+ fCutMedium[fNbOfCut] = imed;
+ fNbOfCut++;
}
//______________________________________________________________________________
void TFluka::SetCut(const char* cutName, Double_t cutValue)
{
Int_t i;
- if (iNbOfCut < 100) {
- for (i=0; i<iNbOfCut; i++) {
- if (strcmp(&sCutFlag[i][0],cutName) == 0) {
- fCutValue[iNbOfCut] = cutValue;
- goto fin;
+ if (fNbOfCut < 100) {
+ for (i=0; i<fNbOfCut; i++) {
+ if (strcmp(&fCutFlag[i][0],cutName) == 0) {
+ fCutValue[fNbOfCut] = cutValue;
+ return;
}
}
- strcpy(&sCutFlag[iNbOfCut][0],cutName);
- fCutValue[iNbOfCut++] = cutValue;
+ strcpy(&fCutFlag[fNbOfCut][0],cutName);
+ fCutMedium[fNbOfCut] = -1;
+ fCutValue[fNbOfCut++] = cutValue;
}
else
cout << "Nb of SetCut calls exceeds 100 - ignored" << endl;
-fin:
- iNbOfCut = iNbOfCut;
}
//______________________________________________________________________________
Int_t i, j, k;
Double_t fCut;
- FILE *pAliceCoreInp, *pAliceFlukaMat, *pAliceInp;
+ FILE *pAliceCoreInp, *pAliceFlukaMat, *pAliceInp, *pGaliceCuts;
Double_t zero = 0.0;
Double_t one = 1.0;
Float_t fLastMaterial = fGeom->GetLastMaterialIndex();
printf(" last FLUKA material is %g\n", fLastMaterial);
+ // Prepare Cerenkov
+ TList *matList = gGeoManager->GetListOfMaterials();
+ Int_t nmaterial = matList->GetSize();
+ fMaterials = new Int_t[nmaterial];
+
+
+
// construct file names
TString sAliceCoreInp = getenv("ALICE_ROOT");
+ TString sGaliceCuts = sAliceCoreInp;
sAliceCoreInp +="/TFluka/input/";
TString sAliceTmp = "flukaMat.inp";
TString sAliceInp = GetInputFileName();
sAliceCoreInp += GetCoreInputFileName();
+ sGaliceCuts +="/data/galice.cuts";
// open files
exit(1);
}
+ if ((pGaliceCuts = fopen(sGaliceCuts.Data(),"r")) == NULL) {
+ printf("\nCannot open file %s\n",sGaliceCuts.Data());
+ exit(1);
+ }
+
// copy core input file
Char_t sLine[255];
Float_t fEventsPerRun;
fprintf(pAliceInp,"*----------------------------------------------------------------------------- \n");
fprintf(pAliceInp,"*----- The following data are generated from SetProcess and SetCut calls ----- \n");
fprintf(pAliceInp,"*----------------------------------------------------------------------------- \n");
- for (i=0; i<iNbOfProc; i++) {
+ for (i = 0; i < fNbOfProc; i++) {
+ Float_t matMin = three;
+ Float_t matMax = fLastMaterial;
+ Bool_t global = kTRUE;
+ if (fProcessMedium[i] != -1) {
+ matMin = Float_t(fProcessMedium[i]);
+ matMax = matMin;
+ global = kFALSE;
+ }
+
// annihilation
// G3 default value: 1
// G4 processes: G4eplusAnnihilation/G4IeplusAnnihilation
// flag = 1 annihilation, decays processed
// flag = 2 annihilation, no decay product stored
// gMC ->SetProcess("ANNI",1); // EMFCUT -1. 0. 0. 3. lastmat 0. ANNH-THR
- if (strncmp(&sProcessFlag[i][0],"ANNI",4) == 0) {
- if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
+ if (strncmp(&fProcessFlag[i][0],"ANNI",4) == 0) {
+ if (fProcessValue[i] == 1 || fProcessValue[i] == 2) {
fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for e+ annihilation - resets to default=0.\n");
fprintf(pAliceInp,"*Generated from call: SetProcess('ANNI',1) or SetProcess('ANNI',2)\n");
// -one = kinetic energy threshold (GeV) for e+ annihilation (resets to default=0)
// zero = not used
// zero = not used
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
// one = step length in assigning indices
// "ANNH-THR";
- fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fANNH-THR\n",-one,zero,zero,three,fLastMaterial,one);
+ fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fANNH-THR\n",-one,zero,zero,matMin,matMax,one);
}
- else if (iProcessValue[i] == 0) {
+ else if (fProcessValue[i] == 0) {
fprintf(pAliceInp,"*\n*No annihilation - no FLUKA card generated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('ANNI',0)\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('ANNI',0)\n");
}
else {
fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('ANNI',?) call.\n");
// flag = 2 delta rays, no secondaries stored
// gMC ->SetProcess("PAIR",1); // PAIRBREM 1. 0. 0. 3. lastmat
// EMFCUT 0. 0. -1. 3. lastmat 0. PHOT-THR
- else if ((strncmp(&sProcessFlag[i][0],"PAIR",4) == 0) && (iProcessValue[i] == 1 || iProcessValue[i] == 2)) {
- for (j=0; j<iNbOfProc; j++) {
- if ((strncmp(&sProcessFlag[j][0],"BREM",4) == 0) && (iProcessValue[j] == 1 || iProcessValue[j] == 2)) {
- fprintf(pAliceInp,"*\n*Bremsstrahlung and pair production by muons and charged hadrons both activated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',1) and SetProcess('PAIR',1)\n");
- fprintf(pAliceInp,"*Energy threshold set by call SetCut('BCUTM',cut) or set to 0.\n");
- fprintf(pAliceInp,"*Energy threshold set by call SetCut('PPCUTM',cut) or set to 0.\n");
- // three = bremsstrahlung and pair production by muons and charged hadrons both are activated
- fprintf(pAliceInp,"PAIRBREM %10.1f",three);
- // direct pair production by muons
- // G4 particles: "e-", "e+"
- // G3 default value: 0.01 GeV
- //gMC ->SetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons
- fCut = 0.0;
- for (k=0; k<iNbOfCut; k++) {
- if (strncmp(&sCutFlag[k][0],"PPCUTM",6) == 0) fCut = fCutValue[k];
- }
- fprintf(pAliceInp,"%10.4g",fCut);
- // fCut; = e+, e- kinetic energy threshold (in GeV) for explicit pair production.
- // muon and hadron bremsstrahlung
- // G4 particles: "gamma"
- // G3 default value: CUTGAM=0.001 GeV
- //gMC ->SetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung
- fCut = 0.0;
- for (k=0; k<iNbOfCut; k++) {
- if (strncmp(&sCutFlag[k][0],"BCUTM",5) == 0) fCut = fCutValue[k];
- }
- fprintf(pAliceInp,"%10.4g%10.1f%10.1f\n",fCut,three,fLastMaterial);
- // fCut = photon energy threshold (GeV) for explicit bremsstrahlung production
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
-
+ else if ((strncmp(&fProcessFlag[i][0],"PAIR",4) == 0) && (fProcessValue[i] == 1 || fProcessValue[i] == 2)) {
+
+ for (j=0; j<fNbOfProc; j++) {
+ if ((strncmp(&fProcessFlag[j][0],"BREM",4) == 0) &&
+ (fProcessValue[j] == 1 || fProcessValue[j] == 2) &&
+ (fProcessMedium[j] == fProcessMedium[i])) {
+ fprintf(pAliceInp,"*\n*Bremsstrahlung and pair production by muons and charged hadrons both activated\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',1) and SetProcess('PAIR',1)\n");
+ fprintf(pAliceInp,"*Energy threshold set by call SetCut('BCUTM',cut) or set to 0.\n");
+ fprintf(pAliceInp,"*Energy threshold set by call SetCut('PPCUTM',cut) or set to 0.\n");
+ // three = bremsstrahlung and pair production by muons and charged hadrons both are activated
+ fprintf(pAliceInp,"PAIRBREM %10.1f",three);
+ // direct pair production by muons
+ // G4 particles: "e-", "e+"
+ // G3 default value: 0.01 GeV
+ //gMC ->SetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons
+ fCut = 0.0;
+ for (k=0; k<fNbOfCut; k++) {
+ if (strncmp(&fCutFlag[k][0],"PPCUTM",6) == 0 &&
+ (fCutMedium[k] == fProcessMedium[i])) fCut = fCutValue[k];
+ }
+ fprintf(pAliceInp,"%10.4g",fCut);
+ // fCut; = e+, e- kinetic energy threshold (in GeV) for explicit pair production.
+ // muon and hadron bremsstrahlung
+ // G4 particles: "gamma"
+ // G3 default value: CUTGAM=0.001 GeV
+ //gMC ->SetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung
+ fCut = 0.0;
+ for (k=0; k<fNbOfCut; k++) {
+ if (strncmp(&fCutFlag[k][0],"BCUTM",5) == 0 &&
+ (fCutMedium[k] == fProcessMedium[i])) fCut = fCutValue[k];
+ }
+ fprintf(pAliceInp,"%10.4g%10.1f%10.1f\n",fCut,matMin,matMax);
+ // fCut = photon energy threshold (GeV) for explicit bremsstrahlung production
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+
+ // for e+ and e-
+ fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for e+/e- bremsstrahlung - resets to default=0.\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',1);\n");
+ fCut = -1.0;
+ for (k=0; k<fNbOfCut; k++) {
+ if (strncmp(&fCutFlag[k][0],"BCUTE",5) == 0 &&
+ (fCutMedium[k] == fProcessMedium[i])) fCut = fCutValue[k];
+ }
+ //fCut = kinetic energy threshold (GeV) for e+/e- bremsstrahlung (resets to default=0)
+ // zero = not used
+ // zero = not used
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ // one = step length in assigning indices
+ // "ELPO-THR";
+ fprintf(pAliceInp,"EMFCUT %10.4g%10.1f%10.1f%10.1f%10.1f%10.1fELPO-THR\n",fCut,zero,zero,matMin,matMax,one);
+
// for e+ and e-
- fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for e+/e- bremsstrahlung - resets to default=0.\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',1);\n");
- fCut = -1.0;
- for (k=0; k<iNbOfCut; k++) {
- if (strncmp(&sCutFlag[k][0],"BCUTE",5) == 0) fCut = fCutValue[k];
- }
- //fCut = kinetic energy threshold (GeV) for e+/e- bremsstrahlung (resets to default=0)
- // zero = not used
- // zero = not used
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- // "ELPO-THR";
- fprintf(pAliceInp,"EMFCUT %10.4g%10.1f%10.1f%10.1f%10.1f%10.1fELPO-THR\n",fCut,zero,zero,three,fLastMaterial,one);
-
- // for e+ and e-
- fprintf(pAliceInp,"*\n*Pair production by electrons is activated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('PAIR',1);\n");
- fCut = -1.0;
- for (j=0; j<iNbOfCut; j++) {
- if (strncmp(&sCutFlag[j][0],"CUTGAM",6) == 0) fCut = fCutValue[j];
- }
- // fCut = energy threshold (GeV) for gamma pair production (< 0.0 : resets to default, = 0.0 : ignored)
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.4g%10.1f%10.1f%10.1fPHOT-THR\n",zero,zero,fCut,three,fLastMaterial,one);
- goto BOTH;
- } // end of if for BREM
- } // end of loop for BREM
-
- // only pair production by muons and charged hadrons is activated
- fprintf(pAliceInp,"*\n*Pair production by muons and charged hadrons is activated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)\n");
- fprintf(pAliceInp,"*Energy threshold set by call SetCut('PPCUTM',cut) or set to 0.\n");
- // direct pair production by muons
- // G4 particles: "e-", "e+"
- // G3 default value: 0.01 GeV
- //gMC ->SetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons
- // one = pair production by muons and charged hadrons is activated
- // zero = e+, e- kinetic energy threshold (in GeV) for explicit pair production.
- // zero = no explicit bremsstrahlung production is simulated
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"PAIRBREM %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,three,fLastMaterial);
+ fprintf(pAliceInp,"*\n*Pair production by electrons is activated\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('PAIR',1);\n");
+ fCut = -1.0;
+ for (k=0; k<fNbOfCut; k++) {
+ if (strncmp(&fCutFlag[k][0],"CUTGAM",6) == 0 &&
+ (fCutMedium[k] == fProcessMedium[i])) fCut = fCutValue[k];
+ }
+ // fCut = energy threshold (GeV) for gamma pair production (< 0.0 : resets to default, = 0.0 : ignored)
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ // one = step length in assigning indices
+ fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.4g%10.1f%10.1f%10.1fPHOT-THR\n",zero,zero,fCut,matMin,matMax,one);
+ goto BOTH;
+ } // end of if for BREM
+ } // end of loop for BREM
+
+ // only pair production by muons and charged hadrons is activated
+ fprintf(pAliceInp,"*\n*Pair production by muons and charged hadrons is activated\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)\n");
+ fprintf(pAliceInp,"*Energy threshold set by call SetCut('PPCUTM',cut) or set to 0.\n");
+ // direct pair production by muons
+ // G4 particles: "e-", "e+"
+ // G3 default value: 0.01 GeV
+ //gMC ->SetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons
+ // one = pair production by muons and charged hadrons is activated
+ // zero = e+, e- kinetic energy threshold (in GeV) for explicit pair production.
+ // zero = no explicit bremsstrahlung production is simulated
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ fprintf(pAliceInp,"PAIRBREM %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,matMin,matMax);
+
+ // for e+ and e-
+ fprintf(pAliceInp,"*\n*Pair production by electrons is activated\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)\n");
+ fCut = -1.0;
+ for (j=0; j<fNbOfCut; j++) {
+ if (strncmp(&fCutFlag[j][0],"CUTGAM",6) == 0 &&
+ (fCutMedium[j] == fProcessMedium[i])) fCut = fCutValue[j];
+ }
+ // zero = energy threshold (GeV) for Compton scattering (= 0.0 : ignored)
+ // zero = energy threshold (GeV) for Photoelectric (= 0.0 : ignored)
+ // fCut = energy threshold (GeV) for gamma pair production (< 0.0 : resets to default, = 0.0 : ignored)
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ // one = step length in assigning indices
+ fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.4g%10.1f%10.1f%10.1fPHOT-THR\n",zero,zero,fCut,matMin,matMax,one);
- // for e+ and e-
- fprintf(pAliceInp,"*\n*Pair production by electrons is activated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)\n");
- fCut = -1.0;
- for (j=0; j<iNbOfCut; j++) {
- if (strncmp(&sCutFlag[j][0],"CUTGAM",6) == 0) fCut = fCutValue[j];
- }
- // zero = energy threshold (GeV) for Compton scattering (= 0.0 : ignored)
- // zero = energy threshold (GeV) for Photoelectric (= 0.0 : ignored)
- // fCut = energy threshold (GeV) for gamma pair production (< 0.0 : resets to default, = 0.0 : ignored)
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.4g%10.1f%10.1f%10.1fPHOT-THR\n",zero,zero,fCut,three,fLastMaterial,one);
-
-BOTH:
- k = 0;
+ BOTH:
+ k = 0;
} // end of if for PAIR
-
-
-
- // bremsstrahlung
- // G3 default value: 1
- // G4 processes: G4eBremsstrahlung/G4IeBremsstrahlung,
- // G4MuBremsstrahlung/G4IMuBremsstrahlung,
- // G4LowEnergyBremstrahlung
- // Particles: e-/e+; mu+/mu-
- // Physics: EM
- // flag = 0 no bremsstrahlung
- // flag = 1 bremsstrahlung, photon processed
- // flag = 2 bremsstrahlung, no photon stored
- // gMC ->SetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat
- // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR
- else if (strncmp(&sProcessFlag[i][0],"BREM",4) == 0) {
- for (j=0; j<iNbOfProc; j++) {
- if ((strncmp(&sProcessFlag[j][0],"PAIR",4) == 0) && iProcessValue[j] == 1) goto NOBREM;
- }
- if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
- fprintf(pAliceInp,"*\n*Bremsstrahlung by muons and charged hadrons is activated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',1) or SetProcess('BREM',2)\n");
- fprintf(pAliceInp,"*Energy threshold set by call SetCut('BCUTM',cut) or set to 0.\n");
- // two = bremsstrahlung by muons and charged hadrons is activated
- // zero = no meaning
- // muon and hadron bremsstrahlung
- // G4 particles: "gamma"
- // G3 default value: CUTGAM=0.001 GeV
- //gMC ->SetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung
- fCut = 0.0;
- for (j=0; j<iNbOfCut; j++) {
- if (strncmp(&sCutFlag[j][0],"BCUTM",5) == 0) fCut = fCutValue[j];
- }
- // fCut = photon energy threshold (GeV) for explicit bremsstrahlung production
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"PAIRBREM %10.1f%10.1f%10.4g%10.1f%10.1f\n",two,zero,fCut,three,fLastMaterial);
-
- // for e+ and e-
- fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for e+/e- bremsstrahlung - resets to default=0.\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',1);");
- // - one = kinetic energy threshold (GeV) for e+/e- bremsstrahlung (resets to default=0)
- // zero = not used
- // zero = not used
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- //"ELPO-THR";
- fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fELPO-THR\n",-one,zero,zero,three,fLastMaterial,one);
- }
- else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*No bremsstrahlung - no FLUKA card generated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',0)\n");
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('BREM',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
-NOBREM:
- j = 0;
- } // end of else if (strncmp(&sProcessFlag[i][0],"BREM",4) == 0)
-
- // Cerenkov photon generation
- // G3 default value: 0
- // G4 process: G4Cerenkov
- //
- // Particles: charged
- // Physics: Optical
- // flag = 0 no Cerenkov photon generation
- // flag = 1 Cerenkov photon generation
- // flag = 2 Cerenkov photon generation with primary stopped at each step
- //xx gMC ->SetProcess("CKOV",1); // ??? Cerenkov photon generation
- else if (strncmp(&sProcessFlag[i][0],"CKOV",4) == 0) {
- if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
- // Write comments
- fprintf(pAliceInp, "* \n");
- fprintf(pAliceInp, "*Cerenkov photon generation\n");
- fprintf(pAliceInp, "*Generated from call: SetProcess('CKOV',1) or SetProcess('CKOV',2)\n");
- // Get List of media
- TList *matList = gGeoManager->GetListOfMaterials();
- Int_t nmaterial = matList->GetSize();
-
- fMaterials = new Int_t[nmaterial];
-
- // Loop over media
- for (Int_t i = 0; i < nmaterial; i++)
- {
-
- TGeoMaterial* material = dynamic_cast<TGeoMaterial*> (matList->At(i));
- Int_t idmat = material->GetIndex();
- fMaterials[idmat] = i;
- // Skip media with no Cerenkov properties
- TFlukaCerenkov* cerenkovProp;
- if (!(cerenkovProp = dynamic_cast<TFlukaCerenkov*>(material->GetCerenkovProperties()))) continue;
- //
- // This medium has Cerenkov properties
- //
- //
- // Write OPT-PROD card for each medium
- Float_t emin = cerenkovProp->GetMinimumEnergy();
- Float_t emax = cerenkovProp->GetMaximumEnergy();
- fprintf(pAliceInp, "OPT-PROD %10.4g%10.4g%10.4g%10.4g%10.4g%10.4gCERENKOV\n", emin, emax, 0.,
- Float_t(idmat), Float_t(idmat), 0.);
- //
- // Write OPT-PROP card for each medium
- // Forcing FLUKA to call user routines (queffc.cxx, rflctv.cxx, rfrndx.cxx)
- //
- fprintf(pAliceInp, "OPT-PROP %10.4g%10.4g%10.4g%10.1f%10.1f%10.1fWV-LIMIT\n",
- cerenkovProp->GetMinimumWavelength(),
- cerenkovProp->GetMaximumWavelength(),
- cerenkovProp->GetMaximumWavelength(),
- Float_t(idmat), Float_t(idmat), 0.0);
-
- if (cerenkovProp->IsMetal()) {
- fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fMETAL\n",
- -100., -100., -100.,
- Float_t(idmat), Float_t(idmat), 0.0);
- } else {
- fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1f\n",
- -100., -100., -100.,
- Float_t(idmat), Float_t(idmat), 0.0);
+
+
+ // bremsstrahlung
+ // G3 default value: 1
+ // G4 processes: G4eBremsstrahlung/G4IeBremsstrahlung,
+ // G4MuBremsstrahlung/G4IMuBremsstrahlung,
+ // G4LowEnergyBremstrahlung
+ // Particles: e-/e+; mu+/mu-
+ // Physics: EM
+ // flag = 0 no bremsstrahlung
+ // flag = 1 bremsstrahlung, photon processed
+ // flag = 2 bremsstrahlung, no photon stored
+ // gMC ->SetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat
+ // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR
+ else if (strncmp(&fProcessFlag[i][0],"BREM",4) == 0) {
+ for (j = 0; j < fNbOfProc; j++) {
+ if ((strncmp(&fProcessFlag[j][0],"PAIR",4) == 0) &&
+ fProcessValue[j] == 1 &&
+ (fProcessMedium[j] == fProcessMedium[i])) goto NOBREM;
+ }
+ if (fProcessValue[i] == 1 || fProcessValue[i] == 2) {
+ fprintf(pAliceInp,"*\n*Bremsstrahlung by muons and charged hadrons is activated\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',1) or SetProcess('BREM',2)\n");
+ fprintf(pAliceInp,"*Energy threshold set by call SetCut('BCUTM',cut) or set to 0.\n");
+ // two = bremsstrahlung by muons and charged hadrons is activated
+ // zero = no meaning
+ // muon and hadron bremsstrahlung
+ // G4 particles: "gamma"
+ // G3 default value: CUTGAM=0.001 GeV
+ //gMC ->SetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung
+ fCut = 0.0;
+ for (j=0; j<fNbOfCut; j++) {
+ if (strncmp(&fCutFlag[j][0],"BCUTM",5) == 0 &&
+ (fCutMedium[j] == fProcessMedium[i])) fCut = fCutValue[j];
}
+ // fCut = photon energy threshold (GeV) for explicit bremsstrahlung production
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ fprintf(pAliceInp,"PAIRBREM %10.1f%10.1f%10.4g%10.1f%10.1f\n",two,zero,fCut,matMin,matMax);
-
- for (Int_t j = 0; j < 3; j++) {
- fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1f&\n",
- -100., -100., -100.,
+ // for e+ and e-
+ fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for e+/e- bremsstrahlung - resets to default=0.\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',1);");
+ // - one = kinetic energy threshold (GeV) for e+/e- bremsstrahlung (resets to default=0)
+ // zero = not used
+ // zero = not used
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ // one = step length in assigning indices
+ //"ELPO-THR";
+ fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fELPO-THR\n",-one,zero,zero,matMin,matMax,one);
+ }
+ else if (fProcessValue[i] == 0) {
+ fprintf(pAliceInp,"*\n*No bremsstrahlung - no FLUKA card generated\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('BREM',0)\n");
+ }
+ else {
+ fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('BREM',?) call.\n");
+ fprintf(pAliceInp,"*No FLUKA card generated\n");
+ }
+ NOBREM:
+ j = 0;
+ } // end of else if (strncmp(&fProcessFlag[i][0],"BREM",4) == 0)
+
+ // Cerenkov photon generation
+ // G3 default value: 0
+ // G4 process: G4Cerenkov
+ //
+ // Particles: charged
+ // Physics: Optical
+ // flag = 0 no Cerenkov photon generation
+ // flag = 1 Cerenkov photon generation
+ // flag = 2 Cerenkov photon generation with primary stopped at each step
+ //xx gMC ->SetProcess("CKOV",1); // ??? Cerenkov photon generation
+
+ else if (strncmp(&fProcessFlag[i][0],"CKOV",4) == 0) {
+ if ((fProcessValue[i] == 1 || fProcessValue[i] == 2) && global) {
+ // Write comments
+ fprintf(pAliceInp, "* \n");
+ fprintf(pAliceInp, "*Cerenkov photon generation\n");
+ fprintf(pAliceInp, "*Generated from call: SetProcess('CKOV',1) or SetProcess('CKOV',2)\n");
+ // Loop over media
+ for (Int_t im = 0; im < nmaterial; im++)
+ {
+ TGeoMaterial* material = dynamic_cast<TGeoMaterial*> (matList->At(im));
+ Int_t idmat = material->GetIndex();
+
+ if (!global && idmat != fProcessMedium[i]) continue;
+
+ fMaterials[idmat] = im;
+ // Skip media with no Cerenkov properties
+ TFlukaCerenkov* cerenkovProp;
+ if (!(cerenkovProp = dynamic_cast<TFlukaCerenkov*>(material->GetCerenkovProperties()))) continue;
+ //
+ // This medium has Cerenkov properties
+ //
+ //
+ // Write OPT-PROD card for each medium
+ Float_t emin = cerenkovProp->GetMinimumEnergy();
+ Float_t emax = cerenkovProp->GetMaximumEnergy();
+ fprintf(pAliceInp, "OPT-PROD %10.4g%10.4g%10.4g%10.4g%10.4g%10.4gCERENKOV\n", emin, emax, 0.,
+ Float_t(idmat), Float_t(idmat), 0.);
+ //
+ // Write OPT-PROP card for each medium
+ // Forcing FLUKA to call user routines (queffc.cxx, rflctv.cxx, rfrndx.cxx)
+ //
+ fprintf(pAliceInp, "OPT-PROP %10.4g%10.4g%10.4g%10.1f%10.1f%10.1fWV-LIMIT\n",
+ cerenkovProp->GetMinimumWavelength(),
+ cerenkovProp->GetMaximumWavelength(),
+ cerenkovProp->GetMaximumWavelength(),
Float_t(idmat), Float_t(idmat), 0.0);
+
+ if (cerenkovProp->IsMetal()) {
+ fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fMETAL\n",
+ -100., -100., -100.,
+ Float_t(idmat), Float_t(idmat), 0.0);
+ } else {
+ fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1f\n",
+ -100., -100., -100.,
+ Float_t(idmat), Float_t(idmat), 0.0);
+ }
+
+
+ for (Int_t j = 0; j < 3; j++) {
+ fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1f&\n",
+ -100., -100., -100.,
+ Float_t(idmat), Float_t(idmat), 0.0);
+ }
+ // Photon detection efficiency user defined
+
+ if (cerenkovProp->IsSensitive())
+ fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fSENSITIV\n",
+ -100., -100., -100.,
+ Float_t(idmat), Float_t(idmat), 0.0);
+
+ } // materials
+ } else if (fProcessValue[i] == 0) {
+ fprintf(pAliceInp,"*\n*No Cerenkov photon generation\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('CKOV',0)\n");
+ // zero = not used
+ // zero = not used
+ // zero = not used
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ // one = step length in assigning indices
+ //"CERE-OFF";
+ fprintf(pAliceInp,"OPT-PROD %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fCERE-OFF\n",zero,zero,zero,matMin,matMax,one);
+ }
+ else {
+ fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('CKOV',?) call.\n");
+ fprintf(pAliceInp,"*No FLUKA card generated\n");
+ }
+ } // end of else if (strncmp(&fProcessFlag[i][0],"CKOV",4) == 0)
+
+ // Compton scattering
+ // G3 default value: 1
+ // G4 processes: G4ComptonScattering,
+ // G4LowEnergyCompton,
+ // G4PolarizedComptonScattering
+ // Particles: gamma
+ // Physics: EM
+ // flag = 0 no Compton scattering
+ // flag = 1 Compton scattering, electron processed
+ // flag = 2 Compton scattering, no electron stored
+ // gMC ->SetProcess("COMP",1); // EMFCUT -1. 0. 0. 3. lastmat 0. PHOT-THR
+ else if (strncmp(&fProcessFlag[i][0],"COMP",4) == 0) {
+ if (fProcessValue[i] == 1 || fProcessValue[i] == 2) {
+ fprintf(pAliceInp,"*\n*Energy threshold (GeV) for Compton scattering - resets to default=0.\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('COMP',1);\n");
+ // - one = energy threshold (GeV) for Compton scattering - resets to default=0.
+ // zero = not used
+ // zero = not used
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ // one = step length in assigning indices
+ //"PHOT-THR";
+ fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fPHOT-THR\n",-one,zero,zero,matMin,matMax,one);
+ }
+ else if (fProcessValue[i] == 0) {
+ fprintf(pAliceInp,"*\n*No Compton scattering - no FLUKA card generated\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('COMP',0)\n");
+ }
+ else {
+ fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('COMP',?) call.\n");
+ fprintf(pAliceInp,"*No FLUKA card generated\n");
+ }
+ } // end of else if (strncmp(&fProcessFlag[i][0],"COMP",4) == 0)
+
+ // decay
+ // G3 default value: 1
+ // G4 process: G4Decay
+ //
+ // Particles: all which decay is applicable for
+ // Physics: General
+ // flag = 0 no decays
+ // flag = 1 decays, secondaries processed
+ // flag = 2 decays, no secondaries stored
+ //gMC ->SetProcess("DCAY",1); // not available
+ else if ((strncmp(&fProcessFlag[i][0],"DCAY",4) == 0) && fProcessValue[i] == 1)
+ cout << "SetProcess for flag=" << &fProcessFlag[i][0] << " value=" << fProcessValue[i] << " not avaliable!" << endl;
+
+ // delta-ray
+ // G3 default value: 2
+ // !! G4 treats delta rays in different way
+ // G4 processes: G4eIonisation/G4IeIonization,
+ // G4MuIonisation/G4IMuIonization,
+ // G4hIonisation/G4IhIonisation
+ // Particles: charged
+ // Physics: EM
+ // flag = 0 no energy loss
+ // flag = 1 restricted energy loss fluctuations
+ // flag = 2 complete energy loss fluctuations
+ // flag = 3 same as 1
+ // flag = 4 no energy loss fluctuations
+ // gMC ->SetProcess("DRAY",0); // DELTARAY 1.E+6 0. 0. 3. lastmat 0.
+ else if (strncmp(&fProcessFlag[i][0],"DRAY",4) == 0) {
+ if (fProcessValue[i] == 0 || fProcessValue[i] == 4) {
+ fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for delta ray production\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('DRAY',0) or SetProcess('DRAY',4)\n");
+ fprintf(pAliceInp,"*No delta ray production by muons - threshold set artificially high\n");
+ Double_t emin = 1.0e+6; // kinetic energy threshold (GeV) for delta ray production (discrete energy transfer)
+ // zero = ignored
+ // zero = ignored
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ // one = step length in assigning indices
+ fprintf(pAliceInp,"DELTARAY %10.4g%10.1f%10.1f%10.1f%10.1f%10.1f\n",emin,zero,zero,matMin,matMax,one);
+ }
+ else if (fProcessValue[i] == 1 || fProcessValue[i] == 2 || fProcessValue[i] == 3) {
+ fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for delta ray production\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('DRAY',flag), flag=1,2,3\n");
+ fprintf(pAliceInp,"*Delta ray production by muons switched on\n");
+ fprintf(pAliceInp,"*Energy threshold set by call SetCut('DCUTM',cut) or set to 1.0e+6.\n");
+ fCut = 1.0e+6;
+ for (j = 0; j < fNbOfCut; j++) {
+ if (strncmp(&fCutFlag[j][0],"DCUTM",5) == 0 &&
+ fCutMedium[j] == fProcessMedium[i]) fCut = fCutValue[j];
}
- // Photon detection efficiency user defined
+ // fCut = kinetic energy threshold (GeV) for delta ray production (discrete energy transfer)
+ // zero = ignored
+ // zero = ignored
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ // one = step length in assigning indices
+ fprintf(pAliceInp,"DELTARAY %10.4g%10.1f%10.1f%10.1f%10.1f%10.1f\n",fCut,zero,zero,matMin,matMax,one);
+ }
+ else {
+ fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('DRAY',?) call.\n");
+ fprintf(pAliceInp,"*No FLUKA card generated\n");
+ }
+ } // end of else if (strncmp(&fProcessFlag[i][0],"DRAY",4) == 0)
+
+ // hadronic process
+ // G3 default value: 1
+ // G4 processes: all defined by TG4PhysicsConstructorHadron
+ //
+ // Particles: hadrons
+ // Physics: Hadron
+ // flag = 0 no multiple scattering
+ // flag = 1 hadronic interactions, secondaries processed
+ // flag = 2 hadronic interactions, no secondaries stored
+ // gMC ->SetProcess("HADR",1); // ??? hadronic process
+ //Select pure GEANH (HADR 1) or GEANH/NUCRIN (HADR 3) ?????
+ else if (strncmp(&fProcessFlag[i][0],"HADR",4) == 0) {
+ if (fProcessValue[i] == 1 || fProcessValue[i] == 2) {
+ fprintf(pAliceInp,"*\n*Hadronic interaction is ON by default in FLUKA\n");
+ fprintf(pAliceInp,"*No FLUKA card generated\n");
+ }
+ else if (fProcessValue[i] == 0) {
+ fprintf(pAliceInp,"*\n*Hadronic interaction is set OFF\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('HADR',0);\n");
+ // zero = ignored
+ // three = multiple scattering for hadrons and muons is completely suppressed
+ // zero = no spin-relativistic corrections
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ fprintf(pAliceInp,"MULSOPT %10.1f%10.1f%10.1f%10.1f%10.1f\n",zero,three,zero,matMin,matMax);
+
+ }
+ else {
+ fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('HADR',?) call.\n");
+ fprintf(pAliceInp,"*No FLUKA card generated\n");
+ }
+ } // end of else if (strncmp(&fProcessFlag[i][0],"HADR",4) == 0)
+
+
+ // energy loss
+ // G3 default value: 2
+ // G4 processes: G4eIonisation/G4IeIonization,
+ // G4MuIonisation/G4IMuIonization,
+ // G4hIonisation/G4IhIonisation
+ //
+ // Particles: charged
+ // Physics: EM
+ // flag=0 no energy loss
+ // flag=1 restricted energy loss fluctuations
+ // flag=2 complete energy loss fluctuations
+ // flag=3 same as 1
+ // flag=4 no energy loss fluctuations
+ // If the value ILOSS is changed, then (in G3) cross-sections and energy
+ // loss tables must be recomputed via the command 'PHYSI'
+ // gMC ->SetProcess("LOSS",2); // ??? IONFLUCT ? energy loss
+ else if (strncmp(&fProcessFlag[i][0],"LOSS",4) == 0) {
+ if (fProcessValue[i] == 2) { // complete energy loss fluctuations
+ fprintf(pAliceInp,"*\n*Complete energy loss fluctuations do not exist in FLUKA\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('LOSS',2);\n");
+ fprintf(pAliceInp,"*flag=2=complete energy loss fluctuations\n");
+ fprintf(pAliceInp,"*No FLUKA card generated\n");
+ }
+ else if (fProcessValue[i] == 1 || fProcessValue[i] == 3) { // restricted energy loss fluctuations
+ fprintf(pAliceInp,"*\n*Restricted energy loss fluctuations\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('LOSS',1) or SetProcess('LOSS',3)\n");
+ // one = restricted energy loss fluctuations (for hadrons and muons) switched on
+ // one = restricted energy loss fluctuations (for e+ and e-) switched on
+ // one = minimal accuracy
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // upper bound of the material indices in which the respective thresholds apply
+ fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,one,one,matMin,matMax);
+ }
+ else if (fProcessValue[i] == 4) { // no energy loss fluctuations
+ fprintf(pAliceInp,"*\n*No energy loss fluctuations\n");
+ fprintf(pAliceInp,"*\n*Generated from call: SetProcess('LOSS',4)\n");
+ // - one = restricted energy loss fluctuations (for hadrons and muons) switched off
+ // - one = restricted energy loss fluctuations (for e+ and e-) switched off
+ // one = minimal accuracy
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",-one,-one,one,matMin,matMax);
+ }
+ else {
+ fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('LOSS',?) call.\n");
+ fprintf(pAliceInp,"*No FLUKA card generated\n");
+ }
+ } // end of else if (strncmp(&fProcessFlag[i][0],"LOSS",4) == 0)
+
+
+ // multiple scattering
+ // G3 default value: 1
+ // G4 process: G4MultipleScattering/G4IMultipleScattering
+ //
+ // Particles: charged
+ // Physics: EM
+ // flag = 0 no multiple scattering
+ // flag = 1 Moliere or Coulomb scattering
+ // flag = 2 Moliere or Coulomb scattering
+ // flag = 3 Gaussian scattering
+ // gMC ->SetProcess("MULS",1); // MULSOPT multiple scattering
+ else if (strncmp(&fProcessFlag[i][0],"MULS",4) == 0) {
+ if (fProcessValue[i] == 1 || fProcessValue[i] == 2 || fProcessValue[i] == 3) {
+ fprintf(pAliceInp,"*\n*Multiple scattering is ON by default for e+e- and for hadrons/muons\n");
+ fprintf(pAliceInp,"*No FLUKA card generated\n");
+ }
+ else if (fProcessValue[i] == 0) {
+ fprintf(pAliceInp,"*\n*Multiple scattering is set OFF\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('MULS',0);\n");
+ // zero = ignored
+ // three = multiple scattering for hadrons and muons is completely suppressed
+ // three = multiple scattering for e+ and e- is completely suppressed
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ fprintf(pAliceInp,"MULSOPT %10.1f%10.1f%10.1f%10.1f%10.1f\n",zero,three,three,matMin,matMax);
+ }
+ else {
+ fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('MULS',?) call.\n");
+ fprintf(pAliceInp,"*No FLUKA card generated\n");
+ }
+ } // end of else if (strncmp(&fProcessFlag[i][0],"MULS",4) == 0)
+
- if (cerenkovProp->IsSensitive())
- fprintf(pAliceInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fSENSITIV\n",
- -100., -100., -100.,
- Float_t(idmat), Float_t(idmat), 0.0);
-
- } // materials
- } else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*No Cerenkov photon generation\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('CKOV',0)\n");
- // zero = not used
- // zero = not used
- // zero = not used
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- //"CERE-OFF";
- fprintf(pAliceInp,"OPT-PROD %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fCERE-OFF\n",zero,zero,zero,three,fLastMaterial,one);
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('CKOV',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- } // end of else if (strncmp(&sProcessFlag[i][0],"CKOV",4) == 0)
+ // muon nuclear interaction
+ // G3 default value: 0
+ // G4 processes: G4MuNuclearInteraction,
+ // G4MuonMinusCaptureAtRest
+ //
+ // Particles: mu
+ // Physics: Not set
+ // flag = 0 no muon-nuclear interaction
+ // flag = 1 nuclear interaction, secondaries processed
+ // flag = 2 nuclear interaction, secondaries not processed
+ // gMC ->SetProcess("MUNU",1); // MUPHOTON 1. 0. 0. 3. lastmat
+ else if (strncmp(&fProcessFlag[i][0],"MUNU",4) == 0) {
+ if (fProcessValue[i] == 1) {
+ fprintf(pAliceInp,"*\n*Muon nuclear interactions with production of secondary hadrons\n");
+ fprintf(pAliceInp,"*\n*Generated from call: SetProcess('MUNU',1);\n");
+ // one = full simulation of muon nuclear interactions and production of secondary hadrons
+ // zero = ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25.
+ // zero = fraction of rho-like interactions ( must be < 1) - Default = 0.75.
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ fprintf(pAliceInp,"MUPHOTON %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,matMin,matMax);
+ }
+ else if (fProcessValue[i] == 2) {
+ fprintf(pAliceInp,"*\n*Muon nuclear interactions without production of secondary hadrons\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('MUNU',2);\n");
+ // two = full simulation of muon nuclear interactions and production of secondary hadrons
+ // zero = ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25.
+ // zero = fraction of rho-like interactions ( must be < 1) - Default = 0.75.
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ fprintf(pAliceInp,"MUPHOTON %10.1f%10.1f%10.1f%10.1f%10.1f\n",two,zero,zero,matMin,matMax);
+ }
+ else if (fProcessValue[i] == 0) {
+ fprintf(pAliceInp,"*\n*No muon nuclear interaction - no FLUKA card generated\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('MUNU',0)\n");
+ }
+ else {
+ fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('MUNU',?) call.\n");
+ fprintf(pAliceInp,"*No FLUKA card generated\n");
+ }
+ } // end of else if (strncmp(&fProcessFlag[i][0],"MUNU",4) == 0)
- // Compton scattering
- // G3 default value: 1
- // G4 processes: G4ComptonScattering,
- // G4LowEnergyCompton,
- // G4PolarizedComptonScattering
- // Particles: gamma
- // Physics: EM
- // flag = 0 no Compton scattering
- // flag = 1 Compton scattering, electron processed
- // flag = 2 Compton scattering, no electron stored
- // gMC ->SetProcess("COMP",1); // EMFCUT -1. 0. 0. 3. lastmat 0. PHOT-THR
- else if (strncmp(&sProcessFlag[i][0],"COMP",4) == 0) {
- if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
- fprintf(pAliceInp,"*\n*Energy threshold (GeV) for Compton scattering - resets to default=0.\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('COMP',1);\n");
- // - one = energy threshold (GeV) for Compton scattering - resets to default=0.
- // zero = not used
- // zero = not used
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- //"PHOT-THR";
- fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fPHOT-THR\n",-one,zero,zero,three,fLastMaterial,one);
- }
- else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*No Compton scattering - no FLUKA card generated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('COMP',0)\n");
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('COMP',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
+
+ // photofission
+ // G3 default value: 0
+ // G4 process: ??
+ //
+ // Particles: gamma
+ // Physics: ??
+ // gMC ->SetProcess("PFIS",0); // PHOTONUC -1. 0. 0. 3. lastmat 0.
+ // flag = 0 no photon fission
+ // flag = 1 photon fission, secondaries processed
+ // flag = 2 photon fission, no secondaries stored
+ else if (strncmp(&fProcessFlag[i][0],"PFIS",4) == 0) {
+ if (fProcessValue[i] == 0) {
+ fprintf(pAliceInp,"*\n*No photonuclear interactions\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',0);\n");
+ // - one = no photonuclear interactions
+ // zero = not used
+ // zero = not used
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ fprintf(pAliceInp,"PHOTONUC %10.1f%10.1f%10.1f%10.1f%10.1f\n",-one,zero,zero,matMin,matMax);
+ }
+ else if (fProcessValue[i] == 1) {
+ fprintf(pAliceInp,"*\n*Photon nuclear interactions are activated at all energies\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',1);\n");
+ // one = photonuclear interactions are activated at all energies
+ // zero = not used
+ // zero = not used
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ fprintf(pAliceInp,"PHOTONUC %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,matMin,matMax);
+ }
+ else if (fProcessValue[i] == 0) {
+ fprintf(pAliceInp,"*\n*No photofission - no FLUKA card generated\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',0)\n");
+ }
+ else {
+ fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('PFIS',?) call.\n");
+ fprintf(pAliceInp,"*No FLUKA card generated\n");
+ }
}
- } // end of else if (strncmp(&sProcessFlag[i][0],"COMP",4) == 0)
- // decay
- // G3 default value: 1
- // G4 process: G4Decay
- //
- // Particles: all which decay is applicable for
- // Physics: General
- // flag = 0 no decays
- // flag = 1 decays, secondaries processed
- // flag = 2 decays, no secondaries stored
- //gMC ->SetProcess("DCAY",1); // not available
- else if ((strncmp(&sProcessFlag[i][0],"DCAY",4) == 0) && iProcessValue[i] == 1)
- cout << "SetProcess for flag=" << &sProcessFlag[i][0] << " value=" << iProcessValue[i] << " not avaliable!" << endl;
+
+ // photo electric effect
+ // G3 default value: 1
+ // G4 processes: G4PhotoElectricEffect
+ // G4LowEnergyPhotoElectric
+ // Particles: gamma
+ // Physics: EM
+ // flag = 0 no photo electric effect
+ // flag = 1 photo electric effect, electron processed
+ // flag = 2 photo electric effect, no electron stored
+ // gMC ->SetProcess("PHOT",1); // EMFCUT 0. -1. 0. 3. lastmat 0. PHOT-THR
+ else if (strncmp(&fProcessFlag[i][0],"PHOT",4) == 0) {
+ if (fProcessValue[i] == 1 || fProcessValue[i] == 2) {
+ fprintf(pAliceInp,"*\n*Photo electric effect is activated\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('PHOT',1);\n");
+ // zero = ignored
+ // - one = resets to default=0.
+ // zero = ignored
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ // one = step length in assigning indices
+ //"PHOT-THR";
+ fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fPHOT-THR\n",zero,-one,zero,matMin,matMax,one);
+ }
+ else if (fProcessValue[i] == 0) {
+ fprintf(pAliceInp,"*\n*No photo electric effect - no FLUKA card generated\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('PHOT',0)\n");
+ }
+ else {
+ fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('PHOT',?) call.\n");
+ fprintf(pAliceInp,"*No FLUKA card generated\n");
+ }
+ } // else if (strncmp(&fProcessFlag[i][0],"PHOT",4) == 0)
- // delta-ray
- // G3 default value: 2
- // !! G4 treats delta rays in different way
- // G4 processes: G4eIonisation/G4IeIonization,
- // G4MuIonisation/G4IMuIonization,
- // G4hIonisation/G4IhIonisation
- // Particles: charged
- // Physics: EM
- // flag = 0 no energy loss
- // flag = 1 restricted energy loss fluctuations
- // flag = 2 complete energy loss fluctuations
- // flag = 3 same as 1
- // flag = 4 no energy loss fluctuations
- // gMC ->SetProcess("DRAY",0); // DELTARAY 1.E+6 0. 0. 3. lastmat 0.
- else if (strncmp(&sProcessFlag[i][0],"DRAY",4) == 0) {
- if (iProcessValue[i] == 0 || iProcessValue[i] == 4) {
- fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for delta ray production\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('DRAY',0) or SetProcess('DRAY',4)\n");
- fprintf(pAliceInp,"*No delta ray production by muons - threshold set artificially high\n");
- Double_t emin = 1.0e+6; // kinetic energy threshold (GeV) for delta ray production (discrete energy transfer)
- // zero = ignored
- // zero = ignored
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- fprintf(pAliceInp,"DELTARAY %10.4g%10.1f%10.1f%10.1f%10.1f%10.1f\n",emin,zero,zero,three,fLastMaterial,one);
- }
- else if (iProcessValue[i] == 1 || iProcessValue[i] == 2 || iProcessValue[i] == 3) {
- fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for delta ray production\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('DRAY',flag), flag=1,2,3\n");
- fprintf(pAliceInp,"*Delta ray production by muons switched on\n");
- fprintf(pAliceInp,"*Energy threshold set by call SetCut('DCUTM',cut) or set to 1.0e+6.\n");
- fCut = 1.0e+6;
- for (j=0; j<iNbOfCut; j++) {
- if (strncmp(&sCutFlag[j][0],"DCUTM",5) == 0) fCut = fCutValue[j];
- }
- // fCut = kinetic energy threshold (GeV) for delta ray production (discrete energy transfer)
- // zero = ignored
- // zero = ignored
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- fprintf(pAliceInp,"DELTARAY %10.4g%10.1f%10.1f%10.1f%10.1f%10.1f\n",fCut,zero,zero,three,fLastMaterial,one);
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('DRAY',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
+
+ // Rayleigh scattering
+ // G3 default value: 0
+ // G4 process: G4OpRayleigh
+ //
+ // Particles: optical photon
+ // Physics: Optical
+ // flag = 0 Rayleigh scattering off
+ // flag = 1 Rayleigh scattering on
+ //xx gMC ->SetProcess("RAYL",1);
+ else if (strncmp(&fProcessFlag[i][0],"RAYL",4) == 0) {
+ if (fProcessValue[i] == 1) {
+ fprintf(pAliceInp,"*\n*Rayleigh scattering is ON by default in FLUKA\n");
+ fprintf(pAliceInp,"*No FLUKA card generated\n");
+ }
+ else if (fProcessValue[i] == 0) {
+ fprintf(pAliceInp,"*\n*Rayleigh scattering is set OFF\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('RAYL',0);\n");
+ // - one = no Rayleigh scattering and no binding corrections for Compton
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ fprintf(pAliceInp,"EMFRAY %10.1f%10.1f%10.1f%10.1f\n",-one,three,matMin,matMax);
+ }
+ else {
+ fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('RAYL',?) call.\n");
+ fprintf(pAliceInp,"*No FLUKA card generated\n");
+ }
+ } // end of else if (strncmp(&fProcessFlag[i][0],"RAYL",4) == 0)
+
+
+ // synchrotron radiation in magnetic field
+ // G3 default value: 0
+ // G4 process: G4SynchrotronRadiation
+ //
+ // Particles: ??
+ // Physics: Not set
+ // flag = 0 no synchrotron radiation
+ // flag = 1 synchrotron radiation
+ //xx gMC ->SetProcess("SYNC",1); // synchrotron radiation generation
+ else if (strncmp(&fProcessFlag[i][0],"SYNC",4) == 0) {
+ fprintf(pAliceInp,"*\n*Synchrotron radiation generation is NOT implemented in FLUKA\n");
+ fprintf(pAliceInp,"*No FLUKA card generated\n");
}
- } // end of else if (strncmp(&sProcessFlag[i][0],"DRAY",4) == 0)
-
- // hadronic process
- // G3 default value: 1
- // G4 processes: all defined by TG4PhysicsConstructorHadron
- //
- // Particles: hadrons
- // Physics: Hadron
- // flag = 0 no multiple scattering
- // flag = 1 hadronic interactions, secondaries processed
- // flag = 2 hadronic interactions, no secondaries stored
- // gMC ->SetProcess("HADR",1); // ??? hadronic process
- //Select pure GEANH (HADR 1) or GEANH/NUCRIN (HADR 3) ?????
- else if (strncmp(&sProcessFlag[i][0],"HADR",4) == 0) {
- if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
- fprintf(pAliceInp,"*\n*Hadronic interaction is ON by default in FLUKA\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
+
+
+ // Automatic calculation of tracking medium parameters
+ // flag = 0 no automatic calculation
+ // flag = 1 automatic calculation
+ //xx gMC ->SetProcess("AUTO",1); // ??? automatic computation of the tracking medium parameters
+ else if (strncmp(&fProcessFlag[i][0],"AUTO",4) == 0) {
+ fprintf(pAliceInp,"*\n*Automatic calculation of tracking medium parameters is always ON in FLUKA\n");
+ fprintf(pAliceInp,"*No FLUKA card generated\n");
}
- else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*Hadronic interaction is set OFF\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('HADR',0);\n");
- // zero = ignored
- // three = multiple scattering for hadrons and muons is completely suppressed
- // zero = no spin-relativistic corrections
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"MULSOPT %10.1f%10.1f%10.1f%10.1f%10.1f\n",zero,three,zero,three,fLastMaterial);
+
+
+ // To control energy loss fluctuation model
+ // flag = 0 Urban model
+ // flag = 1 PAI model
+ // flag = 2 PAI+ASHO model (not active at the moment)
+ //xx gMC ->SetProcess("STRA",1); // ??? energy fluctuation model
+ else if (strncmp(&fProcessFlag[i][0],"STRA",4) == 0) {
+ if (fProcessValue[i] == 0 || fProcessValue[i] == 2 || fProcessValue[i] == 3) {
+ fprintf(pAliceInp,"*\n*Ionization energy losses calculation is activated\n");
+ fprintf(pAliceInp,"*Generated from call: SetProcess('STRA',n);, n=0,1,2\n");
+ // one = restricted energy loss fluctuations (for hadrons and muons) switched on
+ // one = restricted energy loss fluctuations (for e+ and e-) switched on
+ // one = minimal accuracy
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // matMax = upper bound of the material indices in which the respective thresholds apply
+ fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,one,one,matMin,matMax);
+ }
+ else {
+ fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('STRA',?) call.\n");
+ fprintf(pAliceInp,"*No FLUKA card generated\n");
+ }
+ } // else if (strncmp(&fProcessFlag[i][0],"STRA",4) == 0)
+
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('HADR',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- } // end of else if (strncmp(&sProcessFlag[i][0],"HADR",4) == 0)
- // energy loss
- // G3 default value: 2
- // G4 processes: G4eIonisation/G4IeIonization,
- // G4MuIonisation/G4IMuIonization,
- // G4hIonisation/G4IhIonisation
- //
- // Particles: charged
- // Physics: EM
- // flag=0 no energy loss
- // flag=1 restricted energy loss fluctuations
- // flag=2 complete energy loss fluctuations
- // flag=3 same as 1
- // flag=4 no energy loss fluctuations
- // If the value ILOSS is changed, then (in G3) cross-sections and energy
- // loss tables must be recomputed via the command 'PHYSI'
- // gMC ->SetProcess("LOSS",2); // ??? IONFLUCT ? energy loss
- else if (strncmp(&sProcessFlag[i][0],"LOSS",4) == 0) {
- if (iProcessValue[i] == 2) { // complete energy loss fluctuations
- fprintf(pAliceInp,"*\n*Complete energy loss fluctuations do not exist in FLUKA\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('LOSS',2);\n");
- fprintf(pAliceInp,"*flag=2=complete energy loss fluctuations\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- else if (iProcessValue[i] == 1 || iProcessValue[i] == 3) { // restricted energy loss fluctuations
- fprintf(pAliceInp,"*\n*Restricted energy loss fluctuations\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('LOSS',1) or SetProcess('LOSS',3)\n");
- // one = restricted energy loss fluctuations (for hadrons and muons) switched on
- // one = restricted energy loss fluctuations (for e+ and e-) switched on
- // one = minimal accuracy
- // three = lower bound of the material indices in which the respective thresholds apply
- // upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,one,one,three,fLastMaterial);
- }
- else if (iProcessValue[i] == 4) { // no energy loss fluctuations
- fprintf(pAliceInp,"*\n*No energy loss fluctuations\n");
- fprintf(pAliceInp,"*\n*Generated from call: SetProcess('LOSS',4)\n");
- // - one = restricted energy loss fluctuations (for hadrons and muons) switched off
- // - one = restricted energy loss fluctuations (for e+ and e-) switched off
- // one = minimal accuracy
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",-one,-one,one,three,fLastMaterial);
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('LOSS',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
+ else { // processes not yet treated
+
+ // light photon absorption (Cerenkov photons)
+ // it is turned on when Cerenkov process is turned on
+ // G3 default value: 0
+ // G4 process: G4OpAbsorption, G4OpBoundaryProcess
+ //
+ // Particles: optical photon
+ // Physics: Optical
+ // flag = 0 no absorption of Cerenkov photons
+ // flag = 1 absorption of Cerenkov photons
+ // gMC ->SetProcess("LABS",2); // ??? Cerenkov light absorption
+
+
+
+ cout << "SetProcess for flag=" << &fProcessFlag[i][0] << " value=" << fProcessValue[i] << " not yet implemented!" << endl;
}
- } // end of else if (strncmp(&sProcessFlag[i][0],"LOSS",4) == 0)
-
+ } //end of loop number of SetProcess calls
+
- // multiple scattering
- // G3 default value: 1
- // G4 process: G4MultipleScattering/G4IMultipleScattering
- //
- // Particles: charged
- // Physics: EM
- // flag = 0 no multiple scattering
- // flag = 1 Moliere or Coulomb scattering
- // flag = 2 Moliere or Coulomb scattering
- // flag = 3 Gaussian scattering
- // gMC ->SetProcess("MULS",1); // MULSOPT multiple scattering
- else if (strncmp(&sProcessFlag[i][0],"MULS",4) == 0) {
- if (iProcessValue[i] == 1 || iProcessValue[i] == 2 || iProcessValue[i] == 3) {
- fprintf(pAliceInp,"*\n*Multiple scattering is ON by default for e+e- and for hadrons/muons\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*Multiple scattering is set OFF\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('MULS',0);\n");
- // zero = ignored
- // three = multiple scattering for hadrons and muons is completely suppressed
- // three = multiple scattering for e+ and e- is completely suppressed
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"MULSOPT %10.1f%10.1f%10.1f%10.1f%10.1f\n",zero,three,three,three,fLastMaterial);
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('MULS',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
- } // end of else if (strncmp(&sProcessFlag[i][0],"MULS",4) == 0)
-
-
- // muon nuclear interaction
- // G3 default value: 0
- // G4 processes: G4MuNuclearInteraction,
- // G4MuonMinusCaptureAtRest
- //
- // Particles: mu
- // Physics: Not set
- // flag = 0 no muon-nuclear interaction
- // flag = 1 nuclear interaction, secondaries processed
- // flag = 2 nuclear interaction, secondaries not processed
- // gMC ->SetProcess("MUNU",1); // MUPHOTON 1. 0. 0. 3. lastmat
- else if (strncmp(&sProcessFlag[i][0],"MUNU",4) == 0) {
- if (iProcessValue[i] == 1) {
- fprintf(pAliceInp,"*\n*Muon nuclear interactions with production of secondary hadrons\n");
- fprintf(pAliceInp,"*\n*Generated from call: SetProcess('MUNU',1);\n");
- // one = full simulation of muon nuclear interactions and production of secondary hadrons
- // zero = ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25.
- // zero = fraction of rho-like interactions ( must be < 1) - Default = 0.75.
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"MUPHOTON %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,three,fLastMaterial);
- }
- else if (iProcessValue[i] == 2) {
- fprintf(pAliceInp,"*\n*Muon nuclear interactions without production of secondary hadrons\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('MUNU',2);\n");
- // two = full simulation of muon nuclear interactions and production of secondary hadrons
- // zero = ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25.
- // zero = fraction of rho-like interactions ( must be < 1) - Default = 0.75.
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"MUPHOTON %10.1f%10.1f%10.1f%10.1f%10.1f\n",two,zero,zero,three,fLastMaterial);
- }
- else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*No muon nuclear interaction - no FLUKA card generated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('MUNU',0)\n");
+// Loop over number of SetCut calls
+ for (Int_t i = 0; i < fNbOfCut; i++) {
+ Float_t matMin = three;
+ Float_t matMax = fLastMaterial;
+ Bool_t global = kTRUE;
+ if (fCutMedium[i] != -1) {
+ matMin = Float_t(fCutMedium[i]);
+ matMax = matMin;
+ global = kFALSE;
}
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('MUNU',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
+ // cuts handled in SetProcess calls
+ if (strncmp(&fCutFlag[i][0],"BCUTM",5) == 0) continue;
+ else if (strncmp(&fCutFlag[i][0],"BCUTE",5) == 0) continue;
+ else if (strncmp(&fCutFlag[i][0],"DCUTM",5) == 0) continue;
+ else if (strncmp(&fCutFlag[i][0],"PPCUTM",6) == 0) continue;
+
+ // gammas
+ // G4 particles: "gamma"
+ // G3 default value: 0.001 GeV
+ // gMC ->SetCut("CUTGAM",cut); // cut for gammas
+
+ else if (strncmp(&fCutFlag[i][0],"CUTGAM",6) == 0 && global) {
+ fprintf(pAliceInp,"*\n*Cut for gamma\n");
+ fprintf(pAliceInp,"*Generated from call: SetCut('CUTGAM',cut);\n");
+ // -fCutValue[i];
+ // 7.0 = lower bound of the particle id-numbers to which the cut-off
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f\n",-fCutValue[i],7.0);
}
- } // end of else if (strncmp(&sProcessFlag[i][0],"MUNU",4) == 0)
-
- // photofission
- // G3 default value: 0
- // G4 process: ??
- //
- // Particles: gamma
- // Physics: ??
- // gMC ->SetProcess("PFIS",0); // PHOTONUC -1. 0. 0. 3. lastmat 0.
- // flag = 0 no photon fission
- // flag = 1 photon fission, secondaries processed
- // flag = 2 photon fission, no secondaries stored
- else if (strncmp(&sProcessFlag[i][0],"PFIS",4) == 0) {
- if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*No photonuclear interactions\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',0);\n");
- // - one = no photonuclear interactions
- // zero = not used
- // zero = not used
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"PHOTONUC %10.1f%10.1f%10.1f%10.1f%10.1f\n",-one,zero,zero,three,fLastMaterial);
- }
- else if (iProcessValue[i] == 1) {
- fprintf(pAliceInp,"*\n*Photon nuclear interactions are activated at all energies\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',1);\n");
- // one = photonuclear interactions are activated at all energies
- // zero = not used
- // zero = not used
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"PHOTONUC %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,three,fLastMaterial);
+ else if (strncmp(&fCutFlag[i][0],"CUTGAM",6) == 0 && !global) {
+ fprintf(pAliceInp,"*\n*Cut specific to material for gamma\n");
+ fprintf(pAliceInp,"*Generated from call: SetCut('CUTGAM',cut);\n");
+ // -fCutValue[i];
+ // 7.0 = lower bound of the particle id-numbers to which the cut-off
+ fprintf(pAliceInp,"EMFCUT %10.4g%10.4g%10.1f%10.1f%10.1f%10.1f\n", 0., fCutValue[i], zero, matMin, matMax, one);
}
- else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*No photofission - no FLUKA card generated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',0)\n");
- }
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('PFIS',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
+
+ // electrons
+ // G4 particles: "e-"
+ // ?? positrons
+ // G3 default value: 0.001 GeV
+ //gMC ->SetCut("CUTELE",cut); // cut for e+,e-
+ else if (strncmp(&fCutFlag[i][0],"CUTELE",6) == 0 && global) {
+ fprintf(pAliceInp,"*\n*Cut for electrons\n");
+ fprintf(pAliceInp,"*Generated from call: SetCut('CUTELE',cut);\n");
+ // -fCutValue[i];
+ // three = lower bound of the particle id-numbers to which the cut-off
+ // 4.0 = upper bound of the particle id-numbers to which the cut-off
+ // one = step length in assigning numbers
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-fCutValue[i],three,4.0,one);
}
- }
-
-
- // photo electric effect
- // G3 default value: 1
- // G4 processes: G4PhotoElectricEffect
- // G4LowEnergyPhotoElectric
- // Particles: gamma
- // Physics: EM
- // flag = 0 no photo electric effect
- // flag = 1 photo electric effect, electron processed
- // flag = 2 photo electric effect, no electron stored
- // gMC ->SetProcess("PHOT",1); // EMFCUT 0. -1. 0. 3. lastmat 0. PHOT-THR
- else if (strncmp(&sProcessFlag[i][0],"PHOT",4) == 0) {
- if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
- fprintf(pAliceInp,"*\n*Photo electric effect is activated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('PHOT',1);\n");
- // zero = ignored
- // - one = resets to default=0.
- // zero = ignored
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- // one = step length in assigning indices
- //"PHOT-THR";
- fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fPHOT-THR\n",zero,-one,zero,three,fLastMaterial,one);
+
+ else if (strncmp(&fCutFlag[i][0],"CUTELE",6) == 0 && !global) {
+ fprintf(pAliceInp,"*\n*Cut specific to material for electrons\n");
+ fprintf(pAliceInp,"*Generated from call: SetCut('CUTELE',cut);\n");
+ // -fCutValue[i];
+ // three = lower bound of the particle id-numbers to which the cut-off
+ // 4.0 = upper bound of the particle id-numbers to which the cut-off
+ // one = step length in assigning numbers
+ fprintf(pAliceInp,"EMFCUT %10.4g%10.4g%10.1f%10.1f%10.1f%10.1f\n", -fCutValue[i], zero, zero, matMin, matMax, one);
}
- else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*No photo electric effect - no FLUKA card generated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('PHOT',0)\n");
+
+ // neutral hadrons
+ // G4 particles: of type "baryon", "meson", "nucleus" with zero charge
+ // G3 default value: 0.01 GeV
+ //gMC ->SetCut("CUTNEU",cut); // cut for neutral hadrons
+ else if (strncmp(&fCutFlag[i][0],"CUTNEU",6) == 0 && global) {
+ fprintf(pAliceInp,"*\n*Cut for neutral hadrons\n");
+ fprintf(pAliceInp,"*Generated from call: SetCut('CUTNEU',cut);\n");
+
+ // 8.0 = Neutron
+ // 9.0 = Antineutron
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],8.0,9.0);
+
+ // 12.0 = Kaon zero long
+ // 12.0 = Kaon zero long
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],12.0,12.0);
+
+ // 17.0 = Lambda, 18.0 = Antilambda
+ // 19.0 = Kaon zero short
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],17.0,19.0);
+
+ // 22.0 = Sigma zero, Pion zero, Kaon zero
+ // 25.0 = Antikaon zero
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],22.0,25.0);
+
+ // 32.0 = Antisigma zero
+ // 32.0 = Antisigma zero
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],32.0,32.0);
+
+ // 34.0 = Xi zero
+ // 35.0 = AntiXi zero
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],34.0,35.0);
+
+ // 47.0 = D zero
+ // 48.0 = AntiD zero
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],47.0,48.0);
+
+ // 53.0 = Xi_c zero
+ // 53.0 = Xi_c zero
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],53.0,53.0);
+
+ // 55.0 = Xi'_c zero
+ // 56.0 = Omega_c zero
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],55.0,56.0);
+
+ // 59.0 = AntiXi_c zero
+ // 59.0 = AntiXi_c zero
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],59.0,59.0);
+
+ // 61.0 = AntiXi'_c zero
+ // 62.0 = AntiOmega_c zero
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],61.0,62.0);
}
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('PHOT',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
+
+ // charged hadrons
+ // G4 particles: of type "baryon", "meson", "nucleus" with non-zero charge
+ // G3 default value: 0.01 GeV
+ //gMC ->SetCut("CUTHAD",cut); // cut for charged hadrons
+ else if (strncmp(&fCutFlag[i][0],"CUTHAD",6) == 0 && global) {
+ fprintf(pAliceInp,"*\n*Cut for charged hadrons\n");
+ fprintf(pAliceInp,"*Generated from call: SetCut('CUTHAD',cut);\n");
+
+ // 1.0 = Proton
+ // 2.0 = Antiproton
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],1.0,2.0);
+
+ // 13.0 = Positive Pion, Negative Pion, Positive Kaon
+ // 16.0 = Negative Kaon
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],13.0,16.0);
+
+ // 20.0 = Negative Sigma
+ // 21.0 = Positive Sigma
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],20.0,21.0);
+
+ // 31.0 = Antisigma minus
+ // 33.0 = Antisigma plus
+ // 2.0 = step length
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-fCutValue[i],31.0,33.0,2.0);
+
+ // 36.0 = Negative Xi, Positive Xi, Omega minus
+ // 39.0 = Antiomega
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],36.0,39.0);
+
+ // 45.0 = D plus
+ // 46.0 = D minus
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],45.0,46.0);
+
+ // 49.0 = D_s plus, D_s minus, Lambda_c plus
+ // 52.0 = Xi_c plus
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],49.0,52.0);
+
+ // 54.0 = Xi'_c plus
+ // 60.0 = AntiXi'_c minus
+ // 6.0 = step length
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-fCutValue[i],54.0,60.0,6.0);
+
+ // 57.0 = Antilambda_c minus
+ // 58.0 = AntiXi_c minus
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],57.0,58.0);
}
- } // else if (strncmp(&sProcessFlag[i][0],"PHOT",4) == 0)
-
-
- // Rayleigh scattering
- // G3 default value: 0
- // G4 process: G4OpRayleigh
- //
- // Particles: optical photon
- // Physics: Optical
- // flag = 0 Rayleigh scattering off
- // flag = 1 Rayleigh scattering on
- //xx gMC ->SetProcess("RAYL",1);
- else if (strncmp(&sProcessFlag[i][0],"RAYL",4) == 0) {
- if (iProcessValue[i] == 1) {
- fprintf(pAliceInp,"*\n*Rayleigh scattering is ON by default in FLUKA\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
+
+ // muons
+ // G4 particles: "mu+", "mu-"
+ // G3 default value: 0.01 GeV
+ //gMC ->SetCut("CUTMUO",cut); // cut for mu+, mu-
+ else if (strncmp(&fCutFlag[i][0],"CUTMUO",6)== 0 && global) {
+ fprintf(pAliceInp,"*\n*Cut for muons\n");
+ fprintf(pAliceInp,"*Generated from call: SetCut('CUTMUO',cut);\n");
+ // 10.0 = Muon+
+ // 11.0 = Muon-
+ fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],10.0,11.0);
}
- else if (iProcessValue[i] == 0) {
- fprintf(pAliceInp,"*\n*Rayleigh scattering is set OFF\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('RAYL',0);\n");
- // - one = no Rayleigh scattering and no binding corrections for Compton
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"EMFRAY %10.1f%10.1f%10.1f%10.1f\n",-one,three,three,fLastMaterial);
+
+ // delta-rays by electrons
+ // G4 particles: "e-"
+ // G3 default value: 10**4 GeV
+ // gMC ->SetCut("DCUTE",cut); // cut for deltarays by electrons ???????????????
+ else if (strncmp(&fCutFlag[i][0],"DCUTE",5) == 0) {
+ fprintf(pAliceInp,"*\n*Cut for delta rays by electrons ????????????\n");
+ fprintf(pAliceInp,"*Generated from call: SetCut('DCUTE',cut);\n");
+ // -fCutValue[i];
+ // zero = ignored
+ // zero = ignored
+ // matMin = lower bound of the material indices in which the respective thresholds apply
+ // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
+ fprintf(pAliceInp,"EMFCUT %10.4g%10.1f%10.1f%10.1f%10.1f\n",-fCutValue[i],zero,zero,matMin,matMax);
+ fprintf(pAliceInp,"DELTARAY %10.4g%10.3f%10.3f%10.1f%10.1f%10.1f\n",fCutValue[i], 100., 1.03, matMin, matMax, 1.0);
+ fprintf(pAliceInp,"STEPSIZE %10.4g%10.3f%10.3f%10.1f%10.1f\n", 0.1, 1.0, 1.00,
+ Float_t(gGeoManager->GetListOfUVolumes()->GetEntriesFast()-1), 1.0);
}
- else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('RAYL',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
+
+ //
+ // time of flight cut in seconds
+ // G4 particles: all
+ // G3 default value: 0.01 GeV
+ //gMC ->SetCut("TOFMAX",tofmax); // time of flight cuts in seconds
+ else if (strncmp(&fCutFlag[i][0],"TOFMAX",6) == 0) {
+ fprintf(pAliceInp,"*\n*Time of flight cuts in seconds\n");
+ fprintf(pAliceInp,"*Generated from call: SetCut('TOFMAX',tofmax);\n");
+ // zero = ignored
+ // zero = ignored
+ // -6.0 = lower bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied
+ // 64.0 = upper bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied
+ fprintf(pAliceInp,"TIME-CUT %10.4g%10.1f%10.1f%10.1f%10.1f\n",fCutValue[i]*1.e9,zero,zero,-6.0,64.0);
}
- } // end of else if (strncmp(&sProcessFlag[i][0],"RAYL",4) == 0)
-
-
- // synchrotron radiation in magnetic field
- // G3 default value: 0
- // G4 process: G4SynchrotronRadiation
- //
- // Particles: ??
- // Physics: Not set
- // flag = 0 no synchrotron radiation
- // flag = 1 synchrotron radiation
- //xx gMC ->SetProcess("SYNC",1); // synchrotron radiation generation
- else if (strncmp(&sProcessFlag[i][0],"SYNC",4) == 0) {
- fprintf(pAliceInp,"*\n*Synchrotron radiation generation is NOT implemented in FLUKA\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
-
-
- // Automatic calculation of tracking medium parameters
- // flag = 0 no automatic calculation
- // flag = 1 automatic calculation
- //xx gMC ->SetProcess("AUTO",1); // ??? automatic computation of the tracking medium parameters
- else if (strncmp(&sProcessFlag[i][0],"AUTO",4) == 0) {
- fprintf(pAliceInp,"*\n*Automatic calculation of tracking medium parameters is always ON in FLUKA\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
- }
-
-
- // To control energy loss fluctuation model
- // flag = 0 Urban model
- // flag = 1 PAI model
- // flag = 2 PAI+ASHO model (not active at the moment)
- //xx gMC ->SetProcess("STRA",1); // ??? energy fluctuation model
- else if (strncmp(&sProcessFlag[i][0],"STRA",4) == 0) {
- if (iProcessValue[i] == 0 || iProcessValue[i] == 2 || iProcessValue[i] == 3) {
- fprintf(pAliceInp,"*\n*Ionization energy losses calculation is activated\n");
- fprintf(pAliceInp,"*Generated from call: SetProcess('STRA',n);, n=0,1,2\n");
- // one = restricted energy loss fluctuations (for hadrons and muons) switched on
- // one = restricted energy loss fluctuations (for e+ and e-) switched on
- // one = minimal accuracy
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,one,one,three,fLastMaterial);
+
+ else if (global){
+ cout << "SetCut for flag=" << &fCutFlag[i][0] << " value=" << fCutValue[i] << " not yet implemented!" << endl;
}
else {
- fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('STRA',?) call.\n");
- fprintf(pAliceInp,"*No FLUKA card generated\n");
+ cout << "SetCut for flag=" << &fCutFlag[i][0] << " value=" << fCutValue[i] << " (material specific) not yet implemented!" << endl;
}
- } // else if (strncmp(&sProcessFlag[i][0],"STRA",4) == 0)
-
-
-
-
- else { // processes not yet treated
-
- // light photon absorption (Cerenkov photons)
- // it is turned on when Cerenkov process is turned on
- // G3 default value: 0
- // G4 process: G4OpAbsorption, G4OpBoundaryProcess
- //
- // Particles: optical photon
- // Physics: Optical
- // flag = 0 no absorption of Cerenkov photons
- // flag = 1 absorption of Cerenkov photons
- // gMC ->SetProcess("LABS",2); // ??? Cerenkov light absorption
-
-
-
- cout << "SetProcess for flag=" << &sProcessFlag[i][0] << " value=" << iProcessValue[i] << " not yet implemented!" << endl;
- }
- } //end of loop number of SetProcess calls
-
-
-// Loop over number of SetCut calls
- for (Int_t i=0; i<iNbOfCut; i++) {
-
- // cuts used in SetProcess calls
- if (strncmp(&sCutFlag[i][0],"BCUTM",5) == 0) continue;
- else if (strncmp(&sCutFlag[i][0],"BCUTE",5) == 0) continue;
- else if (strncmp(&sCutFlag[i][0],"DCUTM",5) == 0) continue;
- else if (strncmp(&sCutFlag[i][0],"PPCUTM",6) == 0) continue;
-
- // gammas
- // G4 particles: "gamma"
- // G3 default value: 0.001 GeV
- //gMC ->SetCut("CUTGAM",cut); // cut for gammas
- else if (strncmp(&sCutFlag[i][0],"CUTGAM",6) == 0) {
- fprintf(pAliceInp,"*\n*Cut for gamma\n");
- fprintf(pAliceInp,"*Generated from call: SetCut('CUTGAM',cut);\n");
- // -fCutValue[i];
- // 7.0 = lower bound of the particle id-numbers to which the cut-off
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f\n",-fCutValue[i],7.0);
- }
-
- // electrons
- // G4 particles: "e-"
- // ?? positrons
- // G3 default value: 0.001 GeV
- //gMC ->SetCut("CUTELE",cut); // cut for e+,e-
- else if (strncmp(&sCutFlag[i][0],"CUTELE",6) == 0) {
- fprintf(pAliceInp,"*\n*Cut for electrons\n");
- fprintf(pAliceInp,"*Generated from call: SetCut('CUTELE',cut);\n");
- // -fCutValue[i];
- // three = lower bound of the particle id-numbers to which the cut-off
- // 4.0 = upper bound of the particle id-numbers to which the cut-off
- // one = step length in assigning numbers
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-fCutValue[i],three,4.0,one);
- }
-
- // neutral hadrons
- // G4 particles: of type "baryon", "meson", "nucleus" with zero charge
- // G3 default value: 0.01 GeV
- //gMC ->SetCut("CUTNEU",cut); // cut for neutral hadrons
- else if (strncmp(&sCutFlag[i][0],"CUTNEU",6) == 0) {
- fprintf(pAliceInp,"*\n*Cut for neutral hadrons\n");
- fprintf(pAliceInp,"*Generated from call: SetCut('CUTNEU',cut);\n");
-
- // 8.0 = Neutron
- // 9.0 = Antineutron
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],8.0,9.0);
-
- // 12.0 = Kaon zero long
- // 12.0 = Kaon zero long
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],12.0,12.0);
-
- // 17.0 = Lambda, 18.0 = Antilambda
- // 19.0 = Kaon zero short
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],17.0,19.0);
-
- // 22.0 = Sigma zero, Pion zero, Kaon zero
- // 25.0 = Antikaon zero
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],22.0,25.0);
-
- // 32.0 = Antisigma zero
- // 32.0 = Antisigma zero
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],32.0,32.0);
-
- // 34.0 = Xi zero
- // 35.0 = AntiXi zero
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],34.0,35.0);
-
- // 47.0 = D zero
- // 48.0 = AntiD zero
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],47.0,48.0);
-
- // 53.0 = Xi_c zero
- // 53.0 = Xi_c zero
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],53.0,53.0);
-
- // 55.0 = Xi'_c zero
- // 56.0 = Omega_c zero
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],55.0,56.0);
-
- // 59.0 = AntiXi_c zero
- // 59.0 = AntiXi_c zero
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],59.0,59.0);
-
- // 61.0 = AntiXi'_c zero
- // 62.0 = AntiOmega_c zero
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],61.0,62.0);
- }
-
- // charged hadrons
- // G4 particles: of type "baryon", "meson", "nucleus" with non-zero charge
- // G3 default value: 0.01 GeV
- //gMC ->SetCut("CUTHAD",cut); // cut for charged hadrons
- else if (strncmp(&sCutFlag[i][0],"CUTHAD",6) == 0) {
- fprintf(pAliceInp,"*\n*Cut for charged hadrons\n");
- fprintf(pAliceInp,"*Generated from call: SetCut('CUTHAD',cut);\n");
-
- // 1.0 = Proton
- // 2.0 = Antiproton
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],1.0,2.0);
-
- // 13.0 = Positive Pion, Negative Pion, Positive Kaon
- // 16.0 = Negative Kaon
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],13.0,16.0);
-
- // 20.0 = Negative Sigma
- // 21.0 = Positive Sigma
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],20.0,21.0);
-
- // 31.0 = Antisigma minus
- // 33.0 = Antisigma plus
- // 2.0 = step length
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-fCutValue[i],31.0,33.0,2.0);
-
- // 36.0 = Negative Xi, Positive Xi, Omega minus
- // 39.0 = Antiomega
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],36.0,39.0);
-
- // 45.0 = D plus
- // 46.0 = D minus
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],45.0,46.0);
-
- // 49.0 = D_s plus, D_s minus, Lambda_c plus
- // 52.0 = Xi_c plus
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],49.0,52.0);
-
- // 54.0 = Xi'_c plus
- // 60.0 = AntiXi'_c minus
- // 6.0 = step length
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-fCutValue[i],54.0,60.0,6.0);
-
- // 57.0 = Antilambda_c minus
- // 58.0 = AntiXi_c minus
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],57.0,58.0);
- }
-
- // muons
- // G4 particles: "mu+", "mu-"
- // G3 default value: 0.01 GeV
- //gMC ->SetCut("CUTMUO",cut); // cut for mu+, mu-
- else if (strncmp(&sCutFlag[i][0],"CUTMUO",6) == 0) {
- fprintf(pAliceInp,"*\n*Cut for muons\n");
- fprintf(pAliceInp,"*Generated from call: SetCut('CUTMUO',cut);\n");
- // 10.0 = Muon+
- // 11.0 = Muon-
- fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],10.0,11.0);
- }
-
- // delta-rays by electrons
- // G4 particles: "e-"
- // G3 default value: 10**4 GeV
- // gMC ->SetCut("DCUTE",cut); // cut for deltarays by electrons ???????????????
- else if (strncmp(&sCutFlag[i][0],"DCUTE",5) == 0) {
- fprintf(pAliceInp,"*\n*Cut for delta rays by electrons ????????????\n");
- fprintf(pAliceInp,"*Generated from call: SetCut('DCUTE',cut);\n");
- // -fCutValue[i];
- // zero = ignored
- // zero = ignored
- // three = lower bound of the material indices in which the respective thresholds apply
- // fLastMaterial = upper bound of the material indices in which the respective thresholds apply
- fprintf(pAliceInp,"EMFCUT %10.4g%10.1f%10.1f%10.1f%10.1f\n",-fCutValue[i],zero,zero,three,fLastMaterial);
- fprintf(pAliceInp,"DELTARAY %10.4g%10.3f%10.3f%10.1f%10.1f%10.1f\n",fCutValue[i], 100., 1.03, 3.0, fLastMaterial, 1.0);
- fprintf(pAliceInp,"STEPSIZE %10.4g%10.3f%10.3f%10.1f%10.1f\n", 0.1, 1.0, 1.00,
- Float_t(gGeoManager->GetListOfUVolumes()->GetEntriesFast()-1), 1.0);
- }
-
- //
- // time of flight cut in seconds
- // G4 particles: all
- // G3 default value: 0.01 GeV
- //gMC ->SetCut("TOFMAX",tofmax); // time of flight cuts in seconds
- else if (strncmp(&sCutFlag[i][0],"TOFMAX",6) == 0) {
- fprintf(pAliceInp,"*\n*Time of flight cuts in seconds\n");
- fprintf(pAliceInp,"*Generated from call: SetCut('TOFMAX',tofmax);\n");
- // zero = ignored
- // zero = ignored
- // -6.0 = lower bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied
- // 64.0 = upper bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied
- fprintf(pAliceInp,"TIME-CUT %10.4g%10.1f%10.1f%10.1f%10.1f\n",fCutValue[i]*1.e9,zero,zero,-6.0,64.0);
- }
-
- else {
- cout << "SetCut for flag=" << &sCutFlag[i][0] << " value=" << fCutValue[i] << " not yet implemented!" << endl;
- }
+
} //end of loop over SetCut calls
-
+
// Add START and STOP card
- fprintf(pAliceInp,"START %10.1f\n",fEventsPerRun);
- fprintf(pAliceInp,"STOP \n");
-
+ fprintf(pAliceInp,"START %10.1f\n",fEventsPerRun);
+ fprintf(pAliceInp,"STOP \n");
+
// Close files
-
+
fclose(pAliceCoreInp);
fclose(pAliceFlukaMat);
fclose(pAliceInp);
+ fclose(pGaliceCuts);
} // end of InitPhysics